aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/bitmap.h
diff options
context:
space:
mode:
authorBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
committerBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
commit1bc5aee63eb72b341f506ad058502cd0361f0d10 (patch)
treec607e8252f3405424ff15bc2d00aa38dadbb2518 /gcc-4.9/gcc/bitmap.h
parent283a0bf58fcf333c58a2a92c3ebbc41fb9eb1fdb (diff)
downloadtoolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.gz
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.bz2
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.zip
Initial checkin of GCC 4.9.0 from trunk (r208799).
Change-Id: I48a3c08bb98542aa215912a75f03c0890e497dba
Diffstat (limited to 'gcc-4.9/gcc/bitmap.h')
-rw-r--r--gcc-4.9/gcc/bitmap.h715
1 files changed, 715 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/bitmap.h b/gcc-4.9/gcc/bitmap.h
new file mode 100644
index 000000000..6fa25abdc
--- /dev/null
+++ b/gcc-4.9/gcc/bitmap.h
@@ -0,0 +1,715 @@
+/* Functions to support general ended bitmaps.
+ Copyright (C) 1997-2014 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#ifndef GCC_BITMAP_H
+#define GCC_BITMAP_H
+
+/* Implementation of sparse integer sets as a linked list.
+
+ This sparse set representation is suitable for sparse sets with an
+ unknown (a priori) universe. The set is represented as a double-linked
+ list of container nodes (struct bitmap_element). Each node consists
+ of an index for the first member that could be held in the container,
+ a small array of integers that represent the members in the container,
+ and pointers to the next and previous element in the linked list. The
+ elements in the list are sorted in ascending order, i.e. the head of
+ the list holds the element with the smallest member of the set.
+
+ For a given member I in the set:
+ - the element for I will have index is I / (bits per element)
+ - the position for I within element is I % (bits per element)
+
+ This representation is very space-efficient for large sparse sets, and
+ the size of the set can be changed dynamically without much overhead.
+ An important parameter is the number of bits per element. In this
+ implementation, there are 128 bits per element. This results in a
+ high storage overhead *per element*, but a small overall overhead if
+ the set is very sparse.
+
+ The downside is that many operations are relatively slow because the
+ linked list has to be traversed to test membership (i.e. member_p/
+ add_member/remove_member). To improve the performance of this set
+ representation, the last accessed element and its index are cached.
+ For membership tests on members close to recently accessed members,
+ the cached last element improves membership test to a constant-time
+ operation.
+
+ The following operations can always be performed in O(1) time:
+
+ * clear : bitmap_clear
+ * choose_one : (not implemented, but could be
+ implemented in constant time)
+
+ The following operations can be performed in O(E) time worst-case (with
+ E the number of elements in the linked list), but in O(1) time with a
+ suitable access patterns:
+
+ * member_p : bitmap_bit_p
+ * add_member : bitmap_set_bit
+ * remove_member : bitmap_clear_bit
+
+ The following operations can be performed in O(E) time:
+
+ * cardinality : bitmap_count_bits
+ * set_size : bitmap_last_set_bit (but this could
+ in constant time with a pointer to
+ the last element in the chain)
+
+ Additionally, the linked-list sparse set representation supports
+ enumeration of the members in O(E) time:
+
+ * forall : EXECUTE_IF_SET_IN_BITMAP
+ * set_copy : bitmap_copy
+ * set_intersection : bitmap_intersect_p /
+ bitmap_and / bitmap_and_into /
+ EXECUTE_IF_AND_IN_BITMAP
+ * set_union : bitmap_ior / bitmap_ior_into
+ * set_difference : bitmap_intersect_compl_p /
+ bitmap_and_comp / bitmap_and_comp_into /
+ EXECUTE_IF_AND_COMPL_IN_BITMAP
+ * set_disjuction : bitmap_xor_comp / bitmap_xor_comp_into
+ * set_compare : bitmap_equal_p
+
+ Some operations on 3 sets that occur frequently in in data flow problems
+ are also implemented:
+
+ * A | (B & C) : bitmap_ior_and_into
+ * A | (B & ~C) : bitmap_ior_and_compl /
+ bitmap_ior_and_compl_into
+
+ The storage requirements for linked-list sparse sets are O(E), with E->N
+ in the worst case (a sparse set with large distances between the values
+ of the set members).
+
+ The linked-list set representation works well for problems involving very
+ sparse sets. The canonical example in GCC is, of course, the "set of
+ sets" for some CFG-based data flow problems (liveness analysis, dominance
+ frontiers, etc.).
+
+ This representation also works well for data flow problems where the size
+ of the set may grow dynamically, but care must be taken that the member_p,
+ add_member, and remove_member operations occur with a suitable access
+ pattern.
+
+ For random-access sets with a known, relatively small universe size, the
+ SparseSet or simple bitmap representations may be more efficient than a
+ linked-list set. For random-access sets of unknown universe, a hash table
+ or a balanced binary tree representation is likely to be a more suitable
+ choice.
+
+ Traversing linked lists is usually cache-unfriendly, even with the last
+ accessed element cached.
+
+ Cache performance can be improved by keeping the elements in the set
+ grouped together in memory, using a dedicated obstack for a set (or group
+ of related sets). Elements allocated on obstacks are released to a
+ free-list and taken off the free list. If multiple sets are allocated on
+ the same obstack, elements freed from one set may be re-used for one of
+ the other sets. This usually helps avoid cache misses.
+
+ A single free-list is used for all sets allocated in GGC space. This is
+ bad for persistent sets, so persistent sets should be allocated on an
+ obstack whenever possible. */
+
+#include "hashtab.h"
+#include "statistics.h"
+#include "obstack.h"
+
+/* Fundamental storage type for bitmap. */
+
+typedef unsigned long BITMAP_WORD;
+/* BITMAP_WORD_BITS needs to be unsigned, but cannot contain casts as
+ it is used in preprocessor directives -- hence the 1u. */
+#define BITMAP_WORD_BITS (CHAR_BIT * SIZEOF_LONG * 1u)
+
+/* Number of words to use for each element in the linked list. */
+
+#ifndef BITMAP_ELEMENT_WORDS
+#define BITMAP_ELEMENT_WORDS ((128 + BITMAP_WORD_BITS - 1) / BITMAP_WORD_BITS)
+#endif
+
+/* Number of bits in each actual element of a bitmap. */
+
+#define BITMAP_ELEMENT_ALL_BITS (BITMAP_ELEMENT_WORDS * BITMAP_WORD_BITS)
+
+/* Obstack for allocating bitmaps and elements from. */
+struct GTY (()) bitmap_obstack {
+ struct bitmap_element *elements;
+ struct bitmap_head *heads;
+ struct obstack GTY ((skip)) obstack;
+};
+
+/* Bitmap set element. We use a linked list to hold only the bits that
+ are set. This allows for use to grow the bitset dynamically without
+ having to realloc and copy a giant bit array.
+
+ The free list is implemented as a list of lists. There is one
+ outer list connected together by prev fields. Each element of that
+ outer is an inner list (that may consist only of the outer list
+ element) that are connected by the next fields. The prev pointer
+ is undefined for interior elements. This allows
+ bitmap_elt_clear_from to be implemented in unit time rather than
+ linear in the number of elements to be freed. */
+
+struct GTY((chain_next ("%h.next"), chain_prev ("%h.prev"))) bitmap_element {
+ struct bitmap_element *next; /* Next element. */
+ struct bitmap_element *prev; /* Previous element. */
+ unsigned int indx; /* regno/BITMAP_ELEMENT_ALL_BITS. */
+ BITMAP_WORD bits[BITMAP_ELEMENT_WORDS]; /* Bits that are set. */
+};
+
+/* Head of bitmap linked list. The 'current' member points to something
+ already pointed to by the chain started by first, so GTY((skip)) it. */
+
+struct GTY(()) bitmap_head {
+ unsigned int indx; /* Index of last element looked at. */
+ unsigned int descriptor_id; /* Unique identifier for the allocation
+ site of this bitmap, for detailed
+ statistics gathering. */
+ bitmap_element *first; /* First element in linked list. */
+ bitmap_element * GTY((skip(""))) current; /* Last element looked at. */
+ bitmap_obstack *obstack; /* Obstack to allocate elements from.
+ If NULL, then use GGC allocation. */
+};
+
+/* Global data */
+extern bitmap_element bitmap_zero_bits; /* Zero bitmap element */
+extern bitmap_obstack bitmap_default_obstack; /* Default bitmap obstack */
+
+/* Clear a bitmap by freeing up the linked list. */
+extern void bitmap_clear (bitmap);
+
+/* Copy a bitmap to another bitmap. */
+extern void bitmap_copy (bitmap, const_bitmap);
+
+/* True if two bitmaps are identical. */
+extern bool bitmap_equal_p (const_bitmap, const_bitmap);
+
+/* True if the bitmaps intersect (their AND is non-empty). */
+extern bool bitmap_intersect_p (const_bitmap, const_bitmap);
+
+/* True if the complement of the second intersects the first (their
+ AND_COMPL is non-empty). */
+extern bool bitmap_intersect_compl_p (const_bitmap, const_bitmap);
+
+/* True if MAP is an empty bitmap. */
+inline bool bitmap_empty_p (const_bitmap map)
+{
+ return !map->first;
+}
+
+/* True if the bitmap has only a single bit set. */
+extern bool bitmap_single_bit_set_p (const_bitmap);
+
+/* Count the number of bits set in the bitmap. */
+extern unsigned long bitmap_count_bits (const_bitmap);
+
+/* Boolean operations on bitmaps. The _into variants are two operand
+ versions that modify the first source operand. The other variants
+ are three operand versions that to not destroy the source bitmaps.
+ The operations supported are &, & ~, |, ^. */
+extern void bitmap_and (bitmap, const_bitmap, const_bitmap);
+extern bool bitmap_and_into (bitmap, const_bitmap);
+extern bool bitmap_and_compl (bitmap, const_bitmap, const_bitmap);
+extern bool bitmap_and_compl_into (bitmap, const_bitmap);
+#define bitmap_compl_and(DST, A, B) bitmap_and_compl (DST, B, A)
+extern void bitmap_compl_and_into (bitmap, const_bitmap);
+extern void bitmap_clear_range (bitmap, unsigned int, unsigned int);
+extern void bitmap_set_range (bitmap, unsigned int, unsigned int);
+extern bool bitmap_ior (bitmap, const_bitmap, const_bitmap);
+extern bool bitmap_ior_into (bitmap, const_bitmap);
+extern void bitmap_xor (bitmap, const_bitmap, const_bitmap);
+extern void bitmap_xor_into (bitmap, const_bitmap);
+
+/* DST = A | (B & C). Return true if DST changes. */
+extern bool bitmap_ior_and_into (bitmap DST, const_bitmap B, const_bitmap C);
+/* DST = A | (B & ~C). Return true if DST changes. */
+extern bool bitmap_ior_and_compl (bitmap DST, const_bitmap A,
+ const_bitmap B, const_bitmap C);
+/* A |= (B & ~C). Return true if A changes. */
+extern bool bitmap_ior_and_compl_into (bitmap A,
+ const_bitmap B, const_bitmap C);
+
+/* Clear a single bit in a bitmap. Return true if the bit changed. */
+extern bool bitmap_clear_bit (bitmap, int);
+
+/* Set a single bit in a bitmap. Return true if the bit changed. */
+extern bool bitmap_set_bit (bitmap, int);
+
+/* Return true if a register is set in a register set. */
+extern int bitmap_bit_p (bitmap, int);
+
+/* Debug functions to print a bitmap linked list. */
+extern void debug_bitmap (const_bitmap);
+extern void debug_bitmap_file (FILE *, const_bitmap);
+
+/* Print a bitmap. */
+extern void bitmap_print (FILE *, const_bitmap, const char *, const char *);
+
+/* Initialize and release a bitmap obstack. */
+extern void bitmap_obstack_initialize (bitmap_obstack *);
+extern void bitmap_obstack_release (bitmap_obstack *);
+extern void bitmap_register (bitmap MEM_STAT_DECL);
+extern void dump_bitmap_statistics (void);
+
+/* Initialize a bitmap header. OBSTACK indicates the bitmap obstack
+ to allocate from, NULL for GC'd bitmap. */
+
+static inline void
+bitmap_initialize_stat (bitmap head, bitmap_obstack *obstack MEM_STAT_DECL)
+{
+ head->first = head->current = NULL;
+ head->obstack = obstack;
+ if (GATHER_STATISTICS)
+ bitmap_register (head PASS_MEM_STAT);
+}
+#define bitmap_initialize(h,o) bitmap_initialize_stat (h,o MEM_STAT_INFO)
+
+/* Allocate and free bitmaps from obstack, malloc and gc'd memory. */
+extern bitmap bitmap_obstack_alloc_stat (bitmap_obstack *obstack MEM_STAT_DECL);
+#define bitmap_obstack_alloc(t) bitmap_obstack_alloc_stat (t MEM_STAT_INFO)
+extern bitmap bitmap_gc_alloc_stat (ALONE_MEM_STAT_DECL);
+#define bitmap_gc_alloc() bitmap_gc_alloc_stat (ALONE_MEM_STAT_INFO)
+extern void bitmap_obstack_free (bitmap);
+
+/* A few compatibility/functions macros for compatibility with sbitmaps */
+inline void dump_bitmap (FILE *file, const_bitmap map)
+{
+ bitmap_print (file, map, "", "\n");
+}
+extern void debug (const bitmap_head &ref);
+extern void debug (const bitmap_head *ptr);
+
+extern unsigned bitmap_first_set_bit (const_bitmap);
+extern unsigned bitmap_last_set_bit (const_bitmap);
+
+/* Compute bitmap hash (for purposes of hashing etc.) */
+extern hashval_t bitmap_hash (const_bitmap);
+
+/* Allocate a bitmap from a bit obstack. */
+#define BITMAP_ALLOC(OBSTACK) bitmap_obstack_alloc (OBSTACK)
+
+/* Allocate a gc'd bitmap. */
+#define BITMAP_GGC_ALLOC() bitmap_gc_alloc ()
+
+/* Do any cleanup needed on a bitmap when it is no longer used. */
+#define BITMAP_FREE(BITMAP) \
+ ((void) (bitmap_obstack_free ((bitmap) BITMAP), (BITMAP) = (bitmap) NULL))
+
+/* Iterator for bitmaps. */
+
+struct bitmap_iterator
+{
+ /* Pointer to the current bitmap element. */
+ bitmap_element *elt1;
+
+ /* Pointer to 2nd bitmap element when two are involved. */
+ bitmap_element *elt2;
+
+ /* Word within the current element. */
+ unsigned word_no;
+
+ /* Contents of the actually processed word. When finding next bit
+ it is shifted right, so that the actual bit is always the least
+ significant bit of ACTUAL. */
+ BITMAP_WORD bits;
+};
+
+/* Initialize a single bitmap iterator. START_BIT is the first bit to
+ iterate from. */
+
+static inline void
+bmp_iter_set_init (bitmap_iterator *bi, const_bitmap map,
+ unsigned start_bit, unsigned *bit_no)
+{
+ bi->elt1 = map->first;
+ bi->elt2 = NULL;
+
+ /* Advance elt1 until it is not before the block containing start_bit. */
+ while (1)
+ {
+ if (!bi->elt1)
+ {
+ bi->elt1 = &bitmap_zero_bits;
+ break;
+ }
+
+ if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
+ break;
+ bi->elt1 = bi->elt1->next;
+ }
+
+ /* We might have gone past the start bit, so reinitialize it. */
+ if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
+ start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
+
+ /* Initialize for what is now start_bit. */
+ bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
+ bi->bits = bi->elt1->bits[bi->word_no];
+ bi->bits >>= start_bit % BITMAP_WORD_BITS;
+
+ /* If this word is zero, we must make sure we're not pointing at the
+ first bit, otherwise our incrementing to the next word boundary
+ will fail. It won't matter if this increment moves us into the
+ next word. */
+ start_bit += !bi->bits;
+
+ *bit_no = start_bit;
+}
+
+/* Initialize an iterator to iterate over the intersection of two
+ bitmaps. START_BIT is the bit to commence from. */
+
+static inline void
+bmp_iter_and_init (bitmap_iterator *bi, const_bitmap map1, const_bitmap map2,
+ unsigned start_bit, unsigned *bit_no)
+{
+ bi->elt1 = map1->first;
+ bi->elt2 = map2->first;
+
+ /* Advance elt1 until it is not before the block containing
+ start_bit. */
+ while (1)
+ {
+ if (!bi->elt1)
+ {
+ bi->elt2 = NULL;
+ break;
+ }
+
+ if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
+ break;
+ bi->elt1 = bi->elt1->next;
+ }
+
+ /* Advance elt2 until it is not before elt1. */
+ while (1)
+ {
+ if (!bi->elt2)
+ {
+ bi->elt1 = bi->elt2 = &bitmap_zero_bits;
+ break;
+ }
+
+ if (bi->elt2->indx >= bi->elt1->indx)
+ break;
+ bi->elt2 = bi->elt2->next;
+ }
+
+ /* If we're at the same index, then we have some intersecting bits. */
+ if (bi->elt1->indx == bi->elt2->indx)
+ {
+ /* We might have advanced beyond the start_bit, so reinitialize
+ for that. */
+ if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
+ start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
+
+ bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
+ bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
+ bi->bits >>= start_bit % BITMAP_WORD_BITS;
+ }
+ else
+ {
+ /* Otherwise we must immediately advance elt1, so initialize for
+ that. */
+ bi->word_no = BITMAP_ELEMENT_WORDS - 1;
+ bi->bits = 0;
+ }
+
+ /* If this word is zero, we must make sure we're not pointing at the
+ first bit, otherwise our incrementing to the next word boundary
+ will fail. It won't matter if this increment moves us into the
+ next word. */
+ start_bit += !bi->bits;
+
+ *bit_no = start_bit;
+}
+
+/* Initialize an iterator to iterate over the bits in MAP1 & ~MAP2.
+ */
+
+static inline void
+bmp_iter_and_compl_init (bitmap_iterator *bi,
+ const_bitmap map1, const_bitmap map2,
+ unsigned start_bit, unsigned *bit_no)
+{
+ bi->elt1 = map1->first;
+ bi->elt2 = map2->first;
+
+ /* Advance elt1 until it is not before the block containing start_bit. */
+ while (1)
+ {
+ if (!bi->elt1)
+ {
+ bi->elt1 = &bitmap_zero_bits;
+ break;
+ }
+
+ if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
+ break;
+ bi->elt1 = bi->elt1->next;
+ }
+
+ /* Advance elt2 until it is not before elt1. */
+ while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
+ bi->elt2 = bi->elt2->next;
+
+ /* We might have advanced beyond the start_bit, so reinitialize for
+ that. */
+ if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
+ start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
+
+ bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
+ bi->bits = bi->elt1->bits[bi->word_no];
+ if (bi->elt2 && bi->elt1->indx == bi->elt2->indx)
+ bi->bits &= ~bi->elt2->bits[bi->word_no];
+ bi->bits >>= start_bit % BITMAP_WORD_BITS;
+
+ /* If this word is zero, we must make sure we're not pointing at the
+ first bit, otherwise our incrementing to the next word boundary
+ will fail. It won't matter if this increment moves us into the
+ next word. */
+ start_bit += !bi->bits;
+
+ *bit_no = start_bit;
+}
+
+/* Advance to the next bit in BI. We don't advance to the next
+ nonzero bit yet. */
+
+static inline void
+bmp_iter_next (bitmap_iterator *bi, unsigned *bit_no)
+{
+ bi->bits >>= 1;
+ *bit_no += 1;
+}
+
+/* Advance to first set bit in BI. */
+
+static inline void
+bmp_iter_next_bit (bitmap_iterator * bi, unsigned *bit_no)
+{
+#if (GCC_VERSION >= 3004)
+ {
+ unsigned int n = __builtin_ctzl (bi->bits);
+ gcc_assert (sizeof (unsigned long) == sizeof (BITMAP_WORD));
+ bi->bits >>= n;
+ *bit_no += n;
+ }
+#else
+ while (!(bi->bits & 1))
+ {
+ bi->bits >>= 1;
+ *bit_no += 1;
+ }
+#endif
+}
+
+/* Advance to the next nonzero bit of a single bitmap, we will have
+ already advanced past the just iterated bit. Return true if there
+ is a bit to iterate. */
+
+static inline bool
+bmp_iter_set (bitmap_iterator *bi, unsigned *bit_no)
+{
+ /* If our current word is nonzero, it contains the bit we want. */
+ if (bi->bits)
+ {
+ next_bit:
+ bmp_iter_next_bit (bi, bit_no);
+ return true;
+ }
+
+ /* Round up to the word boundary. We might have just iterated past
+ the end of the last word, hence the -1. It is not possible for
+ bit_no to point at the beginning of the now last word. */
+ *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
+ / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
+ bi->word_no++;
+
+ while (1)
+ {
+ /* Find the next nonzero word in this elt. */
+ while (bi->word_no != BITMAP_ELEMENT_WORDS)
+ {
+ bi->bits = bi->elt1->bits[bi->word_no];
+ if (bi->bits)
+ goto next_bit;
+ *bit_no += BITMAP_WORD_BITS;
+ bi->word_no++;
+ }
+
+ /* Advance to the next element. */
+ bi->elt1 = bi->elt1->next;
+ if (!bi->elt1)
+ return false;
+ *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
+ bi->word_no = 0;
+ }
+}
+
+/* Advance to the next nonzero bit of an intersecting pair of
+ bitmaps. We will have already advanced past the just iterated bit.
+ Return true if there is a bit to iterate. */
+
+static inline bool
+bmp_iter_and (bitmap_iterator *bi, unsigned *bit_no)
+{
+ /* If our current word is nonzero, it contains the bit we want. */
+ if (bi->bits)
+ {
+ next_bit:
+ bmp_iter_next_bit (bi, bit_no);
+ return true;
+ }
+
+ /* Round up to the word boundary. We might have just iterated past
+ the end of the last word, hence the -1. It is not possible for
+ bit_no to point at the beginning of the now last word. */
+ *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
+ / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
+ bi->word_no++;
+
+ while (1)
+ {
+ /* Find the next nonzero word in this elt. */
+ while (bi->word_no != BITMAP_ELEMENT_WORDS)
+ {
+ bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
+ if (bi->bits)
+ goto next_bit;
+ *bit_no += BITMAP_WORD_BITS;
+ bi->word_no++;
+ }
+
+ /* Advance to the next identical element. */
+ do
+ {
+ /* Advance elt1 while it is less than elt2. We always want
+ to advance one elt. */
+ do
+ {
+ bi->elt1 = bi->elt1->next;
+ if (!bi->elt1)
+ return false;
+ }
+ while (bi->elt1->indx < bi->elt2->indx);
+
+ /* Advance elt2 to be no less than elt1. This might not
+ advance. */
+ while (bi->elt2->indx < bi->elt1->indx)
+ {
+ bi->elt2 = bi->elt2->next;
+ if (!bi->elt2)
+ return false;
+ }
+ }
+ while (bi->elt1->indx != bi->elt2->indx);
+
+ *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
+ bi->word_no = 0;
+ }
+}
+
+/* Advance to the next nonzero bit in the intersection of
+ complemented bitmaps. We will have already advanced past the just
+ iterated bit. */
+
+static inline bool
+bmp_iter_and_compl (bitmap_iterator *bi, unsigned *bit_no)
+{
+ /* If our current word is nonzero, it contains the bit we want. */
+ if (bi->bits)
+ {
+ next_bit:
+ bmp_iter_next_bit (bi, bit_no);
+ return true;
+ }
+
+ /* Round up to the word boundary. We might have just iterated past
+ the end of the last word, hence the -1. It is not possible for
+ bit_no to point at the beginning of the now last word. */
+ *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
+ / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
+ bi->word_no++;
+
+ while (1)
+ {
+ /* Find the next nonzero word in this elt. */
+ while (bi->word_no != BITMAP_ELEMENT_WORDS)
+ {
+ bi->bits = bi->elt1->bits[bi->word_no];
+ if (bi->elt2 && bi->elt2->indx == bi->elt1->indx)
+ bi->bits &= ~bi->elt2->bits[bi->word_no];
+ if (bi->bits)
+ goto next_bit;
+ *bit_no += BITMAP_WORD_BITS;
+ bi->word_no++;
+ }
+
+ /* Advance to the next element of elt1. */
+ bi->elt1 = bi->elt1->next;
+ if (!bi->elt1)
+ return false;
+
+ /* Advance elt2 until it is no less than elt1. */
+ while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
+ bi->elt2 = bi->elt2->next;
+
+ *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
+ bi->word_no = 0;
+ }
+}
+
+/* Loop over all bits set in BITMAP, starting with MIN and setting
+ BITNUM to the bit number. ITER is a bitmap iterator. BITNUM
+ should be treated as a read-only variable as it contains loop
+ state. */
+
+#ifndef EXECUTE_IF_SET_IN_BITMAP
+/* See sbitmap.h for the other definition of EXECUTE_IF_SET_IN_BITMAP. */
+#define EXECUTE_IF_SET_IN_BITMAP(BITMAP, MIN, BITNUM, ITER) \
+ for (bmp_iter_set_init (&(ITER), (BITMAP), (MIN), &(BITNUM)); \
+ bmp_iter_set (&(ITER), &(BITNUM)); \
+ bmp_iter_next (&(ITER), &(BITNUM)))
+#endif
+
+/* Loop over all the bits set in BITMAP1 & BITMAP2, starting with MIN
+ and setting BITNUM to the bit number. ITER is a bitmap iterator.
+ BITNUM should be treated as a read-only variable as it contains
+ loop state. */
+
+#define EXECUTE_IF_AND_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \
+ for (bmp_iter_and_init (&(ITER), (BITMAP1), (BITMAP2), (MIN), \
+ &(BITNUM)); \
+ bmp_iter_and (&(ITER), &(BITNUM)); \
+ bmp_iter_next (&(ITER), &(BITNUM)))
+
+/* Loop over all the bits set in BITMAP1 & ~BITMAP2, starting with MIN
+ and setting BITNUM to the bit number. ITER is a bitmap iterator.
+ BITNUM should be treated as a read-only variable as it contains
+ loop state. */
+
+#define EXECUTE_IF_AND_COMPL_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \
+ for (bmp_iter_and_compl_init (&(ITER), (BITMAP1), (BITMAP2), (MIN), \
+ &(BITNUM)); \
+ bmp_iter_and_compl (&(ITER), &(BITNUM)); \
+ bmp_iter_next (&(ITER), &(BITNUM)))
+
+#endif /* GCC_BITMAP_H */