aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8/gcc/tree-loop-distribution.c
diff options
context:
space:
mode:
authorBen Cheng <bccheng@google.com>2013-03-28 11:14:20 -0700
committerBen Cheng <bccheng@google.com>2013-03-28 12:40:33 -0700
commitaf0c51ac87ab2a87caa03fa108f0d164987a2764 (patch)
tree4b8b470f7c5b69642fdab8d0aa1fbc148d02196b /gcc-4.8/gcc/tree-loop-distribution.c
parentd87cae247d39ebf4f5a6bf25c932a14d2fdb9384 (diff)
downloadtoolchain_gcc-af0c51ac87ab2a87caa03fa108f0d164987a2764.tar.gz
toolchain_gcc-af0c51ac87ab2a87caa03fa108f0d164987a2764.tar.bz2
toolchain_gcc-af0c51ac87ab2a87caa03fa108f0d164987a2764.zip
[GCC 4.8] Initial check-in of GCC 4.8.0
Change-Id: I0719d8a6d0f69b367a6ab6f10eb75622dbf12771
Diffstat (limited to 'gcc-4.8/gcc/tree-loop-distribution.c')
-rw-r--r--gcc-4.8/gcc/tree-loop-distribution.c1591
1 files changed, 1591 insertions, 0 deletions
diff --git a/gcc-4.8/gcc/tree-loop-distribution.c b/gcc-4.8/gcc/tree-loop-distribution.c
new file mode 100644
index 000000000..70f71b37c
--- /dev/null
+++ b/gcc-4.8/gcc/tree-loop-distribution.c
@@ -0,0 +1,1591 @@
+/* Loop distribution.
+ Copyright (C) 2006-2013 Free Software Foundation, Inc.
+ Contributed by Georges-Andre Silber <Georges-Andre.Silber@ensmp.fr>
+ and Sebastian Pop <sebastian.pop@amd.com>.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it
+under the terms of the GNU General Public License as published by the
+Free Software Foundation; either version 3, or (at your option) any
+later version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT
+ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+/* This pass performs loop distribution: for example, the loop
+
+ |DO I = 2, N
+ | A(I) = B(I) + C
+ | D(I) = A(I-1)*E
+ |ENDDO
+
+ is transformed to
+
+ |DOALL I = 2, N
+ | A(I) = B(I) + C
+ |ENDDO
+ |
+ |DOALL I = 2, N
+ | D(I) = A(I-1)*E
+ |ENDDO
+
+ This pass uses an RDG, Reduced Dependence Graph built on top of the
+ data dependence relations. The RDG is then topologically sorted to
+ obtain a map of information producers/consumers based on which it
+ generates the new loops. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tree-flow.h"
+#include "cfgloop.h"
+#include "tree-chrec.h"
+#include "tree-data-ref.h"
+#include "tree-scalar-evolution.h"
+#include "tree-pass.h"
+
+enum partition_kind {
+ PKIND_NORMAL, PKIND_REDUCTION, PKIND_MEMSET, PKIND_MEMCPY
+};
+
+typedef struct partition_s
+{
+ bitmap stmts;
+ bool has_writes;
+ enum partition_kind kind;
+ /* data-references a kind != PKIND_NORMAL partition is about. */
+ data_reference_p main_dr;
+ data_reference_p secondary_dr;
+} *partition_t;
+
+
+/* Allocate and initialize a partition from BITMAP. */
+
+static partition_t
+partition_alloc (bitmap stmts)
+{
+ partition_t partition = XCNEW (struct partition_s);
+ partition->stmts = stmts ? stmts : BITMAP_ALLOC (NULL);
+ partition->has_writes = false;
+ partition->kind = PKIND_NORMAL;
+ return partition;
+}
+
+/* Free PARTITION. */
+
+static void
+partition_free (partition_t partition)
+{
+ BITMAP_FREE (partition->stmts);
+ free (partition);
+}
+
+/* Returns true if the partition can be generated as a builtin. */
+
+static bool
+partition_builtin_p (partition_t partition)
+{
+ return partition->kind > PKIND_REDUCTION;
+}
+
+/* Returns true if the partition has an writes. */
+
+static bool
+partition_has_writes (partition_t partition)
+{
+ return partition->has_writes;
+}
+
+/* If bit I is not set, it means that this node represents an
+ operation that has already been performed, and that should not be
+ performed again. This is the subgraph of remaining important
+ computations that is passed to the DFS algorithm for avoiding to
+ include several times the same stores in different loops. */
+static bitmap remaining_stmts;
+
+/* A node of the RDG is marked in this bitmap when it has as a
+ predecessor a node that writes to memory. */
+static bitmap upstream_mem_writes;
+
+/* Returns true when DEF is an SSA_NAME defined in LOOP and used after
+ the LOOP. */
+
+static bool
+ssa_name_has_uses_outside_loop_p (tree def, loop_p loop)
+{
+ imm_use_iterator imm_iter;
+ use_operand_p use_p;
+
+ FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
+ {
+ gimple use_stmt = USE_STMT (use_p);
+ if (!is_gimple_debug (use_stmt)
+ && loop != loop_containing_stmt (use_stmt))
+ return true;
+ }
+
+ return false;
+}
+
+/* Returns true when STMT defines a scalar variable used after the
+ loop LOOP. */
+
+static bool
+stmt_has_scalar_dependences_outside_loop (loop_p loop, gimple stmt)
+{
+ def_operand_p def_p;
+ ssa_op_iter op_iter;
+
+ if (gimple_code (stmt) == GIMPLE_PHI)
+ return ssa_name_has_uses_outside_loop_p (gimple_phi_result (stmt), loop);
+
+ FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, op_iter, SSA_OP_DEF)
+ if (ssa_name_has_uses_outside_loop_p (DEF_FROM_PTR (def_p), loop))
+ return true;
+
+ return false;
+}
+
+/* Return a copy of LOOP placed before LOOP. */
+
+static struct loop *
+copy_loop_before (struct loop *loop)
+{
+ struct loop *res;
+ edge preheader = loop_preheader_edge (loop);
+
+ initialize_original_copy_tables ();
+ res = slpeel_tree_duplicate_loop_to_edge_cfg (loop, preheader);
+ gcc_assert (res != NULL);
+ free_original_copy_tables ();
+ delete_update_ssa ();
+
+ return res;
+}
+
+/* Creates an empty basic block after LOOP. */
+
+static void
+create_bb_after_loop (struct loop *loop)
+{
+ edge exit = single_exit (loop);
+
+ if (!exit)
+ return;
+
+ split_edge (exit);
+}
+
+/* Generate code for PARTITION from the code in LOOP. The loop is
+ copied when COPY_P is true. All the statements not flagged in the
+ PARTITION bitmap are removed from the loop or from its copy. The
+ statements are indexed in sequence inside a basic block, and the
+ basic blocks of a loop are taken in dom order. */
+
+static void
+generate_loops_for_partition (struct loop *loop, partition_t partition,
+ bool copy_p)
+{
+ unsigned i, x;
+ gimple_stmt_iterator bsi;
+ basic_block *bbs;
+
+ if (copy_p)
+ {
+ loop = copy_loop_before (loop);
+ gcc_assert (loop != NULL);
+ create_preheader (loop, CP_SIMPLE_PREHEADERS);
+ create_bb_after_loop (loop);
+ }
+
+ /* Remove stmts not in the PARTITION bitmap. The order in which we
+ visit the phi nodes and the statements is exactly as in
+ stmts_from_loop. */
+ bbs = get_loop_body_in_dom_order (loop);
+
+ if (MAY_HAVE_DEBUG_STMTS)
+ for (x = 0, i = 0; i < loop->num_nodes; i++)
+ {
+ basic_block bb = bbs[i];
+
+ for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
+ if (!bitmap_bit_p (partition->stmts, x++))
+ reset_debug_uses (gsi_stmt (bsi));
+
+ for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
+ {
+ gimple stmt = gsi_stmt (bsi);
+ if (gimple_code (stmt) != GIMPLE_LABEL
+ && !is_gimple_debug (stmt)
+ && !bitmap_bit_p (partition->stmts, x++))
+ reset_debug_uses (stmt);
+ }
+ }
+
+ for (x = 0, i = 0; i < loop->num_nodes; i++)
+ {
+ basic_block bb = bbs[i];
+
+ for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi);)
+ if (!bitmap_bit_p (partition->stmts, x++))
+ {
+ gimple phi = gsi_stmt (bsi);
+ if (virtual_operand_p (gimple_phi_result (phi)))
+ mark_virtual_phi_result_for_renaming (phi);
+ remove_phi_node (&bsi, true);
+ }
+ else
+ gsi_next (&bsi);
+
+ for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi);)
+ {
+ gimple stmt = gsi_stmt (bsi);
+ if (gimple_code (stmt) != GIMPLE_LABEL
+ && !is_gimple_debug (stmt)
+ && !bitmap_bit_p (partition->stmts, x++))
+ {
+ unlink_stmt_vdef (stmt);
+ gsi_remove (&bsi, true);
+ release_defs (stmt);
+ }
+ else
+ gsi_next (&bsi);
+ }
+ }
+
+ free (bbs);
+}
+
+/* Build the size argument for a memory operation call. */
+
+static tree
+build_size_arg_loc (location_t loc, data_reference_p dr, tree nb_iter)
+{
+ tree size;
+ size = fold_build2_loc (loc, MULT_EXPR, sizetype,
+ fold_convert_loc (loc, sizetype, nb_iter),
+ TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
+ return fold_convert_loc (loc, size_type_node, size);
+}
+
+/* Build an address argument for a memory operation call. */
+
+static tree
+build_addr_arg_loc (location_t loc, data_reference_p dr, tree nb_bytes)
+{
+ tree addr_base;
+
+ addr_base = size_binop_loc (loc, PLUS_EXPR, DR_OFFSET (dr), DR_INIT (dr));
+ addr_base = fold_convert_loc (loc, sizetype, addr_base);
+
+ /* Test for a negative stride, iterating over every element. */
+ if (tree_int_cst_sgn (DR_STEP (dr)) == -1)
+ {
+ addr_base = size_binop_loc (loc, MINUS_EXPR, addr_base,
+ fold_convert_loc (loc, sizetype, nb_bytes));
+ addr_base = size_binop_loc (loc, PLUS_EXPR, addr_base,
+ TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
+ }
+
+ return fold_build_pointer_plus_loc (loc, DR_BASE_ADDRESS (dr), addr_base);
+}
+
+/* Generate a call to memset for PARTITION in LOOP. */
+
+static void
+generate_memset_builtin (struct loop *loop, partition_t partition)
+{
+ gimple_stmt_iterator gsi;
+ gimple stmt, fn_call;
+ tree nb_iter, mem, fn, nb_bytes;
+ location_t loc;
+ tree val;
+
+ stmt = DR_STMT (partition->main_dr);
+ loc = gimple_location (stmt);
+ if (gimple_bb (stmt) == loop->latch)
+ nb_iter = number_of_latch_executions (loop);
+ else
+ nb_iter = number_of_exit_cond_executions (loop);
+
+ /* The new statements will be placed before LOOP. */
+ gsi = gsi_last_bb (loop_preheader_edge (loop)->src);
+
+ nb_bytes = build_size_arg_loc (loc, partition->main_dr, nb_iter);
+ nb_bytes = force_gimple_operand_gsi (&gsi, nb_bytes, true, NULL_TREE,
+ false, GSI_CONTINUE_LINKING);
+ mem = build_addr_arg_loc (loc, partition->main_dr, nb_bytes);
+ mem = force_gimple_operand_gsi (&gsi, mem, true, NULL_TREE,
+ false, GSI_CONTINUE_LINKING);
+
+ /* This exactly matches the pattern recognition in classify_partition. */
+ val = gimple_assign_rhs1 (stmt);
+ if (integer_zerop (val)
+ || real_zerop (val)
+ || TREE_CODE (val) == CONSTRUCTOR)
+ val = integer_zero_node;
+ else if (integer_all_onesp (val))
+ val = build_int_cst (integer_type_node, -1);
+ else
+ {
+ if (TREE_CODE (val) == INTEGER_CST)
+ val = fold_convert (integer_type_node, val);
+ else if (!useless_type_conversion_p (integer_type_node, TREE_TYPE (val)))
+ {
+ gimple cstmt;
+ tree tem = make_ssa_name (integer_type_node, NULL);
+ cstmt = gimple_build_assign_with_ops (NOP_EXPR, tem, val, NULL_TREE);
+ gsi_insert_after (&gsi, cstmt, GSI_CONTINUE_LINKING);
+ val = tem;
+ }
+ }
+
+ fn = build_fold_addr_expr (builtin_decl_implicit (BUILT_IN_MEMSET));
+ fn_call = gimple_build_call (fn, 3, mem, val, nb_bytes);
+ gsi_insert_after (&gsi, fn_call, GSI_CONTINUE_LINKING);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "generated memset");
+ if (integer_zerop (val))
+ fprintf (dump_file, " zero\n");
+ else if (integer_all_onesp (val))
+ fprintf (dump_file, " minus one\n");
+ else
+ fprintf (dump_file, "\n");
+ }
+}
+
+/* Generate a call to memcpy for PARTITION in LOOP. */
+
+static void
+generate_memcpy_builtin (struct loop *loop, partition_t partition)
+{
+ gimple_stmt_iterator gsi;
+ gimple stmt, fn_call;
+ tree nb_iter, dest, src, fn, nb_bytes;
+ location_t loc;
+ enum built_in_function kind;
+
+ stmt = DR_STMT (partition->main_dr);
+ loc = gimple_location (stmt);
+ if (gimple_bb (stmt) == loop->latch)
+ nb_iter = number_of_latch_executions (loop);
+ else
+ nb_iter = number_of_exit_cond_executions (loop);
+
+ /* The new statements will be placed before LOOP. */
+ gsi = gsi_last_bb (loop_preheader_edge (loop)->src);
+
+ nb_bytes = build_size_arg_loc (loc, partition->main_dr, nb_iter);
+ nb_bytes = force_gimple_operand_gsi (&gsi, nb_bytes, true, NULL_TREE,
+ false, GSI_CONTINUE_LINKING);
+ dest = build_addr_arg_loc (loc, partition->main_dr, nb_bytes);
+ src = build_addr_arg_loc (loc, partition->secondary_dr, nb_bytes);
+ if (ptr_derefs_may_alias_p (dest, src))
+ kind = BUILT_IN_MEMMOVE;
+ else
+ kind = BUILT_IN_MEMCPY;
+
+ dest = force_gimple_operand_gsi (&gsi, dest, true, NULL_TREE,
+ false, GSI_CONTINUE_LINKING);
+ src = force_gimple_operand_gsi (&gsi, src, true, NULL_TREE,
+ false, GSI_CONTINUE_LINKING);
+ fn = build_fold_addr_expr (builtin_decl_implicit (kind));
+ fn_call = gimple_build_call (fn, 3, dest, src, nb_bytes);
+ gsi_insert_after (&gsi, fn_call, GSI_CONTINUE_LINKING);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ if (kind == BUILT_IN_MEMCPY)
+ fprintf (dump_file, "generated memcpy\n");
+ else
+ fprintf (dump_file, "generated memmove\n");
+ }
+}
+
+/* Remove and destroy the loop LOOP. */
+
+static void
+destroy_loop (struct loop *loop)
+{
+ unsigned nbbs = loop->num_nodes;
+ edge exit = single_exit (loop);
+ basic_block src = loop_preheader_edge (loop)->src, dest = exit->dest;
+ basic_block *bbs;
+ unsigned i;
+
+ bbs = get_loop_body_in_dom_order (loop);
+
+ redirect_edge_pred (exit, src);
+ exit->flags &= ~(EDGE_TRUE_VALUE|EDGE_FALSE_VALUE);
+ exit->flags |= EDGE_FALLTHRU;
+ cancel_loop_tree (loop);
+ rescan_loop_exit (exit, false, true);
+
+ for (i = 0; i < nbbs; i++)
+ {
+ /* We have made sure to not leave any dangling uses of SSA
+ names defined in the loop. With the exception of virtuals.
+ Make sure we replace all uses of virtual defs that will remain
+ outside of the loop with the bare symbol as delete_basic_block
+ will release them. */
+ gimple_stmt_iterator gsi;
+ for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple phi = gsi_stmt (gsi);
+ if (virtual_operand_p (gimple_phi_result (phi)))
+ mark_virtual_phi_result_for_renaming (phi);
+ }
+ for (gsi = gsi_start_bb (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple stmt = gsi_stmt (gsi);
+ tree vdef = gimple_vdef (stmt);
+ if (vdef && TREE_CODE (vdef) == SSA_NAME)
+ mark_virtual_operand_for_renaming (vdef);
+ }
+ delete_basic_block (bbs[i]);
+ }
+ free (bbs);
+
+ set_immediate_dominator (CDI_DOMINATORS, dest,
+ recompute_dominator (CDI_DOMINATORS, dest));
+}
+
+/* Generates code for PARTITION. */
+
+static void
+generate_code_for_partition (struct loop *loop,
+ partition_t partition, bool copy_p)
+{
+ switch (partition->kind)
+ {
+ case PKIND_MEMSET:
+ generate_memset_builtin (loop, partition);
+ /* If this is the last partition for which we generate code, we have
+ to destroy the loop. */
+ if (!copy_p)
+ destroy_loop (loop);
+ break;
+
+ case PKIND_MEMCPY:
+ generate_memcpy_builtin (loop, partition);
+ /* If this is the last partition for which we generate code, we have
+ to destroy the loop. */
+ if (!copy_p)
+ destroy_loop (loop);
+ break;
+
+ case PKIND_REDUCTION:
+ /* Reductions all have to be in the last partition. */
+ gcc_assert (!copy_p);
+ case PKIND_NORMAL:
+ generate_loops_for_partition (loop, partition, copy_p);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+
+/* Returns true if the node V of RDG cannot be recomputed. */
+
+static bool
+rdg_cannot_recompute_vertex_p (struct graph *rdg, int v)
+{
+ if (RDG_MEM_WRITE_STMT (rdg, v))
+ return true;
+
+ return false;
+}
+
+/* Returns true when the vertex V has already been generated in the
+ current partition (V is in PROCESSED), or when V belongs to another
+ partition and cannot be recomputed (V is not in REMAINING_STMTS). */
+
+static inline bool
+already_processed_vertex_p (bitmap processed, int v)
+{
+ return (bitmap_bit_p (processed, v)
+ || !bitmap_bit_p (remaining_stmts, v));
+}
+
+/* Returns NULL when there is no anti-dependence among the successors
+ of vertex V, otherwise returns the edge with the anti-dep. */
+
+static struct graph_edge *
+has_anti_dependence (struct vertex *v)
+{
+ struct graph_edge *e;
+
+ if (v->succ)
+ for (e = v->succ; e; e = e->succ_next)
+ if (RDGE_TYPE (e) == anti_dd)
+ return e;
+
+ return NULL;
+}
+
+/* Returns true when V has an anti-dependence edge among its successors. */
+
+static bool
+predecessor_has_mem_write (struct graph *rdg, struct vertex *v)
+{
+ struct graph_edge *e;
+
+ if (v->pred)
+ for (e = v->pred; e; e = e->pred_next)
+ if (bitmap_bit_p (upstream_mem_writes, e->src)
+ /* Don't consider flow channels: a write to memory followed
+ by a read from memory. These channels allow the split of
+ the RDG in different partitions. */
+ && !RDG_MEM_WRITE_STMT (rdg, e->src))
+ return true;
+
+ return false;
+}
+
+/* Initializes the upstream_mem_writes bitmap following the
+ information from RDG. */
+
+static void
+mark_nodes_having_upstream_mem_writes (struct graph *rdg)
+{
+ int v, x;
+ bitmap seen = BITMAP_ALLOC (NULL);
+
+ for (v = rdg->n_vertices - 1; v >= 0; v--)
+ if (!bitmap_bit_p (seen, v))
+ {
+ unsigned i;
+ vec<int> nodes;
+ nodes.create (3);
+
+ graphds_dfs (rdg, &v, 1, &nodes, false, NULL);
+
+ FOR_EACH_VEC_ELT (nodes, i, x)
+ {
+ if (!bitmap_set_bit (seen, x))
+ continue;
+
+ if (RDG_MEM_WRITE_STMT (rdg, x)
+ || predecessor_has_mem_write (rdg, &(rdg->vertices[x]))
+ /* In anti dependences the read should occur before
+ the write, this is why both the read and the write
+ should be placed in the same partition. */
+ || has_anti_dependence (&(rdg->vertices[x])))
+ {
+ bitmap_set_bit (upstream_mem_writes, x);
+ }
+ }
+
+ nodes.release ();
+ }
+}
+
+/* Returns true when vertex u has a memory write node as a predecessor
+ in RDG. */
+
+static bool
+has_upstream_mem_writes (int u)
+{
+ return bitmap_bit_p (upstream_mem_writes, u);
+}
+
+static void rdg_flag_vertex_and_dependent (struct graph *, int, partition_t,
+ bitmap, bitmap);
+
+/* Flag the uses of U stopping following the information from
+ upstream_mem_writes. */
+
+static void
+rdg_flag_uses (struct graph *rdg, int u, partition_t partition, bitmap loops,
+ bitmap processed)
+{
+ use_operand_p use_p;
+ struct vertex *x = &(rdg->vertices[u]);
+ gimple stmt = RDGV_STMT (x);
+ struct graph_edge *anti_dep = has_anti_dependence (x);
+
+ /* Keep in the same partition the destination of an antidependence,
+ because this is a store to the exact same location. Putting this
+ in another partition is bad for cache locality. */
+ if (anti_dep)
+ {
+ int v = anti_dep->dest;
+
+ if (!already_processed_vertex_p (processed, v))
+ rdg_flag_vertex_and_dependent (rdg, v, partition, loops,
+ processed);
+ }
+
+ if (gimple_code (stmt) != GIMPLE_PHI)
+ {
+ if ((use_p = gimple_vuse_op (stmt)) != NULL_USE_OPERAND_P)
+ {
+ tree use = USE_FROM_PTR (use_p);
+
+ if (TREE_CODE (use) == SSA_NAME
+ && !SSA_NAME_IS_DEFAULT_DEF (use))
+ {
+ gimple def_stmt = SSA_NAME_DEF_STMT (use);
+ int v = rdg_vertex_for_stmt (rdg, def_stmt);
+
+ if (v >= 0
+ && !already_processed_vertex_p (processed, v))
+ rdg_flag_vertex_and_dependent (rdg, v, partition, loops,
+ processed);
+ }
+ }
+ }
+
+ if (is_gimple_assign (stmt) && has_upstream_mem_writes (u))
+ {
+ tree op0 = gimple_assign_lhs (stmt);
+
+ /* Scalar channels don't have enough space for transmitting data
+ between tasks, unless we add more storage by privatizing. */
+ if (is_gimple_reg (op0))
+ {
+ use_operand_p use_p;
+ imm_use_iterator iter;
+
+ FOR_EACH_IMM_USE_FAST (use_p, iter, op0)
+ {
+ int v = rdg_vertex_for_stmt (rdg, USE_STMT (use_p));
+
+ if (!already_processed_vertex_p (processed, v))
+ rdg_flag_vertex_and_dependent (rdg, v, partition, loops,
+ processed);
+ }
+ }
+ }
+}
+
+/* Flag V from RDG as part of PARTITION, and also flag its loop number
+ in LOOPS. */
+
+static void
+rdg_flag_vertex (struct graph *rdg, int v, partition_t partition, bitmap loops)
+{
+ struct loop *loop;
+
+ if (!bitmap_set_bit (partition->stmts, v))
+ return;
+
+ loop = loop_containing_stmt (RDG_STMT (rdg, v));
+ bitmap_set_bit (loops, loop->num);
+
+ if (rdg_cannot_recompute_vertex_p (rdg, v))
+ {
+ partition->has_writes = true;
+ bitmap_clear_bit (remaining_stmts, v);
+ }
+}
+
+/* Flag in the bitmap PARTITION the vertex V and all its predecessors.
+ Also flag their loop number in LOOPS. */
+
+static void
+rdg_flag_vertex_and_dependent (struct graph *rdg, int v, partition_t partition,
+ bitmap loops, bitmap processed)
+{
+ unsigned i;
+ vec<int> nodes;
+ nodes.create (3);
+ int x;
+
+ bitmap_set_bit (processed, v);
+ rdg_flag_uses (rdg, v, partition, loops, processed);
+ graphds_dfs (rdg, &v, 1, &nodes, false, remaining_stmts);
+ rdg_flag_vertex (rdg, v, partition, loops);
+
+ FOR_EACH_VEC_ELT (nodes, i, x)
+ if (!already_processed_vertex_p (processed, x))
+ rdg_flag_vertex_and_dependent (rdg, x, partition, loops, processed);
+
+ nodes.release ();
+}
+
+/* Initialize CONDS with all the condition statements from the basic
+ blocks of LOOP. */
+
+static void
+collect_condition_stmts (struct loop *loop, vec<gimple> *conds)
+{
+ unsigned i;
+ edge e;
+ vec<edge> exits = get_loop_exit_edges (loop);
+
+ FOR_EACH_VEC_ELT (exits, i, e)
+ {
+ gimple cond = last_stmt (e->src);
+
+ if (cond)
+ conds->safe_push (cond);
+ }
+
+ exits.release ();
+}
+
+/* Add to PARTITION all the exit condition statements for LOOPS
+ together with all their dependent statements determined from
+ RDG. */
+
+static void
+rdg_flag_loop_exits (struct graph *rdg, bitmap loops, partition_t partition,
+ bitmap processed)
+{
+ unsigned i;
+ bitmap_iterator bi;
+ vec<gimple> conds;
+ conds.create (3);
+
+ EXECUTE_IF_SET_IN_BITMAP (loops, 0, i, bi)
+ collect_condition_stmts (get_loop (i), &conds);
+
+ while (!conds.is_empty ())
+ {
+ gimple cond = conds.pop ();
+ int v = rdg_vertex_for_stmt (rdg, cond);
+ bitmap new_loops = BITMAP_ALLOC (NULL);
+
+ if (!already_processed_vertex_p (processed, v))
+ rdg_flag_vertex_and_dependent (rdg, v, partition, new_loops, processed);
+
+ EXECUTE_IF_SET_IN_BITMAP (new_loops, 0, i, bi)
+ if (bitmap_set_bit (loops, i))
+ collect_condition_stmts (get_loop (i), &conds);
+
+ BITMAP_FREE (new_loops);
+ }
+
+ conds.release ();
+}
+
+/* Returns a bitmap in which all the statements needed for computing
+ the strongly connected component C of the RDG are flagged, also
+ including the loop exit conditions. */
+
+static partition_t
+build_rdg_partition_for_component (struct graph *rdg, rdgc c)
+{
+ int i, v;
+ partition_t partition = partition_alloc (NULL);
+ bitmap loops = BITMAP_ALLOC (NULL);
+ bitmap processed = BITMAP_ALLOC (NULL);
+
+ FOR_EACH_VEC_ELT (c->vertices, i, v)
+ if (!already_processed_vertex_p (processed, v))
+ rdg_flag_vertex_and_dependent (rdg, v, partition, loops, processed);
+
+ rdg_flag_loop_exits (rdg, loops, partition, processed);
+
+ BITMAP_FREE (processed);
+ BITMAP_FREE (loops);
+ return partition;
+}
+
+/* Free memory for COMPONENTS. */
+
+static void
+free_rdg_components (vec<rdgc> components)
+{
+ int i;
+ rdgc x;
+
+ FOR_EACH_VEC_ELT (components, i, x)
+ {
+ x->vertices.release ();
+ free (x);
+ }
+
+ components.release ();
+}
+
+/* Build the COMPONENTS vector with the strongly connected components
+ of RDG in which the STARTING_VERTICES occur. */
+
+static void
+rdg_build_components (struct graph *rdg, vec<int> starting_vertices,
+ vec<rdgc> *components)
+{
+ int i, v;
+ bitmap saved_components = BITMAP_ALLOC (NULL);
+ int n_components = graphds_scc (rdg, NULL);
+ /* ??? Macros cannot process template types with more than one
+ argument, so we need this typedef. */
+ typedef vec<int> vec_int_heap;
+ vec<int> *all_components = XNEWVEC (vec_int_heap, n_components);
+
+ for (i = 0; i < n_components; i++)
+ all_components[i].create (3);
+
+ for (i = 0; i < rdg->n_vertices; i++)
+ all_components[rdg->vertices[i].component].safe_push (i);
+
+ FOR_EACH_VEC_ELT (starting_vertices, i, v)
+ {
+ int c = rdg->vertices[v].component;
+
+ if (bitmap_set_bit (saved_components, c))
+ {
+ rdgc x = XCNEW (struct rdg_component);
+ x->num = c;
+ x->vertices = all_components[c];
+
+ components->safe_push (x);
+ }
+ }
+
+ for (i = 0; i < n_components; i++)
+ if (!bitmap_bit_p (saved_components, i))
+ all_components[i].release ();
+
+ free (all_components);
+ BITMAP_FREE (saved_components);
+}
+
+/* Classifies the builtin kind we can generate for PARTITION of RDG and LOOP.
+ For the moment we detect only the memset zero pattern. */
+
+static void
+classify_partition (loop_p loop, struct graph *rdg, partition_t partition)
+{
+ bitmap_iterator bi;
+ unsigned i;
+ tree nb_iter;
+ data_reference_p single_load, single_store;
+ bool volatiles_p = false;
+
+ partition->kind = PKIND_NORMAL;
+ partition->main_dr = NULL;
+ partition->secondary_dr = NULL;
+
+ EXECUTE_IF_SET_IN_BITMAP (partition->stmts, 0, i, bi)
+ {
+ gimple stmt = RDG_STMT (rdg, i);
+
+ if (gimple_has_volatile_ops (stmt))
+ volatiles_p = true;
+
+ /* If the stmt has uses outside of the loop fail.
+ ??? If the stmt is generated in another partition that
+ is not created as builtin we can ignore this. */
+ if (stmt_has_scalar_dependences_outside_loop (loop, stmt))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "not generating builtin, partition has "
+ "scalar uses outside of the loop\n");
+ partition->kind = PKIND_REDUCTION;
+ return;
+ }
+ }
+
+ /* Perform general partition disqualification for builtins. */
+ if (volatiles_p
+ || !flag_tree_loop_distribute_patterns)
+ return;
+
+ nb_iter = number_of_exit_cond_executions (loop);
+ if (!nb_iter || nb_iter == chrec_dont_know)
+ return;
+
+ /* Detect memset and memcpy. */
+ single_load = NULL;
+ single_store = NULL;
+ EXECUTE_IF_SET_IN_BITMAP (partition->stmts, 0, i, bi)
+ {
+ gimple stmt = RDG_STMT (rdg, i);
+ data_reference_p dr;
+ unsigned j;
+
+ if (gimple_code (stmt) == GIMPLE_PHI)
+ continue;
+
+ /* Any scalar stmts are ok. */
+ if (!gimple_vuse (stmt))
+ continue;
+
+ /* Otherwise just regular loads/stores. */
+ if (!gimple_assign_single_p (stmt))
+ return;
+
+ /* But exactly one store and/or load. */
+ for (j = 0; RDG_DATAREFS (rdg, i).iterate (j, &dr); ++j)
+ {
+ if (DR_IS_READ (dr))
+ {
+ if (single_load != NULL)
+ return;
+ single_load = dr;
+ }
+ else
+ {
+ if (single_store != NULL)
+ return;
+ single_store = dr;
+ }
+ }
+ }
+
+ if (single_store && !single_load)
+ {
+ gimple stmt = DR_STMT (single_store);
+ tree rhs = gimple_assign_rhs1 (stmt);
+ if (!(integer_zerop (rhs)
+ || integer_all_onesp (rhs)
+ || real_zerop (rhs)
+ || (TREE_CODE (rhs) == CONSTRUCTOR
+ && !TREE_CLOBBER_P (rhs))
+ || (INTEGRAL_TYPE_P (TREE_TYPE (rhs))
+ && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt)))
+ == TYPE_MODE (unsigned_char_type_node)))))
+ return;
+ if (TREE_CODE (rhs) == SSA_NAME
+ && !SSA_NAME_IS_DEFAULT_DEF (rhs)
+ && flow_bb_inside_loop_p (loop, gimple_bb (SSA_NAME_DEF_STMT (rhs))))
+ return;
+ if (!adjacent_dr_p (single_store))
+ return;
+ partition->kind = PKIND_MEMSET;
+ partition->main_dr = single_store;
+ }
+ else if (single_store && single_load)
+ {
+ gimple store = DR_STMT (single_store);
+ gimple load = DR_STMT (single_load);
+ /* Direct aggregate copy or via an SSA name temporary. */
+ if (load != store
+ && gimple_assign_lhs (load) != gimple_assign_rhs1 (store))
+ return;
+ if (!adjacent_dr_p (single_store)
+ || !adjacent_dr_p (single_load)
+ || !operand_equal_p (DR_STEP (single_store),
+ DR_STEP (single_load), 0))
+ return;
+ /* Now check that if there is a dependence this dependence is
+ of a suitable form for memmove. */
+ vec<loop_p> loops = vNULL;
+ ddr_p ddr;
+ loops.safe_push (loop);
+ ddr = initialize_data_dependence_relation (single_load, single_store,
+ loops);
+ compute_affine_dependence (ddr, loop);
+ if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
+ {
+ free_dependence_relation (ddr);
+ loops.release ();
+ return;
+ }
+ if (DDR_ARE_DEPENDENT (ddr) != chrec_known)
+ {
+ if (DDR_NUM_DIST_VECTS (ddr) == 0)
+ {
+ free_dependence_relation (ddr);
+ loops.release ();
+ return;
+ }
+ lambda_vector dist_v;
+ FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
+ {
+ int dist = dist_v[index_in_loop_nest (loop->num,
+ DDR_LOOP_NEST (ddr))];
+ if (dist > 0 && !DDR_REVERSED_P (ddr))
+ {
+ free_dependence_relation (ddr);
+ loops.release ();
+ return;
+ }
+ }
+ }
+ free_dependence_relation (ddr);
+ loops.release ();
+ partition->kind = PKIND_MEMCPY;
+ partition->main_dr = single_store;
+ partition->secondary_dr = single_load;
+ }
+}
+
+/* For a data reference REF, return the declaration of its base
+ address or NULL_TREE if the base is not determined. */
+
+static tree
+ref_base_address (data_reference_p dr)
+{
+ tree base_address = DR_BASE_ADDRESS (dr);
+ if (base_address
+ && TREE_CODE (base_address) == ADDR_EXPR)
+ return TREE_OPERAND (base_address, 0);
+
+ return base_address;
+}
+
+/* Returns true when PARTITION1 and PARTITION2 have similar memory
+ accesses in RDG. */
+
+static bool
+similar_memory_accesses (struct graph *rdg, partition_t partition1,
+ partition_t partition2)
+{
+ unsigned i, j, k, l;
+ bitmap_iterator bi, bj;
+ data_reference_p ref1, ref2;
+
+ /* First check whether in the intersection of the two partitions are
+ any loads or stores. Common loads are the situation that happens
+ most often. */
+ EXECUTE_IF_AND_IN_BITMAP (partition1->stmts, partition2->stmts, 0, i, bi)
+ if (RDG_MEM_WRITE_STMT (rdg, i)
+ || RDG_MEM_READS_STMT (rdg, i))
+ return true;
+
+ /* Then check all data-references against each other. */
+ EXECUTE_IF_SET_IN_BITMAP (partition1->stmts, 0, i, bi)
+ if (RDG_MEM_WRITE_STMT (rdg, i)
+ || RDG_MEM_READS_STMT (rdg, i))
+ EXECUTE_IF_SET_IN_BITMAP (partition2->stmts, 0, j, bj)
+ if (RDG_MEM_WRITE_STMT (rdg, j)
+ || RDG_MEM_READS_STMT (rdg, j))
+ {
+ FOR_EACH_VEC_ELT (RDG_DATAREFS (rdg, i), k, ref1)
+ {
+ tree base1 = ref_base_address (ref1);
+ if (base1)
+ FOR_EACH_VEC_ELT (RDG_DATAREFS (rdg, j), l, ref2)
+ if (base1 == ref_base_address (ref2))
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/* Aggregate several components into a useful partition that is
+ registered in the PARTITIONS vector. Partitions will be
+ distributed in different loops. */
+
+static void
+rdg_build_partitions (struct graph *rdg, vec<rdgc> components,
+ vec<int> *other_stores,
+ vec<partition_t> *partitions, bitmap processed)
+{
+ int i;
+ rdgc x;
+ partition_t partition = partition_alloc (NULL);
+
+ FOR_EACH_VEC_ELT (components, i, x)
+ {
+ partition_t np;
+ int v = x->vertices[0];
+
+ if (bitmap_bit_p (processed, v))
+ continue;
+
+ np = build_rdg_partition_for_component (rdg, x);
+ bitmap_ior_into (partition->stmts, np->stmts);
+ partition->has_writes = partition_has_writes (np);
+ bitmap_ior_into (processed, np->stmts);
+ partition_free (np);
+
+ if (partition_has_writes (partition))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "ldist useful partition:\n");
+ dump_bitmap (dump_file, partition->stmts);
+ }
+
+ partitions->safe_push (partition);
+ partition = partition_alloc (NULL);
+ }
+ }
+
+ /* Add the nodes from the RDG that were not marked as processed, and
+ that are used outside the current loop. These are scalar
+ computations that are not yet part of previous partitions. */
+ for (i = 0; i < rdg->n_vertices; i++)
+ if (!bitmap_bit_p (processed, i)
+ && rdg_defs_used_in_other_loops_p (rdg, i))
+ other_stores->safe_push (i);
+
+ /* If there are still statements left in the OTHER_STORES array,
+ create other components and partitions with these stores and
+ their dependences. */
+ if (other_stores->length () > 0)
+ {
+ vec<rdgc> comps;
+ comps.create (3);
+ vec<int> foo;
+ foo.create (3);
+
+ rdg_build_components (rdg, *other_stores, &comps);
+ rdg_build_partitions (rdg, comps, &foo, partitions, processed);
+
+ foo.release ();
+ free_rdg_components (comps);
+ }
+
+ /* If there is something left in the last partition, save it. */
+ if (bitmap_count_bits (partition->stmts) > 0)
+ partitions->safe_push (partition);
+ else
+ partition_free (partition);
+}
+
+/* Dump to FILE the PARTITIONS. */
+
+static void
+dump_rdg_partitions (FILE *file, vec<partition_t> partitions)
+{
+ int i;
+ partition_t partition;
+
+ FOR_EACH_VEC_ELT (partitions, i, partition)
+ debug_bitmap_file (file, partition->stmts);
+}
+
+/* Debug PARTITIONS. */
+extern void debug_rdg_partitions (vec<partition_t> );
+
+DEBUG_FUNCTION void
+debug_rdg_partitions (vec<partition_t> partitions)
+{
+ dump_rdg_partitions (stderr, partitions);
+}
+
+/* Returns the number of read and write operations in the RDG. */
+
+static int
+number_of_rw_in_rdg (struct graph *rdg)
+{
+ int i, res = 0;
+
+ for (i = 0; i < rdg->n_vertices; i++)
+ {
+ if (RDG_MEM_WRITE_STMT (rdg, i))
+ ++res;
+
+ if (RDG_MEM_READS_STMT (rdg, i))
+ ++res;
+ }
+
+ return res;
+}
+
+/* Returns the number of read and write operations in a PARTITION of
+ the RDG. */
+
+static int
+number_of_rw_in_partition (struct graph *rdg, partition_t partition)
+{
+ int res = 0;
+ unsigned i;
+ bitmap_iterator ii;
+
+ EXECUTE_IF_SET_IN_BITMAP (partition->stmts, 0, i, ii)
+ {
+ if (RDG_MEM_WRITE_STMT (rdg, i))
+ ++res;
+
+ if (RDG_MEM_READS_STMT (rdg, i))
+ ++res;
+ }
+
+ return res;
+}
+
+/* Returns true when one of the PARTITIONS contains all the read or
+ write operations of RDG. */
+
+static bool
+partition_contains_all_rw (struct graph *rdg,
+ vec<partition_t> partitions)
+{
+ int i;
+ partition_t partition;
+ int nrw = number_of_rw_in_rdg (rdg);
+
+ FOR_EACH_VEC_ELT (partitions, i, partition)
+ if (nrw == number_of_rw_in_partition (rdg, partition))
+ return true;
+
+ return false;
+}
+
+/* Generate code from STARTING_VERTICES in RDG. Returns the number of
+ distributed loops. */
+
+static int
+ldist_gen (struct loop *loop, struct graph *rdg,
+ vec<int> starting_vertices)
+{
+ int i, nbp;
+ vec<rdgc> components;
+ components.create (3);
+ vec<partition_t> partitions;
+ partitions.create (3);
+ vec<int> other_stores;
+ other_stores.create (3);
+ partition_t partition;
+ bitmap processed = BITMAP_ALLOC (NULL);
+ bool any_builtin;
+
+ remaining_stmts = BITMAP_ALLOC (NULL);
+ upstream_mem_writes = BITMAP_ALLOC (NULL);
+
+ for (i = 0; i < rdg->n_vertices; i++)
+ {
+ bitmap_set_bit (remaining_stmts, i);
+
+ /* Save in OTHER_STORES all the memory writes that are not in
+ STARTING_VERTICES. */
+ if (RDG_MEM_WRITE_STMT (rdg, i))
+ {
+ int v;
+ unsigned j;
+ bool found = false;
+
+ FOR_EACH_VEC_ELT (starting_vertices, j, v)
+ if (i == v)
+ {
+ found = true;
+ break;
+ }
+
+ if (!found)
+ other_stores.safe_push (i);
+ }
+ }
+
+ mark_nodes_having_upstream_mem_writes (rdg);
+ rdg_build_components (rdg, starting_vertices, &components);
+ rdg_build_partitions (rdg, components, &other_stores, &partitions,
+ processed);
+ BITMAP_FREE (processed);
+
+ any_builtin = false;
+ FOR_EACH_VEC_ELT (partitions, i, partition)
+ {
+ classify_partition (loop, rdg, partition);
+ any_builtin |= partition_builtin_p (partition);
+ }
+
+ /* If we are only distributing patterns fuse all partitions that
+ were not properly classified as builtins. Else fuse partitions
+ with similar memory accesses. */
+ if (!flag_tree_loop_distribution)
+ {
+ partition_t into;
+ /* If we did not detect any builtin simply bail out. */
+ if (!any_builtin)
+ {
+ nbp = 0;
+ goto ldist_done;
+ }
+ /* Only fuse adjacent non-builtin partitions, see PR53616.
+ ??? Use dependence information to improve partition ordering. */
+ i = 0;
+ do
+ {
+ for (; partitions.iterate (i, &into); ++i)
+ if (!partition_builtin_p (into))
+ break;
+ for (++i; partitions.iterate (i, &partition); ++i)
+ if (!partition_builtin_p (partition))
+ {
+ bitmap_ior_into (into->stmts, partition->stmts);
+ if (partition->kind == PKIND_REDUCTION)
+ into->kind = PKIND_REDUCTION;
+ partitions.ordered_remove (i);
+ partition_free (partition);
+ i--;
+ }
+ else
+ break;
+ }
+ while ((unsigned) i < partitions.length ());
+ }
+ else
+ {
+ partition_t into;
+ int j;
+ for (i = 0; partitions.iterate (i, &into); ++i)
+ {
+ if (partition_builtin_p (into))
+ continue;
+ for (j = i + 1;
+ partitions.iterate (j, &partition); ++j)
+ {
+ if (!partition_builtin_p (partition)
+ /* ??? The following is horribly inefficient,
+ we are re-computing and analyzing data-references
+ of the stmts in the partitions all the time. */
+ && similar_memory_accesses (rdg, into, partition))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "fusing partitions\n");
+ dump_bitmap (dump_file, into->stmts);
+ dump_bitmap (dump_file, partition->stmts);
+ fprintf (dump_file, "because they have similar "
+ "memory accesses\n");
+ }
+ bitmap_ior_into (into->stmts, partition->stmts);
+ if (partition->kind == PKIND_REDUCTION)
+ into->kind = PKIND_REDUCTION;
+ partitions.ordered_remove (j);
+ partition_free (partition);
+ j--;
+ }
+ }
+ }
+ }
+
+ /* Fuse all reduction partitions into the last. */
+ if (partitions.length () > 1)
+ {
+ partition_t into = partitions.last ();
+ for (i = partitions.length () - 2; i >= 0; --i)
+ {
+ partition_t what = partitions[i];
+ if (what->kind == PKIND_REDUCTION)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "fusing partitions\n");
+ dump_bitmap (dump_file, into->stmts);
+ dump_bitmap (dump_file, what->stmts);
+ fprintf (dump_file, "because the latter has reductions\n");
+ }
+ bitmap_ior_into (into->stmts, what->stmts);
+ into->kind = PKIND_REDUCTION;
+ partitions.ordered_remove (i);
+ partition_free (what);
+ }
+ }
+ }
+
+ nbp = partitions.length ();
+ if (nbp == 0
+ || (nbp == 1 && !partition_builtin_p (partitions[0]))
+ || (nbp > 1 && partition_contains_all_rw (rdg, partitions)))
+ {
+ nbp = 0;
+ goto ldist_done;
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ dump_rdg_partitions (dump_file, partitions);
+
+ FOR_EACH_VEC_ELT (partitions, i, partition)
+ generate_code_for_partition (loop, partition, i < nbp - 1);
+
+ ldist_done:
+
+ BITMAP_FREE (remaining_stmts);
+ BITMAP_FREE (upstream_mem_writes);
+
+ FOR_EACH_VEC_ELT (partitions, i, partition)
+ partition_free (partition);
+
+ other_stores.release ();
+ partitions.release ();
+ free_rdg_components (components);
+ return nbp;
+}
+
+/* Distributes the code from LOOP in such a way that producer
+ statements are placed before consumer statements. When STMTS is
+ NULL, performs the maximal distribution, if STMTS is not NULL,
+ tries to separate only these statements from the LOOP's body.
+ Returns the number of distributed loops. */
+
+static int
+distribute_loop (struct loop *loop, vec<gimple> stmts)
+{
+ int res = 0;
+ struct graph *rdg;
+ gimple s;
+ unsigned i;
+ vec<int> vertices;
+ vec<ddr_p> dependence_relations;
+ vec<data_reference_p> datarefs;
+ vec<loop_p> loop_nest;
+
+ datarefs.create (10);
+ dependence_relations.create (100);
+ loop_nest.create (3);
+ rdg = build_rdg (loop, &loop_nest, &dependence_relations, &datarefs);
+
+ if (!rdg)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ "FIXME: Loop %d not distributed: failed to build the RDG.\n",
+ loop->num);
+
+ free_dependence_relations (dependence_relations);
+ free_data_refs (datarefs);
+ loop_nest.release ();
+ return res;
+ }
+
+ vertices.create (3);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ dump_rdg (dump_file, rdg);
+
+ FOR_EACH_VEC_ELT (stmts, i, s)
+ {
+ int v = rdg_vertex_for_stmt (rdg, s);
+
+ if (v >= 0)
+ {
+ vertices.safe_push (v);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ "ldist asked to generate code for vertex %d\n", v);
+ }
+ }
+
+ res = ldist_gen (loop, rdg, vertices);
+ vertices.release ();
+ free_rdg (rdg);
+ free_dependence_relations (dependence_relations);
+ free_data_refs (datarefs);
+ loop_nest.release ();
+ return res;
+}
+
+/* Distribute all loops in the current function. */
+
+static unsigned int
+tree_loop_distribution (void)
+{
+ struct loop *loop;
+ loop_iterator li;
+ bool changed = false;
+ basic_block bb;
+
+ FOR_ALL_BB (bb)
+ {
+ gimple_stmt_iterator gsi;
+ for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ gimple_set_uid (gsi_stmt (gsi), -1);
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ gimple_set_uid (gsi_stmt (gsi), -1);
+ }
+
+ /* We can at the moment only distribute non-nested loops, thus restrict
+ walking to innermost loops. */
+ FOR_EACH_LOOP (li, loop, LI_ONLY_INNERMOST)
+ {
+ vec<gimple> work_list = vNULL;
+ basic_block *bbs;
+ int num = loop->num;
+ int nb_generated_loops = 0;
+ unsigned int i;
+
+ /* If the loop doesn't have a single exit we will fail anyway,
+ so do that early. */
+ if (!single_exit (loop))
+ continue;
+
+ /* Only optimize hot loops. */
+ if (!optimize_loop_for_speed_p (loop))
+ continue;
+
+ /* Only distribute loops with a header and latch for now. */
+ if (loop->num_nodes > 2)
+ continue;
+
+ /* Initialize the worklist with stmts we seed the partitions with. */
+ bbs = get_loop_body_in_dom_order (loop);
+ for (i = 0; i < loop->num_nodes; ++i)
+ {
+ gimple_stmt_iterator gsi;
+ for (gsi = gsi_start_bb (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple stmt = gsi_stmt (gsi);
+ /* Distribute stmts which have defs that are used outside of
+ the loop. */
+ if (stmt_has_scalar_dependences_outside_loop (loop, stmt))
+ ;
+ /* Otherwise only distribute stores for now. */
+ else if (!gimple_assign_single_p (stmt)
+ || is_gimple_reg (gimple_assign_lhs (stmt)))
+ continue;
+
+ work_list.safe_push (stmt);
+ }
+ }
+ free (bbs);
+
+ if (work_list.length () > 0)
+ nb_generated_loops = distribute_loop (loop, work_list);
+
+ if (nb_generated_loops > 0)
+ changed = true;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ if (nb_generated_loops > 1)
+ fprintf (dump_file, "Loop %d distributed: split to %d loops.\n",
+ num, nb_generated_loops);
+ else
+ fprintf (dump_file, "Loop %d is the same.\n", num);
+ }
+
+ work_list.release ();
+ }
+
+ if (changed)
+ {
+ mark_virtual_operands_for_renaming (cfun);
+ rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
+ }
+
+#ifdef ENABLE_CHECKING
+ verify_loop_structure ();
+#endif
+
+ return 0;
+}
+
+static bool
+gate_tree_loop_distribution (void)
+{
+ return flag_tree_loop_distribution
+ || flag_tree_loop_distribute_patterns;
+}
+
+struct gimple_opt_pass pass_loop_distribution =
+{
+ {
+ GIMPLE_PASS,
+ "ldist", /* name */
+ OPTGROUP_LOOP, /* optinfo_flags */
+ gate_tree_loop_distribution, /* gate */
+ tree_loop_distribution, /* execute */
+ NULL, /* sub */
+ NULL, /* next */
+ 0, /* static_pass_number */
+ TV_TREE_LOOP_DISTRIBUTION, /* tv_id */
+ PROP_cfg | PROP_ssa, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ TODO_ggc_collect
+ | TODO_verify_ssa /* todo_flags_finish */
+ }
+};