aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8/gcc/fortran/interface.c
diff options
context:
space:
mode:
authorBen Cheng <bccheng@google.com>2013-03-28 11:14:20 -0700
committerBen Cheng <bccheng@google.com>2013-03-28 12:40:33 -0700
commitaf0c51ac87ab2a87caa03fa108f0d164987a2764 (patch)
tree4b8b470f7c5b69642fdab8d0aa1fbc148d02196b /gcc-4.8/gcc/fortran/interface.c
parentd87cae247d39ebf4f5a6bf25c932a14d2fdb9384 (diff)
downloadtoolchain_gcc-af0c51ac87ab2a87caa03fa108f0d164987a2764.tar.gz
toolchain_gcc-af0c51ac87ab2a87caa03fa108f0d164987a2764.tar.bz2
toolchain_gcc-af0c51ac87ab2a87caa03fa108f0d164987a2764.zip
[GCC 4.8] Initial check-in of GCC 4.8.0
Change-Id: I0719d8a6d0f69b367a6ab6f10eb75622dbf12771
Diffstat (limited to 'gcc-4.8/gcc/fortran/interface.c')
-rw-r--r--gcc-4.8/gcc/fortran/interface.c4163
1 files changed, 4163 insertions, 0 deletions
diff --git a/gcc-4.8/gcc/fortran/interface.c b/gcc-4.8/gcc/fortran/interface.c
new file mode 100644
index 000000000..fff8c39ad
--- /dev/null
+++ b/gcc-4.8/gcc/fortran/interface.c
@@ -0,0 +1,4163 @@
+/* Deal with interfaces.
+ Copyright (C) 2000-2013 Free Software Foundation, Inc.
+ Contributed by Andy Vaught
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+
+/* Deal with interfaces. An explicit interface is represented as a
+ singly linked list of formal argument structures attached to the
+ relevant symbols. For an implicit interface, the arguments don't
+ point to symbols. Explicit interfaces point to namespaces that
+ contain the symbols within that interface.
+
+ Implicit interfaces are linked together in a singly linked list
+ along the next_if member of symbol nodes. Since a particular
+ symbol can only have a single explicit interface, the symbol cannot
+ be part of multiple lists and a single next-member suffices.
+
+ This is not the case for general classes, though. An operator
+ definition is independent of just about all other uses and has it's
+ own head pointer.
+
+ Nameless interfaces:
+ Nameless interfaces create symbols with explicit interfaces within
+ the current namespace. They are otherwise unlinked.
+
+ Generic interfaces:
+ The generic name points to a linked list of symbols. Each symbol
+ has an explicit interface. Each explicit interface has its own
+ namespace containing the arguments. Module procedures are symbols in
+ which the interface is added later when the module procedure is parsed.
+
+ User operators:
+ User-defined operators are stored in a their own set of symtrees
+ separate from regular symbols. The symtrees point to gfc_user_op
+ structures which in turn head up a list of relevant interfaces.
+
+ Extended intrinsics and assignment:
+ The head of these interface lists are stored in the containing namespace.
+
+ Implicit interfaces:
+ An implicit interface is represented as a singly linked list of
+ formal argument list structures that don't point to any symbol
+ nodes -- they just contain types.
+
+
+ When a subprogram is defined, the program unit's name points to an
+ interface as usual, but the link to the namespace is NULL and the
+ formal argument list points to symbols within the same namespace as
+ the program unit name. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "gfortran.h"
+#include "match.h"
+#include "arith.h"
+
+/* The current_interface structure holds information about the
+ interface currently being parsed. This structure is saved and
+ restored during recursive interfaces. */
+
+gfc_interface_info current_interface;
+
+
+/* Free a singly linked list of gfc_interface structures. */
+
+void
+gfc_free_interface (gfc_interface *intr)
+{
+ gfc_interface *next;
+
+ for (; intr; intr = next)
+ {
+ next = intr->next;
+ free (intr);
+ }
+}
+
+
+/* Change the operators unary plus and minus into binary plus and
+ minus respectively, leaving the rest unchanged. */
+
+static gfc_intrinsic_op
+fold_unary_intrinsic (gfc_intrinsic_op op)
+{
+ switch (op)
+ {
+ case INTRINSIC_UPLUS:
+ op = INTRINSIC_PLUS;
+ break;
+ case INTRINSIC_UMINUS:
+ op = INTRINSIC_MINUS;
+ break;
+ default:
+ break;
+ }
+
+ return op;
+}
+
+
+/* Match a generic specification. Depending on which type of
+ interface is found, the 'name' or 'op' pointers may be set.
+ This subroutine doesn't return MATCH_NO. */
+
+match
+gfc_match_generic_spec (interface_type *type,
+ char *name,
+ gfc_intrinsic_op *op)
+{
+ char buffer[GFC_MAX_SYMBOL_LEN + 1];
+ match m;
+ gfc_intrinsic_op i;
+
+ if (gfc_match (" assignment ( = )") == MATCH_YES)
+ {
+ *type = INTERFACE_INTRINSIC_OP;
+ *op = INTRINSIC_ASSIGN;
+ return MATCH_YES;
+ }
+
+ if (gfc_match (" operator ( %o )", &i) == MATCH_YES)
+ { /* Operator i/f */
+ *type = INTERFACE_INTRINSIC_OP;
+ *op = fold_unary_intrinsic (i);
+ return MATCH_YES;
+ }
+
+ *op = INTRINSIC_NONE;
+ if (gfc_match (" operator ( ") == MATCH_YES)
+ {
+ m = gfc_match_defined_op_name (buffer, 1);
+ if (m == MATCH_NO)
+ goto syntax;
+ if (m != MATCH_YES)
+ return MATCH_ERROR;
+
+ m = gfc_match_char (')');
+ if (m == MATCH_NO)
+ goto syntax;
+ if (m != MATCH_YES)
+ return MATCH_ERROR;
+
+ strcpy (name, buffer);
+ *type = INTERFACE_USER_OP;
+ return MATCH_YES;
+ }
+
+ if (gfc_match_name (buffer) == MATCH_YES)
+ {
+ strcpy (name, buffer);
+ *type = INTERFACE_GENERIC;
+ return MATCH_YES;
+ }
+
+ *type = INTERFACE_NAMELESS;
+ return MATCH_YES;
+
+syntax:
+ gfc_error ("Syntax error in generic specification at %C");
+ return MATCH_ERROR;
+}
+
+
+/* Match one of the five F95 forms of an interface statement. The
+ matcher for the abstract interface follows. */
+
+match
+gfc_match_interface (void)
+{
+ char name[GFC_MAX_SYMBOL_LEN + 1];
+ interface_type type;
+ gfc_symbol *sym;
+ gfc_intrinsic_op op;
+ match m;
+
+ m = gfc_match_space ();
+
+ if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR)
+ return MATCH_ERROR;
+
+ /* If we're not looking at the end of the statement now, or if this
+ is not a nameless interface but we did not see a space, punt. */
+ if (gfc_match_eos () != MATCH_YES
+ || (type != INTERFACE_NAMELESS && m != MATCH_YES))
+ {
+ gfc_error ("Syntax error: Trailing garbage in INTERFACE statement "
+ "at %C");
+ return MATCH_ERROR;
+ }
+
+ current_interface.type = type;
+
+ switch (type)
+ {
+ case INTERFACE_GENERIC:
+ if (gfc_get_symbol (name, NULL, &sym))
+ return MATCH_ERROR;
+
+ if (!sym->attr.generic
+ && gfc_add_generic (&sym->attr, sym->name, NULL) == FAILURE)
+ return MATCH_ERROR;
+
+ if (sym->attr.dummy)
+ {
+ gfc_error ("Dummy procedure '%s' at %C cannot have a "
+ "generic interface", sym->name);
+ return MATCH_ERROR;
+ }
+
+ current_interface.sym = gfc_new_block = sym;
+ break;
+
+ case INTERFACE_USER_OP:
+ current_interface.uop = gfc_get_uop (name);
+ break;
+
+ case INTERFACE_INTRINSIC_OP:
+ current_interface.op = op;
+ break;
+
+ case INTERFACE_NAMELESS:
+ case INTERFACE_ABSTRACT:
+ break;
+ }
+
+ return MATCH_YES;
+}
+
+
+
+/* Match a F2003 abstract interface. */
+
+match
+gfc_match_abstract_interface (void)
+{
+ match m;
+
+ if (gfc_notify_std (GFC_STD_F2003, "ABSTRACT INTERFACE at %C")
+ == FAILURE)
+ return MATCH_ERROR;
+
+ m = gfc_match_eos ();
+
+ if (m != MATCH_YES)
+ {
+ gfc_error ("Syntax error in ABSTRACT INTERFACE statement at %C");
+ return MATCH_ERROR;
+ }
+
+ current_interface.type = INTERFACE_ABSTRACT;
+
+ return m;
+}
+
+
+/* Match the different sort of generic-specs that can be present after
+ the END INTERFACE itself. */
+
+match
+gfc_match_end_interface (void)
+{
+ char name[GFC_MAX_SYMBOL_LEN + 1];
+ interface_type type;
+ gfc_intrinsic_op op;
+ match m;
+
+ m = gfc_match_space ();
+
+ if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR)
+ return MATCH_ERROR;
+
+ /* If we're not looking at the end of the statement now, or if this
+ is not a nameless interface but we did not see a space, punt. */
+ if (gfc_match_eos () != MATCH_YES
+ || (type != INTERFACE_NAMELESS && m != MATCH_YES))
+ {
+ gfc_error ("Syntax error: Trailing garbage in END INTERFACE "
+ "statement at %C");
+ return MATCH_ERROR;
+ }
+
+ m = MATCH_YES;
+
+ switch (current_interface.type)
+ {
+ case INTERFACE_NAMELESS:
+ case INTERFACE_ABSTRACT:
+ if (type != INTERFACE_NAMELESS)
+ {
+ gfc_error ("Expected a nameless interface at %C");
+ m = MATCH_ERROR;
+ }
+
+ break;
+
+ case INTERFACE_INTRINSIC_OP:
+ if (type != current_interface.type || op != current_interface.op)
+ {
+
+ if (current_interface.op == INTRINSIC_ASSIGN)
+ {
+ m = MATCH_ERROR;
+ gfc_error ("Expected 'END INTERFACE ASSIGNMENT (=)' at %C");
+ }
+ else
+ {
+ const char *s1, *s2;
+ s1 = gfc_op2string (current_interface.op);
+ s2 = gfc_op2string (op);
+
+ /* The following if-statements are used to enforce C1202
+ from F2003. */
+ if ((strcmp(s1, "==") == 0 && strcmp(s2, ".eq.") == 0)
+ || (strcmp(s1, ".eq.") == 0 && strcmp(s2, "==") == 0))
+ break;
+ if ((strcmp(s1, "/=") == 0 && strcmp(s2, ".ne.") == 0)
+ || (strcmp(s1, ".ne.") == 0 && strcmp(s2, "/=") == 0))
+ break;
+ if ((strcmp(s1, "<=") == 0 && strcmp(s2, ".le.") == 0)
+ || (strcmp(s1, ".le.") == 0 && strcmp(s2, "<=") == 0))
+ break;
+ if ((strcmp(s1, "<") == 0 && strcmp(s2, ".lt.") == 0)
+ || (strcmp(s1, ".lt.") == 0 && strcmp(s2, "<") == 0))
+ break;
+ if ((strcmp(s1, ">=") == 0 && strcmp(s2, ".ge.") == 0)
+ || (strcmp(s1, ".ge.") == 0 && strcmp(s2, ">=") == 0))
+ break;
+ if ((strcmp(s1, ">") == 0 && strcmp(s2, ".gt.") == 0)
+ || (strcmp(s1, ".gt.") == 0 && strcmp(s2, ">") == 0))
+ break;
+
+ m = MATCH_ERROR;
+ gfc_error ("Expecting 'END INTERFACE OPERATOR (%s)' at %C, "
+ "but got %s", s1, s2);
+ }
+
+ }
+
+ break;
+
+ case INTERFACE_USER_OP:
+ /* Comparing the symbol node names is OK because only use-associated
+ symbols can be renamed. */
+ if (type != current_interface.type
+ || strcmp (current_interface.uop->name, name) != 0)
+ {
+ gfc_error ("Expecting 'END INTERFACE OPERATOR (.%s.)' at %C",
+ current_interface.uop->name);
+ m = MATCH_ERROR;
+ }
+
+ break;
+
+ case INTERFACE_GENERIC:
+ if (type != current_interface.type
+ || strcmp (current_interface.sym->name, name) != 0)
+ {
+ gfc_error ("Expecting 'END INTERFACE %s' at %C",
+ current_interface.sym->name);
+ m = MATCH_ERROR;
+ }
+
+ break;
+ }
+
+ return m;
+}
+
+
+/* Compare two derived types using the criteria in 4.4.2 of the standard,
+ recursing through gfc_compare_types for the components. */
+
+int
+gfc_compare_derived_types (gfc_symbol *derived1, gfc_symbol *derived2)
+{
+ gfc_component *dt1, *dt2;
+
+ if (derived1 == derived2)
+ return 1;
+
+ gcc_assert (derived1 && derived2);
+
+ /* Special case for comparing derived types across namespaces. If the
+ true names and module names are the same and the module name is
+ nonnull, then they are equal. */
+ if (strcmp (derived1->name, derived2->name) == 0
+ && derived1->module != NULL && derived2->module != NULL
+ && strcmp (derived1->module, derived2->module) == 0)
+ return 1;
+
+ /* Compare type via the rules of the standard. Both types must have
+ the SEQUENCE or BIND(C) attribute to be equal. */
+
+ if (strcmp (derived1->name, derived2->name))
+ return 0;
+
+ if (derived1->component_access == ACCESS_PRIVATE
+ || derived2->component_access == ACCESS_PRIVATE)
+ return 0;
+
+ if (!(derived1->attr.sequence && derived2->attr.sequence)
+ && !(derived1->attr.is_bind_c && derived2->attr.is_bind_c))
+ return 0;
+
+ dt1 = derived1->components;
+ dt2 = derived2->components;
+
+ /* Since subtypes of SEQUENCE types must be SEQUENCE types as well, a
+ simple test can speed things up. Otherwise, lots of things have to
+ match. */
+ for (;;)
+ {
+ if (strcmp (dt1->name, dt2->name) != 0)
+ return 0;
+
+ if (dt1->attr.access != dt2->attr.access)
+ return 0;
+
+ if (dt1->attr.pointer != dt2->attr.pointer)
+ return 0;
+
+ if (dt1->attr.dimension != dt2->attr.dimension)
+ return 0;
+
+ if (dt1->attr.allocatable != dt2->attr.allocatable)
+ return 0;
+
+ if (dt1->attr.dimension && gfc_compare_array_spec (dt1->as, dt2->as) == 0)
+ return 0;
+
+ /* Make sure that link lists do not put this function into an
+ endless recursive loop! */
+ if (!(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
+ && !(dt2->ts.type == BT_DERIVED && derived2 == dt2->ts.u.derived)
+ && gfc_compare_types (&dt1->ts, &dt2->ts) == 0)
+ return 0;
+
+ else if ((dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
+ && !(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived))
+ return 0;
+
+ else if (!(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
+ && (dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived))
+ return 0;
+
+ dt1 = dt1->next;
+ dt2 = dt2->next;
+
+ if (dt1 == NULL && dt2 == NULL)
+ break;
+ if (dt1 == NULL || dt2 == NULL)
+ return 0;
+ }
+
+ return 1;
+}
+
+
+/* Compare two typespecs, recursively if necessary. */
+
+int
+gfc_compare_types (gfc_typespec *ts1, gfc_typespec *ts2)
+{
+ /* See if one of the typespecs is a BT_VOID, which is what is being used
+ to allow the funcs like c_f_pointer to accept any pointer type.
+ TODO: Possibly should narrow this to just the one typespec coming in
+ that is for the formal arg, but oh well. */
+ if (ts1->type == BT_VOID || ts2->type == BT_VOID)
+ return 1;
+
+ if (ts1->type == BT_CLASS
+ && ts1->u.derived->components->ts.u.derived->attr.unlimited_polymorphic)
+ return 1;
+
+ /* F2003: C717 */
+ if (ts2->type == BT_CLASS && ts1->type == BT_DERIVED
+ && ts2->u.derived->components->ts.u.derived->attr.unlimited_polymorphic
+ && (ts1->u.derived->attr.sequence || ts1->u.derived->attr.is_bind_c))
+ return 1;
+
+ if (ts1->type != ts2->type
+ && ((ts1->type != BT_DERIVED && ts1->type != BT_CLASS)
+ || (ts2->type != BT_DERIVED && ts2->type != BT_CLASS)))
+ return 0;
+ if (ts1->type != BT_DERIVED && ts1->type != BT_CLASS)
+ return (ts1->kind == ts2->kind);
+
+ /* Compare derived types. */
+ if (gfc_type_compatible (ts1, ts2))
+ return 1;
+
+ return gfc_compare_derived_types (ts1->u.derived ,ts2->u.derived);
+}
+
+
+/* Given two symbols that are formal arguments, compare their ranks
+ and types. Returns nonzero if they have the same rank and type,
+ zero otherwise. */
+
+static int
+compare_type_rank (gfc_symbol *s1, gfc_symbol *s2)
+{
+ gfc_array_spec *as1, *as2;
+ int r1, r2;
+
+ as1 = (s1->ts.type == BT_CLASS) ? CLASS_DATA (s1)->as : s1->as;
+ as2 = (s2->ts.type == BT_CLASS) ? CLASS_DATA (s2)->as : s2->as;
+
+ r1 = as1 ? as1->rank : 0;
+ r2 = as2 ? as2->rank : 0;
+
+ if (r1 != r2
+ && (!as1 || as1->type != AS_ASSUMED_RANK)
+ && (!as2 || as2->type != AS_ASSUMED_RANK))
+ return 0; /* Ranks differ. */
+
+ return gfc_compare_types (&s1->ts, &s2->ts)
+ || s1->ts.type == BT_ASSUMED || s2->ts.type == BT_ASSUMED;
+}
+
+
+/* Given two symbols that are formal arguments, compare their types
+ and rank and their formal interfaces if they are both dummy
+ procedures. Returns nonzero if the same, zero if different. */
+
+static int
+compare_type_rank_if (gfc_symbol *s1, gfc_symbol *s2)
+{
+ if (s1 == NULL || s2 == NULL)
+ return s1 == s2 ? 1 : 0;
+
+ if (s1 == s2)
+ return 1;
+
+ if (s1->attr.flavor != FL_PROCEDURE && s2->attr.flavor != FL_PROCEDURE)
+ return compare_type_rank (s1, s2);
+
+ if (s1->attr.flavor != FL_PROCEDURE || s2->attr.flavor != FL_PROCEDURE)
+ return 0;
+
+ /* At this point, both symbols are procedures. It can happen that
+ external procedures are compared, where one is identified by usage
+ to be a function or subroutine but the other is not. Check TKR
+ nonetheless for these cases. */
+ if (s1->attr.function == 0 && s1->attr.subroutine == 0)
+ return s1->attr.external == 1 ? compare_type_rank (s1, s2) : 0;
+
+ if (s2->attr.function == 0 && s2->attr.subroutine == 0)
+ return s2->attr.external == 1 ? compare_type_rank (s1, s2) : 0;
+
+ /* Now the type of procedure has been identified. */
+ if (s1->attr.function != s2->attr.function
+ || s1->attr.subroutine != s2->attr.subroutine)
+ return 0;
+
+ if (s1->attr.function && compare_type_rank (s1, s2) == 0)
+ return 0;
+
+ /* Originally, gfortran recursed here to check the interfaces of passed
+ procedures. This is explicitly not required by the standard. */
+ return 1;
+}
+
+
+/* Given a formal argument list and a keyword name, search the list
+ for that keyword. Returns the correct symbol node if found, NULL
+ if not found. */
+
+static gfc_symbol *
+find_keyword_arg (const char *name, gfc_formal_arglist *f)
+{
+ for (; f; f = f->next)
+ if (strcmp (f->sym->name, name) == 0)
+ return f->sym;
+
+ return NULL;
+}
+
+
+/******** Interface checking subroutines **********/
+
+
+/* Given an operator interface and the operator, make sure that all
+ interfaces for that operator are legal. */
+
+bool
+gfc_check_operator_interface (gfc_symbol *sym, gfc_intrinsic_op op,
+ locus opwhere)
+{
+ gfc_formal_arglist *formal;
+ sym_intent i1, i2;
+ bt t1, t2;
+ int args, r1, r2, k1, k2;
+
+ gcc_assert (sym);
+
+ args = 0;
+ t1 = t2 = BT_UNKNOWN;
+ i1 = i2 = INTENT_UNKNOWN;
+ r1 = r2 = -1;
+ k1 = k2 = -1;
+
+ for (formal = gfc_sym_get_dummy_args (sym); formal; formal = formal->next)
+ {
+ gfc_symbol *fsym = formal->sym;
+ if (fsym == NULL)
+ {
+ gfc_error ("Alternate return cannot appear in operator "
+ "interface at %L", &sym->declared_at);
+ return false;
+ }
+ if (args == 0)
+ {
+ t1 = fsym->ts.type;
+ i1 = fsym->attr.intent;
+ r1 = (fsym->as != NULL) ? fsym->as->rank : 0;
+ k1 = fsym->ts.kind;
+ }
+ if (args == 1)
+ {
+ t2 = fsym->ts.type;
+ i2 = fsym->attr.intent;
+ r2 = (fsym->as != NULL) ? fsym->as->rank : 0;
+ k2 = fsym->ts.kind;
+ }
+ args++;
+ }
+
+ /* Only +, - and .not. can be unary operators.
+ .not. cannot be a binary operator. */
+ if (args == 0 || args > 2 || (args == 1 && op != INTRINSIC_PLUS
+ && op != INTRINSIC_MINUS
+ && op != INTRINSIC_NOT)
+ || (args == 2 && op == INTRINSIC_NOT))
+ {
+ if (op == INTRINSIC_ASSIGN)
+ gfc_error ("Assignment operator interface at %L must have "
+ "two arguments", &sym->declared_at);
+ else
+ gfc_error ("Operator interface at %L has the wrong number of arguments",
+ &sym->declared_at);
+ return false;
+ }
+
+ /* Check that intrinsics are mapped to functions, except
+ INTRINSIC_ASSIGN which should map to a subroutine. */
+ if (op == INTRINSIC_ASSIGN)
+ {
+ gfc_formal_arglist *dummy_args;
+
+ if (!sym->attr.subroutine)
+ {
+ gfc_error ("Assignment operator interface at %L must be "
+ "a SUBROUTINE", &sym->declared_at);
+ return false;
+ }
+
+ /* Allowed are (per F2003, 12.3.2.1.2 Defined assignments):
+ - First argument an array with different rank than second,
+ - First argument is a scalar and second an array,
+ - Types and kinds do not conform, or
+ - First argument is of derived type. */
+ dummy_args = gfc_sym_get_dummy_args (sym);
+ if (dummy_args->sym->ts.type != BT_DERIVED
+ && dummy_args->sym->ts.type != BT_CLASS
+ && (r2 == 0 || r1 == r2)
+ && (dummy_args->sym->ts.type == dummy_args->next->sym->ts.type
+ || (gfc_numeric_ts (&dummy_args->sym->ts)
+ && gfc_numeric_ts (&dummy_args->next->sym->ts))))
+ {
+ gfc_error ("Assignment operator interface at %L must not redefine "
+ "an INTRINSIC type assignment", &sym->declared_at);
+ return false;
+ }
+ }
+ else
+ {
+ if (!sym->attr.function)
+ {
+ gfc_error ("Intrinsic operator interface at %L must be a FUNCTION",
+ &sym->declared_at);
+ return false;
+ }
+ }
+
+ /* Check intents on operator interfaces. */
+ if (op == INTRINSIC_ASSIGN)
+ {
+ if (i1 != INTENT_OUT && i1 != INTENT_INOUT)
+ {
+ gfc_error ("First argument of defined assignment at %L must be "
+ "INTENT(OUT) or INTENT(INOUT)", &sym->declared_at);
+ return false;
+ }
+
+ if (i2 != INTENT_IN)
+ {
+ gfc_error ("Second argument of defined assignment at %L must be "
+ "INTENT(IN)", &sym->declared_at);
+ return false;
+ }
+ }
+ else
+ {
+ if (i1 != INTENT_IN)
+ {
+ gfc_error ("First argument of operator interface at %L must be "
+ "INTENT(IN)", &sym->declared_at);
+ return false;
+ }
+
+ if (args == 2 && i2 != INTENT_IN)
+ {
+ gfc_error ("Second argument of operator interface at %L must be "
+ "INTENT(IN)", &sym->declared_at);
+ return false;
+ }
+ }
+
+ /* From now on, all we have to do is check that the operator definition
+ doesn't conflict with an intrinsic operator. The rules for this
+ game are defined in 7.1.2 and 7.1.3 of both F95 and F2003 standards,
+ as well as 12.3.2.1.1 of Fortran 2003:
+
+ "If the operator is an intrinsic-operator (R310), the number of
+ function arguments shall be consistent with the intrinsic uses of
+ that operator, and the types, kind type parameters, or ranks of the
+ dummy arguments shall differ from those required for the intrinsic
+ operation (7.1.2)." */
+
+#define IS_NUMERIC_TYPE(t) \
+ ((t) == BT_INTEGER || (t) == BT_REAL || (t) == BT_COMPLEX)
+
+ /* Unary ops are easy, do them first. */
+ if (op == INTRINSIC_NOT)
+ {
+ if (t1 == BT_LOGICAL)
+ goto bad_repl;
+ else
+ return true;
+ }
+
+ if (args == 1 && (op == INTRINSIC_PLUS || op == INTRINSIC_MINUS))
+ {
+ if (IS_NUMERIC_TYPE (t1))
+ goto bad_repl;
+ else
+ return true;
+ }
+
+ /* Character intrinsic operators have same character kind, thus
+ operator definitions with operands of different character kinds
+ are always safe. */
+ if (t1 == BT_CHARACTER && t2 == BT_CHARACTER && k1 != k2)
+ return true;
+
+ /* Intrinsic operators always perform on arguments of same rank,
+ so different ranks is also always safe. (rank == 0) is an exception
+ to that, because all intrinsic operators are elemental. */
+ if (r1 != r2 && r1 != 0 && r2 != 0)
+ return true;
+
+ switch (op)
+ {
+ case INTRINSIC_EQ:
+ case INTRINSIC_EQ_OS:
+ case INTRINSIC_NE:
+ case INTRINSIC_NE_OS:
+ if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
+ goto bad_repl;
+ /* Fall through. */
+
+ case INTRINSIC_PLUS:
+ case INTRINSIC_MINUS:
+ case INTRINSIC_TIMES:
+ case INTRINSIC_DIVIDE:
+ case INTRINSIC_POWER:
+ if (IS_NUMERIC_TYPE (t1) && IS_NUMERIC_TYPE (t2))
+ goto bad_repl;
+ break;
+
+ case INTRINSIC_GT:
+ case INTRINSIC_GT_OS:
+ case INTRINSIC_GE:
+ case INTRINSIC_GE_OS:
+ case INTRINSIC_LT:
+ case INTRINSIC_LT_OS:
+ case INTRINSIC_LE:
+ case INTRINSIC_LE_OS:
+ if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
+ goto bad_repl;
+ if ((t1 == BT_INTEGER || t1 == BT_REAL)
+ && (t2 == BT_INTEGER || t2 == BT_REAL))
+ goto bad_repl;
+ break;
+
+ case INTRINSIC_CONCAT:
+ if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
+ goto bad_repl;
+ break;
+
+ case INTRINSIC_AND:
+ case INTRINSIC_OR:
+ case INTRINSIC_EQV:
+ case INTRINSIC_NEQV:
+ if (t1 == BT_LOGICAL && t2 == BT_LOGICAL)
+ goto bad_repl;
+ break;
+
+ default:
+ break;
+ }
+
+ return true;
+
+#undef IS_NUMERIC_TYPE
+
+bad_repl:
+ gfc_error ("Operator interface at %L conflicts with intrinsic interface",
+ &opwhere);
+ return false;
+}
+
+
+/* Given a pair of formal argument lists, we see if the two lists can
+ be distinguished by counting the number of nonoptional arguments of
+ a given type/rank in f1 and seeing if there are less then that
+ number of those arguments in f2 (including optional arguments).
+ Since this test is asymmetric, it has to be called twice to make it
+ symmetric. Returns nonzero if the argument lists are incompatible
+ by this test. This subroutine implements rule 1 of section F03:16.2.3.
+ 'p1' and 'p2' are the PASS arguments of both procedures (if applicable). */
+
+static int
+count_types_test (gfc_formal_arglist *f1, gfc_formal_arglist *f2,
+ const char *p1, const char *p2)
+{
+ int rc, ac1, ac2, i, j, k, n1;
+ gfc_formal_arglist *f;
+
+ typedef struct
+ {
+ int flag;
+ gfc_symbol *sym;
+ }
+ arginfo;
+
+ arginfo *arg;
+
+ n1 = 0;
+
+ for (f = f1; f; f = f->next)
+ n1++;
+
+ /* Build an array of integers that gives the same integer to
+ arguments of the same type/rank. */
+ arg = XCNEWVEC (arginfo, n1);
+
+ f = f1;
+ for (i = 0; i < n1; i++, f = f->next)
+ {
+ arg[i].flag = -1;
+ arg[i].sym = f->sym;
+ }
+
+ k = 0;
+
+ for (i = 0; i < n1; i++)
+ {
+ if (arg[i].flag != -1)
+ continue;
+
+ if (arg[i].sym && (arg[i].sym->attr.optional
+ || (p1 && strcmp (arg[i].sym->name, p1) == 0)))
+ continue; /* Skip OPTIONAL and PASS arguments. */
+
+ arg[i].flag = k;
+
+ /* Find other non-optional, non-pass arguments of the same type/rank. */
+ for (j = i + 1; j < n1; j++)
+ if ((arg[j].sym == NULL
+ || !(arg[j].sym->attr.optional
+ || (p1 && strcmp (arg[j].sym->name, p1) == 0)))
+ && (compare_type_rank_if (arg[i].sym, arg[j].sym)
+ || compare_type_rank_if (arg[j].sym, arg[i].sym)))
+ arg[j].flag = k;
+
+ k++;
+ }
+
+ /* Now loop over each distinct type found in f1. */
+ k = 0;
+ rc = 0;
+
+ for (i = 0; i < n1; i++)
+ {
+ if (arg[i].flag != k)
+ continue;
+
+ ac1 = 1;
+ for (j = i + 1; j < n1; j++)
+ if (arg[j].flag == k)
+ ac1++;
+
+ /* Count the number of non-pass arguments in f2 with that type,
+ including those that are optional. */
+ ac2 = 0;
+
+ for (f = f2; f; f = f->next)
+ if ((!p2 || strcmp (f->sym->name, p2) != 0)
+ && (compare_type_rank_if (arg[i].sym, f->sym)
+ || compare_type_rank_if (f->sym, arg[i].sym)))
+ ac2++;
+
+ if (ac1 > ac2)
+ {
+ rc = 1;
+ break;
+ }
+
+ k++;
+ }
+
+ free (arg);
+
+ return rc;
+}
+
+
+/* Perform the correspondence test in rule (3) of F08:C1215.
+ Returns zero if no argument is found that satisfies this rule,
+ nonzero otherwise. 'p1' and 'p2' are the PASS arguments of both procedures
+ (if applicable).
+
+ This test is also not symmetric in f1 and f2 and must be called
+ twice. This test finds problems caused by sorting the actual
+ argument list with keywords. For example:
+
+ INTERFACE FOO
+ SUBROUTINE F1(A, B)
+ INTEGER :: A ; REAL :: B
+ END SUBROUTINE F1
+
+ SUBROUTINE F2(B, A)
+ INTEGER :: A ; REAL :: B
+ END SUBROUTINE F1
+ END INTERFACE FOO
+
+ At this point, 'CALL FOO(A=1, B=1.0)' is ambiguous. */
+
+static int
+generic_correspondence (gfc_formal_arglist *f1, gfc_formal_arglist *f2,
+ const char *p1, const char *p2)
+{
+ gfc_formal_arglist *f2_save, *g;
+ gfc_symbol *sym;
+
+ f2_save = f2;
+
+ while (f1)
+ {
+ if (f1->sym->attr.optional)
+ goto next;
+
+ if (p1 && strcmp (f1->sym->name, p1) == 0)
+ f1 = f1->next;
+ if (f2 && p2 && strcmp (f2->sym->name, p2) == 0)
+ f2 = f2->next;
+
+ if (f2 != NULL && (compare_type_rank (f1->sym, f2->sym)
+ || compare_type_rank (f2->sym, f1->sym))
+ && !((gfc_option.allow_std & GFC_STD_F2008)
+ && ((f1->sym->attr.allocatable && f2->sym->attr.pointer)
+ || (f2->sym->attr.allocatable && f1->sym->attr.pointer))))
+ goto next;
+
+ /* Now search for a disambiguating keyword argument starting at
+ the current non-match. */
+ for (g = f1; g; g = g->next)
+ {
+ if (g->sym->attr.optional || (p1 && strcmp (g->sym->name, p1) == 0))
+ continue;
+
+ sym = find_keyword_arg (g->sym->name, f2_save);
+ if (sym == NULL || !compare_type_rank (g->sym, sym)
+ || ((gfc_option.allow_std & GFC_STD_F2008)
+ && ((sym->attr.allocatable && g->sym->attr.pointer)
+ || (sym->attr.pointer && g->sym->attr.allocatable))))
+ return 1;
+ }
+
+ next:
+ if (f1 != NULL)
+ f1 = f1->next;
+ if (f2 != NULL)
+ f2 = f2->next;
+ }
+
+ return 0;
+}
+
+
+/* Check if the characteristics of two dummy arguments match,
+ cf. F08:12.3.2. */
+
+static gfc_try
+check_dummy_characteristics (gfc_symbol *s1, gfc_symbol *s2,
+ bool type_must_agree, char *errmsg, int err_len)
+{
+ /* Check type and rank. */
+ if (type_must_agree && !compare_type_rank (s2, s1))
+ {
+ snprintf (errmsg, err_len, "Type/rank mismatch in argument '%s'",
+ s1->name);
+ return FAILURE;
+ }
+
+ /* Check INTENT. */
+ if (s1->attr.intent != s2->attr.intent)
+ {
+ snprintf (errmsg, err_len, "INTENT mismatch in argument '%s'",
+ s1->name);
+ return FAILURE;
+ }
+
+ /* Check OPTIONAL attribute. */
+ if (s1->attr.optional != s2->attr.optional)
+ {
+ snprintf (errmsg, err_len, "OPTIONAL mismatch in argument '%s'",
+ s1->name);
+ return FAILURE;
+ }
+
+ /* Check ALLOCATABLE attribute. */
+ if (s1->attr.allocatable != s2->attr.allocatable)
+ {
+ snprintf (errmsg, err_len, "ALLOCATABLE mismatch in argument '%s'",
+ s1->name);
+ return FAILURE;
+ }
+
+ /* Check POINTER attribute. */
+ if (s1->attr.pointer != s2->attr.pointer)
+ {
+ snprintf (errmsg, err_len, "POINTER mismatch in argument '%s'",
+ s1->name);
+ return FAILURE;
+ }
+
+ /* Check TARGET attribute. */
+ if (s1->attr.target != s2->attr.target)
+ {
+ snprintf (errmsg, err_len, "TARGET mismatch in argument '%s'",
+ s1->name);
+ return FAILURE;
+ }
+
+ /* FIXME: Do more comprehensive testing of attributes, like e.g.
+ ASYNCHRONOUS, CONTIGUOUS, VALUE, VOLATILE, etc. */
+
+ /* Check interface of dummy procedures. */
+ if (s1->attr.flavor == FL_PROCEDURE)
+ {
+ char err[200];
+ if (!gfc_compare_interfaces (s1, s2, s2->name, 0, 1, err, sizeof(err),
+ NULL, NULL))
+ {
+ snprintf (errmsg, err_len, "Interface mismatch in dummy procedure "
+ "'%s': %s", s1->name, err);
+ return FAILURE;
+ }
+ }
+
+ /* Check string length. */
+ if (s1->ts.type == BT_CHARACTER
+ && s1->ts.u.cl && s1->ts.u.cl->length
+ && s2->ts.u.cl && s2->ts.u.cl->length)
+ {
+ int compval = gfc_dep_compare_expr (s1->ts.u.cl->length,
+ s2->ts.u.cl->length);
+ switch (compval)
+ {
+ case -1:
+ case 1:
+ case -3:
+ snprintf (errmsg, err_len, "Character length mismatch "
+ "in argument '%s'", s1->name);
+ return FAILURE;
+
+ case -2:
+ /* FIXME: Implement a warning for this case.
+ gfc_warning ("Possible character length mismatch in argument '%s'",
+ s1->name);*/
+ break;
+
+ case 0:
+ break;
+
+ default:
+ gfc_internal_error ("check_dummy_characteristics: Unexpected result "
+ "%i of gfc_dep_compare_expr", compval);
+ break;
+ }
+ }
+
+ /* Check array shape. */
+ if (s1->as && s2->as)
+ {
+ int i, compval;
+ gfc_expr *shape1, *shape2;
+
+ if (s1->as->type != s2->as->type)
+ {
+ snprintf (errmsg, err_len, "Shape mismatch in argument '%s'",
+ s1->name);
+ return FAILURE;
+ }
+
+ if (s1->as->type == AS_EXPLICIT)
+ for (i = 0; i < s1->as->rank + s1->as->corank; i++)
+ {
+ shape1 = gfc_subtract (gfc_copy_expr (s1->as->upper[i]),
+ gfc_copy_expr (s1->as->lower[i]));
+ shape2 = gfc_subtract (gfc_copy_expr (s2->as->upper[i]),
+ gfc_copy_expr (s2->as->lower[i]));
+ compval = gfc_dep_compare_expr (shape1, shape2);
+ gfc_free_expr (shape1);
+ gfc_free_expr (shape2);
+ switch (compval)
+ {
+ case -1:
+ case 1:
+ case -3:
+ snprintf (errmsg, err_len, "Shape mismatch in dimension %i of "
+ "argument '%s'", i + 1, s1->name);
+ return FAILURE;
+
+ case -2:
+ /* FIXME: Implement a warning for this case.
+ gfc_warning ("Possible shape mismatch in argument '%s'",
+ s1->name);*/
+ break;
+
+ case 0:
+ break;
+
+ default:
+ gfc_internal_error ("check_dummy_characteristics: Unexpected "
+ "result %i of gfc_dep_compare_expr",
+ compval);
+ break;
+ }
+ }
+ }
+
+ return SUCCESS;
+}
+
+
+/* Check if the characteristics of two function results match,
+ cf. F08:12.3.3. */
+
+static gfc_try
+check_result_characteristics (gfc_symbol *s1, gfc_symbol *s2,
+ char *errmsg, int err_len)
+{
+ gfc_symbol *r1, *r2;
+
+ r1 = s1->result ? s1->result : s1;
+ r2 = s2->result ? s2->result : s2;
+
+ if (r1->ts.type == BT_UNKNOWN)
+ return SUCCESS;
+
+ /* Check type and rank. */
+ if (!compare_type_rank (r1, r2))
+ {
+ snprintf (errmsg, err_len, "Type/rank mismatch in function result");
+ return FAILURE;
+ }
+
+ /* Check ALLOCATABLE attribute. */
+ if (r1->attr.allocatable != r2->attr.allocatable)
+ {
+ snprintf (errmsg, err_len, "ALLOCATABLE attribute mismatch in "
+ "function result");
+ return FAILURE;
+ }
+
+ /* Check POINTER attribute. */
+ if (r1->attr.pointer != r2->attr.pointer)
+ {
+ snprintf (errmsg, err_len, "POINTER attribute mismatch in "
+ "function result");
+ return FAILURE;
+ }
+
+ /* Check CONTIGUOUS attribute. */
+ if (r1->attr.contiguous != r2->attr.contiguous)
+ {
+ snprintf (errmsg, err_len, "CONTIGUOUS attribute mismatch in "
+ "function result");
+ return FAILURE;
+ }
+
+ /* Check PROCEDURE POINTER attribute. */
+ if (r1 != s1 && r1->attr.proc_pointer != r2->attr.proc_pointer)
+ {
+ snprintf (errmsg, err_len, "PROCEDURE POINTER mismatch in "
+ "function result");
+ return FAILURE;
+ }
+
+ /* Check string length. */
+ if (r1->ts.type == BT_CHARACTER && r1->ts.u.cl && r2->ts.u.cl)
+ {
+ if (r1->ts.deferred != r2->ts.deferred)
+ {
+ snprintf (errmsg, err_len, "Character length mismatch "
+ "in function result");
+ return FAILURE;
+ }
+
+ if (r1->ts.u.cl->length)
+ {
+ int compval = gfc_dep_compare_expr (r1->ts.u.cl->length,
+ r2->ts.u.cl->length);
+ switch (compval)
+ {
+ case -1:
+ case 1:
+ case -3:
+ snprintf (errmsg, err_len, "Character length mismatch "
+ "in function result");
+ return FAILURE;
+
+ case -2:
+ /* FIXME: Implement a warning for this case.
+ snprintf (errmsg, err_len, "Possible character length mismatch "
+ "in function result");*/
+ break;
+
+ case 0:
+ break;
+
+ default:
+ gfc_internal_error ("check_result_characteristics (1): Unexpected "
+ "result %i of gfc_dep_compare_expr", compval);
+ break;
+ }
+ }
+ }
+
+ /* Check array shape. */
+ if (!r1->attr.allocatable && !r1->attr.pointer && r1->as && r2->as)
+ {
+ int i, compval;
+ gfc_expr *shape1, *shape2;
+
+ if (r1->as->type != r2->as->type)
+ {
+ snprintf (errmsg, err_len, "Shape mismatch in function result");
+ return FAILURE;
+ }
+
+ if (r1->as->type == AS_EXPLICIT)
+ for (i = 0; i < r1->as->rank + r1->as->corank; i++)
+ {
+ shape1 = gfc_subtract (gfc_copy_expr (r1->as->upper[i]),
+ gfc_copy_expr (r1->as->lower[i]));
+ shape2 = gfc_subtract (gfc_copy_expr (r2->as->upper[i]),
+ gfc_copy_expr (r2->as->lower[i]));
+ compval = gfc_dep_compare_expr (shape1, shape2);
+ gfc_free_expr (shape1);
+ gfc_free_expr (shape2);
+ switch (compval)
+ {
+ case -1:
+ case 1:
+ case -3:
+ snprintf (errmsg, err_len, "Shape mismatch in dimension %i of "
+ "function result", i + 1);
+ return FAILURE;
+
+ case -2:
+ /* FIXME: Implement a warning for this case.
+ gfc_warning ("Possible shape mismatch in return value");*/
+ break;
+
+ case 0:
+ break;
+
+ default:
+ gfc_internal_error ("check_result_characteristics (2): "
+ "Unexpected result %i of "
+ "gfc_dep_compare_expr", compval);
+ break;
+ }
+ }
+ }
+
+ return SUCCESS;
+}
+
+
+/* 'Compare' two formal interfaces associated with a pair of symbols.
+ We return nonzero if there exists an actual argument list that
+ would be ambiguous between the two interfaces, zero otherwise.
+ 'strict_flag' specifies whether all the characteristics are
+ required to match, which is not the case for ambiguity checks.
+ 'p1' and 'p2' are the PASS arguments of both procedures (if applicable). */
+
+int
+gfc_compare_interfaces (gfc_symbol *s1, gfc_symbol *s2, const char *name2,
+ int generic_flag, int strict_flag,
+ char *errmsg, int err_len,
+ const char *p1, const char *p2)
+{
+ gfc_formal_arglist *f1, *f2;
+
+ gcc_assert (name2 != NULL);
+
+ if (s1->attr.function && (s2->attr.subroutine
+ || (!s2->attr.function && s2->ts.type == BT_UNKNOWN
+ && gfc_get_default_type (name2, s2->ns)->type == BT_UNKNOWN)))
+ {
+ if (errmsg != NULL)
+ snprintf (errmsg, err_len, "'%s' is not a function", name2);
+ return 0;
+ }
+
+ if (s1->attr.subroutine && s2->attr.function)
+ {
+ if (errmsg != NULL)
+ snprintf (errmsg, err_len, "'%s' is not a subroutine", name2);
+ return 0;
+ }
+
+ /* Do strict checks on all characteristics
+ (for dummy procedures and procedure pointer assignments). */
+ if (!generic_flag && strict_flag)
+ {
+ if (s1->attr.function && s2->attr.function)
+ {
+ /* If both are functions, check result characteristics. */
+ if (check_result_characteristics (s1, s2, errmsg, err_len)
+ == FAILURE)
+ return 0;
+ }
+
+ if (s1->attr.pure && !s2->attr.pure)
+ {
+ snprintf (errmsg, err_len, "Mismatch in PURE attribute");
+ return 0;
+ }
+ if (s1->attr.elemental && !s2->attr.elemental)
+ {
+ snprintf (errmsg, err_len, "Mismatch in ELEMENTAL attribute");
+ return 0;
+ }
+ }
+
+ if (s1->attr.if_source == IFSRC_UNKNOWN
+ || s2->attr.if_source == IFSRC_UNKNOWN)
+ return 1;
+
+ f1 = gfc_sym_get_dummy_args (s1);
+ f2 = gfc_sym_get_dummy_args (s2);
+
+ if (f1 == NULL && f2 == NULL)
+ return 1; /* Special case: No arguments. */
+
+ if (generic_flag)
+ {
+ if (count_types_test (f1, f2, p1, p2)
+ || count_types_test (f2, f1, p2, p1))
+ return 0;
+ if (generic_correspondence (f1, f2, p1, p2)
+ || generic_correspondence (f2, f1, p2, p1))
+ return 0;
+ }
+ else
+ /* Perform the abbreviated correspondence test for operators (the
+ arguments cannot be optional and are always ordered correctly).
+ This is also done when comparing interfaces for dummy procedures and in
+ procedure pointer assignments. */
+
+ for (;;)
+ {
+ /* Check existence. */
+ if (f1 == NULL && f2 == NULL)
+ break;
+ if (f1 == NULL || f2 == NULL)
+ {
+ if (errmsg != NULL)
+ snprintf (errmsg, err_len, "'%s' has the wrong number of "
+ "arguments", name2);
+ return 0;
+ }
+
+ if (UNLIMITED_POLY (f1->sym))
+ goto next;
+
+ if (strict_flag)
+ {
+ /* Check all characteristics. */
+ if (check_dummy_characteristics (f1->sym, f2->sym,
+ true, errmsg, err_len) == FAILURE)
+ return 0;
+ }
+ else if (!compare_type_rank (f2->sym, f1->sym))
+ {
+ /* Only check type and rank. */
+ if (errmsg != NULL)
+ snprintf (errmsg, err_len, "Type/rank mismatch in argument '%s'",
+ f1->sym->name);
+ return 0;
+ }
+next:
+ f1 = f1->next;
+ f2 = f2->next;
+ }
+
+ return 1;
+}
+
+
+/* Given a pointer to an interface pointer, remove duplicate
+ interfaces and make sure that all symbols are either functions
+ or subroutines, and all of the same kind. Returns nonzero if
+ something goes wrong. */
+
+static int
+check_interface0 (gfc_interface *p, const char *interface_name)
+{
+ gfc_interface *psave, *q, *qlast;
+
+ psave = p;
+ for (; p; p = p->next)
+ {
+ /* Make sure all symbols in the interface have been defined as
+ functions or subroutines. */
+ if (((!p->sym->attr.function && !p->sym->attr.subroutine)
+ || !p->sym->attr.if_source)
+ && p->sym->attr.flavor != FL_DERIVED)
+ {
+ if (p->sym->attr.external)
+ gfc_error ("Procedure '%s' in %s at %L has no explicit interface",
+ p->sym->name, interface_name, &p->sym->declared_at);
+ else
+ gfc_error ("Procedure '%s' in %s at %L is neither function nor "
+ "subroutine", p->sym->name, interface_name,
+ &p->sym->declared_at);
+ return 1;
+ }
+
+ /* Verify that procedures are either all SUBROUTINEs or all FUNCTIONs. */
+ if ((psave->sym->attr.function && !p->sym->attr.function
+ && p->sym->attr.flavor != FL_DERIVED)
+ || (psave->sym->attr.subroutine && !p->sym->attr.subroutine))
+ {
+ if (p->sym->attr.flavor != FL_DERIVED)
+ gfc_error ("In %s at %L procedures must be either all SUBROUTINEs"
+ " or all FUNCTIONs", interface_name,
+ &p->sym->declared_at);
+ else
+ gfc_error ("In %s at %L procedures must be all FUNCTIONs as the "
+ "generic name is also the name of a derived type",
+ interface_name, &p->sym->declared_at);
+ return 1;
+ }
+
+ /* F2003, C1207. F2008, C1207. */
+ if (p->sym->attr.proc == PROC_INTERNAL
+ && gfc_notify_std (GFC_STD_F2008, "Internal procedure "
+ "'%s' in %s at %L", p->sym->name, interface_name,
+ &p->sym->declared_at) == FAILURE)
+ return 1;
+ }
+ p = psave;
+
+ /* Remove duplicate interfaces in this interface list. */
+ for (; p; p = p->next)
+ {
+ qlast = p;
+
+ for (q = p->next; q;)
+ {
+ if (p->sym != q->sym)
+ {
+ qlast = q;
+ q = q->next;
+ }
+ else
+ {
+ /* Duplicate interface. */
+ qlast->next = q->next;
+ free (q);
+ q = qlast->next;
+ }
+ }
+ }
+
+ return 0;
+}
+
+
+/* Check lists of interfaces to make sure that no two interfaces are
+ ambiguous. Duplicate interfaces (from the same symbol) are OK here. */
+
+static int
+check_interface1 (gfc_interface *p, gfc_interface *q0,
+ int generic_flag, const char *interface_name,
+ bool referenced)
+{
+ gfc_interface *q;
+ for (; p; p = p->next)
+ for (q = q0; q; q = q->next)
+ {
+ if (p->sym == q->sym)
+ continue; /* Duplicates OK here. */
+
+ if (p->sym->name == q->sym->name && p->sym->module == q->sym->module)
+ continue;
+
+ if (p->sym->attr.flavor != FL_DERIVED
+ && q->sym->attr.flavor != FL_DERIVED
+ && gfc_compare_interfaces (p->sym, q->sym, q->sym->name,
+ generic_flag, 0, NULL, 0, NULL, NULL))
+ {
+ if (referenced)
+ gfc_error ("Ambiguous interfaces '%s' and '%s' in %s at %L",
+ p->sym->name, q->sym->name, interface_name,
+ &p->where);
+ else if (!p->sym->attr.use_assoc && q->sym->attr.use_assoc)
+ gfc_warning ("Ambiguous interfaces '%s' and '%s' in %s at %L",
+ p->sym->name, q->sym->name, interface_name,
+ &p->where);
+ else
+ gfc_warning ("Although not referenced, '%s' has ambiguous "
+ "interfaces at %L", interface_name, &p->where);
+ return 1;
+ }
+ }
+ return 0;
+}
+
+
+/* Check the generic and operator interfaces of symbols to make sure
+ that none of the interfaces conflict. The check has to be done
+ after all of the symbols are actually loaded. */
+
+static void
+check_sym_interfaces (gfc_symbol *sym)
+{
+ char interface_name[100];
+ gfc_interface *p;
+
+ if (sym->ns != gfc_current_ns)
+ return;
+
+ if (sym->generic != NULL)
+ {
+ sprintf (interface_name, "generic interface '%s'", sym->name);
+ if (check_interface0 (sym->generic, interface_name))
+ return;
+
+ for (p = sym->generic; p; p = p->next)
+ {
+ if (p->sym->attr.mod_proc
+ && (p->sym->attr.if_source != IFSRC_DECL
+ || p->sym->attr.procedure))
+ {
+ gfc_error ("'%s' at %L is not a module procedure",
+ p->sym->name, &p->where);
+ return;
+ }
+ }
+
+ /* Originally, this test was applied to host interfaces too;
+ this is incorrect since host associated symbols, from any
+ source, cannot be ambiguous with local symbols. */
+ check_interface1 (sym->generic, sym->generic, 1, interface_name,
+ sym->attr.referenced || !sym->attr.use_assoc);
+ }
+}
+
+
+static void
+check_uop_interfaces (gfc_user_op *uop)
+{
+ char interface_name[100];
+ gfc_user_op *uop2;
+ gfc_namespace *ns;
+
+ sprintf (interface_name, "operator interface '%s'", uop->name);
+ if (check_interface0 (uop->op, interface_name))
+ return;
+
+ for (ns = gfc_current_ns; ns; ns = ns->parent)
+ {
+ uop2 = gfc_find_uop (uop->name, ns);
+ if (uop2 == NULL)
+ continue;
+
+ check_interface1 (uop->op, uop2->op, 0,
+ interface_name, true);
+ }
+}
+
+/* Given an intrinsic op, return an equivalent op if one exists,
+ or INTRINSIC_NONE otherwise. */
+
+gfc_intrinsic_op
+gfc_equivalent_op (gfc_intrinsic_op op)
+{
+ switch(op)
+ {
+ case INTRINSIC_EQ:
+ return INTRINSIC_EQ_OS;
+
+ case INTRINSIC_EQ_OS:
+ return INTRINSIC_EQ;
+
+ case INTRINSIC_NE:
+ return INTRINSIC_NE_OS;
+
+ case INTRINSIC_NE_OS:
+ return INTRINSIC_NE;
+
+ case INTRINSIC_GT:
+ return INTRINSIC_GT_OS;
+
+ case INTRINSIC_GT_OS:
+ return INTRINSIC_GT;
+
+ case INTRINSIC_GE:
+ return INTRINSIC_GE_OS;
+
+ case INTRINSIC_GE_OS:
+ return INTRINSIC_GE;
+
+ case INTRINSIC_LT:
+ return INTRINSIC_LT_OS;
+
+ case INTRINSIC_LT_OS:
+ return INTRINSIC_LT;
+
+ case INTRINSIC_LE:
+ return INTRINSIC_LE_OS;
+
+ case INTRINSIC_LE_OS:
+ return INTRINSIC_LE;
+
+ default:
+ return INTRINSIC_NONE;
+ }
+}
+
+/* For the namespace, check generic, user operator and intrinsic
+ operator interfaces for consistency and to remove duplicate
+ interfaces. We traverse the whole namespace, counting on the fact
+ that most symbols will not have generic or operator interfaces. */
+
+void
+gfc_check_interfaces (gfc_namespace *ns)
+{
+ gfc_namespace *old_ns, *ns2;
+ char interface_name[100];
+ int i;
+
+ old_ns = gfc_current_ns;
+ gfc_current_ns = ns;
+
+ gfc_traverse_ns (ns, check_sym_interfaces);
+
+ gfc_traverse_user_op (ns, check_uop_interfaces);
+
+ for (i = GFC_INTRINSIC_BEGIN; i != GFC_INTRINSIC_END; i++)
+ {
+ if (i == INTRINSIC_USER)
+ continue;
+
+ if (i == INTRINSIC_ASSIGN)
+ strcpy (interface_name, "intrinsic assignment operator");
+ else
+ sprintf (interface_name, "intrinsic '%s' operator",
+ gfc_op2string ((gfc_intrinsic_op) i));
+
+ if (check_interface0 (ns->op[i], interface_name))
+ continue;
+
+ if (ns->op[i])
+ gfc_check_operator_interface (ns->op[i]->sym, (gfc_intrinsic_op) i,
+ ns->op[i]->where);
+
+ for (ns2 = ns; ns2; ns2 = ns2->parent)
+ {
+ gfc_intrinsic_op other_op;
+
+ if (check_interface1 (ns->op[i], ns2->op[i], 0,
+ interface_name, true))
+ goto done;
+
+ /* i should be gfc_intrinsic_op, but has to be int with this cast
+ here for stupid C++ compatibility rules. */
+ other_op = gfc_equivalent_op ((gfc_intrinsic_op) i);
+ if (other_op != INTRINSIC_NONE
+ && check_interface1 (ns->op[i], ns2->op[other_op],
+ 0, interface_name, true))
+ goto done;
+ }
+ }
+
+done:
+ gfc_current_ns = old_ns;
+}
+
+
+static int
+symbol_rank (gfc_symbol *sym)
+{
+ if (sym->ts.type == BT_CLASS && CLASS_DATA (sym)->as)
+ return CLASS_DATA (sym)->as->rank;
+
+ return (sym->as == NULL) ? 0 : sym->as->rank;
+}
+
+
+/* Given a symbol of a formal argument list and an expression, if the
+ formal argument is allocatable, check that the actual argument is
+ allocatable. Returns nonzero if compatible, zero if not compatible. */
+
+static int
+compare_allocatable (gfc_symbol *formal, gfc_expr *actual)
+{
+ symbol_attribute attr;
+
+ if (formal->attr.allocatable
+ || (formal->ts.type == BT_CLASS && CLASS_DATA (formal)->attr.allocatable))
+ {
+ attr = gfc_expr_attr (actual);
+ if (!attr.allocatable)
+ return 0;
+ }
+
+ return 1;
+}
+
+
+/* Given a symbol of a formal argument list and an expression, if the
+ formal argument is a pointer, see if the actual argument is a
+ pointer. Returns nonzero if compatible, zero if not compatible. */
+
+static int
+compare_pointer (gfc_symbol *formal, gfc_expr *actual)
+{
+ symbol_attribute attr;
+
+ if (formal->attr.pointer
+ || (formal->ts.type == BT_CLASS && CLASS_DATA (formal)
+ && CLASS_DATA (formal)->attr.class_pointer))
+ {
+ attr = gfc_expr_attr (actual);
+
+ /* Fortran 2008 allows non-pointer actual arguments. */
+ if (!attr.pointer && attr.target && formal->attr.intent == INTENT_IN)
+ return 2;
+
+ if (!attr.pointer)
+ return 0;
+ }
+
+ return 1;
+}
+
+
+/* Emit clear error messages for rank mismatch. */
+
+static void
+argument_rank_mismatch (const char *name, locus *where,
+ int rank1, int rank2)
+{
+
+ /* TS 29113, C407b. */
+ if (rank2 == -1)
+ {
+ gfc_error ("The assumed-rank array at %L requires that the dummy argument"
+ " '%s' has assumed-rank", where, name);
+ }
+ else if (rank1 == 0)
+ {
+ gfc_error ("Rank mismatch in argument '%s' at %L "
+ "(scalar and rank-%d)", name, where, rank2);
+ }
+ else if (rank2 == 0)
+ {
+ gfc_error ("Rank mismatch in argument '%s' at %L "
+ "(rank-%d and scalar)", name, where, rank1);
+ }
+ else
+ {
+ gfc_error ("Rank mismatch in argument '%s' at %L "
+ "(rank-%d and rank-%d)", name, where, rank1, rank2);
+ }
+}
+
+
+/* Given a symbol of a formal argument list and an expression, see if
+ the two are compatible as arguments. Returns nonzero if
+ compatible, zero if not compatible. */
+
+static int
+compare_parameter (gfc_symbol *formal, gfc_expr *actual,
+ int ranks_must_agree, int is_elemental, locus *where)
+{
+ gfc_ref *ref;
+ bool rank_check, is_pointer;
+
+ /* If the formal arg has type BT_VOID, it's to one of the iso_c_binding
+ procs c_f_pointer or c_f_procpointer, and we need to accept most
+ pointers the user could give us. This should allow that. */
+ if (formal->ts.type == BT_VOID)
+ return 1;
+
+ if (formal->ts.type == BT_DERIVED
+ && formal->ts.u.derived && formal->ts.u.derived->ts.is_iso_c
+ && actual->ts.type == BT_DERIVED
+ && actual->ts.u.derived && actual->ts.u.derived->ts.is_iso_c)
+ return 1;
+
+ if (formal->ts.type == BT_CLASS && actual->ts.type == BT_DERIVED)
+ /* Make sure the vtab symbol is present when
+ the module variables are generated. */
+ gfc_find_derived_vtab (actual->ts.u.derived);
+
+ if (actual->ts.type == BT_PROCEDURE)
+ {
+ char err[200];
+ gfc_symbol *act_sym = actual->symtree->n.sym;
+
+ if (formal->attr.flavor != FL_PROCEDURE)
+ {
+ if (where)
+ gfc_error ("Invalid procedure argument at %L", &actual->where);
+ return 0;
+ }
+
+ if (!gfc_compare_interfaces (formal, act_sym, act_sym->name, 0, 1, err,
+ sizeof(err), NULL, NULL))
+ {
+ if (where)
+ gfc_error ("Interface mismatch in dummy procedure '%s' at %L: %s",
+ formal->name, &actual->where, err);
+ return 0;
+ }
+
+ if (formal->attr.function && !act_sym->attr.function)
+ {
+ gfc_add_function (&act_sym->attr, act_sym->name,
+ &act_sym->declared_at);
+ if (act_sym->ts.type == BT_UNKNOWN
+ && gfc_set_default_type (act_sym, 1, act_sym->ns) == FAILURE)
+ return 0;
+ }
+ else if (formal->attr.subroutine && !act_sym->attr.subroutine)
+ gfc_add_subroutine (&act_sym->attr, act_sym->name,
+ &act_sym->declared_at);
+
+ return 1;
+ }
+
+ /* F2008, C1241. */
+ if (formal->attr.pointer && formal->attr.contiguous
+ && !gfc_is_simply_contiguous (actual, true))
+ {
+ if (where)
+ gfc_error ("Actual argument to contiguous pointer dummy '%s' at %L "
+ "must be simply contiguous", formal->name, &actual->where);
+ return 0;
+ }
+
+ if ((actual->expr_type != EXPR_NULL || actual->ts.type != BT_UNKNOWN)
+ && actual->ts.type != BT_HOLLERITH
+ && formal->ts.type != BT_ASSUMED
+ && !gfc_compare_types (&formal->ts, &actual->ts)
+ && !(formal->ts.type == BT_DERIVED && actual->ts.type == BT_CLASS
+ && gfc_compare_derived_types (formal->ts.u.derived,
+ CLASS_DATA (actual)->ts.u.derived)))
+ {
+ if (where)
+ gfc_error ("Type mismatch in argument '%s' at %L; passed %s to %s",
+ formal->name, &actual->where, gfc_typename (&actual->ts),
+ gfc_typename (&formal->ts));
+ return 0;
+ }
+
+ /* F2008, 12.5.2.5; IR F08/0073. */
+ if (formal->ts.type == BT_CLASS && actual->expr_type != EXPR_NULL
+ && ((CLASS_DATA (formal)->attr.class_pointer
+ && !formal->attr.intent == INTENT_IN)
+ || CLASS_DATA (formal)->attr.allocatable))
+ {
+ if (actual->ts.type != BT_CLASS)
+ {
+ if (where)
+ gfc_error ("Actual argument to '%s' at %L must be polymorphic",
+ formal->name, &actual->where);
+ return 0;
+ }
+ if (!gfc_compare_derived_types (CLASS_DATA (actual)->ts.u.derived,
+ CLASS_DATA (formal)->ts.u.derived))
+ {
+ if (where)
+ gfc_error ("Actual argument to '%s' at %L must have the same "
+ "declared type", formal->name, &actual->where);
+ return 0;
+ }
+ }
+
+ /* F08: 12.5.2.5 Allocatable and pointer dummy variables. However, this
+ is necessary also for F03, so retain error for both.
+ NOTE: Other type/kind errors pre-empt this error. Since they are F03
+ compatible, no attempt has been made to channel to this one. */
+ if (UNLIMITED_POLY (formal) && !UNLIMITED_POLY (actual)
+ && (CLASS_DATA (formal)->attr.allocatable
+ ||CLASS_DATA (formal)->attr.class_pointer))
+ {
+ if (where)
+ gfc_error ("Actual argument to '%s' at %L must be unlimited "
+ "polymorphic since the formal argument is a "
+ "pointer or allocatable unlimited polymorphic "
+ "entity [F2008: 12.5.2.5]", formal->name,
+ &actual->where);
+ return 0;
+ }
+
+ if (formal->attr.codimension && !gfc_is_coarray (actual))
+ {
+ if (where)
+ gfc_error ("Actual argument to '%s' at %L must be a coarray",
+ formal->name, &actual->where);
+ return 0;
+ }
+
+ if (formal->attr.codimension && formal->attr.allocatable)
+ {
+ gfc_ref *last = NULL;
+
+ for (ref = actual->ref; ref; ref = ref->next)
+ if (ref->type == REF_COMPONENT)
+ last = ref;
+
+ /* F2008, 12.5.2.6. */
+ if ((last && last->u.c.component->as->corank != formal->as->corank)
+ || (!last
+ && actual->symtree->n.sym->as->corank != formal->as->corank))
+ {
+ if (where)
+ gfc_error ("Corank mismatch in argument '%s' at %L (%d and %d)",
+ formal->name, &actual->where, formal->as->corank,
+ last ? last->u.c.component->as->corank
+ : actual->symtree->n.sym->as->corank);
+ return 0;
+ }
+ }
+
+ if (formal->attr.codimension)
+ {
+ /* F2008, 12.5.2.8. */
+ if (formal->attr.dimension
+ && (formal->attr.contiguous || formal->as->type != AS_ASSUMED_SHAPE)
+ && gfc_expr_attr (actual).dimension
+ && !gfc_is_simply_contiguous (actual, true))
+ {
+ if (where)
+ gfc_error ("Actual argument to '%s' at %L must be simply "
+ "contiguous", formal->name, &actual->where);
+ return 0;
+ }
+
+ /* F2008, C1303 and C1304. */
+ if (formal->attr.intent != INTENT_INOUT
+ && (((formal->ts.type == BT_DERIVED || formal->ts.type == BT_CLASS)
+ && formal->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
+ && formal->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)
+ || formal->attr.lock_comp))
+
+ {
+ if (where)
+ gfc_error ("Actual argument to non-INTENT(INOUT) dummy '%s' at %L, "
+ "which is LOCK_TYPE or has a LOCK_TYPE component",
+ formal->name, &actual->where);
+ return 0;
+ }
+ }
+
+ /* F2008, C1239/C1240. */
+ if (actual->expr_type == EXPR_VARIABLE
+ && (actual->symtree->n.sym->attr.asynchronous
+ || actual->symtree->n.sym->attr.volatile_)
+ && (formal->attr.asynchronous || formal->attr.volatile_)
+ && actual->rank && !gfc_is_simply_contiguous (actual, true)
+ && ((formal->as->type != AS_ASSUMED_SHAPE && !formal->attr.pointer)
+ || formal->attr.contiguous))
+ {
+ if (where)
+ gfc_error ("Dummy argument '%s' has to be a pointer or assumed-shape "
+ "array without CONTIGUOUS attribute - as actual argument at"
+ " %L is not simply contiguous and both are ASYNCHRONOUS "
+ "or VOLATILE", formal->name, &actual->where);
+ return 0;
+ }
+
+ if (formal->attr.allocatable && !formal->attr.codimension
+ && gfc_expr_attr (actual).codimension)
+ {
+ if (formal->attr.intent == INTENT_OUT)
+ {
+ if (where)
+ gfc_error ("Passing coarray at %L to allocatable, noncoarray, "
+ "INTENT(OUT) dummy argument '%s'", &actual->where,
+ formal->name);
+ return 0;
+ }
+ else if (gfc_option.warn_surprising && where
+ && formal->attr.intent != INTENT_IN)
+ gfc_warning ("Passing coarray at %L to allocatable, noncoarray dummy "
+ "argument '%s', which is invalid if the allocation status"
+ " is modified", &actual->where, formal->name);
+ }
+
+ /* If the rank is the same or the formal argument has assumed-rank. */
+ if (symbol_rank (formal) == actual->rank || symbol_rank (formal) == -1)
+ return 1;
+
+ if (actual->ts.type == BT_CLASS && CLASS_DATA (actual)->as
+ && CLASS_DATA (actual)->as->rank == symbol_rank (formal))
+ return 1;
+
+ rank_check = where != NULL && !is_elemental && formal->as
+ && (formal->as->type == AS_ASSUMED_SHAPE
+ || formal->as->type == AS_DEFERRED)
+ && actual->expr_type != EXPR_NULL;
+
+ /* Scalar & coindexed, see: F2008, Section 12.5.2.4. */
+ if (rank_check || ranks_must_agree
+ || (formal->attr.pointer && actual->expr_type != EXPR_NULL)
+ || (actual->rank != 0 && !(is_elemental || formal->attr.dimension))
+ || (actual->rank == 0
+ && ((formal->ts.type == BT_CLASS
+ && CLASS_DATA (formal)->as->type == AS_ASSUMED_SHAPE)
+ || (formal->ts.type != BT_CLASS
+ && formal->as->type == AS_ASSUMED_SHAPE))
+ && actual->expr_type != EXPR_NULL)
+ || (actual->rank == 0 && formal->attr.dimension
+ && gfc_is_coindexed (actual)))
+ {
+ if (where)
+ argument_rank_mismatch (formal->name, &actual->where,
+ symbol_rank (formal), actual->rank);
+ return 0;
+ }
+ else if (actual->rank != 0 && (is_elemental || formal->attr.dimension))
+ return 1;
+
+ /* At this point, we are considering a scalar passed to an array. This
+ is valid (cf. F95 12.4.1.1, F2003 12.4.1.2, and F2008 12.5.2.4),
+ - if the actual argument is (a substring of) an element of a
+ non-assumed-shape/non-pointer/non-polymorphic array; or
+ - (F2003) if the actual argument is of type character of default/c_char
+ kind. */
+
+ is_pointer = actual->expr_type == EXPR_VARIABLE
+ ? actual->symtree->n.sym->attr.pointer : false;
+
+ for (ref = actual->ref; ref; ref = ref->next)
+ {
+ if (ref->type == REF_COMPONENT)
+ is_pointer = ref->u.c.component->attr.pointer;
+ else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT
+ && ref->u.ar.dimen > 0
+ && (!ref->next
+ || (ref->next->type == REF_SUBSTRING && !ref->next->next)))
+ break;
+ }
+
+ if (actual->ts.type == BT_CLASS && actual->expr_type != EXPR_NULL)
+ {
+ if (where)
+ gfc_error ("Polymorphic scalar passed to array dummy argument '%s' "
+ "at %L", formal->name, &actual->where);
+ return 0;
+ }
+
+ if (actual->expr_type != EXPR_NULL && ref && actual->ts.type != BT_CHARACTER
+ && (is_pointer || ref->u.ar.as->type == AS_ASSUMED_SHAPE))
+ {
+ if (where)
+ gfc_error ("Element of assumed-shaped or pointer "
+ "array passed to array dummy argument '%s' at %L",
+ formal->name, &actual->where);
+ return 0;
+ }
+
+ if (actual->ts.type == BT_CHARACTER && actual->expr_type != EXPR_NULL
+ && (!ref || is_pointer || ref->u.ar.as->type == AS_ASSUMED_SHAPE))
+ {
+ if (formal->ts.kind != 1 && (gfc_option.allow_std & GFC_STD_GNU) == 0)
+ {
+ if (where)
+ gfc_error ("Extension: Scalar non-default-kind, non-C_CHAR-kind "
+ "CHARACTER actual argument with array dummy argument "
+ "'%s' at %L", formal->name, &actual->where);
+ return 0;
+ }
+
+ if (where && (gfc_option.allow_std & GFC_STD_F2003) == 0)
+ {
+ gfc_error ("Fortran 2003: Scalar CHARACTER actual argument with "
+ "array dummy argument '%s' at %L",
+ formal->name, &actual->where);
+ return 0;
+ }
+ else if ((gfc_option.allow_std & GFC_STD_F2003) == 0)
+ return 0;
+ else
+ return 1;
+ }
+
+ if (ref == NULL && actual->expr_type != EXPR_NULL)
+ {
+ if (where)
+ argument_rank_mismatch (formal->name, &actual->where,
+ symbol_rank (formal), actual->rank);
+ return 0;
+ }
+
+ return 1;
+}
+
+
+/* Returns the storage size of a symbol (formal argument) or
+ zero if it cannot be determined. */
+
+static unsigned long
+get_sym_storage_size (gfc_symbol *sym)
+{
+ int i;
+ unsigned long strlen, elements;
+
+ if (sym->ts.type == BT_CHARACTER)
+ {
+ if (sym->ts.u.cl && sym->ts.u.cl->length
+ && sym->ts.u.cl->length->expr_type == EXPR_CONSTANT)
+ strlen = mpz_get_ui (sym->ts.u.cl->length->value.integer);
+ else
+ return 0;
+ }
+ else
+ strlen = 1;
+
+ if (symbol_rank (sym) == 0)
+ return strlen;
+
+ elements = 1;
+ if (sym->as->type != AS_EXPLICIT)
+ return 0;
+ for (i = 0; i < sym->as->rank; i++)
+ {
+ if (sym->as->upper[i]->expr_type != EXPR_CONSTANT
+ || sym->as->lower[i]->expr_type != EXPR_CONSTANT)
+ return 0;
+
+ elements *= mpz_get_si (sym->as->upper[i]->value.integer)
+ - mpz_get_si (sym->as->lower[i]->value.integer) + 1L;
+ }
+
+ return strlen*elements;
+}
+
+
+/* Returns the storage size of an expression (actual argument) or
+ zero if it cannot be determined. For an array element, it returns
+ the remaining size as the element sequence consists of all storage
+ units of the actual argument up to the end of the array. */
+
+static unsigned long
+get_expr_storage_size (gfc_expr *e)
+{
+ int i;
+ long int strlen, elements;
+ long int substrlen = 0;
+ bool is_str_storage = false;
+ gfc_ref *ref;
+
+ if (e == NULL)
+ return 0;
+
+ if (e->ts.type == BT_CHARACTER)
+ {
+ if (e->ts.u.cl && e->ts.u.cl->length
+ && e->ts.u.cl->length->expr_type == EXPR_CONSTANT)
+ strlen = mpz_get_si (e->ts.u.cl->length->value.integer);
+ else if (e->expr_type == EXPR_CONSTANT
+ && (e->ts.u.cl == NULL || e->ts.u.cl->length == NULL))
+ strlen = e->value.character.length;
+ else
+ return 0;
+ }
+ else
+ strlen = 1; /* Length per element. */
+
+ if (e->rank == 0 && !e->ref)
+ return strlen;
+
+ elements = 1;
+ if (!e->ref)
+ {
+ if (!e->shape)
+ return 0;
+ for (i = 0; i < e->rank; i++)
+ elements *= mpz_get_si (e->shape[i]);
+ return elements*strlen;
+ }
+
+ for (ref = e->ref; ref; ref = ref->next)
+ {
+ if (ref->type == REF_SUBSTRING && ref->u.ss.start
+ && ref->u.ss.start->expr_type == EXPR_CONSTANT)
+ {
+ if (is_str_storage)
+ {
+ /* The string length is the substring length.
+ Set now to full string length. */
+ if (!ref->u.ss.length || !ref->u.ss.length->length
+ || ref->u.ss.length->length->expr_type != EXPR_CONSTANT)
+ return 0;
+
+ strlen = mpz_get_ui (ref->u.ss.length->length->value.integer);
+ }
+ substrlen = strlen - mpz_get_ui (ref->u.ss.start->value.integer) + 1;
+ continue;
+ }
+
+ if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION)
+ for (i = 0; i < ref->u.ar.dimen; i++)
+ {
+ long int start, end, stride;
+ stride = 1;
+
+ if (ref->u.ar.stride[i])
+ {
+ if (ref->u.ar.stride[i]->expr_type == EXPR_CONSTANT)
+ stride = mpz_get_si (ref->u.ar.stride[i]->value.integer);
+ else
+ return 0;
+ }
+
+ if (ref->u.ar.start[i])
+ {
+ if (ref->u.ar.start[i]->expr_type == EXPR_CONSTANT)
+ start = mpz_get_si (ref->u.ar.start[i]->value.integer);
+ else
+ return 0;
+ }
+ else if (ref->u.ar.as->lower[i]
+ && ref->u.ar.as->lower[i]->expr_type == EXPR_CONSTANT)
+ start = mpz_get_si (ref->u.ar.as->lower[i]->value.integer);
+ else
+ return 0;
+
+ if (ref->u.ar.end[i])
+ {
+ if (ref->u.ar.end[i]->expr_type == EXPR_CONSTANT)
+ end = mpz_get_si (ref->u.ar.end[i]->value.integer);
+ else
+ return 0;
+ }
+ else if (ref->u.ar.as->upper[i]
+ && ref->u.ar.as->upper[i]->expr_type == EXPR_CONSTANT)
+ end = mpz_get_si (ref->u.ar.as->upper[i]->value.integer);
+ else
+ return 0;
+
+ elements *= (end - start)/stride + 1L;
+ }
+ else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_FULL)
+ for (i = 0; i < ref->u.ar.as->rank; i++)
+ {
+ if (ref->u.ar.as->lower[i] && ref->u.ar.as->upper[i]
+ && ref->u.ar.as->lower[i]->expr_type == EXPR_CONSTANT
+ && ref->u.ar.as->upper[i]->expr_type == EXPR_CONSTANT)
+ elements *= mpz_get_si (ref->u.ar.as->upper[i]->value.integer)
+ - mpz_get_si (ref->u.ar.as->lower[i]->value.integer)
+ + 1L;
+ else
+ return 0;
+ }
+ else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT
+ && e->expr_type == EXPR_VARIABLE)
+ {
+ if (ref->u.ar.as->type == AS_ASSUMED_SHAPE
+ || e->symtree->n.sym->attr.pointer)
+ {
+ elements = 1;
+ continue;
+ }
+
+ /* Determine the number of remaining elements in the element
+ sequence for array element designators. */
+ is_str_storage = true;
+ for (i = ref->u.ar.dimen - 1; i >= 0; i--)
+ {
+ if (ref->u.ar.start[i] == NULL
+ || ref->u.ar.start[i]->expr_type != EXPR_CONSTANT
+ || ref->u.ar.as->upper[i] == NULL
+ || ref->u.ar.as->lower[i] == NULL
+ || ref->u.ar.as->upper[i]->expr_type != EXPR_CONSTANT
+ || ref->u.ar.as->lower[i]->expr_type != EXPR_CONSTANT)
+ return 0;
+
+ elements
+ = elements
+ * (mpz_get_si (ref->u.ar.as->upper[i]->value.integer)
+ - mpz_get_si (ref->u.ar.as->lower[i]->value.integer)
+ + 1L)
+ - (mpz_get_si (ref->u.ar.start[i]->value.integer)
+ - mpz_get_si (ref->u.ar.as->lower[i]->value.integer));
+ }
+ }
+ }
+
+ if (substrlen)
+ return (is_str_storage) ? substrlen + (elements-1)*strlen
+ : elements*strlen;
+ else
+ return elements*strlen;
+}
+
+
+/* Given an expression, check whether it is an array section
+ which has a vector subscript. If it has, one is returned,
+ otherwise zero. */
+
+int
+gfc_has_vector_subscript (gfc_expr *e)
+{
+ int i;
+ gfc_ref *ref;
+
+ if (e == NULL || e->rank == 0 || e->expr_type != EXPR_VARIABLE)
+ return 0;
+
+ for (ref = e->ref; ref; ref = ref->next)
+ if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION)
+ for (i = 0; i < ref->u.ar.dimen; i++)
+ if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
+ return 1;
+
+ return 0;
+}
+
+
+/* Given formal and actual argument lists, see if they are compatible.
+ If they are compatible, the actual argument list is sorted to
+ correspond with the formal list, and elements for missing optional
+ arguments are inserted. If WHERE pointer is nonnull, then we issue
+ errors when things don't match instead of just returning the status
+ code. */
+
+static int
+compare_actual_formal (gfc_actual_arglist **ap, gfc_formal_arglist *formal,
+ int ranks_must_agree, int is_elemental, locus *where)
+{
+ gfc_actual_arglist **new_arg, *a, *actual, temp;
+ gfc_formal_arglist *f;
+ int i, n, na;
+ unsigned long actual_size, formal_size;
+ bool full_array = false;
+
+ actual = *ap;
+
+ if (actual == NULL && formal == NULL)
+ return 1;
+
+ n = 0;
+ for (f = formal; f; f = f->next)
+ n++;
+
+ new_arg = XALLOCAVEC (gfc_actual_arglist *, n);
+
+ for (i = 0; i < n; i++)
+ new_arg[i] = NULL;
+
+ na = 0;
+ f = formal;
+ i = 0;
+
+ for (a = actual; a; a = a->next, f = f->next)
+ {
+ /* Look for keywords but ignore g77 extensions like %VAL. */
+ if (a->name != NULL && a->name[0] != '%')
+ {
+ i = 0;
+ for (f = formal; f; f = f->next, i++)
+ {
+ if (f->sym == NULL)
+ continue;
+ if (strcmp (f->sym->name, a->name) == 0)
+ break;
+ }
+
+ if (f == NULL)
+ {
+ if (where)
+ gfc_error ("Keyword argument '%s' at %L is not in "
+ "the procedure", a->name, &a->expr->where);
+ return 0;
+ }
+
+ if (new_arg[i] != NULL)
+ {
+ if (where)
+ gfc_error ("Keyword argument '%s' at %L is already associated "
+ "with another actual argument", a->name,
+ &a->expr->where);
+ return 0;
+ }
+ }
+
+ if (f == NULL)
+ {
+ if (where)
+ gfc_error ("More actual than formal arguments in procedure "
+ "call at %L", where);
+
+ return 0;
+ }
+
+ if (f->sym == NULL && a->expr == NULL)
+ goto match;
+
+ if (f->sym == NULL)
+ {
+ if (where)
+ gfc_error ("Missing alternate return spec in subroutine call "
+ "at %L", where);
+ return 0;
+ }
+
+ if (a->expr == NULL)
+ {
+ if (where)
+ gfc_error ("Unexpected alternate return spec in subroutine "
+ "call at %L", where);
+ return 0;
+ }
+
+ /* Make sure that intrinsic vtables exist for calls to unlimited
+ polymorphic formal arguments. */
+ if (UNLIMITED_POLY(f->sym)
+ && a->expr->ts.type != BT_DERIVED
+ && a->expr->ts.type != BT_CLASS)
+ gfc_find_intrinsic_vtab (&a->expr->ts);
+
+ if (a->expr->expr_type == EXPR_NULL
+ && ((f->sym->ts.type != BT_CLASS && !f->sym->attr.pointer
+ && (f->sym->attr.allocatable || !f->sym->attr.optional
+ || (gfc_option.allow_std & GFC_STD_F2008) == 0))
+ || (f->sym->ts.type == BT_CLASS
+ && !CLASS_DATA (f->sym)->attr.class_pointer
+ && (CLASS_DATA (f->sym)->attr.allocatable
+ || !f->sym->attr.optional
+ || (gfc_option.allow_std & GFC_STD_F2008) == 0))))
+ {
+ if (where
+ && (!f->sym->attr.optional
+ || (f->sym->ts.type != BT_CLASS && f->sym->attr.allocatable)
+ || (f->sym->ts.type == BT_CLASS
+ && CLASS_DATA (f->sym)->attr.allocatable)))
+ gfc_error ("Unexpected NULL() intrinsic at %L to dummy '%s'",
+ where, f->sym->name);
+ else if (where)
+ gfc_error ("Fortran 2008: Null pointer at %L to non-pointer "
+ "dummy '%s'", where, f->sym->name);
+
+ return 0;
+ }
+
+ if (!compare_parameter (f->sym, a->expr, ranks_must_agree,
+ is_elemental, where))
+ return 0;
+
+ /* TS 29113, 6.3p2. */
+ if (f->sym->ts.type == BT_ASSUMED
+ && (a->expr->ts.type == BT_DERIVED
+ || (a->expr->ts.type == BT_CLASS && CLASS_DATA (a->expr))))
+ {
+ gfc_namespace *f2k_derived;
+
+ f2k_derived = a->expr->ts.type == BT_DERIVED
+ ? a->expr->ts.u.derived->f2k_derived
+ : CLASS_DATA (a->expr)->ts.u.derived->f2k_derived;
+
+ if (f2k_derived
+ && (f2k_derived->finalizers || f2k_derived->tb_sym_root))
+ {
+ gfc_error ("Actual argument at %L to assumed-type dummy is of "
+ "derived type with type-bound or FINAL procedures",
+ &a->expr->where);
+ return FAILURE;
+ }
+ }
+
+ /* Special case for character arguments. For allocatable, pointer
+ and assumed-shape dummies, the string length needs to match
+ exactly. */
+ if (a->expr->ts.type == BT_CHARACTER
+ && a->expr->ts.u.cl && a->expr->ts.u.cl->length
+ && a->expr->ts.u.cl->length->expr_type == EXPR_CONSTANT
+ && f->sym->ts.u.cl && f->sym->ts.u.cl && f->sym->ts.u.cl->length
+ && f->sym->ts.u.cl->length->expr_type == EXPR_CONSTANT
+ && (f->sym->attr.pointer || f->sym->attr.allocatable
+ || (f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
+ && (mpz_cmp (a->expr->ts.u.cl->length->value.integer,
+ f->sym->ts.u.cl->length->value.integer) != 0))
+ {
+ if (where && (f->sym->attr.pointer || f->sym->attr.allocatable))
+ gfc_warning ("Character length mismatch (%ld/%ld) between actual "
+ "argument and pointer or allocatable dummy argument "
+ "'%s' at %L",
+ mpz_get_si (a->expr->ts.u.cl->length->value.integer),
+ mpz_get_si (f->sym->ts.u.cl->length->value.integer),
+ f->sym->name, &a->expr->where);
+ else if (where)
+ gfc_warning ("Character length mismatch (%ld/%ld) between actual "
+ "argument and assumed-shape dummy argument '%s' "
+ "at %L",
+ mpz_get_si (a->expr->ts.u.cl->length->value.integer),
+ mpz_get_si (f->sym->ts.u.cl->length->value.integer),
+ f->sym->name, &a->expr->where);
+ return 0;
+ }
+
+ if ((f->sym->attr.pointer || f->sym->attr.allocatable)
+ && f->sym->ts.deferred != a->expr->ts.deferred
+ && a->expr->ts.type == BT_CHARACTER)
+ {
+ if (where)
+ gfc_error ("Actual argument at %L to allocatable or "
+ "pointer dummy argument '%s' must have a deferred "
+ "length type parameter if and only if the dummy has one",
+ &a->expr->where, f->sym->name);
+ return 0;
+ }
+
+ if (f->sym->ts.type == BT_CLASS)
+ goto skip_size_check;
+
+ actual_size = get_expr_storage_size (a->expr);
+ formal_size = get_sym_storage_size (f->sym);
+ if (actual_size != 0 && actual_size < formal_size
+ && a->expr->ts.type != BT_PROCEDURE
+ && f->sym->attr.flavor != FL_PROCEDURE)
+ {
+ if (a->expr->ts.type == BT_CHARACTER && !f->sym->as && where)
+ gfc_warning ("Character length of actual argument shorter "
+ "than of dummy argument '%s' (%lu/%lu) at %L",
+ f->sym->name, actual_size, formal_size,
+ &a->expr->where);
+ else if (where)
+ gfc_warning ("Actual argument contains too few "
+ "elements for dummy argument '%s' (%lu/%lu) at %L",
+ f->sym->name, actual_size, formal_size,
+ &a->expr->where);
+ return 0;
+ }
+
+ skip_size_check:
+
+ /* Satisfy F03:12.4.1.3 by ensuring that a procedure pointer actual
+ argument is provided for a procedure pointer formal argument. */
+ if (f->sym->attr.proc_pointer
+ && !((a->expr->expr_type == EXPR_VARIABLE
+ && a->expr->symtree->n.sym->attr.proc_pointer)
+ || (a->expr->expr_type == EXPR_FUNCTION
+ && a->expr->symtree->n.sym->result->attr.proc_pointer)
+ || gfc_is_proc_ptr_comp (a->expr)))
+ {
+ if (where)
+ gfc_error ("Expected a procedure pointer for argument '%s' at %L",
+ f->sym->name, &a->expr->where);
+ return 0;
+ }
+
+ /* Satisfy F03:12.4.1.3 by ensuring that a procedure actual argument is
+ provided for a procedure formal argument. */
+ if (f->sym->attr.flavor == FL_PROCEDURE
+ && gfc_expr_attr (a->expr).flavor != FL_PROCEDURE)
+ {
+ if (where)
+ gfc_error ("Expected a procedure for argument '%s' at %L",
+ f->sym->name, &a->expr->where);
+ return 0;
+ }
+
+ if (f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE
+ && a->expr->expr_type == EXPR_VARIABLE
+ && a->expr->symtree->n.sym->as
+ && a->expr->symtree->n.sym->as->type == AS_ASSUMED_SIZE
+ && (a->expr->ref == NULL
+ || (a->expr->ref->type == REF_ARRAY
+ && a->expr->ref->u.ar.type == AR_FULL)))
+ {
+ if (where)
+ gfc_error ("Actual argument for '%s' cannot be an assumed-size"
+ " array at %L", f->sym->name, where);
+ return 0;
+ }
+
+ if (a->expr->expr_type != EXPR_NULL
+ && compare_pointer (f->sym, a->expr) == 0)
+ {
+ if (where)
+ gfc_error ("Actual argument for '%s' must be a pointer at %L",
+ f->sym->name, &a->expr->where);
+ return 0;
+ }
+
+ if (a->expr->expr_type != EXPR_NULL
+ && (gfc_option.allow_std & GFC_STD_F2008) == 0
+ && compare_pointer (f->sym, a->expr) == 2)
+ {
+ if (where)
+ gfc_error ("Fortran 2008: Non-pointer actual argument at %L to "
+ "pointer dummy '%s'", &a->expr->where,f->sym->name);
+ return 0;
+ }
+
+
+ /* Fortran 2008, C1242. */
+ if (f->sym->attr.pointer && gfc_is_coindexed (a->expr))
+ {
+ if (where)
+ gfc_error ("Coindexed actual argument at %L to pointer "
+ "dummy '%s'",
+ &a->expr->where, f->sym->name);
+ return 0;
+ }
+
+ /* Fortran 2008, 12.5.2.5 (no constraint). */
+ if (a->expr->expr_type == EXPR_VARIABLE
+ && f->sym->attr.intent != INTENT_IN
+ && f->sym->attr.allocatable
+ && gfc_is_coindexed (a->expr))
+ {
+ if (where)
+ gfc_error ("Coindexed actual argument at %L to allocatable "
+ "dummy '%s' requires INTENT(IN)",
+ &a->expr->where, f->sym->name);
+ return 0;
+ }
+
+ /* Fortran 2008, C1237. */
+ if (a->expr->expr_type == EXPR_VARIABLE
+ && (f->sym->attr.asynchronous || f->sym->attr.volatile_)
+ && gfc_is_coindexed (a->expr)
+ && (a->expr->symtree->n.sym->attr.volatile_
+ || a->expr->symtree->n.sym->attr.asynchronous))
+ {
+ if (where)
+ gfc_error ("Coindexed ASYNCHRONOUS or VOLATILE actual argument at "
+ "%L requires that dummy '%s' has neither "
+ "ASYNCHRONOUS nor VOLATILE", &a->expr->where,
+ f->sym->name);
+ return 0;
+ }
+
+ /* Fortran 2008, 12.5.2.4 (no constraint). */
+ if (a->expr->expr_type == EXPR_VARIABLE
+ && f->sym->attr.intent != INTENT_IN && !f->sym->attr.value
+ && gfc_is_coindexed (a->expr)
+ && gfc_has_ultimate_allocatable (a->expr))
+ {
+ if (where)
+ gfc_error ("Coindexed actual argument at %L with allocatable "
+ "ultimate component to dummy '%s' requires either VALUE "
+ "or INTENT(IN)", &a->expr->where, f->sym->name);
+ return 0;
+ }
+
+ if (f->sym->ts.type == BT_CLASS
+ && CLASS_DATA (f->sym)->attr.allocatable
+ && gfc_is_class_array_ref (a->expr, &full_array)
+ && !full_array)
+ {
+ if (where)
+ gfc_error ("Actual CLASS array argument for '%s' must be a full "
+ "array at %L", f->sym->name, &a->expr->where);
+ return 0;
+ }
+
+
+ if (a->expr->expr_type != EXPR_NULL
+ && compare_allocatable (f->sym, a->expr) == 0)
+ {
+ if (where)
+ gfc_error ("Actual argument for '%s' must be ALLOCATABLE at %L",
+ f->sym->name, &a->expr->where);
+ return 0;
+ }
+
+ /* Check intent = OUT/INOUT for definable actual argument. */
+ if ((f->sym->attr.intent == INTENT_OUT
+ || f->sym->attr.intent == INTENT_INOUT))
+ {
+ const char* context = (where
+ ? _("actual argument to INTENT = OUT/INOUT")
+ : NULL);
+
+ if (((f->sym->ts.type == BT_CLASS && f->sym->attr.class_ok
+ && CLASS_DATA (f->sym)->attr.class_pointer)
+ || (f->sym->ts.type != BT_CLASS && f->sym->attr.pointer))
+ && gfc_check_vardef_context (a->expr, true, false, false, context)
+ == FAILURE)
+ return 0;
+ if (gfc_check_vardef_context (a->expr, false, false, false, context)
+ == FAILURE)
+ return 0;
+ }
+
+ if ((f->sym->attr.intent == INTENT_OUT
+ || f->sym->attr.intent == INTENT_INOUT
+ || f->sym->attr.volatile_
+ || f->sym->attr.asynchronous)
+ && gfc_has_vector_subscript (a->expr))
+ {
+ if (where)
+ gfc_error ("Array-section actual argument with vector "
+ "subscripts at %L is incompatible with INTENT(OUT), "
+ "INTENT(INOUT), VOLATILE or ASYNCHRONOUS attribute "
+ "of the dummy argument '%s'",
+ &a->expr->where, f->sym->name);
+ return 0;
+ }
+
+ /* C1232 (R1221) For an actual argument which is an array section or
+ an assumed-shape array, the dummy argument shall be an assumed-
+ shape array, if the dummy argument has the VOLATILE attribute. */
+
+ if (f->sym->attr.volatile_
+ && a->expr->symtree->n.sym->as
+ && a->expr->symtree->n.sym->as->type == AS_ASSUMED_SHAPE
+ && !(f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
+ {
+ if (where)
+ gfc_error ("Assumed-shape actual argument at %L is "
+ "incompatible with the non-assumed-shape "
+ "dummy argument '%s' due to VOLATILE attribute",
+ &a->expr->where,f->sym->name);
+ return 0;
+ }
+
+ if (f->sym->attr.volatile_
+ && a->expr->ref && a->expr->ref->u.ar.type == AR_SECTION
+ && !(f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
+ {
+ if (where)
+ gfc_error ("Array-section actual argument at %L is "
+ "incompatible with the non-assumed-shape "
+ "dummy argument '%s' due to VOLATILE attribute",
+ &a->expr->where,f->sym->name);
+ return 0;
+ }
+
+ /* C1233 (R1221) For an actual argument which is a pointer array, the
+ dummy argument shall be an assumed-shape or pointer array, if the
+ dummy argument has the VOLATILE attribute. */
+
+ if (f->sym->attr.volatile_
+ && a->expr->symtree->n.sym->attr.pointer
+ && a->expr->symtree->n.sym->as
+ && !(f->sym->as
+ && (f->sym->as->type == AS_ASSUMED_SHAPE
+ || f->sym->attr.pointer)))
+ {
+ if (where)
+ gfc_error ("Pointer-array actual argument at %L requires "
+ "an assumed-shape or pointer-array dummy "
+ "argument '%s' due to VOLATILE attribute",
+ &a->expr->where,f->sym->name);
+ return 0;
+ }
+
+ match:
+ if (a == actual)
+ na = i;
+
+ new_arg[i++] = a;
+ }
+
+ /* Make sure missing actual arguments are optional. */
+ i = 0;
+ for (f = formal; f; f = f->next, i++)
+ {
+ if (new_arg[i] != NULL)
+ continue;
+ if (f->sym == NULL)
+ {
+ if (where)
+ gfc_error ("Missing alternate return spec in subroutine call "
+ "at %L", where);
+ return 0;
+ }
+ if (!f->sym->attr.optional)
+ {
+ if (where)
+ gfc_error ("Missing actual argument for argument '%s' at %L",
+ f->sym->name, where);
+ return 0;
+ }
+ }
+
+ /* The argument lists are compatible. We now relink a new actual
+ argument list with null arguments in the right places. The head
+ of the list remains the head. */
+ for (i = 0; i < n; i++)
+ if (new_arg[i] == NULL)
+ new_arg[i] = gfc_get_actual_arglist ();
+
+ if (na != 0)
+ {
+ temp = *new_arg[0];
+ *new_arg[0] = *actual;
+ *actual = temp;
+
+ a = new_arg[0];
+ new_arg[0] = new_arg[na];
+ new_arg[na] = a;
+ }
+
+ for (i = 0; i < n - 1; i++)
+ new_arg[i]->next = new_arg[i + 1];
+
+ new_arg[i]->next = NULL;
+
+ if (*ap == NULL && n > 0)
+ *ap = new_arg[0];
+
+ /* Note the types of omitted optional arguments. */
+ for (a = *ap, f = formal; a; a = a->next, f = f->next)
+ if (a->expr == NULL && a->label == NULL)
+ a->missing_arg_type = f->sym->ts.type;
+
+ return 1;
+}
+
+
+typedef struct
+{
+ gfc_formal_arglist *f;
+ gfc_actual_arglist *a;
+}
+argpair;
+
+/* qsort comparison function for argument pairs, with the following
+ order:
+ - p->a->expr == NULL
+ - p->a->expr->expr_type != EXPR_VARIABLE
+ - growing p->a->expr->symbol. */
+
+static int
+pair_cmp (const void *p1, const void *p2)
+{
+ const gfc_actual_arglist *a1, *a2;
+
+ /* *p1 and *p2 are elements of the to-be-sorted array. */
+ a1 = ((const argpair *) p1)->a;
+ a2 = ((const argpair *) p2)->a;
+ if (!a1->expr)
+ {
+ if (!a2->expr)
+ return 0;
+ return -1;
+ }
+ if (!a2->expr)
+ return 1;
+ if (a1->expr->expr_type != EXPR_VARIABLE)
+ {
+ if (a2->expr->expr_type != EXPR_VARIABLE)
+ return 0;
+ return -1;
+ }
+ if (a2->expr->expr_type != EXPR_VARIABLE)
+ return 1;
+ return a1->expr->symtree->n.sym < a2->expr->symtree->n.sym;
+}
+
+
+/* Given two expressions from some actual arguments, test whether they
+ refer to the same expression. The analysis is conservative.
+ Returning FAILURE will produce no warning. */
+
+static gfc_try
+compare_actual_expr (gfc_expr *e1, gfc_expr *e2)
+{
+ const gfc_ref *r1, *r2;
+
+ if (!e1 || !e2
+ || e1->expr_type != EXPR_VARIABLE
+ || e2->expr_type != EXPR_VARIABLE
+ || e1->symtree->n.sym != e2->symtree->n.sym)
+ return FAILURE;
+
+ /* TODO: improve comparison, see expr.c:show_ref(). */
+ for (r1 = e1->ref, r2 = e2->ref; r1 && r2; r1 = r1->next, r2 = r2->next)
+ {
+ if (r1->type != r2->type)
+ return FAILURE;
+ switch (r1->type)
+ {
+ case REF_ARRAY:
+ if (r1->u.ar.type != r2->u.ar.type)
+ return FAILURE;
+ /* TODO: At the moment, consider only full arrays;
+ we could do better. */
+ if (r1->u.ar.type != AR_FULL || r2->u.ar.type != AR_FULL)
+ return FAILURE;
+ break;
+
+ case REF_COMPONENT:
+ if (r1->u.c.component != r2->u.c.component)
+ return FAILURE;
+ break;
+
+ case REF_SUBSTRING:
+ return FAILURE;
+
+ default:
+ gfc_internal_error ("compare_actual_expr(): Bad component code");
+ }
+ }
+ if (!r1 && !r2)
+ return SUCCESS;
+ return FAILURE;
+}
+
+
+/* Given formal and actual argument lists that correspond to one
+ another, check that identical actual arguments aren't not
+ associated with some incompatible INTENTs. */
+
+static gfc_try
+check_some_aliasing (gfc_formal_arglist *f, gfc_actual_arglist *a)
+{
+ sym_intent f1_intent, f2_intent;
+ gfc_formal_arglist *f1;
+ gfc_actual_arglist *a1;
+ size_t n, i, j;
+ argpair *p;
+ gfc_try t = SUCCESS;
+
+ n = 0;
+ for (f1 = f, a1 = a;; f1 = f1->next, a1 = a1->next)
+ {
+ if (f1 == NULL && a1 == NULL)
+ break;
+ if (f1 == NULL || a1 == NULL)
+ gfc_internal_error ("check_some_aliasing(): List mismatch");
+ n++;
+ }
+ if (n == 0)
+ return t;
+ p = XALLOCAVEC (argpair, n);
+
+ for (i = 0, f1 = f, a1 = a; i < n; i++, f1 = f1->next, a1 = a1->next)
+ {
+ p[i].f = f1;
+ p[i].a = a1;
+ }
+
+ qsort (p, n, sizeof (argpair), pair_cmp);
+
+ for (i = 0; i < n; i++)
+ {
+ if (!p[i].a->expr
+ || p[i].a->expr->expr_type != EXPR_VARIABLE
+ || p[i].a->expr->ts.type == BT_PROCEDURE)
+ continue;
+ f1_intent = p[i].f->sym->attr.intent;
+ for (j = i + 1; j < n; j++)
+ {
+ /* Expected order after the sort. */
+ if (!p[j].a->expr || p[j].a->expr->expr_type != EXPR_VARIABLE)
+ gfc_internal_error ("check_some_aliasing(): corrupted data");
+
+ /* Are the expression the same? */
+ if (compare_actual_expr (p[i].a->expr, p[j].a->expr) == FAILURE)
+ break;
+ f2_intent = p[j].f->sym->attr.intent;
+ if ((f1_intent == INTENT_IN && f2_intent == INTENT_OUT)
+ || (f1_intent == INTENT_OUT && f2_intent == INTENT_IN))
+ {
+ gfc_warning ("Same actual argument associated with INTENT(%s) "
+ "argument '%s' and INTENT(%s) argument '%s' at %L",
+ gfc_intent_string (f1_intent), p[i].f->sym->name,
+ gfc_intent_string (f2_intent), p[j].f->sym->name,
+ &p[i].a->expr->where);
+ t = FAILURE;
+ }
+ }
+ }
+
+ return t;
+}
+
+
+/* Given formal and actual argument lists that correspond to one
+ another, check that they are compatible in the sense that intents
+ are not mismatched. */
+
+static gfc_try
+check_intents (gfc_formal_arglist *f, gfc_actual_arglist *a)
+{
+ sym_intent f_intent;
+
+ for (;; f = f->next, a = a->next)
+ {
+ if (f == NULL && a == NULL)
+ break;
+ if (f == NULL || a == NULL)
+ gfc_internal_error ("check_intents(): List mismatch");
+
+ if (a->expr == NULL || a->expr->expr_type != EXPR_VARIABLE)
+ continue;
+
+ f_intent = f->sym->attr.intent;
+
+ if (gfc_pure (NULL) && gfc_impure_variable (a->expr->symtree->n.sym))
+ {
+ if ((f->sym->ts.type == BT_CLASS && f->sym->attr.class_ok
+ && CLASS_DATA (f->sym)->attr.class_pointer)
+ || (f->sym->ts.type != BT_CLASS && f->sym->attr.pointer))
+ {
+ gfc_error ("Procedure argument at %L is local to a PURE "
+ "procedure and has the POINTER attribute",
+ &a->expr->where);
+ return FAILURE;
+ }
+ }
+
+ /* Fortran 2008, C1283. */
+ if (gfc_pure (NULL) && gfc_is_coindexed (a->expr))
+ {
+ if (f_intent == INTENT_INOUT || f_intent == INTENT_OUT)
+ {
+ gfc_error ("Coindexed actual argument at %L in PURE procedure "
+ "is passed to an INTENT(%s) argument",
+ &a->expr->where, gfc_intent_string (f_intent));
+ return FAILURE;
+ }
+
+ if ((f->sym->ts.type == BT_CLASS && f->sym->attr.class_ok
+ && CLASS_DATA (f->sym)->attr.class_pointer)
+ || (f->sym->ts.type != BT_CLASS && f->sym->attr.pointer))
+ {
+ gfc_error ("Coindexed actual argument at %L in PURE procedure "
+ "is passed to a POINTER dummy argument",
+ &a->expr->where);
+ return FAILURE;
+ }
+ }
+
+ /* F2008, Section 12.5.2.4. */
+ if (a->expr->ts.type == BT_CLASS && f->sym->ts.type == BT_CLASS
+ && gfc_is_coindexed (a->expr))
+ {
+ gfc_error ("Coindexed polymorphic actual argument at %L is passed "
+ "polymorphic dummy argument '%s'",
+ &a->expr->where, f->sym->name);
+ return FAILURE;
+ }
+ }
+
+ return SUCCESS;
+}
+
+
+/* Check how a procedure is used against its interface. If all goes
+ well, the actual argument list will also end up being properly
+ sorted. */
+
+gfc_try
+gfc_procedure_use (gfc_symbol *sym, gfc_actual_arglist **ap, locus *where)
+{
+ gfc_formal_arglist *dummy_args;
+
+ /* Warn about calls with an implicit interface. Special case
+ for calling a ISO_C_BINDING becase c_loc and c_funloc
+ are pseudo-unknown. Additionally, warn about procedures not
+ explicitly declared at all if requested. */
+ if (sym->attr.if_source == IFSRC_UNKNOWN && ! sym->attr.is_iso_c)
+ {
+ if (gfc_option.warn_implicit_interface)
+ gfc_warning ("Procedure '%s' called with an implicit interface at %L",
+ sym->name, where);
+ else if (gfc_option.warn_implicit_procedure
+ && sym->attr.proc == PROC_UNKNOWN)
+ gfc_warning ("Procedure '%s' called at %L is not explicitly declared",
+ sym->name, where);
+ }
+
+ if (sym->attr.if_source == IFSRC_UNKNOWN)
+ {
+ gfc_actual_arglist *a;
+
+ if (sym->attr.pointer)
+ {
+ gfc_error("The pointer object '%s' at %L must have an explicit "
+ "function interface or be declared as array",
+ sym->name, where);
+ return FAILURE;
+ }
+
+ if (sym->attr.allocatable && !sym->attr.external)
+ {
+ gfc_error("The allocatable object '%s' at %L must have an explicit "
+ "function interface or be declared as array",
+ sym->name, where);
+ return FAILURE;
+ }
+
+ if (sym->attr.allocatable)
+ {
+ gfc_error("Allocatable function '%s' at %L must have an explicit "
+ "function interface", sym->name, where);
+ return FAILURE;
+ }
+
+ for (a = *ap; a; a = a->next)
+ {
+ /* Skip g77 keyword extensions like %VAL, %REF, %LOC. */
+ if (a->name != NULL && a->name[0] != '%')
+ {
+ gfc_error("Keyword argument requires explicit interface "
+ "for procedure '%s' at %L", sym->name, &a->expr->where);
+ break;
+ }
+
+ /* TS 29113, 6.2. */
+ if (a->expr && a->expr->ts.type == BT_ASSUMED
+ && sym->intmod_sym_id != ISOCBINDING_LOC)
+ {
+ gfc_error ("Assumed-type argument %s at %L requires an explicit "
+ "interface", a->expr->symtree->n.sym->name,
+ &a->expr->where);
+ break;
+ }
+
+ /* F2008, C1303 and C1304. */
+ if (a->expr
+ && (a->expr->ts.type == BT_DERIVED || a->expr->ts.type == BT_CLASS)
+ && ((a->expr->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
+ && a->expr->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)
+ || gfc_expr_attr (a->expr).lock_comp))
+ {
+ gfc_error("Actual argument of LOCK_TYPE or with LOCK_TYPE "
+ "component at %L requires an explicit interface for "
+ "procedure '%s'", &a->expr->where, sym->name);
+ break;
+ }
+
+ if (a->expr && a->expr->expr_type == EXPR_NULL
+ && a->expr->ts.type == BT_UNKNOWN)
+ {
+ gfc_error ("MOLD argument to NULL required at %L", &a->expr->where);
+ return FAILURE;
+ }
+
+ /* TS 29113, C407b. */
+ if (a->expr && a->expr->expr_type == EXPR_VARIABLE
+ && symbol_rank (a->expr->symtree->n.sym) == -1)
+ {
+ gfc_error ("Assumed-rank argument requires an explicit interface "
+ "at %L", &a->expr->where);
+ return FAILURE;
+ }
+ }
+
+ return SUCCESS;
+ }
+
+ dummy_args = gfc_sym_get_dummy_args (sym);
+
+ if (!compare_actual_formal (ap, dummy_args, 0, sym->attr.elemental, where))
+ return FAILURE;
+
+ if (check_intents (dummy_args, *ap) == FAILURE)
+ return FAILURE;
+
+ if (gfc_option.warn_aliasing)
+ check_some_aliasing (dummy_args, *ap);
+
+ return SUCCESS;
+}
+
+
+/* Check how a procedure pointer component is used against its interface.
+ If all goes well, the actual argument list will also end up being properly
+ sorted. Completely analogous to gfc_procedure_use. */
+
+void
+gfc_ppc_use (gfc_component *comp, gfc_actual_arglist **ap, locus *where)
+{
+ /* Warn about calls with an implicit interface. Special case
+ for calling a ISO_C_BINDING becase c_loc and c_funloc
+ are pseudo-unknown. */
+ if (gfc_option.warn_implicit_interface
+ && comp->attr.if_source == IFSRC_UNKNOWN
+ && !comp->attr.is_iso_c)
+ gfc_warning ("Procedure pointer component '%s' called with an implicit "
+ "interface at %L", comp->name, where);
+
+ if (comp->attr.if_source == IFSRC_UNKNOWN)
+ {
+ gfc_actual_arglist *a;
+ for (a = *ap; a; a = a->next)
+ {
+ /* Skip g77 keyword extensions like %VAL, %REF, %LOC. */
+ if (a->name != NULL && a->name[0] != '%')
+ {
+ gfc_error("Keyword argument requires explicit interface "
+ "for procedure pointer component '%s' at %L",
+ comp->name, &a->expr->where);
+ break;
+ }
+ }
+
+ return;
+ }
+
+ if (!compare_actual_formal (ap, comp->ts.interface->formal, 0,
+ comp->attr.elemental, where))
+ return;
+
+ check_intents (comp->ts.interface->formal, *ap);
+ if (gfc_option.warn_aliasing)
+ check_some_aliasing (comp->ts.interface->formal, *ap);
+}
+
+
+/* Try if an actual argument list matches the formal list of a symbol,
+ respecting the symbol's attributes like ELEMENTAL. This is used for
+ GENERIC resolution. */
+
+bool
+gfc_arglist_matches_symbol (gfc_actual_arglist** args, gfc_symbol* sym)
+{
+ gfc_formal_arglist *dummy_args;
+ bool r;
+
+ gcc_assert (sym->attr.flavor == FL_PROCEDURE);
+
+ dummy_args = gfc_sym_get_dummy_args (sym);
+
+ r = !sym->attr.elemental;
+ if (compare_actual_formal (args, dummy_args, r, !r, NULL))
+ {
+ check_intents (dummy_args, *args);
+ if (gfc_option.warn_aliasing)
+ check_some_aliasing (dummy_args, *args);
+ return true;
+ }
+
+ return false;
+}
+
+
+/* Given an interface pointer and an actual argument list, search for
+ a formal argument list that matches the actual. If found, returns
+ a pointer to the symbol of the correct interface. Returns NULL if
+ not found. */
+
+gfc_symbol *
+gfc_search_interface (gfc_interface *intr, int sub_flag,
+ gfc_actual_arglist **ap)
+{
+ gfc_symbol *elem_sym = NULL;
+ gfc_symbol *null_sym = NULL;
+ locus null_expr_loc;
+ gfc_actual_arglist *a;
+ bool has_null_arg = false;
+
+ for (a = *ap; a; a = a->next)
+ if (a->expr && a->expr->expr_type == EXPR_NULL
+ && a->expr->ts.type == BT_UNKNOWN)
+ {
+ has_null_arg = true;
+ null_expr_loc = a->expr->where;
+ break;
+ }
+
+ for (; intr; intr = intr->next)
+ {
+ if (intr->sym->attr.flavor == FL_DERIVED)
+ continue;
+ if (sub_flag && intr->sym->attr.function)
+ continue;
+ if (!sub_flag && intr->sym->attr.subroutine)
+ continue;
+
+ if (gfc_arglist_matches_symbol (ap, intr->sym))
+ {
+ if (has_null_arg && null_sym)
+ {
+ gfc_error ("MOLD= required in NULL() argument at %L: Ambiguity "
+ "between specific functions %s and %s",
+ &null_expr_loc, null_sym->name, intr->sym->name);
+ return NULL;
+ }
+ else if (has_null_arg)
+ {
+ null_sym = intr->sym;
+ continue;
+ }
+
+ /* Satisfy 12.4.4.1 such that an elemental match has lower
+ weight than a non-elemental match. */
+ if (intr->sym->attr.elemental)
+ {
+ elem_sym = intr->sym;
+ continue;
+ }
+ return intr->sym;
+ }
+ }
+
+ if (null_sym)
+ return null_sym;
+
+ return elem_sym ? elem_sym : NULL;
+}
+
+
+/* Do a brute force recursive search for a symbol. */
+
+static gfc_symtree *
+find_symtree0 (gfc_symtree *root, gfc_symbol *sym)
+{
+ gfc_symtree * st;
+
+ if (root->n.sym == sym)
+ return root;
+
+ st = NULL;
+ if (root->left)
+ st = find_symtree0 (root->left, sym);
+ if (root->right && ! st)
+ st = find_symtree0 (root->right, sym);
+ return st;
+}
+
+
+/* Find a symtree for a symbol. */
+
+gfc_symtree *
+gfc_find_sym_in_symtree (gfc_symbol *sym)
+{
+ gfc_symtree *st;
+ gfc_namespace *ns;
+
+ /* First try to find it by name. */
+ gfc_find_sym_tree (sym->name, gfc_current_ns, 1, &st);
+ if (st && st->n.sym == sym)
+ return st;
+
+ /* If it's been renamed, resort to a brute-force search. */
+ /* TODO: avoid having to do this search. If the symbol doesn't exist
+ in the symtree for the current namespace, it should probably be added. */
+ for (ns = gfc_current_ns; ns; ns = ns->parent)
+ {
+ st = find_symtree0 (ns->sym_root, sym);
+ if (st)
+ return st;
+ }
+ gfc_internal_error ("Unable to find symbol %s", sym->name);
+ /* Not reached. */
+}
+
+
+/* See if the arglist to an operator-call contains a derived-type argument
+ with a matching type-bound operator. If so, return the matching specific
+ procedure defined as operator-target as well as the base-object to use
+ (which is the found derived-type argument with operator). The generic
+ name, if any, is transmitted to the final expression via 'gname'. */
+
+static gfc_typebound_proc*
+matching_typebound_op (gfc_expr** tb_base,
+ gfc_actual_arglist* args,
+ gfc_intrinsic_op op, const char* uop,
+ const char ** gname)
+{
+ gfc_actual_arglist* base;
+
+ for (base = args; base; base = base->next)
+ if (base->expr->ts.type == BT_DERIVED || base->expr->ts.type == BT_CLASS)
+ {
+ gfc_typebound_proc* tb;
+ gfc_symbol* derived;
+ gfc_try result;
+
+ while (base->expr->expr_type == EXPR_OP
+ && base->expr->value.op.op == INTRINSIC_PARENTHESES)
+ base->expr = base->expr->value.op.op1;
+
+ if (base->expr->ts.type == BT_CLASS)
+ {
+ if (CLASS_DATA (base->expr) == NULL
+ || !gfc_expr_attr (base->expr).class_ok)
+ continue;
+ derived = CLASS_DATA (base->expr)->ts.u.derived;
+ }
+ else
+ derived = base->expr->ts.u.derived;
+
+ if (op == INTRINSIC_USER)
+ {
+ gfc_symtree* tb_uop;
+
+ gcc_assert (uop);
+ tb_uop = gfc_find_typebound_user_op (derived, &result, uop,
+ false, NULL);
+
+ if (tb_uop)
+ tb = tb_uop->n.tb;
+ else
+ tb = NULL;
+ }
+ else
+ tb = gfc_find_typebound_intrinsic_op (derived, &result, op,
+ false, NULL);
+
+ /* This means we hit a PRIVATE operator which is use-associated and
+ should thus not be seen. */
+ if (result == FAILURE)
+ tb = NULL;
+
+ /* Look through the super-type hierarchy for a matching specific
+ binding. */
+ for (; tb; tb = tb->overridden)
+ {
+ gfc_tbp_generic* g;
+
+ gcc_assert (tb->is_generic);
+ for (g = tb->u.generic; g; g = g->next)
+ {
+ gfc_symbol* target;
+ gfc_actual_arglist* argcopy;
+ bool matches;
+
+ gcc_assert (g->specific);
+ if (g->specific->error)
+ continue;
+
+ target = g->specific->u.specific->n.sym;
+
+ /* Check if this arglist matches the formal. */
+ argcopy = gfc_copy_actual_arglist (args);
+ matches = gfc_arglist_matches_symbol (&argcopy, target);
+ gfc_free_actual_arglist (argcopy);
+
+ /* Return if we found a match. */
+ if (matches)
+ {
+ *tb_base = base->expr;
+ *gname = g->specific_st->name;
+ return g->specific;
+ }
+ }
+ }
+ }
+
+ return NULL;
+}
+
+
+/* For the 'actual arglist' of an operator call and a specific typebound
+ procedure that has been found the target of a type-bound operator, build the
+ appropriate EXPR_COMPCALL and resolve it. We take this indirection over
+ type-bound procedures rather than resolving type-bound operators 'directly'
+ so that we can reuse the existing logic. */
+
+static void
+build_compcall_for_operator (gfc_expr* e, gfc_actual_arglist* actual,
+ gfc_expr* base, gfc_typebound_proc* target,
+ const char *gname)
+{
+ e->expr_type = EXPR_COMPCALL;
+ e->value.compcall.tbp = target;
+ e->value.compcall.name = gname ? gname : "$op";
+ e->value.compcall.actual = actual;
+ e->value.compcall.base_object = base;
+ e->value.compcall.ignore_pass = 1;
+ e->value.compcall.assign = 0;
+ if (e->ts.type == BT_UNKNOWN
+ && target->function)
+ {
+ if (target->is_generic)
+ e->ts = target->u.generic->specific->u.specific->n.sym->ts;
+ else
+ e->ts = target->u.specific->n.sym->ts;
+ }
+}
+
+
+/* This subroutine is called when an expression is being resolved.
+ The expression node in question is either a user defined operator
+ or an intrinsic operator with arguments that aren't compatible
+ with the operator. This subroutine builds an actual argument list
+ corresponding to the operands, then searches for a compatible
+ interface. If one is found, the expression node is replaced with
+ the appropriate function call. We use the 'match' enum to specify
+ whether a replacement has been made or not, or if an error occurred. */
+
+match
+gfc_extend_expr (gfc_expr *e)
+{
+ gfc_actual_arglist *actual;
+ gfc_symbol *sym;
+ gfc_namespace *ns;
+ gfc_user_op *uop;
+ gfc_intrinsic_op i;
+ const char *gname;
+
+ sym = NULL;
+
+ actual = gfc_get_actual_arglist ();
+ actual->expr = e->value.op.op1;
+
+ gname = NULL;
+
+ if (e->value.op.op2 != NULL)
+ {
+ actual->next = gfc_get_actual_arglist ();
+ actual->next->expr = e->value.op.op2;
+ }
+
+ i = fold_unary_intrinsic (e->value.op.op);
+
+ if (i == INTRINSIC_USER)
+ {
+ for (ns = gfc_current_ns; ns; ns = ns->parent)
+ {
+ uop = gfc_find_uop (e->value.op.uop->name, ns);
+ if (uop == NULL)
+ continue;
+
+ sym = gfc_search_interface (uop->op, 0, &actual);
+ if (sym != NULL)
+ break;
+ }
+ }
+ else
+ {
+ for (ns = gfc_current_ns; ns; ns = ns->parent)
+ {
+ /* Due to the distinction between '==' and '.eq.' and friends, one has
+ to check if either is defined. */
+ switch (i)
+ {
+#define CHECK_OS_COMPARISON(comp) \
+ case INTRINSIC_##comp: \
+ case INTRINSIC_##comp##_OS: \
+ sym = gfc_search_interface (ns->op[INTRINSIC_##comp], 0, &actual); \
+ if (!sym) \
+ sym = gfc_search_interface (ns->op[INTRINSIC_##comp##_OS], 0, &actual); \
+ break;
+ CHECK_OS_COMPARISON(EQ)
+ CHECK_OS_COMPARISON(NE)
+ CHECK_OS_COMPARISON(GT)
+ CHECK_OS_COMPARISON(GE)
+ CHECK_OS_COMPARISON(LT)
+ CHECK_OS_COMPARISON(LE)
+#undef CHECK_OS_COMPARISON
+
+ default:
+ sym = gfc_search_interface (ns->op[i], 0, &actual);
+ }
+
+ if (sym != NULL)
+ break;
+ }
+ }
+
+ /* TODO: Do an ambiguity-check and error if multiple matching interfaces are
+ found rather than just taking the first one and not checking further. */
+
+ if (sym == NULL)
+ {
+ gfc_typebound_proc* tbo;
+ gfc_expr* tb_base;
+
+ /* See if we find a matching type-bound operator. */
+ if (i == INTRINSIC_USER)
+ tbo = matching_typebound_op (&tb_base, actual,
+ i, e->value.op.uop->name, &gname);
+ else
+ switch (i)
+ {
+#define CHECK_OS_COMPARISON(comp) \
+ case INTRINSIC_##comp: \
+ case INTRINSIC_##comp##_OS: \
+ tbo = matching_typebound_op (&tb_base, actual, \
+ INTRINSIC_##comp, NULL, &gname); \
+ if (!tbo) \
+ tbo = matching_typebound_op (&tb_base, actual, \
+ INTRINSIC_##comp##_OS, NULL, &gname); \
+ break;
+ CHECK_OS_COMPARISON(EQ)
+ CHECK_OS_COMPARISON(NE)
+ CHECK_OS_COMPARISON(GT)
+ CHECK_OS_COMPARISON(GE)
+ CHECK_OS_COMPARISON(LT)
+ CHECK_OS_COMPARISON(LE)
+#undef CHECK_OS_COMPARISON
+
+ default:
+ tbo = matching_typebound_op (&tb_base, actual, i, NULL, &gname);
+ break;
+ }
+
+ /* If there is a matching typebound-operator, replace the expression with
+ a call to it and succeed. */
+ if (tbo)
+ {
+ gfc_try result;
+
+ gcc_assert (tb_base);
+ build_compcall_for_operator (e, actual, tb_base, tbo, gname);
+
+ result = gfc_resolve_expr (e);
+ if (result == FAILURE)
+ return MATCH_ERROR;
+
+ return MATCH_YES;
+ }
+
+ /* Don't use gfc_free_actual_arglist(). */
+ free (actual->next);
+ free (actual);
+
+ return MATCH_NO;
+ }
+
+ /* Change the expression node to a function call. */
+ e->expr_type = EXPR_FUNCTION;
+ e->symtree = gfc_find_sym_in_symtree (sym);
+ e->value.function.actual = actual;
+ e->value.function.esym = NULL;
+ e->value.function.isym = NULL;
+ e->value.function.name = NULL;
+ e->user_operator = 1;
+
+ if (gfc_resolve_expr (e) == FAILURE)
+ return MATCH_ERROR;
+
+ return MATCH_YES;
+}
+
+
+/* Tries to replace an assignment code node with a subroutine call to
+ the subroutine associated with the assignment operator. Return
+ SUCCESS if the node was replaced. On FAILURE, no error is
+ generated. */
+
+gfc_try
+gfc_extend_assign (gfc_code *c, gfc_namespace *ns)
+{
+ gfc_actual_arglist *actual;
+ gfc_expr *lhs, *rhs;
+ gfc_symbol *sym;
+ const char *gname;
+
+ gname = NULL;
+
+ lhs = c->expr1;
+ rhs = c->expr2;
+
+ /* Don't allow an intrinsic assignment to be replaced. */
+ if (lhs->ts.type != BT_DERIVED && lhs->ts.type != BT_CLASS
+ && (rhs->rank == 0 || rhs->rank == lhs->rank)
+ && (lhs->ts.type == rhs->ts.type
+ || (gfc_numeric_ts (&lhs->ts) && gfc_numeric_ts (&rhs->ts))))
+ return FAILURE;
+
+ actual = gfc_get_actual_arglist ();
+ actual->expr = lhs;
+
+ actual->next = gfc_get_actual_arglist ();
+ actual->next->expr = rhs;
+
+ sym = NULL;
+
+ for (; ns; ns = ns->parent)
+ {
+ sym = gfc_search_interface (ns->op[INTRINSIC_ASSIGN], 1, &actual);
+ if (sym != NULL)
+ break;
+ }
+
+ /* TODO: Ambiguity-check, see above for gfc_extend_expr. */
+
+ if (sym == NULL)
+ {
+ gfc_typebound_proc* tbo;
+ gfc_expr* tb_base;
+
+ /* See if we find a matching type-bound assignment. */
+ tbo = matching_typebound_op (&tb_base, actual,
+ INTRINSIC_ASSIGN, NULL, &gname);
+
+ /* If there is one, replace the expression with a call to it and
+ succeed. */
+ if (tbo)
+ {
+ gcc_assert (tb_base);
+ c->expr1 = gfc_get_expr ();
+ build_compcall_for_operator (c->expr1, actual, tb_base, tbo, gname);
+ c->expr1->value.compcall.assign = 1;
+ c->expr1->where = c->loc;
+ c->expr2 = NULL;
+ c->op = EXEC_COMPCALL;
+
+ /* c is resolved from the caller, so no need to do it here. */
+
+ return SUCCESS;
+ }
+
+ free (actual->next);
+ free (actual);
+ return FAILURE;
+ }
+
+ /* Replace the assignment with the call. */
+ c->op = EXEC_ASSIGN_CALL;
+ c->symtree = gfc_find_sym_in_symtree (sym);
+ c->expr1 = NULL;
+ c->expr2 = NULL;
+ c->ext.actual = actual;
+
+ return SUCCESS;
+}
+
+
+/* Make sure that the interface just parsed is not already present in
+ the given interface list. Ambiguity isn't checked yet since module
+ procedures can be present without interfaces. */
+
+gfc_try
+gfc_check_new_interface (gfc_interface *base, gfc_symbol *new_sym, locus loc)
+{
+ gfc_interface *ip;
+
+ for (ip = base; ip; ip = ip->next)
+ {
+ if (ip->sym == new_sym)
+ {
+ gfc_error ("Entity '%s' at %L is already present in the interface",
+ new_sym->name, &loc);
+ return FAILURE;
+ }
+ }
+
+ return SUCCESS;
+}
+
+
+/* Add a symbol to the current interface. */
+
+gfc_try
+gfc_add_interface (gfc_symbol *new_sym)
+{
+ gfc_interface **head, *intr;
+ gfc_namespace *ns;
+ gfc_symbol *sym;
+
+ switch (current_interface.type)
+ {
+ case INTERFACE_NAMELESS:
+ case INTERFACE_ABSTRACT:
+ return SUCCESS;
+
+ case INTERFACE_INTRINSIC_OP:
+ for (ns = current_interface.ns; ns; ns = ns->parent)
+ switch (current_interface.op)
+ {
+ case INTRINSIC_EQ:
+ case INTRINSIC_EQ_OS:
+ if (gfc_check_new_interface (ns->op[INTRINSIC_EQ], new_sym,
+ gfc_current_locus) == FAILURE
+ || gfc_check_new_interface (ns->op[INTRINSIC_EQ_OS], new_sym,
+ gfc_current_locus) == FAILURE)
+ return FAILURE;
+ break;
+
+ case INTRINSIC_NE:
+ case INTRINSIC_NE_OS:
+ if (gfc_check_new_interface (ns->op[INTRINSIC_NE], new_sym,
+ gfc_current_locus) == FAILURE
+ || gfc_check_new_interface (ns->op[INTRINSIC_NE_OS], new_sym,
+ gfc_current_locus) == FAILURE)
+ return FAILURE;
+ break;
+
+ case INTRINSIC_GT:
+ case INTRINSIC_GT_OS:
+ if (gfc_check_new_interface (ns->op[INTRINSIC_GT], new_sym,
+ gfc_current_locus) == FAILURE
+ || gfc_check_new_interface (ns->op[INTRINSIC_GT_OS], new_sym,
+ gfc_current_locus) == FAILURE)
+ return FAILURE;
+ break;
+
+ case INTRINSIC_GE:
+ case INTRINSIC_GE_OS:
+ if (gfc_check_new_interface (ns->op[INTRINSIC_GE], new_sym,
+ gfc_current_locus) == FAILURE
+ || gfc_check_new_interface (ns->op[INTRINSIC_GE_OS], new_sym,
+ gfc_current_locus) == FAILURE)
+ return FAILURE;
+ break;
+
+ case INTRINSIC_LT:
+ case INTRINSIC_LT_OS:
+ if (gfc_check_new_interface (ns->op[INTRINSIC_LT], new_sym,
+ gfc_current_locus) == FAILURE
+ || gfc_check_new_interface (ns->op[INTRINSIC_LT_OS], new_sym,
+ gfc_current_locus) == FAILURE)
+ return FAILURE;
+ break;
+
+ case INTRINSIC_LE:
+ case INTRINSIC_LE_OS:
+ if (gfc_check_new_interface (ns->op[INTRINSIC_LE], new_sym,
+ gfc_current_locus) == FAILURE
+ || gfc_check_new_interface (ns->op[INTRINSIC_LE_OS], new_sym,
+ gfc_current_locus) == FAILURE)
+ return FAILURE;
+ break;
+
+ default:
+ if (gfc_check_new_interface (ns->op[current_interface.op], new_sym,
+ gfc_current_locus) == FAILURE)
+ return FAILURE;
+ }
+
+ head = &current_interface.ns->op[current_interface.op];
+ break;
+
+ case INTERFACE_GENERIC:
+ for (ns = current_interface.ns; ns; ns = ns->parent)
+ {
+ gfc_find_symbol (current_interface.sym->name, ns, 0, &sym);
+ if (sym == NULL)
+ continue;
+
+ if (gfc_check_new_interface (sym->generic, new_sym, gfc_current_locus)
+ == FAILURE)
+ return FAILURE;
+ }
+
+ head = &current_interface.sym->generic;
+ break;
+
+ case INTERFACE_USER_OP:
+ if (gfc_check_new_interface (current_interface.uop->op, new_sym,
+ gfc_current_locus) == FAILURE)
+ return FAILURE;
+
+ head = &current_interface.uop->op;
+ break;
+
+ default:
+ gfc_internal_error ("gfc_add_interface(): Bad interface type");
+ }
+
+ intr = gfc_get_interface ();
+ intr->sym = new_sym;
+ intr->where = gfc_current_locus;
+
+ intr->next = *head;
+ *head = intr;
+
+ return SUCCESS;
+}
+
+
+gfc_interface *
+gfc_current_interface_head (void)
+{
+ switch (current_interface.type)
+ {
+ case INTERFACE_INTRINSIC_OP:
+ return current_interface.ns->op[current_interface.op];
+ break;
+
+ case INTERFACE_GENERIC:
+ return current_interface.sym->generic;
+ break;
+
+ case INTERFACE_USER_OP:
+ return current_interface.uop->op;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+
+void
+gfc_set_current_interface_head (gfc_interface *i)
+{
+ switch (current_interface.type)
+ {
+ case INTERFACE_INTRINSIC_OP:
+ current_interface.ns->op[current_interface.op] = i;
+ break;
+
+ case INTERFACE_GENERIC:
+ current_interface.sym->generic = i;
+ break;
+
+ case INTERFACE_USER_OP:
+ current_interface.uop->op = i;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+
+/* Gets rid of a formal argument list. We do not free symbols.
+ Symbols are freed when a namespace is freed. */
+
+void
+gfc_free_formal_arglist (gfc_formal_arglist *p)
+{
+ gfc_formal_arglist *q;
+
+ for (; p; p = q)
+ {
+ q = p->next;
+ free (p);
+ }
+}
+
+
+/* Check that it is ok for the type-bound procedure 'proc' to override the
+ procedure 'old', cf. F08:4.5.7.3. */
+
+gfc_try
+gfc_check_typebound_override (gfc_symtree* proc, gfc_symtree* old)
+{
+ locus where;
+ gfc_symbol *proc_target, *old_target;
+ unsigned proc_pass_arg, old_pass_arg, argpos;
+ gfc_formal_arglist *proc_formal, *old_formal;
+ bool check_type;
+ char err[200];
+
+ /* This procedure should only be called for non-GENERIC proc. */
+ gcc_assert (!proc->n.tb->is_generic);
+
+ /* If the overwritten procedure is GENERIC, this is an error. */
+ if (old->n.tb->is_generic)
+ {
+ gfc_error ("Can't overwrite GENERIC '%s' at %L",
+ old->name, &proc->n.tb->where);
+ return FAILURE;
+ }
+
+ where = proc->n.tb->where;
+ proc_target = proc->n.tb->u.specific->n.sym;
+ old_target = old->n.tb->u.specific->n.sym;
+
+ /* Check that overridden binding is not NON_OVERRIDABLE. */
+ if (old->n.tb->non_overridable)
+ {
+ gfc_error ("'%s' at %L overrides a procedure binding declared"
+ " NON_OVERRIDABLE", proc->name, &where);
+ return FAILURE;
+ }
+
+ /* It's an error to override a non-DEFERRED procedure with a DEFERRED one. */
+ if (!old->n.tb->deferred && proc->n.tb->deferred)
+ {
+ gfc_error ("'%s' at %L must not be DEFERRED as it overrides a"
+ " non-DEFERRED binding", proc->name, &where);
+ return FAILURE;
+ }
+
+ /* If the overridden binding is PURE, the overriding must be, too. */
+ if (old_target->attr.pure && !proc_target->attr.pure)
+ {
+ gfc_error ("'%s' at %L overrides a PURE procedure and must also be PURE",
+ proc->name, &where);
+ return FAILURE;
+ }
+
+ /* If the overridden binding is ELEMENTAL, the overriding must be, too. If it
+ is not, the overriding must not be either. */
+ if (old_target->attr.elemental && !proc_target->attr.elemental)
+ {
+ gfc_error ("'%s' at %L overrides an ELEMENTAL procedure and must also be"
+ " ELEMENTAL", proc->name, &where);
+ return FAILURE;
+ }
+ if (!old_target->attr.elemental && proc_target->attr.elemental)
+ {
+ gfc_error ("'%s' at %L overrides a non-ELEMENTAL procedure and must not"
+ " be ELEMENTAL, either", proc->name, &where);
+ return FAILURE;
+ }
+
+ /* If the overridden binding is a SUBROUTINE, the overriding must also be a
+ SUBROUTINE. */
+ if (old_target->attr.subroutine && !proc_target->attr.subroutine)
+ {
+ gfc_error ("'%s' at %L overrides a SUBROUTINE and must also be a"
+ " SUBROUTINE", proc->name, &where);
+ return FAILURE;
+ }
+
+ /* If the overridden binding is a FUNCTION, the overriding must also be a
+ FUNCTION and have the same characteristics. */
+ if (old_target->attr.function)
+ {
+ if (!proc_target->attr.function)
+ {
+ gfc_error ("'%s' at %L overrides a FUNCTION and must also be a"
+ " FUNCTION", proc->name, &where);
+ return FAILURE;
+ }
+
+ if (check_result_characteristics (proc_target, old_target,
+ err, sizeof(err)) == FAILURE)
+ {
+ gfc_error ("Result mismatch for the overriding procedure "
+ "'%s' at %L: %s", proc->name, &where, err);
+ return FAILURE;
+ }
+ }
+
+ /* If the overridden binding is PUBLIC, the overriding one must not be
+ PRIVATE. */
+ if (old->n.tb->access == ACCESS_PUBLIC
+ && proc->n.tb->access == ACCESS_PRIVATE)
+ {
+ gfc_error ("'%s' at %L overrides a PUBLIC procedure and must not be"
+ " PRIVATE", proc->name, &where);
+ return FAILURE;
+ }
+
+ /* Compare the formal argument lists of both procedures. This is also abused
+ to find the position of the passed-object dummy arguments of both
+ bindings as at least the overridden one might not yet be resolved and we
+ need those positions in the check below. */
+ proc_pass_arg = old_pass_arg = 0;
+ if (!proc->n.tb->nopass && !proc->n.tb->pass_arg)
+ proc_pass_arg = 1;
+ if (!old->n.tb->nopass && !old->n.tb->pass_arg)
+ old_pass_arg = 1;
+ argpos = 1;
+ proc_formal = gfc_sym_get_dummy_args (proc_target);
+ old_formal = gfc_sym_get_dummy_args (old_target);
+ for ( ; proc_formal && old_formal;
+ proc_formal = proc_formal->next, old_formal = old_formal->next)
+ {
+ if (proc->n.tb->pass_arg
+ && !strcmp (proc->n.tb->pass_arg, proc_formal->sym->name))
+ proc_pass_arg = argpos;
+ if (old->n.tb->pass_arg
+ && !strcmp (old->n.tb->pass_arg, old_formal->sym->name))
+ old_pass_arg = argpos;
+
+ /* Check that the names correspond. */
+ if (strcmp (proc_formal->sym->name, old_formal->sym->name))
+ {
+ gfc_error ("Dummy argument '%s' of '%s' at %L should be named '%s' as"
+ " to match the corresponding argument of the overridden"
+ " procedure", proc_formal->sym->name, proc->name, &where,
+ old_formal->sym->name);
+ return FAILURE;
+ }
+
+ check_type = proc_pass_arg != argpos && old_pass_arg != argpos;
+ if (check_dummy_characteristics (proc_formal->sym, old_formal->sym,
+ check_type, err, sizeof(err)) == FAILURE)
+ {
+ gfc_error ("Argument mismatch for the overriding procedure "
+ "'%s' at %L: %s", proc->name, &where, err);
+ return FAILURE;
+ }
+
+ ++argpos;
+ }
+ if (proc_formal || old_formal)
+ {
+ gfc_error ("'%s' at %L must have the same number of formal arguments as"
+ " the overridden procedure", proc->name, &where);
+ return FAILURE;
+ }
+
+ /* If the overridden binding is NOPASS, the overriding one must also be
+ NOPASS. */
+ if (old->n.tb->nopass && !proc->n.tb->nopass)
+ {
+ gfc_error ("'%s' at %L overrides a NOPASS binding and must also be"
+ " NOPASS", proc->name, &where);
+ return FAILURE;
+ }
+
+ /* If the overridden binding is PASS(x), the overriding one must also be
+ PASS and the passed-object dummy arguments must correspond. */
+ if (!old->n.tb->nopass)
+ {
+ if (proc->n.tb->nopass)
+ {
+ gfc_error ("'%s' at %L overrides a binding with PASS and must also be"
+ " PASS", proc->name, &where);
+ return FAILURE;
+ }
+
+ if (proc_pass_arg != old_pass_arg)
+ {
+ gfc_error ("Passed-object dummy argument of '%s' at %L must be at"
+ " the same position as the passed-object dummy argument of"
+ " the overridden procedure", proc->name, &where);
+ return FAILURE;
+ }
+ }
+
+ return SUCCESS;
+}