aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8.3/gcc/sel-sched.c
diff options
context:
space:
mode:
authorDan Albert <danalbert@google.com>2016-02-24 13:48:45 -0800
committerDan Albert <danalbert@google.com>2016-02-24 13:51:18 -0800
commitb9de1157289455b0ca26daff519d4a0ddcd1fa13 (patch)
tree4c56cc0a34b91f17033a40a455f26652304f7b8d /gcc-4.8.3/gcc/sel-sched.c
parent098157a754787181cfa10e71325832448ddcea98 (diff)
downloadtoolchain_gcc-b9de1157289455b0ca26daff519d4a0ddcd1fa13.tar.gz
toolchain_gcc-b9de1157289455b0ca26daff519d4a0ddcd1fa13.tar.bz2
toolchain_gcc-b9de1157289455b0ca26daff519d4a0ddcd1fa13.zip
Update 4.8.1 to 4.8.3.
My previous drop was the wrong version. The platform mingw is currently using 4.8.3, not 4.8.1 (not sure how I got that wrong). From ftp://ftp.gnu.org/gnu/gcc/gcc-4.8.3/gcc-4.8.3.tar.bz2. Bug: http://b/26523949 Change-Id: Id85f1bdcbbaf78c7d0b5a69e74c798a08f341c35
Diffstat (limited to 'gcc-4.8.3/gcc/sel-sched.c')
-rw-r--r--gcc-4.8.3/gcc/sel-sched.c7766
1 files changed, 7766 insertions, 0 deletions
diff --git a/gcc-4.8.3/gcc/sel-sched.c b/gcc-4.8.3/gcc/sel-sched.c
new file mode 100644
index 000000000..71a01146c
--- /dev/null
+++ b/gcc-4.8.3/gcc/sel-sched.c
@@ -0,0 +1,7766 @@
+/* Instruction scheduling pass. Selective scheduler and pipeliner.
+ Copyright (C) 2006-2013 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "rtl-error.h"
+#include "tm_p.h"
+#include "hard-reg-set.h"
+#include "regs.h"
+#include "function.h"
+#include "flags.h"
+#include "insn-config.h"
+#include "insn-attr.h"
+#include "except.h"
+#include "recog.h"
+#include "params.h"
+#include "target.h"
+#include "output.h"
+#include "sched-int.h"
+#include "ggc.h"
+#include "tree.h"
+#include "vec.h"
+#include "langhooks.h"
+#include "rtlhooks-def.h"
+#include "emit-rtl.h"
+#include "ira.h"
+
+#ifdef INSN_SCHEDULING
+#include "sel-sched-ir.h"
+#include "sel-sched-dump.h"
+#include "sel-sched.h"
+#include "dbgcnt.h"
+
+/* Implementation of selective scheduling approach.
+ The below implementation follows the original approach with the following
+ changes:
+
+ o the scheduler works after register allocation (but can be also tuned
+ to work before RA);
+ o some instructions are not copied or register renamed;
+ o conditional jumps are not moved with code duplication;
+ o several jumps in one parallel group are not supported;
+ o when pipelining outer loops, code motion through inner loops
+ is not supported;
+ o control and data speculation are supported;
+ o some improvements for better compile time/performance were made.
+
+ Terminology
+ ===========
+
+ A vinsn, or virtual insn, is an insn with additional data characterizing
+ insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
+ Vinsns also act as smart pointers to save memory by reusing them in
+ different expressions. A vinsn is described by vinsn_t type.
+
+ An expression is a vinsn with additional data characterizing its properties
+ at some point in the control flow graph. The data may be its usefulness,
+ priority, speculative status, whether it was renamed/subsituted, etc.
+ An expression is described by expr_t type.
+
+ Availability set (av_set) is a set of expressions at a given control flow
+ point. It is represented as av_set_t. The expressions in av sets are kept
+ sorted in the terms of expr_greater_p function. It allows to truncate
+ the set while leaving the best expressions.
+
+ A fence is a point through which code motion is prohibited. On each step,
+ we gather a parallel group of insns at a fence. It is possible to have
+ multiple fences. A fence is represented via fence_t.
+
+ A boundary is the border between the fence group and the rest of the code.
+ Currently, we never have more than one boundary per fence, as we finalize
+ the fence group when a jump is scheduled. A boundary is represented
+ via bnd_t.
+
+ High-level overview
+ ===================
+
+ The scheduler finds regions to schedule, schedules each one, and finalizes.
+ The regions are formed starting from innermost loops, so that when the inner
+ loop is pipelined, its prologue can be scheduled together with yet unprocessed
+ outer loop. The rest of acyclic regions are found using extend_rgns:
+ the blocks that are not yet allocated to any regions are traversed in top-down
+ order, and a block is added to a region to which all its predecessors belong;
+ otherwise, the block starts its own region.
+
+ The main scheduling loop (sel_sched_region_2) consists of just
+ scheduling on each fence and updating fences. For each fence,
+ we fill a parallel group of insns (fill_insns) until some insns can be added.
+ First, we compute available exprs (av-set) at the boundary of the current
+ group. Second, we choose the best expression from it. If the stall is
+ required to schedule any of the expressions, we advance the current cycle
+ appropriately. So, the final group does not exactly correspond to a VLIW
+ word. Third, we move the chosen expression to the boundary (move_op)
+ and update the intermediate av sets and liveness sets. We quit fill_insns
+ when either no insns left for scheduling or we have scheduled enough insns
+ so we feel like advancing a scheduling point.
+
+ Computing available expressions
+ ===============================
+
+ The computation (compute_av_set) is a bottom-up traversal. At each insn,
+ we're moving the union of its successors' sets through it via
+ moveup_expr_set. The dependent expressions are removed. Local
+ transformations (substitution, speculation) are applied to move more
+ exprs. Then the expr corresponding to the current insn is added.
+ The result is saved on each basic block header.
+
+ When traversing the CFG, we're moving down for no more than max_ws insns.
+ Also, we do not move down to ineligible successors (is_ineligible_successor),
+ which include moving along a back-edge, moving to already scheduled code,
+ and moving to another fence. The first two restrictions are lifted during
+ pipelining, which allows us to move insns along a back-edge. We always have
+ an acyclic region for scheduling because we forbid motion through fences.
+
+ Choosing the best expression
+ ============================
+
+ We sort the final availability set via sel_rank_for_schedule, then we remove
+ expressions which are not yet ready (tick_check_p) or which dest registers
+ cannot be used. For some of them, we choose another register via
+ find_best_reg. To do this, we run find_used_regs to calculate the set of
+ registers which cannot be used. The find_used_regs function performs
+ a traversal of code motion paths for an expr. We consider for renaming
+ only registers which are from the same regclass as the original one and
+ using which does not interfere with any live ranges. Finally, we convert
+ the resulting set to the ready list format and use max_issue and reorder*
+ hooks similarly to the Haifa scheduler.
+
+ Scheduling the best expression
+ ==============================
+
+ We run the move_op routine to perform the same type of code motion paths
+ traversal as in find_used_regs. (These are working via the same driver,
+ code_motion_path_driver.) When moving down the CFG, we look for original
+ instruction that gave birth to a chosen expression. We undo
+ the transformations performed on an expression via the history saved in it.
+ When found, we remove the instruction or leave a reg-reg copy/speculation
+ check if needed. On a way up, we insert bookkeeping copies at each join
+ point. If a copy is not needed, it will be removed later during this
+ traversal. We update the saved av sets and liveness sets on the way up, too.
+
+ Finalizing the schedule
+ =======================
+
+ When pipelining, we reschedule the blocks from which insns were pipelined
+ to get a tighter schedule. On Itanium, we also perform bundling via
+ the same routine from ia64.c.
+
+ Dependence analysis changes
+ ===========================
+
+ We augmented the sched-deps.c with hooks that get called when a particular
+ dependence is found in a particular part of an insn. Using these hooks, we
+ can do several actions such as: determine whether an insn can be moved through
+ another (has_dependence_p, moveup_expr); find out whether an insn can be
+ scheduled on the current cycle (tick_check_p); find out registers that
+ are set/used/clobbered by an insn and find out all the strange stuff that
+ restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
+ init_global_and_expr_for_insn).
+
+ Initialization changes
+ ======================
+
+ There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
+ reused in all of the schedulers. We have split up the initialization of data
+ of such parts into different functions prefixed with scheduler type and
+ postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
+ sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
+ The same splitting is done with current_sched_info structure:
+ dependence-related parts are in sched_deps_info, common part is in
+ common_sched_info, and haifa/sel/etc part is in current_sched_info.
+
+ Target contexts
+ ===============
+
+ As we now have multiple-point scheduling, this would not work with backends
+ which save some of the scheduler state to use it in the target hooks.
+ For this purpose, we introduce a concept of target contexts, which
+ encapsulate such information. The backend should implement simple routines
+ of allocating/freeing/setting such a context. The scheduler calls these
+ as target hooks and handles the target context as an opaque pointer (similar
+ to the DFA state type, state_t).
+
+ Various speedups
+ ================
+
+ As the correct data dependence graph is not supported during scheduling (which
+ is to be changed in mid-term), we cache as much of the dependence analysis
+ results as possible to avoid reanalyzing. This includes: bitmap caches on
+ each insn in stream of the region saying yes/no for a query with a pair of
+ UIDs; hashtables with the previously done transformations on each insn in
+ stream; a vector keeping a history of transformations on each expr.
+
+ Also, we try to minimize the dependence context used on each fence to check
+ whether the given expression is ready for scheduling by removing from it
+ insns that are definitely completed the execution. The results of
+ tick_check_p checks are also cached in a vector on each fence.
+
+ We keep a valid liveness set on each insn in a region to avoid the high
+ cost of recomputation on large basic blocks.
+
+ Finally, we try to minimize the number of needed updates to the availability
+ sets. The updates happen in two cases: when fill_insns terminates,
+ we advance all fences and increase the stage number to show that the region
+ has changed and the sets are to be recomputed; and when the next iteration
+ of a loop in fill_insns happens (but this one reuses the saved av sets
+ on bb headers.) Thus, we try to break the fill_insns loop only when
+ "significant" number of insns from the current scheduling window was
+ scheduled. This should be made a target param.
+
+
+ TODO: correctly support the data dependence graph at all stages and get rid
+ of all caches. This should speed up the scheduler.
+ TODO: implement moving cond jumps with bookkeeping copies on both targets.
+ TODO: tune the scheduler before RA so it does not create too much pseudos.
+
+
+ References:
+ S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
+ selective scheduling and software pipelining.
+ ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
+
+ Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
+ and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
+ for GCC. In Proceedings of GCC Developers' Summit 2006.
+
+ Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
+ Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
+ http://rogue.colorado.edu/EPIC7/.
+
+*/
+
+/* True when pipelining is enabled. */
+bool pipelining_p;
+
+/* True if bookkeeping is enabled. */
+bool bookkeeping_p;
+
+/* Maximum number of insns that are eligible for renaming. */
+int max_insns_to_rename;
+
+
+/* Definitions of local types and macros. */
+
+/* Represents possible outcomes of moving an expression through an insn. */
+enum MOVEUP_EXPR_CODE
+ {
+ /* The expression is not changed. */
+ MOVEUP_EXPR_SAME,
+
+ /* Not changed, but requires a new destination register. */
+ MOVEUP_EXPR_AS_RHS,
+
+ /* Cannot be moved. */
+ MOVEUP_EXPR_NULL,
+
+ /* Changed (substituted or speculated). */
+ MOVEUP_EXPR_CHANGED
+ };
+
+/* The container to be passed into rtx search & replace functions. */
+struct rtx_search_arg
+{
+ /* What we are searching for. */
+ rtx x;
+
+ /* The occurrence counter. */
+ int n;
+};
+
+typedef struct rtx_search_arg *rtx_search_arg_p;
+
+/* This struct contains precomputed hard reg sets that are needed when
+ computing registers available for renaming. */
+struct hard_regs_data
+{
+ /* For every mode, this stores registers available for use with
+ that mode. */
+ HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
+
+ /* True when regs_for_mode[mode] is initialized. */
+ bool regs_for_mode_ok[NUM_MACHINE_MODES];
+
+ /* For every register, it has regs that are ok to rename into it.
+ The register in question is always set. If not, this means
+ that the whole set is not computed yet. */
+ HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
+
+ /* For every mode, this stores registers not available due to
+ call clobbering. */
+ HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
+
+ /* All registers that are used or call used. */
+ HARD_REG_SET regs_ever_used;
+
+#ifdef STACK_REGS
+ /* Stack registers. */
+ HARD_REG_SET stack_regs;
+#endif
+};
+
+/* Holds the results of computation of available for renaming and
+ unavailable hard registers. */
+struct reg_rename
+{
+ /* These are unavailable due to calls crossing, globalness, etc. */
+ HARD_REG_SET unavailable_hard_regs;
+
+ /* These are *available* for renaming. */
+ HARD_REG_SET available_for_renaming;
+
+ /* Whether this code motion path crosses a call. */
+ bool crosses_call;
+};
+
+/* A global structure that contains the needed information about harg
+ regs. */
+static struct hard_regs_data sel_hrd;
+
+
+/* This structure holds local data used in code_motion_path_driver hooks on
+ the same or adjacent levels of recursion. Here we keep those parameters
+ that are not used in code_motion_path_driver routine itself, but only in
+ its hooks. Moreover, all parameters that can be modified in hooks are
+ in this structure, so all other parameters passed explicitly to hooks are
+ read-only. */
+struct cmpd_local_params
+{
+ /* Local params used in move_op_* functions. */
+
+ /* Edges for bookkeeping generation. */
+ edge e1, e2;
+
+ /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
+ expr_t c_expr_merged, c_expr_local;
+
+ /* Local params used in fur_* functions. */
+ /* Copy of the ORIGINAL_INSN list, stores the original insns already
+ found before entering the current level of code_motion_path_driver. */
+ def_list_t old_original_insns;
+
+ /* Local params used in move_op_* functions. */
+ /* True when we have removed last insn in the block which was
+ also a boundary. Do not update anything or create bookkeeping copies. */
+ BOOL_BITFIELD removed_last_insn : 1;
+};
+
+/* Stores the static parameters for move_op_* calls. */
+struct moveop_static_params
+{
+ /* Destination register. */
+ rtx dest;
+
+ /* Current C_EXPR. */
+ expr_t c_expr;
+
+ /* An UID of expr_vliw which is to be moved up. If we find other exprs,
+ they are to be removed. */
+ int uid;
+
+#ifdef ENABLE_CHECKING
+ /* This is initialized to the insn on which the driver stopped its traversal. */
+ insn_t failed_insn;
+#endif
+
+ /* True if we scheduled an insn with different register. */
+ bool was_renamed;
+};
+
+/* Stores the static parameters for fur_* calls. */
+struct fur_static_params
+{
+ /* Set of registers unavailable on the code motion path. */
+ regset used_regs;
+
+ /* Pointer to the list of original insns definitions. */
+ def_list_t *original_insns;
+
+ /* True if a code motion path contains a CALL insn. */
+ bool crosses_call;
+};
+
+typedef struct fur_static_params *fur_static_params_p;
+typedef struct cmpd_local_params *cmpd_local_params_p;
+typedef struct moveop_static_params *moveop_static_params_p;
+
+/* Set of hooks and parameters that determine behaviour specific to
+ move_op or find_used_regs functions. */
+struct code_motion_path_driver_info_def
+{
+ /* Called on enter to the basic block. */
+ int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
+
+ /* Called when original expr is found. */
+ void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
+
+ /* Called while descending current basic block if current insn is not
+ the original EXPR we're searching for. */
+ bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
+
+ /* Function to merge C_EXPRes from different successors. */
+ void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
+
+ /* Function to finalize merge from different successors and possibly
+ deallocate temporary data structures used for merging. */
+ void (*after_merge_succs) (cmpd_local_params_p, void *);
+
+ /* Called on the backward stage of recursion to do moveup_expr.
+ Used only with move_op_*. */
+ void (*ascend) (insn_t, void *);
+
+ /* Called on the ascending pass, before returning from the current basic
+ block or from the whole traversal. */
+ void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
+
+ /* When processing successors in move_op we need only descend into
+ SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
+ int succ_flags;
+
+ /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
+ const char *routine_name;
+};
+
+/* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
+ FUR_HOOKS. */
+struct code_motion_path_driver_info_def *code_motion_path_driver_info;
+
+/* Set of hooks for performing move_op and find_used_regs routines with
+ code_motion_path_driver. */
+extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
+
+/* True if/when we want to emulate Haifa scheduler in the common code.
+ This is used in sched_rgn_local_init and in various places in
+ sched-deps.c. */
+int sched_emulate_haifa_p;
+
+/* GLOBAL_LEVEL is used to discard information stored in basic block headers
+ av_sets. Av_set of bb header is valid if its (bb header's) level is equal
+ to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
+ scheduling window. */
+int global_level;
+
+/* Current fences. */
+flist_t fences;
+
+/* True when separable insns should be scheduled as RHSes. */
+static bool enable_schedule_as_rhs_p;
+
+/* Used in verify_target_availability to assert that target reg is reported
+ unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
+ we haven't scheduled anything on the previous fence.
+ if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
+ have more conservative value than the one returned by the
+ find_used_regs, thus we shouldn't assert that these values are equal. */
+static bool scheduled_something_on_previous_fence;
+
+/* All newly emitted insns will have their uids greater than this value. */
+static int first_emitted_uid;
+
+/* Set of basic blocks that are forced to start new ebbs. This is a subset
+ of all the ebb heads. */
+static bitmap_head _forced_ebb_heads;
+bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
+
+/* Blocks that need to be rescheduled after pipelining. */
+bitmap blocks_to_reschedule = NULL;
+
+/* True when the first lv set should be ignored when updating liveness. */
+static bool ignore_first = false;
+
+/* Number of insns max_issue has initialized data structures for. */
+static int max_issue_size = 0;
+
+/* Whether we can issue more instructions. */
+static int can_issue_more;
+
+/* Maximum software lookahead window size, reduced when rescheduling after
+ pipelining. */
+static int max_ws;
+
+/* Number of insns scheduled in current region. */
+static int num_insns_scheduled;
+
+/* A vector of expressions is used to be able to sort them. */
+static vec<expr_t> vec_av_set = vNULL;
+
+/* A vector of vinsns is used to hold temporary lists of vinsns. */
+typedef vec<vinsn_t> vinsn_vec_t;
+
+/* This vector has the exprs which may still present in av_sets, but actually
+ can't be moved up due to bookkeeping created during code motion to another
+ fence. See comment near the call to update_and_record_unavailable_insns
+ for the detailed explanations. */
+static vinsn_vec_t vec_bookkeeping_blocked_vinsns = vinsn_vec_t();
+
+/* This vector has vinsns which are scheduled with renaming on the first fence
+ and then seen on the second. For expressions with such vinsns, target
+ availability information may be wrong. */
+static vinsn_vec_t vec_target_unavailable_vinsns = vinsn_vec_t();
+
+/* Vector to store temporary nops inserted in move_op to prevent removal
+ of empty bbs. */
+static vec<insn_t> vec_temp_moveop_nops = vNULL;
+
+/* These bitmaps record original instructions scheduled on the current
+ iteration and bookkeeping copies created by them. */
+static bitmap current_originators = NULL;
+static bitmap current_copies = NULL;
+
+/* This bitmap marks the blocks visited by code_motion_path_driver so we don't
+ visit them afterwards. */
+static bitmap code_motion_visited_blocks = NULL;
+
+/* Variables to accumulate different statistics. */
+
+/* The number of bookkeeping copies created. */
+static int stat_bookkeeping_copies;
+
+/* The number of insns that required bookkeeiping for their scheduling. */
+static int stat_insns_needed_bookkeeping;
+
+/* The number of insns that got renamed. */
+static int stat_renamed_scheduled;
+
+/* The number of substitutions made during scheduling. */
+static int stat_substitutions_total;
+
+
+/* Forward declarations of static functions. */
+static bool rtx_ok_for_substitution_p (rtx, rtx);
+static int sel_rank_for_schedule (const void *, const void *);
+static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
+static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
+
+static rtx get_dest_from_orig_ops (av_set_t);
+static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
+static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
+ def_list_t *);
+static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
+static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
+ cmpd_local_params_p, void *);
+static void sel_sched_region_1 (void);
+static void sel_sched_region_2 (int);
+static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
+
+static void debug_state (state_t);
+
+
+/* Functions that work with fences. */
+
+/* Advance one cycle on FENCE. */
+static void
+advance_one_cycle (fence_t fence)
+{
+ unsigned i;
+ int cycle;
+ rtx insn;
+
+ advance_state (FENCE_STATE (fence));
+ cycle = ++FENCE_CYCLE (fence);
+ FENCE_ISSUED_INSNS (fence) = 0;
+ FENCE_STARTS_CYCLE_P (fence) = 1;
+ can_issue_more = issue_rate;
+ FENCE_ISSUE_MORE (fence) = can_issue_more;
+
+ for (i = 0; vec_safe_iterate (FENCE_EXECUTING_INSNS (fence), i, &insn); )
+ {
+ if (INSN_READY_CYCLE (insn) < cycle)
+ {
+ remove_from_deps (FENCE_DC (fence), insn);
+ FENCE_EXECUTING_INSNS (fence)->unordered_remove (i);
+ continue;
+ }
+ i++;
+ }
+ if (sched_verbose >= 2)
+ {
+ sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
+ debug_state (FENCE_STATE (fence));
+ }
+}
+
+/* Returns true when SUCC in a fallthru bb of INSN, possibly
+ skipping empty basic blocks. */
+static bool
+in_fallthru_bb_p (rtx insn, rtx succ)
+{
+ basic_block bb = BLOCK_FOR_INSN (insn);
+ edge e;
+
+ if (bb == BLOCK_FOR_INSN (succ))
+ return true;
+
+ e = find_fallthru_edge_from (bb);
+ if (e)
+ bb = e->dest;
+ else
+ return false;
+
+ while (sel_bb_empty_p (bb))
+ bb = bb->next_bb;
+
+ return bb == BLOCK_FOR_INSN (succ);
+}
+
+/* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
+ When a successor will continue a ebb, transfer all parameters of a fence
+ to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
+ of scheduling helping to distinguish between the old and the new code. */
+static void
+extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
+ int orig_max_seqno)
+{
+ bool was_here_p = false;
+ insn_t insn = NULL_RTX;
+ insn_t succ;
+ succ_iterator si;
+ ilist_iterator ii;
+ fence_t fence = FLIST_FENCE (old_fences);
+ basic_block bb;
+
+ /* Get the only element of FENCE_BNDS (fence). */
+ FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
+ {
+ gcc_assert (!was_here_p);
+ was_here_p = true;
+ }
+ gcc_assert (was_here_p && insn != NULL_RTX);
+
+ /* When in the "middle" of the block, just move this fence
+ to the new list. */
+ bb = BLOCK_FOR_INSN (insn);
+ if (! sel_bb_end_p (insn)
+ || (single_succ_p (bb)
+ && single_pred_p (single_succ (bb))))
+ {
+ insn_t succ;
+
+ succ = (sel_bb_end_p (insn)
+ ? sel_bb_head (single_succ (bb))
+ : NEXT_INSN (insn));
+
+ if (INSN_SEQNO (succ) > 0
+ && INSN_SEQNO (succ) <= orig_max_seqno
+ && INSN_SCHED_TIMES (succ) <= 0)
+ {
+ FENCE_INSN (fence) = succ;
+ move_fence_to_fences (old_fences, new_fences);
+
+ if (sched_verbose >= 1)
+ sel_print ("Fence %d continues as %d[%d] (state continue)\n",
+ INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
+ }
+ return;
+ }
+
+ /* Otherwise copy fence's structures to (possibly) multiple successors. */
+ FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
+ {
+ int seqno = INSN_SEQNO (succ);
+
+ if (0 < seqno && seqno <= orig_max_seqno
+ && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
+ {
+ bool b = (in_same_ebb_p (insn, succ)
+ || in_fallthru_bb_p (insn, succ));
+
+ if (sched_verbose >= 1)
+ sel_print ("Fence %d continues as %d[%d] (state %s)\n",
+ INSN_UID (insn), INSN_UID (succ),
+ BLOCK_NUM (succ), b ? "continue" : "reset");
+
+ if (b)
+ add_dirty_fence_to_fences (new_fences, succ, fence);
+ else
+ {
+ /* Mark block of the SUCC as head of the new ebb. */
+ bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
+ add_clean_fence_to_fences (new_fences, succ, fence);
+ }
+ }
+ }
+}
+
+
+/* Functions to support substitution. */
+
+/* Returns whether INSN with dependence status DS is eligible for
+ substitution, i.e. it's a copy operation x := y, and RHS that is
+ moved up through this insn should be substituted. */
+static bool
+can_substitute_through_p (insn_t insn, ds_t ds)
+{
+ /* We can substitute only true dependencies. */
+ if ((ds & DEP_OUTPUT)
+ || (ds & DEP_ANTI)
+ || ! INSN_RHS (insn)
+ || ! INSN_LHS (insn))
+ return false;
+
+ /* Now we just need to make sure the INSN_RHS consists of only one
+ simple REG rtx. */
+ if (REG_P (INSN_LHS (insn))
+ && REG_P (INSN_RHS (insn)))
+ return true;
+ return false;
+}
+
+/* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
+ source (if INSN is eligible for substitution). Returns TRUE if
+ substitution was actually performed, FALSE otherwise. Substitution might
+ be not performed because it's either EXPR' vinsn doesn't contain INSN's
+ destination or the resulting insn is invalid for the target machine.
+ When UNDO is true, perform unsubstitution instead (the difference is in
+ the part of rtx on which validate_replace_rtx is called). */
+static bool
+substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
+{
+ rtx *where;
+ bool new_insn_valid;
+ vinsn_t *vi = &EXPR_VINSN (expr);
+ bool has_rhs = VINSN_RHS (*vi) != NULL;
+ rtx old, new_rtx;
+
+ /* Do not try to replace in SET_DEST. Although we'll choose new
+ register for the RHS, we don't want to change RHS' original reg.
+ If the insn is not SET, we may still be able to substitute something
+ in it, and if we're here (don't have deps), it doesn't write INSN's
+ dest. */
+ where = (has_rhs
+ ? &VINSN_RHS (*vi)
+ : &PATTERN (VINSN_INSN_RTX (*vi)));
+ old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
+
+ /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
+ if (rtx_ok_for_substitution_p (old, *where))
+ {
+ rtx new_insn;
+ rtx *where_replace;
+
+ /* We should copy these rtxes before substitution. */
+ new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
+ new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
+
+ /* Where we'll replace.
+ WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
+ used instead of SET_SRC. */
+ where_replace = (has_rhs
+ ? &SET_SRC (PATTERN (new_insn))
+ : &PATTERN (new_insn));
+
+ new_insn_valid
+ = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
+ new_insn);
+
+ /* ??? Actually, constrain_operands result depends upon choice of
+ destination register. E.g. if we allow single register to be an rhs,
+ and if we try to move dx=ax(as rhs) through ax=dx, we'll result
+ in invalid insn dx=dx, so we'll loose this rhs here.
+ Just can't come up with significant testcase for this, so just
+ leaving it for now. */
+ if (new_insn_valid)
+ {
+ change_vinsn_in_expr (expr,
+ create_vinsn_from_insn_rtx (new_insn, false));
+
+ /* Do not allow clobbering the address register of speculative
+ insns. */
+ if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
+ && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
+ expr_dest_reg (expr)))
+ EXPR_TARGET_AVAILABLE (expr) = false;
+
+ return true;
+ }
+ else
+ return false;
+ }
+ else
+ return false;
+}
+
+/* Helper function for count_occurences_equiv. */
+static int
+count_occurrences_1 (rtx *cur_rtx, void *arg)
+{
+ rtx_search_arg_p p = (rtx_search_arg_p) arg;
+
+ if (REG_P (*cur_rtx) && REGNO (*cur_rtx) == REGNO (p->x))
+ {
+ /* Bail out if mode is different or more than one register is used. */
+ if (GET_MODE (*cur_rtx) != GET_MODE (p->x)
+ || (HARD_REGISTER_P (*cur_rtx)
+ && hard_regno_nregs[REGNO(*cur_rtx)][GET_MODE (*cur_rtx)] > 1))
+ {
+ p->n = 0;
+ return 1;
+ }
+
+ p->n++;
+
+ /* Do not traverse subexprs. */
+ return -1;
+ }
+
+ if (GET_CODE (*cur_rtx) == SUBREG
+ && (!REG_P (SUBREG_REG (*cur_rtx))
+ || REGNO (SUBREG_REG (*cur_rtx)) == REGNO (p->x)))
+ {
+ /* ??? Do not support substituting regs inside subregs. In that case,
+ simplify_subreg will be called by validate_replace_rtx, and
+ unsubstitution will fail later. */
+ p->n = 0;
+ return 1;
+ }
+
+ /* Continue search. */
+ return 0;
+}
+
+/* Return the number of places WHAT appears within WHERE.
+ Bail out when we found a reference occupying several hard registers. */
+static int
+count_occurrences_equiv (rtx what, rtx where)
+{
+ struct rtx_search_arg arg;
+
+ gcc_assert (REG_P (what));
+ arg.x = what;
+ arg.n = 0;
+
+ for_each_rtx (&where, &count_occurrences_1, (void *) &arg);
+
+ return arg.n;
+}
+
+/* Returns TRUE if WHAT is found in WHERE rtx tree. */
+static bool
+rtx_ok_for_substitution_p (rtx what, rtx where)
+{
+ return (count_occurrences_equiv (what, where) > 0);
+}
+
+
+/* Functions to support register renaming. */
+
+/* Substitute VI's set source with REGNO. Returns newly created pattern
+ that has REGNO as its source. */
+static rtx
+create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
+{
+ rtx lhs_rtx;
+ rtx pattern;
+ rtx insn_rtx;
+
+ lhs_rtx = copy_rtx (VINSN_LHS (vi));
+
+ pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
+ insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
+
+ return insn_rtx;
+}
+
+/* Returns whether INSN's src can be replaced with register number
+ NEW_SRC_REG. E.g. the following insn is valid for i386:
+
+ (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
+ (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
+ (reg:SI 0 ax [orig:770 c1 ] [770]))
+ (const_int 288 [0x120])) [0 str S1 A8])
+ (const_int 0 [0x0])) 43 {*movqi_1} (nil)
+ (nil))
+
+ But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
+ because of operand constraints:
+
+ (define_insn "*movqi_1"
+ [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
+ (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
+ )]
+
+ So do constrain_operands here, before choosing NEW_SRC_REG as best
+ reg for rhs. */
+
+static bool
+replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
+{
+ vinsn_t vi = INSN_VINSN (insn);
+ enum machine_mode mode;
+ rtx dst_loc;
+ bool res;
+
+ gcc_assert (VINSN_SEPARABLE_P (vi));
+
+ get_dest_and_mode (insn, &dst_loc, &mode);
+ gcc_assert (mode == GET_MODE (new_src_reg));
+
+ if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
+ return true;
+
+ /* See whether SET_SRC can be replaced with this register. */
+ validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
+ res = verify_changes (0);
+ cancel_changes (0);
+
+ return res;
+}
+
+/* Returns whether INSN still be valid after replacing it's DEST with
+ register NEW_REG. */
+static bool
+replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
+{
+ vinsn_t vi = INSN_VINSN (insn);
+ bool res;
+
+ /* We should deal here only with separable insns. */
+ gcc_assert (VINSN_SEPARABLE_P (vi));
+ gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
+
+ /* See whether SET_DEST can be replaced with this register. */
+ validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
+ res = verify_changes (0);
+ cancel_changes (0);
+
+ return res;
+}
+
+/* Create a pattern with rhs of VI and lhs of LHS_RTX. */
+static rtx
+create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
+{
+ rtx rhs_rtx;
+ rtx pattern;
+ rtx insn_rtx;
+
+ rhs_rtx = copy_rtx (VINSN_RHS (vi));
+
+ pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
+ insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
+
+ return insn_rtx;
+}
+
+/* Substitute lhs in the given expression EXPR for the register with number
+ NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
+static void
+replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
+{
+ rtx insn_rtx;
+ vinsn_t vinsn;
+
+ insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
+ vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
+
+ change_vinsn_in_expr (expr, vinsn);
+ EXPR_WAS_RENAMED (expr) = 1;
+ EXPR_TARGET_AVAILABLE (expr) = 1;
+}
+
+/* Returns whether VI writes either one of the USED_REGS registers or,
+ if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
+static bool
+vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
+ HARD_REG_SET unavailable_hard_regs)
+{
+ unsigned regno;
+ reg_set_iterator rsi;
+
+ EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
+ {
+ if (REGNO_REG_SET_P (used_regs, regno))
+ return true;
+ if (HARD_REGISTER_NUM_P (regno)
+ && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
+ return true;
+ }
+
+ EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
+ {
+ if (REGNO_REG_SET_P (used_regs, regno))
+ return true;
+ if (HARD_REGISTER_NUM_P (regno)
+ && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
+ return true;
+ }
+
+ return false;
+}
+
+/* Returns register class of the output register in INSN.
+ Returns NO_REGS for call insns because some targets have constraints on
+ destination register of a call insn.
+
+ Code adopted from regrename.c::build_def_use. */
+static enum reg_class
+get_reg_class (rtx insn)
+{
+ int alt, i, n_ops;
+
+ extract_insn (insn);
+ if (! constrain_operands (1))
+ fatal_insn_not_found (insn);
+ preprocess_constraints ();
+ alt = which_alternative;
+ n_ops = recog_data.n_operands;
+
+ for (i = 0; i < n_ops; ++i)
+ {
+ int matches = recog_op_alt[i][alt].matches;
+ if (matches >= 0)
+ recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
+ }
+
+ if (asm_noperands (PATTERN (insn)) > 0)
+ {
+ for (i = 0; i < n_ops; i++)
+ if (recog_data.operand_type[i] == OP_OUT)
+ {
+ rtx *loc = recog_data.operand_loc[i];
+ rtx op = *loc;
+ enum reg_class cl = recog_op_alt[i][alt].cl;
+
+ if (REG_P (op)
+ && REGNO (op) == ORIGINAL_REGNO (op))
+ continue;
+
+ return cl;
+ }
+ }
+ else if (!CALL_P (insn))
+ {
+ for (i = 0; i < n_ops + recog_data.n_dups; i++)
+ {
+ int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
+ enum reg_class cl = recog_op_alt[opn][alt].cl;
+
+ if (recog_data.operand_type[opn] == OP_OUT ||
+ recog_data.operand_type[opn] == OP_INOUT)
+ return cl;
+ }
+ }
+
+/* Insns like
+ (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
+ may result in returning NO_REGS, cause flags is written implicitly through
+ CMP insn, which has no OP_OUT | OP_INOUT operands. */
+ return NO_REGS;
+}
+
+#ifdef HARD_REGNO_RENAME_OK
+/* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
+static void
+init_hard_regno_rename (int regno)
+{
+ int cur_reg;
+
+ SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
+
+ for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
+ {
+ /* We are not interested in renaming in other regs. */
+ if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
+ continue;
+
+ if (HARD_REGNO_RENAME_OK (regno, cur_reg))
+ SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
+ }
+}
+#endif
+
+/* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
+ data first. */
+static inline bool
+sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
+{
+#ifdef HARD_REGNO_RENAME_OK
+ /* Check whether this is all calculated. */
+ if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
+ return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
+
+ init_hard_regno_rename (from);
+
+ return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
+#else
+ return true;
+#endif
+}
+
+/* Calculate set of registers that are capable of holding MODE. */
+static void
+init_regs_for_mode (enum machine_mode mode)
+{
+ int cur_reg;
+
+ CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
+ CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
+
+ for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
+ {
+ int nregs = hard_regno_nregs[cur_reg][mode];
+ int i;
+
+ for (i = nregs - 1; i >= 0; --i)
+ if (fixed_regs[cur_reg + i]
+ || global_regs[cur_reg + i]
+ /* Can't use regs which aren't saved by
+ the prologue. */
+ || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
+ /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
+ it affects aliasing globally and invalidates all AV sets. */
+ || get_reg_base_value (cur_reg + i)
+#ifdef LEAF_REGISTERS
+ /* We can't use a non-leaf register if we're in a
+ leaf function. */
+ || (crtl->is_leaf
+ && !LEAF_REGISTERS[cur_reg + i])
+#endif
+ )
+ break;
+
+ if (i >= 0)
+ continue;
+
+ /* See whether it accepts all modes that occur in
+ original insns. */
+ if (! HARD_REGNO_MODE_OK (cur_reg, mode))
+ continue;
+
+ if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
+ SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
+ cur_reg);
+
+ /* If the CUR_REG passed all the checks above,
+ then it's ok. */
+ SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
+ }
+
+ sel_hrd.regs_for_mode_ok[mode] = true;
+}
+
+/* Init all register sets gathered in HRD. */
+static void
+init_hard_regs_data (void)
+{
+ int cur_reg = 0;
+ int cur_mode = 0;
+
+ CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
+ for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
+ if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
+ SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
+
+ /* Initialize registers that are valid based on mode when this is
+ really needed. */
+ for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
+ sel_hrd.regs_for_mode_ok[cur_mode] = false;
+
+ /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
+ for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
+ CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
+
+#ifdef STACK_REGS
+ CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
+
+ for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
+ SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
+#endif
+}
+
+/* Mark hardware regs in REG_RENAME_P that are not suitable
+ for renaming rhs in INSN due to hardware restrictions (register class,
+ modes compatibility etc). This doesn't affect original insn's dest reg,
+ if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
+ destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
+ Registers that are in used_regs are always marked in
+ unavailable_hard_regs as well. */
+
+static void
+mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
+ regset used_regs ATTRIBUTE_UNUSED)
+{
+ enum machine_mode mode;
+ enum reg_class cl = NO_REGS;
+ rtx orig_dest;
+ unsigned cur_reg, regno;
+ hard_reg_set_iterator hrsi;
+
+ gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
+ gcc_assert (reg_rename_p);
+
+ orig_dest = SET_DEST (PATTERN (def->orig_insn));
+
+ /* We have decided not to rename 'mem = something;' insns, as 'something'
+ is usually a register. */
+ if (!REG_P (orig_dest))
+ return;
+
+ regno = REGNO (orig_dest);
+
+ /* If before reload, don't try to work with pseudos. */
+ if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
+ return;
+
+ if (reload_completed)
+ cl = get_reg_class (def->orig_insn);
+
+ /* Stop if the original register is one of the fixed_regs, global_regs or
+ frame pointer, or we could not discover its class. */
+ if (fixed_regs[regno]
+ || global_regs[regno]
+#if !HARD_FRAME_POINTER_IS_FRAME_POINTER
+ || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
+#else
+ || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
+#endif
+ || (reload_completed && cl == NO_REGS))
+ {
+ SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
+
+ /* Give a chance for original register, if it isn't in used_regs. */
+ if (!def->crosses_call)
+ CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
+
+ return;
+ }
+
+ /* If something allocated on stack in this function, mark frame pointer
+ register unavailable, considering also modes.
+ FIXME: it is enough to do this once per all original defs. */
+ if (frame_pointer_needed)
+ {
+ add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
+ Pmode, FRAME_POINTER_REGNUM);
+
+ if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
+ add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
+ Pmode, HARD_FRAME_POINTER_REGNUM);
+ }
+
+#ifdef STACK_REGS
+ /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
+ is equivalent to as if all stack regs were in this set.
+ I.e. no stack register can be renamed, and even if it's an original
+ register here we make sure it won't be lifted over it's previous def
+ (it's previous def will appear as if it's a FIRST_STACK_REG def.
+ The HARD_REGNO_RENAME_OK covers other cases in condition below. */
+ if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
+ && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
+ IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
+ sel_hrd.stack_regs);
+#endif
+
+ /* If there's a call on this path, make regs from call_used_reg_set
+ unavailable. */
+ if (def->crosses_call)
+ IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
+ call_used_reg_set);
+
+ /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
+ but not register classes. */
+ if (!reload_completed)
+ return;
+
+ /* Leave regs as 'available' only from the current
+ register class. */
+ COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
+ reg_class_contents[cl]);
+
+ mode = GET_MODE (orig_dest);
+
+ /* Leave only registers available for this mode. */
+ if (!sel_hrd.regs_for_mode_ok[mode])
+ init_regs_for_mode (mode);
+ AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
+ sel_hrd.regs_for_mode[mode]);
+
+ /* Exclude registers that are partially call clobbered. */
+ if (def->crosses_call
+ && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
+ AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
+ sel_hrd.regs_for_call_clobbered[mode]);
+
+ /* Leave only those that are ok to rename. */
+ EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
+ 0, cur_reg, hrsi)
+ {
+ int nregs;
+ int i;
+
+ nregs = hard_regno_nregs[cur_reg][mode];
+ gcc_assert (nregs > 0);
+
+ for (i = nregs - 1; i >= 0; --i)
+ if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
+ break;
+
+ if (i >= 0)
+ CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
+ cur_reg);
+ }
+
+ AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
+ reg_rename_p->unavailable_hard_regs);
+
+ /* Regno is always ok from the renaming part of view, but it really
+ could be in *unavailable_hard_regs already, so set it here instead
+ of there. */
+ SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
+}
+
+/* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
+ best register more recently than REG2. */
+static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
+
+/* Indicates the number of times renaming happened before the current one. */
+static int reg_rename_this_tick;
+
+/* Choose the register among free, that is suitable for storing
+ the rhs value.
+
+ ORIGINAL_INSNS is the list of insns where the operation (rhs)
+ originally appears. There could be multiple original operations
+ for single rhs since we moving it up and merging along different
+ paths.
+
+ Some code is adapted from regrename.c (regrename_optimize).
+ If original register is available, function returns it.
+ Otherwise it performs the checks, so the new register should
+ comply with the following:
+ - it should not violate any live ranges (such registers are in
+ REG_RENAME_P->available_for_renaming set);
+ - it should not be in the HARD_REGS_USED regset;
+ - it should be in the class compatible with original uses;
+ - it should not be clobbered through reference with different mode;
+ - if we're in the leaf function, then the new register should
+ not be in the LEAF_REGISTERS;
+ - etc.
+
+ If several registers meet the conditions, the register with smallest
+ tick is returned to achieve more even register allocation.
+
+ If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
+
+ If no register satisfies the above conditions, NULL_RTX is returned. */
+static rtx
+choose_best_reg_1 (HARD_REG_SET hard_regs_used,
+ struct reg_rename *reg_rename_p,
+ def_list_t original_insns, bool *is_orig_reg_p_ptr)
+{
+ int best_new_reg;
+ unsigned cur_reg;
+ enum machine_mode mode = VOIDmode;
+ unsigned regno, i, n;
+ hard_reg_set_iterator hrsi;
+ def_list_iterator di;
+ def_t def;
+
+ /* If original register is available, return it. */
+ *is_orig_reg_p_ptr = true;
+
+ FOR_EACH_DEF (def, di, original_insns)
+ {
+ rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
+
+ gcc_assert (REG_P (orig_dest));
+
+ /* Check that all original operations have the same mode.
+ This is done for the next loop; if we'd return from this
+ loop, we'd check only part of them, but in this case
+ it doesn't matter. */
+ if (mode == VOIDmode)
+ mode = GET_MODE (orig_dest);
+ gcc_assert (mode == GET_MODE (orig_dest));
+
+ regno = REGNO (orig_dest);
+ for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
+ if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
+ break;
+
+ /* All hard registers are available. */
+ if (i == n)
+ {
+ gcc_assert (mode != VOIDmode);
+
+ /* Hard registers should not be shared. */
+ return gen_rtx_REG (mode, regno);
+ }
+ }
+
+ *is_orig_reg_p_ptr = false;
+ best_new_reg = -1;
+
+ /* Among all available regs choose the register that was
+ allocated earliest. */
+ EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
+ 0, cur_reg, hrsi)
+ if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
+ {
+ /* Check that all hard regs for mode are available. */
+ for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
+ if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
+ || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
+ cur_reg + i))
+ break;
+
+ if (i < n)
+ continue;
+
+ /* All hard registers are available. */
+ if (best_new_reg < 0
+ || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
+ {
+ best_new_reg = cur_reg;
+
+ /* Return immediately when we know there's no better reg. */
+ if (! reg_rename_tick[best_new_reg])
+ break;
+ }
+ }
+
+ if (best_new_reg >= 0)
+ {
+ /* Use the check from the above loop. */
+ gcc_assert (mode != VOIDmode);
+ return gen_rtx_REG (mode, best_new_reg);
+ }
+
+ return NULL_RTX;
+}
+
+/* A wrapper around choose_best_reg_1 () to verify that we make correct
+ assumptions about available registers in the function. */
+static rtx
+choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
+ def_list_t original_insns, bool *is_orig_reg_p_ptr)
+{
+ rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
+ original_insns, is_orig_reg_p_ptr);
+
+ /* FIXME loop over hard_regno_nregs here. */
+ gcc_assert (best_reg == NULL_RTX
+ || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
+
+ return best_reg;
+}
+
+/* Choose the pseudo register for storing rhs value. As this is supposed
+ to work before reload, we return either the original register or make
+ the new one. The parameters are the same that in choose_nest_reg_1
+ functions, except that USED_REGS may contain pseudos.
+ If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
+
+ TODO: take into account register pressure while doing this. Up to this
+ moment, this function would never return NULL for pseudos, but we should
+ not rely on this. */
+static rtx
+choose_best_pseudo_reg (regset used_regs,
+ struct reg_rename *reg_rename_p,
+ def_list_t original_insns, bool *is_orig_reg_p_ptr)
+{
+ def_list_iterator i;
+ def_t def;
+ enum machine_mode mode = VOIDmode;
+ bool bad_hard_regs = false;
+
+ /* We should not use this after reload. */
+ gcc_assert (!reload_completed);
+
+ /* If original register is available, return it. */
+ *is_orig_reg_p_ptr = true;
+
+ FOR_EACH_DEF (def, i, original_insns)
+ {
+ rtx dest = SET_DEST (PATTERN (def->orig_insn));
+ int orig_regno;
+
+ gcc_assert (REG_P (dest));
+
+ /* Check that all original operations have the same mode. */
+ if (mode == VOIDmode)
+ mode = GET_MODE (dest);
+ else
+ gcc_assert (mode == GET_MODE (dest));
+ orig_regno = REGNO (dest);
+
+ if (!REGNO_REG_SET_P (used_regs, orig_regno))
+ {
+ if (orig_regno < FIRST_PSEUDO_REGISTER)
+ {
+ gcc_assert (df_regs_ever_live_p (orig_regno));
+
+ /* For hard registers, we have to check hardware imposed
+ limitations (frame/stack registers, calls crossed). */
+ if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
+ orig_regno))
+ {
+ /* Don't let register cross a call if it doesn't already
+ cross one. This condition is written in accordance with
+ that in sched-deps.c sched_analyze_reg(). */
+ if (!reg_rename_p->crosses_call
+ || REG_N_CALLS_CROSSED (orig_regno) > 0)
+ return gen_rtx_REG (mode, orig_regno);
+ }
+
+ bad_hard_regs = true;
+ }
+ else
+ return dest;
+ }
+ }
+
+ *is_orig_reg_p_ptr = false;
+
+ /* We had some original hard registers that couldn't be used.
+ Those were likely special. Don't try to create a pseudo. */
+ if (bad_hard_regs)
+ return NULL_RTX;
+
+ /* We haven't found a register from original operations. Get a new one.
+ FIXME: control register pressure somehow. */
+ {
+ rtx new_reg = gen_reg_rtx (mode);
+
+ gcc_assert (mode != VOIDmode);
+
+ max_regno = max_reg_num ();
+ maybe_extend_reg_info_p ();
+ REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
+
+ return new_reg;
+ }
+}
+
+/* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
+ USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
+static void
+verify_target_availability (expr_t expr, regset used_regs,
+ struct reg_rename *reg_rename_p)
+{
+ unsigned n, i, regno;
+ enum machine_mode mode;
+ bool target_available, live_available, hard_available;
+
+ if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
+ return;
+
+ regno = expr_dest_regno (expr);
+ mode = GET_MODE (EXPR_LHS (expr));
+ target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
+ n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs[regno][mode] : 1;
+
+ live_available = hard_available = true;
+ for (i = 0; i < n; i++)
+ {
+ if (bitmap_bit_p (used_regs, regno + i))
+ live_available = false;
+ if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
+ hard_available = false;
+ }
+
+ /* When target is not available, it may be due to hard register
+ restrictions, e.g. crosses calls, so we check hard_available too. */
+ if (target_available)
+ gcc_assert (live_available);
+ else
+ /* Check only if we haven't scheduled something on the previous fence,
+ cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
+ and having more than one fence, we may end having targ_un in a block
+ in which successors target register is actually available.
+
+ The last condition handles the case when a dependence from a call insn
+ was created in sched-deps.c for insns with destination registers that
+ never crossed a call before, but do cross one after our code motion.
+
+ FIXME: in the latter case, we just uselessly called find_used_regs,
+ because we can't move this expression with any other register
+ as well. */
+ gcc_assert (scheduled_something_on_previous_fence || !live_available
+ || !hard_available
+ || (!reload_completed && reg_rename_p->crosses_call
+ && REG_N_CALLS_CROSSED (regno) == 0));
+}
+
+/* Collect unavailable registers due to liveness for EXPR from BNDS
+ into USED_REGS. Save additional information about available
+ registers and unavailable due to hardware restriction registers
+ into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
+ list. */
+static void
+collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
+ struct reg_rename *reg_rename_p,
+ def_list_t *original_insns)
+{
+ for (; bnds; bnds = BLIST_NEXT (bnds))
+ {
+ bool res;
+ av_set_t orig_ops = NULL;
+ bnd_t bnd = BLIST_BND (bnds);
+
+ /* If the chosen best expr doesn't belong to current boundary,
+ skip it. */
+ if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
+ continue;
+
+ /* Put in ORIG_OPS all exprs from this boundary that became
+ RES on top. */
+ orig_ops = find_sequential_best_exprs (bnd, expr, false);
+
+ /* Compute used regs and OR it into the USED_REGS. */
+ res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
+ reg_rename_p, original_insns);
+
+ /* FIXME: the assert is true until we'd have several boundaries. */
+ gcc_assert (res);
+ av_set_clear (&orig_ops);
+ }
+}
+
+/* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
+ If BEST_REG is valid, replace LHS of EXPR with it. */
+static bool
+try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
+{
+ /* Try whether we'll be able to generate the insn
+ 'dest := best_reg' at the place of the original operation. */
+ for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
+ {
+ insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
+
+ gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
+
+ if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
+ && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
+ || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
+ return false;
+ }
+
+ /* Make sure that EXPR has the right destination
+ register. */
+ if (expr_dest_regno (expr) != REGNO (best_reg))
+ replace_dest_with_reg_in_expr (expr, best_reg);
+ else
+ EXPR_TARGET_AVAILABLE (expr) = 1;
+
+ return true;
+}
+
+/* Select and assign best register to EXPR searching from BNDS.
+ Set *IS_ORIG_REG_P to TRUE if original register was selected.
+ Return FALSE if no register can be chosen, which could happen when:
+ * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
+ * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
+ that are used on the moving path. */
+static bool
+find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
+{
+ static struct reg_rename reg_rename_data;
+
+ regset used_regs;
+ def_list_t original_insns = NULL;
+ bool reg_ok;
+
+ *is_orig_reg_p = false;
+
+ /* Don't bother to do anything if this insn doesn't set any registers. */
+ if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
+ && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
+ return true;
+
+ used_regs = get_clear_regset_from_pool ();
+ CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
+
+ collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
+ &original_insns);
+
+#ifdef ENABLE_CHECKING
+ /* If after reload, make sure we're working with hard regs here. */
+ if (reload_completed)
+ {
+ reg_set_iterator rsi;
+ unsigned i;
+
+ EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
+ gcc_unreachable ();
+ }
+#endif
+
+ if (EXPR_SEPARABLE_P (expr))
+ {
+ rtx best_reg = NULL_RTX;
+ /* Check that we have computed availability of a target register
+ correctly. */
+ verify_target_availability (expr, used_regs, &reg_rename_data);
+
+ /* Turn everything in hard regs after reload. */
+ if (reload_completed)
+ {
+ HARD_REG_SET hard_regs_used;
+ REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
+
+ /* Join hard registers unavailable due to register class
+ restrictions and live range intersection. */
+ IOR_HARD_REG_SET (hard_regs_used,
+ reg_rename_data.unavailable_hard_regs);
+
+ best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
+ original_insns, is_orig_reg_p);
+ }
+ else
+ best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
+ original_insns, is_orig_reg_p);
+
+ if (!best_reg)
+ reg_ok = false;
+ else if (*is_orig_reg_p)
+ {
+ /* In case of unification BEST_REG may be different from EXPR's LHS
+ when EXPR's LHS is unavailable, and there is another LHS among
+ ORIGINAL_INSNS. */
+ reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
+ }
+ else
+ {
+ /* Forbid renaming of low-cost insns. */
+ if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
+ reg_ok = false;
+ else
+ reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
+ }
+ }
+ else
+ {
+ /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
+ any of the HARD_REGS_USED set. */
+ if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
+ reg_rename_data.unavailable_hard_regs))
+ {
+ reg_ok = false;
+ gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
+ }
+ else
+ {
+ reg_ok = true;
+ gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
+ }
+ }
+
+ ilist_clear (&original_insns);
+ return_regset_to_pool (used_regs);
+
+ return reg_ok;
+}
+
+
+/* Return true if dependence described by DS can be overcomed. */
+static bool
+can_speculate_dep_p (ds_t ds)
+{
+ if (spec_info == NULL)
+ return false;
+
+ /* Leave only speculative data. */
+ ds &= SPECULATIVE;
+
+ if (ds == 0)
+ return false;
+
+ {
+ /* FIXME: make sched-deps.c produce only those non-hard dependencies,
+ that we can overcome. */
+ ds_t spec_mask = spec_info->mask;
+
+ if ((ds & spec_mask) != ds)
+ return false;
+ }
+
+ if (ds_weak (ds) < spec_info->data_weakness_cutoff)
+ return false;
+
+ return true;
+}
+
+/* Get a speculation check instruction.
+ C_EXPR is a speculative expression,
+ CHECK_DS describes speculations that should be checked,
+ ORIG_INSN is the original non-speculative insn in the stream. */
+static insn_t
+create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
+{
+ rtx check_pattern;
+ rtx insn_rtx;
+ insn_t insn;
+ basic_block recovery_block;
+ rtx label;
+
+ /* Create a recovery block if target is going to emit branchy check, or if
+ ORIG_INSN was speculative already. */
+ if (targetm.sched.needs_block_p (check_ds)
+ || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
+ {
+ recovery_block = sel_create_recovery_block (orig_insn);
+ label = BB_HEAD (recovery_block);
+ }
+ else
+ {
+ recovery_block = NULL;
+ label = NULL_RTX;
+ }
+
+ /* Get pattern of the check. */
+ check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
+ check_ds);
+
+ gcc_assert (check_pattern != NULL);
+
+ /* Emit check. */
+ insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
+
+ insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
+ INSN_SEQNO (orig_insn), orig_insn);
+
+ /* Make check to be non-speculative. */
+ EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
+ INSN_SPEC_CHECKED_DS (insn) = check_ds;
+
+ /* Decrease priority of check by difference of load/check instruction
+ latencies. */
+ EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
+ - sel_vinsn_cost (INSN_VINSN (insn)));
+
+ /* Emit copy of original insn (though with replaced target register,
+ if needed) to the recovery block. */
+ if (recovery_block != NULL)
+ {
+ rtx twin_rtx;
+
+ twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
+ twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
+ sel_gen_recovery_insn_from_rtx_after (twin_rtx,
+ INSN_EXPR (orig_insn),
+ INSN_SEQNO (insn),
+ bb_note (recovery_block));
+ }
+
+ /* If we've generated a data speculation check, make sure
+ that all the bookkeeping instruction we'll create during
+ this move_op () will allocate an ALAT entry so that the
+ check won't fail.
+ In case of control speculation we must convert C_EXPR to control
+ speculative mode, because failing to do so will bring us an exception
+ thrown by the non-control-speculative load. */
+ check_ds = ds_get_max_dep_weak (check_ds);
+ speculate_expr (c_expr, check_ds);
+
+ return insn;
+}
+
+/* True when INSN is a "regN = regN" copy. */
+static bool
+identical_copy_p (rtx insn)
+{
+ rtx lhs, rhs, pat;
+
+ pat = PATTERN (insn);
+
+ if (GET_CODE (pat) != SET)
+ return false;
+
+ lhs = SET_DEST (pat);
+ if (!REG_P (lhs))
+ return false;
+
+ rhs = SET_SRC (pat);
+ if (!REG_P (rhs))
+ return false;
+
+ return REGNO (lhs) == REGNO (rhs);
+}
+
+/* Undo all transformations on *AV_PTR that were done when
+ moving through INSN. */
+static void
+undo_transformations (av_set_t *av_ptr, rtx insn)
+{
+ av_set_iterator av_iter;
+ expr_t expr;
+ av_set_t new_set = NULL;
+
+ /* First, kill any EXPR that uses registers set by an insn. This is
+ required for correctness. */
+ FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
+ if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
+ && bitmap_intersect_p (INSN_REG_SETS (insn),
+ VINSN_REG_USES (EXPR_VINSN (expr)))
+ /* When an insn looks like 'r1 = r1', we could substitute through
+ it, but the above condition will still hold. This happened with
+ gcc.c-torture/execute/961125-1.c. */
+ && !identical_copy_p (insn))
+ {
+ if (sched_verbose >= 6)
+ sel_print ("Expr %d removed due to use/set conflict\n",
+ INSN_UID (EXPR_INSN_RTX (expr)));
+ av_set_iter_remove (&av_iter);
+ }
+
+ /* Undo transformations looking at the history vector. */
+ FOR_EACH_EXPR (expr, av_iter, *av_ptr)
+ {
+ int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
+ insn, EXPR_VINSN (expr), true);
+
+ if (index >= 0)
+ {
+ expr_history_def *phist;
+
+ phist = &EXPR_HISTORY_OF_CHANGES (expr)[index];
+
+ switch (phist->type)
+ {
+ case TRANS_SPECULATION:
+ {
+ ds_t old_ds, new_ds;
+
+ /* Compute the difference between old and new speculative
+ statuses: that's what we need to check.
+ Earlier we used to assert that the status will really
+ change. This no longer works because only the probability
+ bits in the status may have changed during compute_av_set,
+ and in the case of merging different probabilities of the
+ same speculative status along different paths we do not
+ record this in the history vector. */
+ old_ds = phist->spec_ds;
+ new_ds = EXPR_SPEC_DONE_DS (expr);
+
+ old_ds &= SPECULATIVE;
+ new_ds &= SPECULATIVE;
+ new_ds &= ~old_ds;
+
+ EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
+ break;
+ }
+ case TRANS_SUBSTITUTION:
+ {
+ expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
+ vinsn_t new_vi;
+ bool add = true;
+
+ new_vi = phist->old_expr_vinsn;
+
+ gcc_assert (VINSN_SEPARABLE_P (new_vi)
+ == EXPR_SEPARABLE_P (expr));
+ copy_expr (tmp_expr, expr);
+
+ if (vinsn_equal_p (phist->new_expr_vinsn,
+ EXPR_VINSN (tmp_expr)))
+ change_vinsn_in_expr (tmp_expr, new_vi);
+ else
+ /* This happens when we're unsubstituting on a bookkeeping
+ copy, which was in turn substituted. The history is wrong
+ in this case. Do it the hard way. */
+ add = substitute_reg_in_expr (tmp_expr, insn, true);
+ if (add)
+ av_set_add (&new_set, tmp_expr);
+ clear_expr (tmp_expr);
+ break;
+ }
+ default:
+ gcc_unreachable ();
+ }
+ }
+
+ }
+
+ av_set_union_and_clear (av_ptr, &new_set, NULL);
+}
+
+
+/* Moveup_* helpers for code motion and computing av sets. */
+
+/* Propagates EXPR inside an insn group through THROUGH_INSN.
+ The difference from the below function is that only substitution is
+ performed. */
+static enum MOVEUP_EXPR_CODE
+moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
+{
+ vinsn_t vi = EXPR_VINSN (expr);
+ ds_t *has_dep_p;
+ ds_t full_ds;
+
+ /* Do this only inside insn group. */
+ gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
+
+ full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
+ if (full_ds == 0)
+ return MOVEUP_EXPR_SAME;
+
+ /* Substitution is the possible choice in this case. */
+ if (has_dep_p[DEPS_IN_RHS])
+ {
+ /* Can't substitute UNIQUE VINSNs. */
+ gcc_assert (!VINSN_UNIQUE_P (vi));
+
+ if (can_substitute_through_p (through_insn,
+ has_dep_p[DEPS_IN_RHS])
+ && substitute_reg_in_expr (expr, through_insn, false))
+ {
+ EXPR_WAS_SUBSTITUTED (expr) = true;
+ return MOVEUP_EXPR_CHANGED;
+ }
+
+ /* Don't care about this, as even true dependencies may be allowed
+ in an insn group. */
+ return MOVEUP_EXPR_SAME;
+ }
+
+ /* This can catch output dependencies in COND_EXECs. */
+ if (has_dep_p[DEPS_IN_INSN])
+ return MOVEUP_EXPR_NULL;
+
+ /* This is either an output or an anti dependence, which usually have
+ a zero latency. Allow this here, if we'd be wrong, tick_check_p
+ will fix this. */
+ gcc_assert (has_dep_p[DEPS_IN_LHS]);
+ return MOVEUP_EXPR_AS_RHS;
+}
+
+/* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
+#define CANT_MOVE_TRAPPING(expr, through_insn) \
+ (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
+ && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
+ && !sel_insn_is_speculation_check (through_insn))
+
+/* True when a conflict on a target register was found during moveup_expr. */
+static bool was_target_conflict = false;
+
+/* Return true when moving a debug INSN across THROUGH_INSN will
+ create a bookkeeping block. We don't want to create such blocks,
+ for they would cause codegen differences between compilations with
+ and without debug info. */
+
+static bool
+moving_insn_creates_bookkeeping_block_p (insn_t insn,
+ insn_t through_insn)
+{
+ basic_block bbi, bbt;
+ edge e1, e2;
+ edge_iterator ei1, ei2;
+
+ if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
+ {
+ if (sched_verbose >= 9)
+ sel_print ("no bookkeeping required: ");
+ return FALSE;
+ }
+
+ bbi = BLOCK_FOR_INSN (insn);
+
+ if (EDGE_COUNT (bbi->preds) == 1)
+ {
+ if (sched_verbose >= 9)
+ sel_print ("only one pred edge: ");
+ return TRUE;
+ }
+
+ bbt = BLOCK_FOR_INSN (through_insn);
+
+ FOR_EACH_EDGE (e1, ei1, bbt->succs)
+ {
+ FOR_EACH_EDGE (e2, ei2, bbi->preds)
+ {
+ if (find_block_for_bookkeeping (e1, e2, TRUE))
+ {
+ if (sched_verbose >= 9)
+ sel_print ("found existing block: ");
+ return FALSE;
+ }
+ }
+ }
+
+ if (sched_verbose >= 9)
+ sel_print ("would create bookkeeping block: ");
+
+ return TRUE;
+}
+
+/* Return true when the conflict with newly created implicit clobbers
+ between EXPR and THROUGH_INSN is found because of renaming. */
+static bool
+implicit_clobber_conflict_p (insn_t through_insn, expr_t expr)
+{
+ HARD_REG_SET temp;
+ rtx insn, reg, rhs, pat;
+ hard_reg_set_iterator hrsi;
+ unsigned regno;
+ bool valid;
+
+ /* Make a new pseudo register. */
+ reg = gen_reg_rtx (GET_MODE (EXPR_LHS (expr)));
+ max_regno = max_reg_num ();
+ maybe_extend_reg_info_p ();
+
+ /* Validate a change and bail out early. */
+ insn = EXPR_INSN_RTX (expr);
+ validate_change (insn, &SET_DEST (PATTERN (insn)), reg, true);
+ valid = verify_changes (0);
+ cancel_changes (0);
+ if (!valid)
+ {
+ if (sched_verbose >= 6)
+ sel_print ("implicit clobbers failed validation, ");
+ return true;
+ }
+
+ /* Make a new insn with it. */
+ rhs = copy_rtx (VINSN_RHS (EXPR_VINSN (expr)));
+ pat = gen_rtx_SET (VOIDmode, reg, rhs);
+ start_sequence ();
+ insn = emit_insn (pat);
+ end_sequence ();
+
+ /* Calculate implicit clobbers. */
+ extract_insn (insn);
+ preprocess_constraints ();
+ ira_implicitly_set_insn_hard_regs (&temp);
+ AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
+
+ /* If any implicit clobber registers intersect with regular ones in
+ through_insn, we have a dependency and thus bail out. */
+ EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
+ {
+ vinsn_t vi = INSN_VINSN (through_insn);
+ if (bitmap_bit_p (VINSN_REG_SETS (vi), regno)
+ || bitmap_bit_p (VINSN_REG_CLOBBERS (vi), regno)
+ || bitmap_bit_p (VINSN_REG_USES (vi), regno))
+ return true;
+ }
+
+ return false;
+}
+
+/* Modifies EXPR so it can be moved through the THROUGH_INSN,
+ performing necessary transformations. Record the type of transformation
+ made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
+ permit all dependencies except true ones, and try to remove those
+ too via forward substitution. All cases when a non-eliminable
+ non-zero cost dependency exists inside an insn group will be fixed
+ in tick_check_p instead. */
+static enum MOVEUP_EXPR_CODE
+moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
+ enum local_trans_type *ptrans_type)
+{
+ vinsn_t vi = EXPR_VINSN (expr);
+ insn_t insn = VINSN_INSN_RTX (vi);
+ bool was_changed = false;
+ bool as_rhs = false;
+ ds_t *has_dep_p;
+ ds_t full_ds;
+
+ /* ??? We use dependencies of non-debug insns on debug insns to
+ indicate that the debug insns need to be reset if the non-debug
+ insn is pulled ahead of it. It's hard to figure out how to
+ introduce such a notion in sel-sched, but it already fails to
+ support debug insns in other ways, so we just go ahead and
+ let the deug insns go corrupt for now. */
+ if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
+ return MOVEUP_EXPR_SAME;
+
+ /* When inside_insn_group, delegate to the helper. */
+ if (inside_insn_group)
+ return moveup_expr_inside_insn_group (expr, through_insn);
+
+ /* Deal with unique insns and control dependencies. */
+ if (VINSN_UNIQUE_P (vi))
+ {
+ /* We can move jumps without side-effects or jumps that are
+ mutually exclusive with instruction THROUGH_INSN (all in cases
+ dependencies allow to do so and jump is not speculative). */
+ if (control_flow_insn_p (insn))
+ {
+ basic_block fallthru_bb;
+
+ /* Do not move checks and do not move jumps through other
+ jumps. */
+ if (control_flow_insn_p (through_insn)
+ || sel_insn_is_speculation_check (insn))
+ return MOVEUP_EXPR_NULL;
+
+ /* Don't move jumps through CFG joins. */
+ if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
+ return MOVEUP_EXPR_NULL;
+
+ /* The jump should have a clear fallthru block, and
+ this block should be in the current region. */
+ if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
+ || ! in_current_region_p (fallthru_bb))
+ return MOVEUP_EXPR_NULL;
+
+ /* And it should be mutually exclusive with through_insn. */
+ if (! sched_insns_conditions_mutex_p (insn, through_insn)
+ && ! DEBUG_INSN_P (through_insn))
+ return MOVEUP_EXPR_NULL;
+ }
+
+ /* Don't move what we can't move. */
+ if (EXPR_CANT_MOVE (expr)
+ && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
+ return MOVEUP_EXPR_NULL;
+
+ /* Don't move SCHED_GROUP instruction through anything.
+ If we don't force this, then it will be possible to start
+ scheduling a sched_group before all its dependencies are
+ resolved.
+ ??? Haifa deals with this issue by delaying the SCHED_GROUP
+ as late as possible through rank_for_schedule. */
+ if (SCHED_GROUP_P (insn))
+ return MOVEUP_EXPR_NULL;
+ }
+ else
+ gcc_assert (!control_flow_insn_p (insn));
+
+ /* Don't move debug insns if this would require bookkeeping. */
+ if (DEBUG_INSN_P (insn)
+ && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
+ && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
+ return MOVEUP_EXPR_NULL;
+
+ /* Deal with data dependencies. */
+ was_target_conflict = false;
+ full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
+ if (full_ds == 0)
+ {
+ if (!CANT_MOVE_TRAPPING (expr, through_insn))
+ return MOVEUP_EXPR_SAME;
+ }
+ else
+ {
+ /* We can move UNIQUE insn up only as a whole and unchanged,
+ so it shouldn't have any dependencies. */
+ if (VINSN_UNIQUE_P (vi))
+ return MOVEUP_EXPR_NULL;
+ }
+
+ if (full_ds != 0 && can_speculate_dep_p (full_ds))
+ {
+ int res;
+
+ res = speculate_expr (expr, full_ds);
+ if (res >= 0)
+ {
+ /* Speculation was successful. */
+ full_ds = 0;
+ was_changed = (res > 0);
+ if (res == 2)
+ was_target_conflict = true;
+ if (ptrans_type)
+ *ptrans_type = TRANS_SPECULATION;
+ sel_clear_has_dependence ();
+ }
+ }
+
+ if (has_dep_p[DEPS_IN_INSN])
+ /* We have some dependency that cannot be discarded. */
+ return MOVEUP_EXPR_NULL;
+
+ if (has_dep_p[DEPS_IN_LHS])
+ {
+ /* Only separable insns can be moved up with the new register.
+ Anyways, we should mark that the original register is
+ unavailable. */
+ if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
+ return MOVEUP_EXPR_NULL;
+
+ /* When renaming a hard register to a pseudo before reload, extra
+ dependencies can occur from the implicit clobbers of the insn.
+ Filter out such cases here. */
+ if (!reload_completed && REG_P (EXPR_LHS (expr))
+ && HARD_REGISTER_P (EXPR_LHS (expr))
+ && implicit_clobber_conflict_p (through_insn, expr))
+ {
+ if (sched_verbose >= 6)
+ sel_print ("implicit clobbers conflict detected, ");
+ return MOVEUP_EXPR_NULL;
+ }
+ EXPR_TARGET_AVAILABLE (expr) = false;
+ was_target_conflict = true;
+ as_rhs = true;
+ }
+
+ /* At this point we have either separable insns, that will be lifted
+ up only as RHSes, or non-separable insns with no dependency in lhs.
+ If dependency is in RHS, then try to perform substitution and move up
+ substituted RHS:
+
+ Ex. 1: Ex.2
+ y = x; y = x;
+ z = y*2; y = y*2;
+
+ In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
+ moved above y=x assignment as z=x*2.
+
+ In Ex.2 y*2 also can be substituted for x*2, but only the right hand
+ side can be moved because of the output dependency. The operation was
+ cropped to its rhs above. */
+ if (has_dep_p[DEPS_IN_RHS])
+ {
+ ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
+
+ /* Can't substitute UNIQUE VINSNs. */
+ gcc_assert (!VINSN_UNIQUE_P (vi));
+
+ if (can_speculate_dep_p (*rhs_dsp))
+ {
+ int res;
+
+ res = speculate_expr (expr, *rhs_dsp);
+ if (res >= 0)
+ {
+ /* Speculation was successful. */
+ *rhs_dsp = 0;
+ was_changed = (res > 0);
+ if (res == 2)
+ was_target_conflict = true;
+ if (ptrans_type)
+ *ptrans_type = TRANS_SPECULATION;
+ }
+ else
+ return MOVEUP_EXPR_NULL;
+ }
+ else if (can_substitute_through_p (through_insn,
+ *rhs_dsp)
+ && substitute_reg_in_expr (expr, through_insn, false))
+ {
+ /* ??? We cannot perform substitution AND speculation on the same
+ insn. */
+ gcc_assert (!was_changed);
+ was_changed = true;
+ if (ptrans_type)
+ *ptrans_type = TRANS_SUBSTITUTION;
+ EXPR_WAS_SUBSTITUTED (expr) = true;
+ }
+ else
+ return MOVEUP_EXPR_NULL;
+ }
+
+ /* Don't move trapping insns through jumps.
+ This check should be at the end to give a chance to control speculation
+ to perform its duties. */
+ if (CANT_MOVE_TRAPPING (expr, through_insn))
+ return MOVEUP_EXPR_NULL;
+
+ return (was_changed
+ ? MOVEUP_EXPR_CHANGED
+ : (as_rhs
+ ? MOVEUP_EXPR_AS_RHS
+ : MOVEUP_EXPR_SAME));
+}
+
+/* Try to look at bitmap caches for EXPR and INSN pair, return true
+ if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
+ that can exist within a parallel group. Write to RES the resulting
+ code for moveup_expr. */
+static bool
+try_bitmap_cache (expr_t expr, insn_t insn,
+ bool inside_insn_group,
+ enum MOVEUP_EXPR_CODE *res)
+{
+ int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
+
+ /* First check whether we've analyzed this situation already. */
+ if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
+ {
+ if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
+ {
+ if (sched_verbose >= 6)
+ sel_print ("removed (cached)\n");
+ *res = MOVEUP_EXPR_NULL;
+ return true;
+ }
+ else
+ {
+ if (sched_verbose >= 6)
+ sel_print ("unchanged (cached)\n");
+ *res = MOVEUP_EXPR_SAME;
+ return true;
+ }
+ }
+ else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
+ {
+ if (inside_insn_group)
+ {
+ if (sched_verbose >= 6)
+ sel_print ("unchanged (as RHS, cached, inside insn group)\n");
+ *res = MOVEUP_EXPR_SAME;
+ return true;
+
+ }
+ else
+ EXPR_TARGET_AVAILABLE (expr) = false;
+
+ /* This is the only case when propagation result can change over time,
+ as we can dynamically switch off scheduling as RHS. In this case,
+ just check the flag to reach the correct decision. */
+ if (enable_schedule_as_rhs_p)
+ {
+ if (sched_verbose >= 6)
+ sel_print ("unchanged (as RHS, cached)\n");
+ *res = MOVEUP_EXPR_AS_RHS;
+ return true;
+ }
+ else
+ {
+ if (sched_verbose >= 6)
+ sel_print ("removed (cached as RHS, but renaming"
+ " is now disabled)\n");
+ *res = MOVEUP_EXPR_NULL;
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/* Try to look at bitmap caches for EXPR and INSN pair, return true
+ if successful. Write to RES the resulting code for moveup_expr. */
+static bool
+try_transformation_cache (expr_t expr, insn_t insn,
+ enum MOVEUP_EXPR_CODE *res)
+{
+ struct transformed_insns *pti
+ = (struct transformed_insns *)
+ htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
+ &EXPR_VINSN (expr),
+ VINSN_HASH_RTX (EXPR_VINSN (expr)));
+ if (pti)
+ {
+ /* This EXPR was already moved through this insn and was
+ changed as a result. Fetch the proper data from
+ the hashtable. */
+ insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
+ INSN_UID (insn), pti->type,
+ pti->vinsn_old, pti->vinsn_new,
+ EXPR_SPEC_DONE_DS (expr));
+
+ if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
+ pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
+ change_vinsn_in_expr (expr, pti->vinsn_new);
+ if (pti->was_target_conflict)
+ EXPR_TARGET_AVAILABLE (expr) = false;
+ if (pti->type == TRANS_SPECULATION)
+ {
+ EXPR_SPEC_DONE_DS (expr) = pti->ds;
+ EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
+ }
+
+ if (sched_verbose >= 6)
+ {
+ sel_print ("changed (cached): ");
+ dump_expr (expr);
+ sel_print ("\n");
+ }
+
+ *res = MOVEUP_EXPR_CHANGED;
+ return true;
+ }
+
+ return false;
+}
+
+/* Update bitmap caches on INSN with result RES of propagating EXPR. */
+static void
+update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
+ enum MOVEUP_EXPR_CODE res)
+{
+ int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
+
+ /* Do not cache result of propagating jumps through an insn group,
+ as it is always true, which is not useful outside the group. */
+ if (inside_insn_group)
+ return;
+
+ if (res == MOVEUP_EXPR_NULL)
+ {
+ bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
+ bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
+ }
+ else if (res == MOVEUP_EXPR_SAME)
+ {
+ bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
+ bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
+ }
+ else if (res == MOVEUP_EXPR_AS_RHS)
+ {
+ bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
+ bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
+ }
+ else
+ gcc_unreachable ();
+}
+
+/* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
+ and transformation type TRANS_TYPE. */
+static void
+update_transformation_cache (expr_t expr, insn_t insn,
+ bool inside_insn_group,
+ enum local_trans_type trans_type,
+ vinsn_t expr_old_vinsn)
+{
+ struct transformed_insns *pti;
+
+ if (inside_insn_group)
+ return;
+
+ pti = XNEW (struct transformed_insns);
+ pti->vinsn_old = expr_old_vinsn;
+ pti->vinsn_new = EXPR_VINSN (expr);
+ pti->type = trans_type;
+ pti->was_target_conflict = was_target_conflict;
+ pti->ds = EXPR_SPEC_DONE_DS (expr);
+ pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
+ vinsn_attach (pti->vinsn_old);
+ vinsn_attach (pti->vinsn_new);
+ *((struct transformed_insns **)
+ htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
+ pti, VINSN_HASH_RTX (expr_old_vinsn),
+ INSERT)) = pti;
+}
+
+/* Same as moveup_expr, but first looks up the result of
+ transformation in caches. */
+static enum MOVEUP_EXPR_CODE
+moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
+{
+ enum MOVEUP_EXPR_CODE res;
+ bool got_answer = false;
+
+ if (sched_verbose >= 6)
+ {
+ sel_print ("Moving ");
+ dump_expr (expr);
+ sel_print (" through %d: ", INSN_UID (insn));
+ }
+
+ if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
+ && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
+ == EXPR_INSN_RTX (expr)))
+ /* Don't use cached information for debug insns that are heads of
+ basic blocks. */;
+ else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
+ /* When inside insn group, we do not want remove stores conflicting
+ with previosly issued loads. */
+ got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
+ else if (try_transformation_cache (expr, insn, &res))
+ got_answer = true;
+
+ if (! got_answer)
+ {
+ /* Invoke moveup_expr and record the results. */
+ vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
+ ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
+ int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
+ bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
+ enum local_trans_type trans_type = TRANS_SUBSTITUTION;
+
+ /* ??? Invent something better than this. We can't allow old_vinsn
+ to go, we need it for the history vector. */
+ vinsn_attach (expr_old_vinsn);
+
+ res = moveup_expr (expr, insn, inside_insn_group,
+ &trans_type);
+ switch (res)
+ {
+ case MOVEUP_EXPR_NULL:
+ update_bitmap_cache (expr, insn, inside_insn_group, res);
+ if (sched_verbose >= 6)
+ sel_print ("removed\n");
+ break;
+
+ case MOVEUP_EXPR_SAME:
+ update_bitmap_cache (expr, insn, inside_insn_group, res);
+ if (sched_verbose >= 6)
+ sel_print ("unchanged\n");
+ break;
+
+ case MOVEUP_EXPR_AS_RHS:
+ gcc_assert (!unique_p || inside_insn_group);
+ update_bitmap_cache (expr, insn, inside_insn_group, res);
+ if (sched_verbose >= 6)
+ sel_print ("unchanged (as RHS)\n");
+ break;
+
+ case MOVEUP_EXPR_CHANGED:
+ gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
+ || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
+ insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
+ INSN_UID (insn), trans_type,
+ expr_old_vinsn, EXPR_VINSN (expr),
+ expr_old_spec_ds);
+ update_transformation_cache (expr, insn, inside_insn_group,
+ trans_type, expr_old_vinsn);
+ if (sched_verbose >= 6)
+ {
+ sel_print ("changed: ");
+ dump_expr (expr);
+ sel_print ("\n");
+ }
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ vinsn_detach (expr_old_vinsn);
+ }
+
+ return res;
+}
+
+/* Moves an av set AVP up through INSN, performing necessary
+ transformations. */
+static void
+moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
+{
+ av_set_iterator i;
+ expr_t expr;
+
+ FOR_EACH_EXPR_1 (expr, i, avp)
+ {
+
+ switch (moveup_expr_cached (expr, insn, inside_insn_group))
+ {
+ case MOVEUP_EXPR_SAME:
+ case MOVEUP_EXPR_AS_RHS:
+ break;
+
+ case MOVEUP_EXPR_NULL:
+ av_set_iter_remove (&i);
+ break;
+
+ case MOVEUP_EXPR_CHANGED:
+ expr = merge_with_other_exprs (avp, &i, expr);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ }
+}
+
+/* Moves AVP set along PATH. */
+static void
+moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
+{
+ int last_cycle;
+
+ if (sched_verbose >= 6)
+ sel_print ("Moving expressions up in the insn group...\n");
+ if (! path)
+ return;
+ last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
+ while (path
+ && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
+ {
+ moveup_set_expr (avp, ILIST_INSN (path), true);
+ path = ILIST_NEXT (path);
+ }
+}
+
+/* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
+static bool
+equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
+{
+ expr_def _tmp, *tmp = &_tmp;
+ int last_cycle;
+ bool res = true;
+
+ copy_expr_onside (tmp, expr);
+ last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
+ while (path
+ && res
+ && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
+ {
+ res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
+ != MOVEUP_EXPR_NULL);
+ path = ILIST_NEXT (path);
+ }
+
+ if (res)
+ {
+ vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
+ vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
+
+ if (tmp_vinsn != expr_vliw_vinsn)
+ res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
+ }
+
+ clear_expr (tmp);
+ return res;
+}
+
+
+/* Functions that compute av and lv sets. */
+
+/* Returns true if INSN is not a downward continuation of the given path P in
+ the current stage. */
+static bool
+is_ineligible_successor (insn_t insn, ilist_t p)
+{
+ insn_t prev_insn;
+
+ /* Check if insn is not deleted. */
+ if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
+ gcc_unreachable ();
+ else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
+ gcc_unreachable ();
+
+ /* If it's the first insn visited, then the successor is ok. */
+ if (!p)
+ return false;
+
+ prev_insn = ILIST_INSN (p);
+
+ if (/* a backward edge. */
+ INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
+ /* is already visited. */
+ || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
+ && (ilist_is_in_p (p, insn)
+ /* We can reach another fence here and still seqno of insn
+ would be equal to seqno of prev_insn. This is possible
+ when prev_insn is a previously created bookkeeping copy.
+ In that case it'd get a seqno of insn. Thus, check here
+ whether insn is in current fence too. */
+ || IN_CURRENT_FENCE_P (insn)))
+ /* Was already scheduled on this round. */
+ || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
+ && IN_CURRENT_FENCE_P (insn))
+ /* An insn from another fence could also be
+ scheduled earlier even if this insn is not in
+ a fence list right now. Check INSN_SCHED_CYCLE instead. */
+ || (!pipelining_p
+ && INSN_SCHED_TIMES (insn) > 0))
+ return true;
+ else
+ return false;
+}
+
+/* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
+ of handling multiple successors and properly merging its av_sets. P is
+ the current path traversed. WS is the size of lookahead window.
+ Return the av set computed. */
+static av_set_t
+compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
+{
+ struct succs_info *sinfo;
+ av_set_t expr_in_all_succ_branches = NULL;
+ int is;
+ insn_t succ, zero_succ = NULL;
+ av_set_t av1 = NULL;
+
+ gcc_assert (sel_bb_end_p (insn));
+
+ /* Find different kind of successors needed for correct computing of
+ SPEC and TARGET_AVAILABLE attributes. */
+ sinfo = compute_succs_info (insn, SUCCS_NORMAL);
+
+ /* Debug output. */
+ if (sched_verbose >= 6)
+ {
+ sel_print ("successors of bb end (%d): ", INSN_UID (insn));
+ dump_insn_vector (sinfo->succs_ok);
+ sel_print ("\n");
+ if (sinfo->succs_ok_n != sinfo->all_succs_n)
+ sel_print ("real successors num: %d\n", sinfo->all_succs_n);
+ }
+
+ /* Add insn to the tail of current path. */
+ ilist_add (&p, insn);
+
+ FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
+ {
+ av_set_t succ_set;
+
+ /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
+ succ_set = compute_av_set_inside_bb (succ, p, ws, true);
+
+ av_set_split_usefulness (succ_set,
+ sinfo->probs_ok[is],
+ sinfo->all_prob);
+
+ if (sinfo->all_succs_n > 1)
+ {
+ /* Find EXPR'es that came from *all* successors and save them
+ into expr_in_all_succ_branches. This set will be used later
+ for calculating speculation attributes of EXPR'es. */
+ if (is == 0)
+ {
+ expr_in_all_succ_branches = av_set_copy (succ_set);
+
+ /* Remember the first successor for later. */
+ zero_succ = succ;
+ }
+ else
+ {
+ av_set_iterator i;
+ expr_t expr;
+
+ FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
+ if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
+ av_set_iter_remove (&i);
+ }
+ }
+
+ /* Union the av_sets. Check liveness restrictions on target registers
+ in special case of two successors. */
+ if (sinfo->succs_ok_n == 2 && is == 1)
+ {
+ basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
+ basic_block bb1 = BLOCK_FOR_INSN (succ);
+
+ gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
+ av_set_union_and_live (&av1, &succ_set,
+ BB_LV_SET (bb0),
+ BB_LV_SET (bb1),
+ insn);
+ }
+ else
+ av_set_union_and_clear (&av1, &succ_set, insn);
+ }
+
+ /* Check liveness restrictions via hard way when there are more than
+ two successors. */
+ if (sinfo->succs_ok_n > 2)
+ FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
+ {
+ basic_block succ_bb = BLOCK_FOR_INSN (succ);
+
+ gcc_assert (BB_LV_SET_VALID_P (succ_bb));
+ mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
+ BB_LV_SET (succ_bb));
+ }
+
+ /* Finally, check liveness restrictions on paths leaving the region. */
+ if (sinfo->all_succs_n > sinfo->succs_ok_n)
+ FOR_EACH_VEC_ELT (sinfo->succs_other, is, succ)
+ mark_unavailable_targets
+ (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
+
+ if (sinfo->all_succs_n > 1)
+ {
+ av_set_iterator i;
+ expr_t expr;
+
+ /* Increase the spec attribute of all EXPR'es that didn't come
+ from all successors. */
+ FOR_EACH_EXPR (expr, i, av1)
+ if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
+ EXPR_SPEC (expr)++;
+
+ av_set_clear (&expr_in_all_succ_branches);
+
+ /* Do not move conditional branches through other
+ conditional branches. So, remove all conditional
+ branches from av_set if current operator is a conditional
+ branch. */
+ av_set_substract_cond_branches (&av1);
+ }
+
+ ilist_remove (&p);
+ free_succs_info (sinfo);
+
+ if (sched_verbose >= 6)
+ {
+ sel_print ("av_succs (%d): ", INSN_UID (insn));
+ dump_av_set (av1);
+ sel_print ("\n");
+ }
+
+ return av1;
+}
+
+/* This function computes av_set for the FIRST_INSN by dragging valid
+ av_set through all basic block insns either from the end of basic block
+ (computed using compute_av_set_at_bb_end) or from the insn on which
+ MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
+ below the basic block and handling conditional branches.
+ FIRST_INSN - the basic block head, P - path consisting of the insns
+ traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
+ and bb ends are added to the path), WS - current window size,
+ NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
+static av_set_t
+compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
+ bool need_copy_p)
+{
+ insn_t cur_insn;
+ int end_ws = ws;
+ insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
+ insn_t after_bb_end = NEXT_INSN (bb_end);
+ insn_t last_insn;
+ av_set_t av = NULL;
+ basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
+
+ /* Return NULL if insn is not on the legitimate downward path. */
+ if (is_ineligible_successor (first_insn, p))
+ {
+ if (sched_verbose >= 6)
+ sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
+
+ return NULL;
+ }
+
+ /* If insn already has valid av(insn) computed, just return it. */
+ if (AV_SET_VALID_P (first_insn))
+ {
+ av_set_t av_set;
+
+ if (sel_bb_head_p (first_insn))
+ av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
+ else
+ av_set = NULL;
+
+ if (sched_verbose >= 6)
+ {
+ sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
+ dump_av_set (av_set);
+ sel_print ("\n");
+ }
+
+ return need_copy_p ? av_set_copy (av_set) : av_set;
+ }
+
+ ilist_add (&p, first_insn);
+
+ /* As the result after this loop have completed, in LAST_INSN we'll
+ have the insn which has valid av_set to start backward computation
+ from: it either will be NULL because on it the window size was exceeded
+ or other valid av_set as returned by compute_av_set for the last insn
+ of the basic block. */
+ for (last_insn = first_insn; last_insn != after_bb_end;
+ last_insn = NEXT_INSN (last_insn))
+ {
+ /* We may encounter valid av_set not only on bb_head, but also on
+ those insns on which previously MAX_WS was exceeded. */
+ if (AV_SET_VALID_P (last_insn))
+ {
+ if (sched_verbose >= 6)
+ sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
+ break;
+ }
+
+ /* The special case: the last insn of the BB may be an
+ ineligible_successor due to its SEQ_NO that was set on
+ it as a bookkeeping. */
+ if (last_insn != first_insn
+ && is_ineligible_successor (last_insn, p))
+ {
+ if (sched_verbose >= 6)
+ sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
+ break;
+ }
+
+ if (DEBUG_INSN_P (last_insn))
+ continue;
+
+ if (end_ws > max_ws)
+ {
+ /* We can reach max lookahead size at bb_header, so clean av_set
+ first. */
+ INSN_WS_LEVEL (last_insn) = global_level;
+
+ if (sched_verbose >= 6)
+ sel_print ("Insn %d is beyond the software lookahead window size\n",
+ INSN_UID (last_insn));
+ break;
+ }
+
+ end_ws++;
+ }
+
+ /* Get the valid av_set into AV above the LAST_INSN to start backward
+ computation from. It either will be empty av_set or av_set computed from
+ the successors on the last insn of the current bb. */
+ if (last_insn != after_bb_end)
+ {
+ av = NULL;
+
+ /* This is needed only to obtain av_sets that are identical to
+ those computed by the old compute_av_set version. */
+ if (last_insn == first_insn && !INSN_NOP_P (last_insn))
+ av_set_add (&av, INSN_EXPR (last_insn));
+ }
+ else
+ /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
+ av = compute_av_set_at_bb_end (bb_end, p, end_ws);
+
+ /* Compute av_set in AV starting from below the LAST_INSN up to
+ location above the FIRST_INSN. */
+ for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
+ cur_insn = PREV_INSN (cur_insn))
+ if (!INSN_NOP_P (cur_insn))
+ {
+ expr_t expr;
+
+ moveup_set_expr (&av, cur_insn, false);
+
+ /* If the expression for CUR_INSN is already in the set,
+ replace it by the new one. */
+ expr = av_set_lookup (av, INSN_VINSN (cur_insn));
+ if (expr != NULL)
+ {
+ clear_expr (expr);
+ copy_expr (expr, INSN_EXPR (cur_insn));
+ }
+ else
+ av_set_add (&av, INSN_EXPR (cur_insn));
+ }
+
+ /* Clear stale bb_av_set. */
+ if (sel_bb_head_p (first_insn))
+ {
+ av_set_clear (&BB_AV_SET (cur_bb));
+ BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
+ BB_AV_LEVEL (cur_bb) = global_level;
+ }
+
+ if (sched_verbose >= 6)
+ {
+ sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
+ dump_av_set (av);
+ sel_print ("\n");
+ }
+
+ ilist_remove (&p);
+ return av;
+}
+
+/* Compute av set before INSN.
+ INSN - the current operation (actual rtx INSN)
+ P - the current path, which is list of insns visited so far
+ WS - software lookahead window size.
+ UNIQUE_P - TRUE, if returned av_set will be changed, hence
+ if we want to save computed av_set in s_i_d, we should make a copy of it.
+
+ In the resulting set we will have only expressions that don't have delay
+ stalls and nonsubstitutable dependences. */
+static av_set_t
+compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
+{
+ return compute_av_set_inside_bb (insn, p, ws, unique_p);
+}
+
+/* Propagate a liveness set LV through INSN. */
+static void
+propagate_lv_set (regset lv, insn_t insn)
+{
+ gcc_assert (INSN_P (insn));
+
+ if (INSN_NOP_P (insn))
+ return;
+
+ df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
+}
+
+/* Return livness set at the end of BB. */
+static regset
+compute_live_after_bb (basic_block bb)
+{
+ edge e;
+ edge_iterator ei;
+ regset lv = get_clear_regset_from_pool ();
+
+ gcc_assert (!ignore_first);
+
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ if (sel_bb_empty_p (e->dest))
+ {
+ if (! BB_LV_SET_VALID_P (e->dest))
+ {
+ gcc_unreachable ();
+ gcc_assert (BB_LV_SET (e->dest) == NULL);
+ BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
+ BB_LV_SET_VALID_P (e->dest) = true;
+ }
+ IOR_REG_SET (lv, BB_LV_SET (e->dest));
+ }
+ else
+ IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
+
+ return lv;
+}
+
+/* Compute the set of all live registers at the point before INSN and save
+ it at INSN if INSN is bb header. */
+regset
+compute_live (insn_t insn)
+{
+ basic_block bb = BLOCK_FOR_INSN (insn);
+ insn_t final, temp;
+ regset lv;
+
+ /* Return the valid set if we're already on it. */
+ if (!ignore_first)
+ {
+ regset src = NULL;
+
+ if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
+ src = BB_LV_SET (bb);
+ else
+ {
+ gcc_assert (in_current_region_p (bb));
+ if (INSN_LIVE_VALID_P (insn))
+ src = INSN_LIVE (insn);
+ }
+
+ if (src)
+ {
+ lv = get_regset_from_pool ();
+ COPY_REG_SET (lv, src);
+
+ if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
+ {
+ COPY_REG_SET (BB_LV_SET (bb), lv);
+ BB_LV_SET_VALID_P (bb) = true;
+ }
+
+ return_regset_to_pool (lv);
+ return lv;
+ }
+ }
+
+ /* We've skipped the wrong lv_set. Don't skip the right one. */
+ ignore_first = false;
+ gcc_assert (in_current_region_p (bb));
+
+ /* Find a valid LV set in this block or below, if needed.
+ Start searching from the next insn: either ignore_first is true, or
+ INSN doesn't have a correct live set. */
+ temp = NEXT_INSN (insn);
+ final = NEXT_INSN (BB_END (bb));
+ while (temp != final && ! INSN_LIVE_VALID_P (temp))
+ temp = NEXT_INSN (temp);
+ if (temp == final)
+ {
+ lv = compute_live_after_bb (bb);
+ temp = PREV_INSN (temp);
+ }
+ else
+ {
+ lv = get_regset_from_pool ();
+ COPY_REG_SET (lv, INSN_LIVE (temp));
+ }
+
+ /* Put correct lv sets on the insns which have bad sets. */
+ final = PREV_INSN (insn);
+ while (temp != final)
+ {
+ propagate_lv_set (lv, temp);
+ COPY_REG_SET (INSN_LIVE (temp), lv);
+ INSN_LIVE_VALID_P (temp) = true;
+ temp = PREV_INSN (temp);
+ }
+
+ /* Also put it in a BB. */
+ if (sel_bb_head_p (insn))
+ {
+ basic_block bb = BLOCK_FOR_INSN (insn);
+
+ COPY_REG_SET (BB_LV_SET (bb), lv);
+ BB_LV_SET_VALID_P (bb) = true;
+ }
+
+ /* We return LV to the pool, but will not clear it there. Thus we can
+ legimatelly use LV till the next use of regset_pool_get (). */
+ return_regset_to_pool (lv);
+ return lv;
+}
+
+/* Update liveness sets for INSN. */
+static inline void
+update_liveness_on_insn (rtx insn)
+{
+ ignore_first = true;
+ compute_live (insn);
+}
+
+/* Compute liveness below INSN and write it into REGS. */
+static inline void
+compute_live_below_insn (rtx insn, regset regs)
+{
+ rtx succ;
+ succ_iterator si;
+
+ FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
+ IOR_REG_SET (regs, compute_live (succ));
+}
+
+/* Update the data gathered in av and lv sets starting from INSN. */
+static void
+update_data_sets (rtx insn)
+{
+ update_liveness_on_insn (insn);
+ if (sel_bb_head_p (insn))
+ {
+ gcc_assert (AV_LEVEL (insn) != 0);
+ BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
+ compute_av_set (insn, NULL, 0, 0);
+ }
+}
+
+
+/* Helper for move_op () and find_used_regs ().
+ Return speculation type for which a check should be created on the place
+ of INSN. EXPR is one of the original ops we are searching for. */
+static ds_t
+get_spec_check_type_for_insn (insn_t insn, expr_t expr)
+{
+ ds_t to_check_ds;
+ ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
+
+ to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
+
+ if (targetm.sched.get_insn_checked_ds)
+ already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
+
+ if (spec_info != NULL
+ && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
+ already_checked_ds |= BEGIN_CONTROL;
+
+ already_checked_ds = ds_get_speculation_types (already_checked_ds);
+
+ to_check_ds &= ~already_checked_ds;
+
+ return to_check_ds;
+}
+
+/* Find the set of registers that are unavailable for storing expres
+ while moving ORIG_OPS up on the path starting from INSN due to
+ liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
+
+ All the original operations found during the traversal are saved in the
+ ORIGINAL_INSNS list.
+
+ REG_RENAME_P denotes the set of hardware registers that
+ can not be used with renaming due to the register class restrictions,
+ mode restrictions and other (the register we'll choose should be
+ compatible class with the original uses, shouldn't be in call_used_regs,
+ should be HARD_REGNO_RENAME_OK etc).
+
+ Returns TRUE if we've found all original insns, FALSE otherwise.
+
+ This function utilizes code_motion_path_driver (formerly find_used_regs_1)
+ to traverse the code motion paths. This helper function finds registers
+ that are not available for storing expres while moving ORIG_OPS up on the
+ path starting from INSN. A register considered as used on the moving path,
+ if one of the following conditions is not satisfied:
+
+ (1) a register not set or read on any path from xi to an instance of
+ the original operation,
+ (2) not among the live registers of the point immediately following the
+ first original operation on a given downward path, except for the
+ original target register of the operation,
+ (3) not live on the other path of any conditional branch that is passed
+ by the operation, in case original operations are not present on
+ both paths of the conditional branch.
+
+ All the original operations found during the traversal are saved in the
+ ORIGINAL_INSNS list.
+
+ REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
+ from INSN to original insn. In this case CALL_USED_REG_SET will be added
+ to unavailable hard regs at the point original operation is found. */
+
+static bool
+find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
+ struct reg_rename *reg_rename_p, def_list_t *original_insns)
+{
+ def_list_iterator i;
+ def_t def;
+ int res;
+ bool needs_spec_check_p = false;
+ expr_t expr;
+ av_set_iterator expr_iter;
+ struct fur_static_params sparams;
+ struct cmpd_local_params lparams;
+
+ /* We haven't visited any blocks yet. */
+ bitmap_clear (code_motion_visited_blocks);
+
+ /* Init parameters for code_motion_path_driver. */
+ sparams.crosses_call = false;
+ sparams.original_insns = original_insns;
+ sparams.used_regs = used_regs;
+
+ /* Set the appropriate hooks and data. */
+ code_motion_path_driver_info = &fur_hooks;
+
+ res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
+
+ reg_rename_p->crosses_call |= sparams.crosses_call;
+
+ gcc_assert (res == 1);
+ gcc_assert (original_insns && *original_insns);
+
+ /* ??? We calculate whether an expression needs a check when computing
+ av sets. This information is not as precise as it could be due to
+ merging this bit in merge_expr. We can do better in find_used_regs,
+ but we want to avoid multiple traversals of the same code motion
+ paths. */
+ FOR_EACH_EXPR (expr, expr_iter, orig_ops)
+ needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
+
+ /* Mark hardware regs in REG_RENAME_P that are not suitable
+ for renaming expr in INSN due to hardware restrictions (register class,
+ modes compatibility etc). */
+ FOR_EACH_DEF (def, i, *original_insns)
+ {
+ vinsn_t vinsn = INSN_VINSN (def->orig_insn);
+
+ if (VINSN_SEPARABLE_P (vinsn))
+ mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
+
+ /* Do not allow clobbering of ld.[sa] address in case some of the
+ original operations need a check. */
+ if (needs_spec_check_p)
+ IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
+ }
+
+ return true;
+}
+
+
+/* Functions to choose the best insn from available ones. */
+
+/* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
+static int
+sel_target_adjust_priority (expr_t expr)
+{
+ int priority = EXPR_PRIORITY (expr);
+ int new_priority;
+
+ if (targetm.sched.adjust_priority)
+ new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
+ else
+ new_priority = priority;
+
+ /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
+ EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
+
+ gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
+
+ if (sched_verbose >= 4)
+ sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
+ INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
+ EXPR_PRIORITY_ADJ (expr), new_priority);
+
+ return new_priority;
+}
+
+/* Rank two available exprs for schedule. Never return 0 here. */
+static int
+sel_rank_for_schedule (const void *x, const void *y)
+{
+ expr_t tmp = *(const expr_t *) y;
+ expr_t tmp2 = *(const expr_t *) x;
+ insn_t tmp_insn, tmp2_insn;
+ vinsn_t tmp_vinsn, tmp2_vinsn;
+ int val;
+
+ tmp_vinsn = EXPR_VINSN (tmp);
+ tmp2_vinsn = EXPR_VINSN (tmp2);
+ tmp_insn = EXPR_INSN_RTX (tmp);
+ tmp2_insn = EXPR_INSN_RTX (tmp2);
+
+ /* Schedule debug insns as early as possible. */
+ if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
+ return -1;
+ else if (DEBUG_INSN_P (tmp2_insn))
+ return 1;
+
+ /* Prefer SCHED_GROUP_P insns to any others. */
+ if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
+ {
+ if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
+ return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
+
+ /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
+ cannot be cloned. */
+ if (VINSN_UNIQUE_P (tmp2_vinsn))
+ return 1;
+ return -1;
+ }
+
+ /* Discourage scheduling of speculative checks. */
+ val = (sel_insn_is_speculation_check (tmp_insn)
+ - sel_insn_is_speculation_check (tmp2_insn));
+ if (val)
+ return val;
+
+ /* Prefer not scheduled insn over scheduled one. */
+ if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
+ {
+ val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
+ if (val)
+ return val;
+ }
+
+ /* Prefer jump over non-jump instruction. */
+ if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
+ return -1;
+ else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
+ return 1;
+
+ /* Prefer an expr with greater priority. */
+ if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
+ {
+ int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
+ p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
+
+ val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
+ }
+ else
+ val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
+ + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
+ if (val)
+ return val;
+
+ if (spec_info != NULL && spec_info->mask != 0)
+ /* This code was taken from haifa-sched.c: rank_for_schedule (). */
+ {
+ ds_t ds1, ds2;
+ dw_t dw1, dw2;
+ int dw;
+
+ ds1 = EXPR_SPEC_DONE_DS (tmp);
+ if (ds1)
+ dw1 = ds_weak (ds1);
+ else
+ dw1 = NO_DEP_WEAK;
+
+ ds2 = EXPR_SPEC_DONE_DS (tmp2);
+ if (ds2)
+ dw2 = ds_weak (ds2);
+ else
+ dw2 = NO_DEP_WEAK;
+
+ dw = dw2 - dw1;
+ if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
+ return dw;
+ }
+
+ /* Prefer an old insn to a bookkeeping insn. */
+ if (INSN_UID (tmp_insn) < first_emitted_uid
+ && INSN_UID (tmp2_insn) >= first_emitted_uid)
+ return -1;
+ if (INSN_UID (tmp_insn) >= first_emitted_uid
+ && INSN_UID (tmp2_insn) < first_emitted_uid)
+ return 1;
+
+ /* Prefer an insn with smaller UID, as a last resort.
+ We can't safely use INSN_LUID as it is defined only for those insns
+ that are in the stream. */
+ return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
+}
+
+/* Filter out expressions from av set pointed to by AV_PTR
+ that are pipelined too many times. */
+static void
+process_pipelined_exprs (av_set_t *av_ptr)
+{
+ expr_t expr;
+ av_set_iterator si;
+
+ /* Don't pipeline already pipelined code as that would increase
+ number of unnecessary register moves. */
+ FOR_EACH_EXPR_1 (expr, si, av_ptr)
+ {
+ if (EXPR_SCHED_TIMES (expr)
+ >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
+ av_set_iter_remove (&si);
+ }
+}
+
+/* Filter speculative insns from AV_PTR if we don't want them. */
+static void
+process_spec_exprs (av_set_t *av_ptr)
+{
+ bool try_data_p = true;
+ bool try_control_p = true;
+ expr_t expr;
+ av_set_iterator si;
+
+ if (spec_info == NULL)
+ return;
+
+ /* Scan *AV_PTR to find out if we want to consider speculative
+ instructions for scheduling. */
+ FOR_EACH_EXPR_1 (expr, si, av_ptr)
+ {
+ ds_t ds;
+
+ ds = EXPR_SPEC_DONE_DS (expr);
+
+ /* The probability of a success is too low - don't speculate. */
+ if ((ds & SPECULATIVE)
+ && (ds_weak (ds) < spec_info->data_weakness_cutoff
+ || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
+ || (pipelining_p && false
+ && (ds & DATA_SPEC)
+ && (ds & CONTROL_SPEC))))
+ {
+ av_set_iter_remove (&si);
+ continue;
+ }
+
+ if ((spec_info->flags & PREFER_NON_DATA_SPEC)
+ && !(ds & BEGIN_DATA))
+ try_data_p = false;
+
+ if ((spec_info->flags & PREFER_NON_CONTROL_SPEC)
+ && !(ds & BEGIN_CONTROL))
+ try_control_p = false;
+ }
+
+ FOR_EACH_EXPR_1 (expr, si, av_ptr)
+ {
+ ds_t ds;
+
+ ds = EXPR_SPEC_DONE_DS (expr);
+
+ if (ds & SPECULATIVE)
+ {
+ if ((ds & BEGIN_DATA) && !try_data_p)
+ /* We don't want any data speculative instructions right
+ now. */
+ av_set_iter_remove (&si);
+
+ if ((ds & BEGIN_CONTROL) && !try_control_p)
+ /* We don't want any control speculative instructions right
+ now. */
+ av_set_iter_remove (&si);
+ }
+ }
+}
+
+/* Search for any use-like insns in AV_PTR and decide on scheduling
+ them. Return one when found, and NULL otherwise.
+ Note that we check here whether a USE could be scheduled to avoid
+ an infinite loop later. */
+static expr_t
+process_use_exprs (av_set_t *av_ptr)
+{
+ expr_t expr;
+ av_set_iterator si;
+ bool uses_present_p = false;
+ bool try_uses_p = true;
+
+ FOR_EACH_EXPR_1 (expr, si, av_ptr)
+ {
+ /* This will also initialize INSN_CODE for later use. */
+ if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
+ {
+ /* If we have a USE in *AV_PTR that was not scheduled yet,
+ do so because it will do good only. */
+ if (EXPR_SCHED_TIMES (expr) <= 0)
+ {
+ if (EXPR_TARGET_AVAILABLE (expr) == 1)
+ return expr;
+
+ av_set_iter_remove (&si);
+ }
+ else
+ {
+ gcc_assert (pipelining_p);
+
+ uses_present_p = true;
+ }
+ }
+ else
+ try_uses_p = false;
+ }
+
+ if (uses_present_p)
+ {
+ /* If we don't want to schedule any USEs right now and we have some
+ in *AV_PTR, remove them, else just return the first one found. */
+ if (!try_uses_p)
+ {
+ FOR_EACH_EXPR_1 (expr, si, av_ptr)
+ if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
+ av_set_iter_remove (&si);
+ }
+ else
+ {
+ FOR_EACH_EXPR_1 (expr, si, av_ptr)
+ {
+ gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
+
+ if (EXPR_TARGET_AVAILABLE (expr) == 1)
+ return expr;
+
+ av_set_iter_remove (&si);
+ }
+ }
+ }
+
+ return NULL;
+}
+
+/* Lookup EXPR in VINSN_VEC and return TRUE if found. Also check patterns from
+ EXPR's history of changes. */
+static bool
+vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
+{
+ vinsn_t vinsn, expr_vinsn;
+ int n;
+ unsigned i;
+
+ /* Start with checking expr itself and then proceed with all the old forms
+ of expr taken from its history vector. */
+ for (i = 0, expr_vinsn = EXPR_VINSN (expr);
+ expr_vinsn;
+ expr_vinsn = (i < EXPR_HISTORY_OF_CHANGES (expr).length ()
+ ? EXPR_HISTORY_OF_CHANGES (expr)[i++].old_expr_vinsn
+ : NULL))
+ FOR_EACH_VEC_ELT (vinsn_vec, n, vinsn)
+ if (VINSN_SEPARABLE_P (vinsn))
+ {
+ if (vinsn_equal_p (vinsn, expr_vinsn))
+ return true;
+ }
+ else
+ {
+ /* For non-separable instructions, the blocking insn can have
+ another pattern due to substitution, and we can't choose
+ different register as in the above case. Check all registers
+ being written instead. */
+ if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
+ VINSN_REG_SETS (expr_vinsn)))
+ return true;
+ }
+
+ return false;
+}
+
+#ifdef ENABLE_CHECKING
+/* Return true if either of expressions from ORIG_OPS can be blocked
+ by previously created bookkeeping code. STATIC_PARAMS points to static
+ parameters of move_op. */
+static bool
+av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
+{
+ expr_t expr;
+ av_set_iterator iter;
+ moveop_static_params_p sparams;
+
+ /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
+ created while scheduling on another fence. */
+ FOR_EACH_EXPR (expr, iter, orig_ops)
+ if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
+ return true;
+
+ gcc_assert (code_motion_path_driver_info == &move_op_hooks);
+ sparams = (moveop_static_params_p) static_params;
+
+ /* Expressions can be also blocked by bookkeeping created during current
+ move_op. */
+ if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
+ FOR_EACH_EXPR (expr, iter, orig_ops)
+ if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
+ return true;
+
+ /* Expressions in ORIG_OPS may have wrong destination register due to
+ renaming. Check with the right register instead. */
+ if (sparams->dest && REG_P (sparams->dest))
+ {
+ rtx reg = sparams->dest;
+ vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
+
+ if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
+ || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
+ || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
+ return true;
+ }
+
+ return false;
+}
+#endif
+
+/* Clear VINSN_VEC and detach vinsns. */
+static void
+vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
+{
+ unsigned len = vinsn_vec->length ();
+ if (len > 0)
+ {
+ vinsn_t vinsn;
+ int n;
+
+ FOR_EACH_VEC_ELT (*vinsn_vec, n, vinsn)
+ vinsn_detach (vinsn);
+ vinsn_vec->block_remove (0, len);
+ }
+}
+
+/* Add the vinsn of EXPR to the VINSN_VEC. */
+static void
+vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
+{
+ vinsn_attach (EXPR_VINSN (expr));
+ vinsn_vec->safe_push (EXPR_VINSN (expr));
+}
+
+/* Free the vector representing blocked expressions. */
+static void
+vinsn_vec_free (vinsn_vec_t &vinsn_vec)
+{
+ vinsn_vec.release ();
+}
+
+/* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
+
+void sel_add_to_insn_priority (rtx insn, int amount)
+{
+ EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
+
+ if (sched_verbose >= 2)
+ sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
+ INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
+ EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
+}
+
+/* Turn AV into a vector, filter inappropriate insns and sort it. Return
+ true if there is something to schedule. BNDS and FENCE are current
+ boundaries and fence, respectively. If we need to stall for some cycles
+ before an expr from AV would become available, write this number to
+ *PNEED_STALL. */
+static bool
+fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
+ int *pneed_stall)
+{
+ av_set_iterator si;
+ expr_t expr;
+ int sched_next_worked = 0, stalled, n;
+ static int av_max_prio, est_ticks_till_branch;
+ int min_need_stall = -1;
+ deps_t dc = BND_DC (BLIST_BND (bnds));
+
+ /* Bail out early when the ready list contained only USEs/CLOBBERs that are
+ already scheduled. */
+ if (av == NULL)
+ return false;
+
+ /* Empty vector from the previous stuff. */
+ if (vec_av_set.length () > 0)
+ vec_av_set.block_remove (0, vec_av_set.length ());
+
+ /* Turn the set into a vector for sorting and call sel_target_adjust_priority
+ for each insn. */
+ gcc_assert (vec_av_set.is_empty ());
+ FOR_EACH_EXPR (expr, si, av)
+ {
+ vec_av_set.safe_push (expr);
+
+ gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
+
+ /* Adjust priority using target backend hook. */
+ sel_target_adjust_priority (expr);
+ }
+
+ /* Sort the vector. */
+ vec_av_set.qsort (sel_rank_for_schedule);
+
+ /* We record maximal priority of insns in av set for current instruction
+ group. */
+ if (FENCE_STARTS_CYCLE_P (fence))
+ av_max_prio = est_ticks_till_branch = INT_MIN;
+
+ /* Filter out inappropriate expressions. Loop's direction is reversed to
+ visit "best" instructions first. We assume that vec::unordered_remove
+ moves last element in place of one being deleted. */
+ for (n = vec_av_set.length () - 1, stalled = 0; n >= 0; n--)
+ {
+ expr_t expr = vec_av_set[n];
+ insn_t insn = EXPR_INSN_RTX (expr);
+ signed char target_available;
+ bool is_orig_reg_p = true;
+ int need_cycles, new_prio;
+
+ /* Don't allow any insns other than from SCHED_GROUP if we have one. */
+ if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
+ {
+ vec_av_set.unordered_remove (n);
+ continue;
+ }
+
+ /* Set number of sched_next insns (just in case there
+ could be several). */
+ if (FENCE_SCHED_NEXT (fence))
+ sched_next_worked++;
+
+ /* Check all liveness requirements and try renaming.
+ FIXME: try to minimize calls to this. */
+ target_available = EXPR_TARGET_AVAILABLE (expr);
+
+ /* If insn was already scheduled on the current fence,
+ set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
+ if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr))
+ target_available = -1;
+
+ /* If the availability of the EXPR is invalidated by the insertion of
+ bookkeeping earlier, make sure that we won't choose this expr for
+ scheduling if it's not separable, and if it is separable, then
+ we have to recompute the set of available registers for it. */
+ if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
+ {
+ vec_av_set.unordered_remove (n);
+ if (sched_verbose >= 4)
+ sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
+ INSN_UID (insn));
+ continue;
+ }
+
+ if (target_available == true)
+ {
+ /* Do nothing -- we can use an existing register. */
+ is_orig_reg_p = EXPR_SEPARABLE_P (expr);
+ }
+ else if (/* Non-separable instruction will never
+ get another register. */
+ (target_available == false
+ && !EXPR_SEPARABLE_P (expr))
+ /* Don't try to find a register for low-priority expression. */
+ || (int) vec_av_set.length () - 1 - n >= max_insns_to_rename
+ /* ??? FIXME: Don't try to rename data speculation. */
+ || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
+ || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
+ {
+ vec_av_set.unordered_remove (n);
+ if (sched_verbose >= 4)
+ sel_print ("Expr %d has no suitable target register\n",
+ INSN_UID (insn));
+ continue;
+ }
+
+ /* Filter expressions that need to be renamed or speculated when
+ pipelining, because compensating register copies or speculation
+ checks are likely to be placed near the beginning of the loop,
+ causing a stall. */
+ if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
+ && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
+ {
+ /* Estimation of number of cycles until loop branch for
+ renaming/speculation to be successful. */
+ int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
+
+ if ((int) current_loop_nest->ninsns < 9)
+ {
+ vec_av_set.unordered_remove (n);
+ if (sched_verbose >= 4)
+ sel_print ("Pipelining expr %d will likely cause stall\n",
+ INSN_UID (insn));
+ continue;
+ }
+
+ if ((int) current_loop_nest->ninsns - num_insns_scheduled
+ < need_n_ticks_till_branch * issue_rate / 2
+ && est_ticks_till_branch < need_n_ticks_till_branch)
+ {
+ vec_av_set.unordered_remove (n);
+ if (sched_verbose >= 4)
+ sel_print ("Pipelining expr %d will likely cause stall\n",
+ INSN_UID (insn));
+ continue;
+ }
+ }
+
+ /* We want to schedule speculation checks as late as possible. Discard
+ them from av set if there are instructions with higher priority. */
+ if (sel_insn_is_speculation_check (insn)
+ && EXPR_PRIORITY (expr) < av_max_prio)
+ {
+ stalled++;
+ min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
+ vec_av_set.unordered_remove (n);
+ if (sched_verbose >= 4)
+ sel_print ("Delaying speculation check %d until its first use\n",
+ INSN_UID (insn));
+ continue;
+ }
+
+ /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
+ if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
+ av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
+
+ /* Don't allow any insns whose data is not yet ready.
+ Check first whether we've already tried them and failed. */
+ if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
+ {
+ need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
+ - FENCE_CYCLE (fence));
+ if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
+ est_ticks_till_branch = MAX (est_ticks_till_branch,
+ EXPR_PRIORITY (expr) + need_cycles);
+
+ if (need_cycles > 0)
+ {
+ stalled++;
+ min_need_stall = (min_need_stall < 0
+ ? need_cycles
+ : MIN (min_need_stall, need_cycles));
+ vec_av_set.unordered_remove (n);
+
+ if (sched_verbose >= 4)
+ sel_print ("Expr %d is not ready until cycle %d (cached)\n",
+ INSN_UID (insn),
+ FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
+ continue;
+ }
+ }
+
+ /* Now resort to dependence analysis to find whether EXPR might be
+ stalled due to dependencies from FENCE's context. */
+ need_cycles = tick_check_p (expr, dc, fence);
+ new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
+
+ if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
+ est_ticks_till_branch = MAX (est_ticks_till_branch,
+ new_prio);
+
+ if (need_cycles > 0)
+ {
+ if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
+ {
+ int new_size = INSN_UID (insn) * 3 / 2;
+
+ FENCE_READY_TICKS (fence)
+ = (int *) xrecalloc (FENCE_READY_TICKS (fence),
+ new_size, FENCE_READY_TICKS_SIZE (fence),
+ sizeof (int));
+ }
+ FENCE_READY_TICKS (fence)[INSN_UID (insn)]
+ = FENCE_CYCLE (fence) + need_cycles;
+
+ stalled++;
+ min_need_stall = (min_need_stall < 0
+ ? need_cycles
+ : MIN (min_need_stall, need_cycles));
+
+ vec_av_set.unordered_remove (n);
+
+ if (sched_verbose >= 4)
+ sel_print ("Expr %d is not ready yet until cycle %d\n",
+ INSN_UID (insn),
+ FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
+ continue;
+ }
+
+ if (sched_verbose >= 4)
+ sel_print ("Expr %d is ok\n", INSN_UID (insn));
+ min_need_stall = 0;
+ }
+
+ /* Clear SCHED_NEXT. */
+ if (FENCE_SCHED_NEXT (fence))
+ {
+ gcc_assert (sched_next_worked == 1);
+ FENCE_SCHED_NEXT (fence) = NULL_RTX;
+ }
+
+ /* No need to stall if this variable was not initialized. */
+ if (min_need_stall < 0)
+ min_need_stall = 0;
+
+ if (vec_av_set.is_empty ())
+ {
+ /* We need to set *pneed_stall here, because later we skip this code
+ when ready list is empty. */
+ *pneed_stall = min_need_stall;
+ return false;
+ }
+ else
+ gcc_assert (min_need_stall == 0);
+
+ /* Sort the vector. */
+ vec_av_set.qsort (sel_rank_for_schedule);
+
+ if (sched_verbose >= 4)
+ {
+ sel_print ("Total ready exprs: %d, stalled: %d\n",
+ vec_av_set.length (), stalled);
+ sel_print ("Sorted av set (%d): ", vec_av_set.length ());
+ FOR_EACH_VEC_ELT (vec_av_set, n, expr)
+ dump_expr (expr);
+ sel_print ("\n");
+ }
+
+ *pneed_stall = 0;
+ return true;
+}
+
+/* Convert a vectored and sorted av set to the ready list that
+ the rest of the backend wants to see. */
+static void
+convert_vec_av_set_to_ready (void)
+{
+ int n;
+ expr_t expr;
+
+ /* Allocate and fill the ready list from the sorted vector. */
+ ready.n_ready = vec_av_set.length ();
+ ready.first = ready.n_ready - 1;
+
+ gcc_assert (ready.n_ready > 0);
+
+ if (ready.n_ready > max_issue_size)
+ {
+ max_issue_size = ready.n_ready;
+ sched_extend_ready_list (ready.n_ready);
+ }
+
+ FOR_EACH_VEC_ELT (vec_av_set, n, expr)
+ {
+ vinsn_t vi = EXPR_VINSN (expr);
+ insn_t insn = VINSN_INSN_RTX (vi);
+
+ ready_try[n] = 0;
+ ready.vec[n] = insn;
+ }
+}
+
+/* Initialize ready list from *AV_PTR for the max_issue () call.
+ If any unrecognizable insn found in *AV_PTR, return it (and skip
+ max_issue). BND and FENCE are current boundary and fence,
+ respectively. If we need to stall for some cycles before an expr
+ from *AV_PTR would become available, write this number to *PNEED_STALL. */
+static expr_t
+fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
+ int *pneed_stall)
+{
+ expr_t expr;
+
+ /* We do not support multiple boundaries per fence. */
+ gcc_assert (BLIST_NEXT (bnds) == NULL);
+
+ /* Process expressions required special handling, i.e. pipelined,
+ speculative and recog() < 0 expressions first. */
+ process_pipelined_exprs (av_ptr);
+ process_spec_exprs (av_ptr);
+
+ /* A USE could be scheduled immediately. */
+ expr = process_use_exprs (av_ptr);
+ if (expr)
+ {
+ *pneed_stall = 0;
+ return expr;
+ }
+
+ /* Turn the av set to a vector for sorting. */
+ if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
+ {
+ ready.n_ready = 0;
+ return NULL;
+ }
+
+ /* Build the final ready list. */
+ convert_vec_av_set_to_ready ();
+ return NULL;
+}
+
+/* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
+static bool
+sel_dfa_new_cycle (insn_t insn, fence_t fence)
+{
+ int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
+ ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
+ : FENCE_CYCLE (fence) - 1;
+ bool res = false;
+ int sort_p = 0;
+
+ if (!targetm.sched.dfa_new_cycle)
+ return false;
+
+ memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
+
+ while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
+ insn, last_scheduled_cycle,
+ FENCE_CYCLE (fence), &sort_p))
+ {
+ memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
+ advance_one_cycle (fence);
+ memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
+ res = true;
+ }
+
+ return res;
+}
+
+/* Invoke reorder* target hooks on the ready list. Return the number of insns
+ we can issue. FENCE is the current fence. */
+static int
+invoke_reorder_hooks (fence_t fence)
+{
+ int issue_more;
+ bool ran_hook = false;
+
+ /* Call the reorder hook at the beginning of the cycle, and call
+ the reorder2 hook in the middle of the cycle. */
+ if (FENCE_ISSUED_INSNS (fence) == 0)
+ {
+ if (targetm.sched.reorder
+ && !SCHED_GROUP_P (ready_element (&ready, 0))
+ && ready.n_ready > 1)
+ {
+ /* Don't give reorder the most prioritized insn as it can break
+ pipelining. */
+ if (pipelining_p)
+ --ready.n_ready;
+
+ issue_more
+ = targetm.sched.reorder (sched_dump, sched_verbose,
+ ready_lastpos (&ready),
+ &ready.n_ready, FENCE_CYCLE (fence));
+
+ if (pipelining_p)
+ ++ready.n_ready;
+
+ ran_hook = true;
+ }
+ else
+ /* Initialize can_issue_more for variable_issue. */
+ issue_more = issue_rate;
+ }
+ else if (targetm.sched.reorder2
+ && !SCHED_GROUP_P (ready_element (&ready, 0)))
+ {
+ if (ready.n_ready == 1)
+ issue_more =
+ targetm.sched.reorder2 (sched_dump, sched_verbose,
+ ready_lastpos (&ready),
+ &ready.n_ready, FENCE_CYCLE (fence));
+ else
+ {
+ if (pipelining_p)
+ --ready.n_ready;
+
+ issue_more =
+ targetm.sched.reorder2 (sched_dump, sched_verbose,
+ ready.n_ready
+ ? ready_lastpos (&ready) : NULL,
+ &ready.n_ready, FENCE_CYCLE (fence));
+
+ if (pipelining_p)
+ ++ready.n_ready;
+ }
+
+ ran_hook = true;
+ }
+ else
+ issue_more = FENCE_ISSUE_MORE (fence);
+
+ /* Ensure that ready list and vec_av_set are in line with each other,
+ i.e. vec_av_set[i] == ready_element (&ready, i). */
+ if (issue_more && ran_hook)
+ {
+ int i, j, n;
+ rtx *arr = ready.vec;
+ expr_t *vec = vec_av_set.address ();
+
+ for (i = 0, n = ready.n_ready; i < n; i++)
+ if (EXPR_INSN_RTX (vec[i]) != arr[i])
+ {
+ expr_t tmp;
+
+ for (j = i; j < n; j++)
+ if (EXPR_INSN_RTX (vec[j]) == arr[i])
+ break;
+ gcc_assert (j < n);
+
+ tmp = vec[i];
+ vec[i] = vec[j];
+ vec[j] = tmp;
+ }
+ }
+
+ return issue_more;
+}
+
+/* Return an EXPR corresponding to INDEX element of ready list, if
+ FOLLOW_READY_ELEMENT is true (i.e., an expr of
+ ready_element (&ready, INDEX) will be returned), and to INDEX element of
+ ready.vec otherwise. */
+static inline expr_t
+find_expr_for_ready (int index, bool follow_ready_element)
+{
+ expr_t expr;
+ int real_index;
+
+ real_index = follow_ready_element ? ready.first - index : index;
+
+ expr = vec_av_set[real_index];
+ gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
+
+ return expr;
+}
+
+/* Calculate insns worth trying via lookahead_guard hook. Return a number
+ of such insns found. */
+static int
+invoke_dfa_lookahead_guard (void)
+{
+ int i, n;
+ bool have_hook
+ = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
+
+ if (sched_verbose >= 2)
+ sel_print ("ready after reorder: ");
+
+ for (i = 0, n = 0; i < ready.n_ready; i++)
+ {
+ expr_t expr;
+ insn_t insn;
+ int r;
+
+ /* In this loop insn is Ith element of the ready list given by
+ ready_element, not Ith element of ready.vec. */
+ insn = ready_element (&ready, i);
+
+ if (! have_hook || i == 0)
+ r = 0;
+ else
+ r = !targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn);
+
+ gcc_assert (INSN_CODE (insn) >= 0);
+
+ /* Only insns with ready_try = 0 can get here
+ from fill_ready_list. */
+ gcc_assert (ready_try [i] == 0);
+ ready_try[i] = r;
+ if (!r)
+ n++;
+
+ expr = find_expr_for_ready (i, true);
+
+ if (sched_verbose >= 2)
+ {
+ dump_vinsn (EXPR_VINSN (expr));
+ sel_print (":%d; ", ready_try[i]);
+ }
+ }
+
+ if (sched_verbose >= 2)
+ sel_print ("\n");
+ return n;
+}
+
+/* Calculate the number of privileged insns and return it. */
+static int
+calculate_privileged_insns (void)
+{
+ expr_t cur_expr, min_spec_expr = NULL;
+ int privileged_n = 0, i;
+
+ for (i = 0; i < ready.n_ready; i++)
+ {
+ if (ready_try[i])
+ continue;
+
+ if (! min_spec_expr)
+ min_spec_expr = find_expr_for_ready (i, true);
+
+ cur_expr = find_expr_for_ready (i, true);
+
+ if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
+ break;
+
+ ++privileged_n;
+ }
+
+ if (i == ready.n_ready)
+ privileged_n = 0;
+
+ if (sched_verbose >= 2)
+ sel_print ("privileged_n: %d insns with SPEC %d\n",
+ privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
+ return privileged_n;
+}
+
+/* Call the rest of the hooks after the choice was made. Return
+ the number of insns that still can be issued given that the current
+ number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
+ and the insn chosen for scheduling, respectively. */
+static int
+invoke_aftermath_hooks (fence_t fence, rtx best_insn, int issue_more)
+{
+ gcc_assert (INSN_P (best_insn));
+
+ /* First, call dfa_new_cycle, and then variable_issue, if available. */
+ sel_dfa_new_cycle (best_insn, fence);
+
+ if (targetm.sched.variable_issue)
+ {
+ memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
+ issue_more =
+ targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
+ issue_more);
+ memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
+ }
+ else if (GET_CODE (PATTERN (best_insn)) != USE
+ && GET_CODE (PATTERN (best_insn)) != CLOBBER)
+ issue_more--;
+
+ return issue_more;
+}
+
+/* Estimate the cost of issuing INSN on DFA state STATE. */
+static int
+estimate_insn_cost (rtx insn, state_t state)
+{
+ static state_t temp = NULL;
+ int cost;
+
+ if (!temp)
+ temp = xmalloc (dfa_state_size);
+
+ memcpy (temp, state, dfa_state_size);
+ cost = state_transition (temp, insn);
+
+ if (cost < 0)
+ return 0;
+ else if (cost == 0)
+ return 1;
+ return cost;
+}
+
+/* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
+ This function properly handles ASMs, USEs etc. */
+static int
+get_expr_cost (expr_t expr, fence_t fence)
+{
+ rtx insn = EXPR_INSN_RTX (expr);
+
+ if (recog_memoized (insn) < 0)
+ {
+ if (!FENCE_STARTS_CYCLE_P (fence)
+ && INSN_ASM_P (insn))
+ /* This is asm insn which is tryed to be issued on the
+ cycle not first. Issue it on the next cycle. */
+ return 1;
+ else
+ /* A USE insn, or something else we don't need to
+ understand. We can't pass these directly to
+ state_transition because it will trigger a
+ fatal error for unrecognizable insns. */
+ return 0;
+ }
+ else
+ return estimate_insn_cost (insn, FENCE_STATE (fence));
+}
+
+/* Find the best insn for scheduling, either via max_issue or just take
+ the most prioritized available. */
+static int
+choose_best_insn (fence_t fence, int privileged_n, int *index)
+{
+ int can_issue = 0;
+
+ if (dfa_lookahead > 0)
+ {
+ cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
+ /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
+ can_issue = max_issue (&ready, privileged_n,
+ FENCE_STATE (fence), true, index);
+ if (sched_verbose >= 2)
+ sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
+ can_issue, FENCE_ISSUED_INSNS (fence));
+ }
+ else
+ {
+ /* We can't use max_issue; just return the first available element. */
+ int i;
+
+ for (i = 0; i < ready.n_ready; i++)
+ {
+ expr_t expr = find_expr_for_ready (i, true);
+
+ if (get_expr_cost (expr, fence) < 1)
+ {
+ can_issue = can_issue_more;
+ *index = i;
+
+ if (sched_verbose >= 2)
+ sel_print ("using %dth insn from the ready list\n", i + 1);
+
+ break;
+ }
+ }
+
+ if (i == ready.n_ready)
+ {
+ can_issue = 0;
+ *index = -1;
+ }
+ }
+
+ return can_issue;
+}
+
+/* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
+ BNDS and FENCE are current boundaries and scheduling fence respectively.
+ Return the expr found and NULL if nothing can be issued atm.
+ Write to PNEED_STALL the number of cycles to stall if no expr was found. */
+static expr_t
+find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
+ int *pneed_stall)
+{
+ expr_t best;
+
+ /* Choose the best insn for scheduling via:
+ 1) sorting the ready list based on priority;
+ 2) calling the reorder hook;
+ 3) calling max_issue. */
+ best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
+ if (best == NULL && ready.n_ready > 0)
+ {
+ int privileged_n, index;
+
+ can_issue_more = invoke_reorder_hooks (fence);
+ if (can_issue_more > 0)
+ {
+ /* Try choosing the best insn until we find one that is could be
+ scheduled due to liveness restrictions on its destination register.
+ In the future, we'd like to choose once and then just probe insns
+ in the order of their priority. */
+ invoke_dfa_lookahead_guard ();
+ privileged_n = calculate_privileged_insns ();
+ can_issue_more = choose_best_insn (fence, privileged_n, &index);
+ if (can_issue_more)
+ best = find_expr_for_ready (index, true);
+ }
+ /* We had some available insns, so if we can't issue them,
+ we have a stall. */
+ if (can_issue_more == 0)
+ {
+ best = NULL;
+ *pneed_stall = 1;
+ }
+ }
+
+ if (best != NULL)
+ {
+ can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
+ can_issue_more);
+ if (targetm.sched.variable_issue
+ && can_issue_more == 0)
+ *pneed_stall = 1;
+ }
+
+ if (sched_verbose >= 2)
+ {
+ if (best != NULL)
+ {
+ sel_print ("Best expression (vliw form): ");
+ dump_expr (best);
+ sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
+ }
+ else
+ sel_print ("No best expr found!\n");
+ }
+
+ return best;
+}
+
+
+/* Functions that implement the core of the scheduler. */
+
+
+/* Emit an instruction from EXPR with SEQNO and VINSN after
+ PLACE_TO_INSERT. */
+static insn_t
+emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
+ insn_t place_to_insert)
+{
+ /* This assert fails when we have identical instructions
+ one of which dominates the other. In this case move_op ()
+ finds the first instruction and doesn't search for second one.
+ The solution would be to compute av_set after the first found
+ insn and, if insn present in that set, continue searching.
+ For now we workaround this issue in move_op. */
+ gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
+
+ if (EXPR_WAS_RENAMED (expr))
+ {
+ unsigned regno = expr_dest_regno (expr);
+
+ if (HARD_REGISTER_NUM_P (regno))
+ {
+ df_set_regs_ever_live (regno, true);
+ reg_rename_tick[regno] = ++reg_rename_this_tick;
+ }
+ }
+
+ return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
+ place_to_insert);
+}
+
+/* Return TRUE if BB can hold bookkeeping code. */
+static bool
+block_valid_for_bookkeeping_p (basic_block bb)
+{
+ insn_t bb_end = BB_END (bb);
+
+ if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
+ return false;
+
+ if (INSN_P (bb_end))
+ {
+ if (INSN_SCHED_TIMES (bb_end) > 0)
+ return false;
+ }
+ else
+ gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
+
+ return true;
+}
+
+/* Attempt to find a block that can hold bookkeeping code for path(s) incoming
+ into E2->dest, except from E1->src (there may be a sequence of empty basic
+ blocks between E1->src and E2->dest). Return found block, or NULL if new
+ one must be created. If LAX holds, don't assume there is a simple path
+ from E1->src to E2->dest. */
+static basic_block
+find_block_for_bookkeeping (edge e1, edge e2, bool lax)
+{
+ basic_block candidate_block = NULL;
+ edge e;
+
+ /* Loop over edges from E1 to E2, inclusive. */
+ for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR; e = EDGE_SUCC (e->dest, 0))
+ {
+ if (EDGE_COUNT (e->dest->preds) == 2)
+ {
+ if (candidate_block == NULL)
+ candidate_block = (EDGE_PRED (e->dest, 0) == e
+ ? EDGE_PRED (e->dest, 1)->src
+ : EDGE_PRED (e->dest, 0)->src);
+ else
+ /* Found additional edge leading to path from e1 to e2
+ from aside. */
+ return NULL;
+ }
+ else if (EDGE_COUNT (e->dest->preds) > 2)
+ /* Several edges leading to path from e1 to e2 from aside. */
+ return NULL;
+
+ if (e == e2)
+ return ((!lax || candidate_block)
+ && block_valid_for_bookkeeping_p (candidate_block)
+ ? candidate_block
+ : NULL);
+
+ if (lax && EDGE_COUNT (e->dest->succs) != 1)
+ return NULL;
+ }
+
+ if (lax)
+ return NULL;
+
+ gcc_unreachable ();
+}
+
+/* Create new basic block for bookkeeping code for path(s) incoming into
+ E2->dest, except from E1->src. Return created block. */
+static basic_block
+create_block_for_bookkeeping (edge e1, edge e2)
+{
+ basic_block new_bb, bb = e2->dest;
+
+ /* Check that we don't spoil the loop structure. */
+ if (current_loop_nest)
+ {
+ basic_block latch = current_loop_nest->latch;
+
+ /* We do not split header. */
+ gcc_assert (e2->dest != current_loop_nest->header);
+
+ /* We do not redirect the only edge to the latch block. */
+ gcc_assert (e1->dest != latch
+ || !single_pred_p (latch)
+ || e1 != single_pred_edge (latch));
+ }
+
+ /* Split BB to insert BOOK_INSN there. */
+ new_bb = sched_split_block (bb, NULL);
+
+ /* Move note_list from the upper bb. */
+ gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
+ BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
+ BB_NOTE_LIST (bb) = NULL_RTX;
+
+ gcc_assert (e2->dest == bb);
+
+ /* Skip block for bookkeeping copy when leaving E1->src. */
+ if (e1->flags & EDGE_FALLTHRU)
+ sel_redirect_edge_and_branch_force (e1, new_bb);
+ else
+ sel_redirect_edge_and_branch (e1, new_bb);
+
+ gcc_assert (e1->dest == new_bb);
+ gcc_assert (sel_bb_empty_p (bb));
+
+ /* To keep basic block numbers in sync between debug and non-debug
+ compilations, we have to rotate blocks here. Consider that we
+ started from (a,b)->d, (c,d)->e, and d contained only debug
+ insns. It would have been removed before if the debug insns
+ weren't there, so we'd have split e rather than d. So what we do
+ now is to swap the block numbers of new_bb and
+ single_succ(new_bb) == e, so that the insns that were in e before
+ get the new block number. */
+
+ if (MAY_HAVE_DEBUG_INSNS)
+ {
+ basic_block succ;
+ insn_t insn = sel_bb_head (new_bb);
+ insn_t last;
+
+ if (DEBUG_INSN_P (insn)
+ && single_succ_p (new_bb)
+ && (succ = single_succ (new_bb))
+ && succ != EXIT_BLOCK_PTR
+ && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
+ {
+ while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
+ insn = NEXT_INSN (insn);
+
+ if (insn == last)
+ {
+ sel_global_bb_info_def gbi;
+ sel_region_bb_info_def rbi;
+ int i;
+
+ if (sched_verbose >= 2)
+ sel_print ("Swapping block ids %i and %i\n",
+ new_bb->index, succ->index);
+
+ i = new_bb->index;
+ new_bb->index = succ->index;
+ succ->index = i;
+
+ SET_BASIC_BLOCK (new_bb->index, new_bb);
+ SET_BASIC_BLOCK (succ->index, succ);
+
+ memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
+ memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
+ sizeof (gbi));
+ memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
+
+ memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
+ memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
+ sizeof (rbi));
+ memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
+
+ i = BLOCK_TO_BB (new_bb->index);
+ BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index);
+ BLOCK_TO_BB (succ->index) = i;
+
+ i = CONTAINING_RGN (new_bb->index);
+ CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index);
+ CONTAINING_RGN (succ->index) = i;
+
+ for (i = 0; i < current_nr_blocks; i++)
+ if (BB_TO_BLOCK (i) == succ->index)
+ BB_TO_BLOCK (i) = new_bb->index;
+ else if (BB_TO_BLOCK (i) == new_bb->index)
+ BB_TO_BLOCK (i) = succ->index;
+
+ FOR_BB_INSNS (new_bb, insn)
+ if (INSN_P (insn))
+ EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
+
+ FOR_BB_INSNS (succ, insn)
+ if (INSN_P (insn))
+ EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
+
+ if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
+ bitmap_set_bit (code_motion_visited_blocks, succ->index);
+
+ gcc_assert (LABEL_P (BB_HEAD (new_bb))
+ && LABEL_P (BB_HEAD (succ)));
+
+ if (sched_verbose >= 4)
+ sel_print ("Swapping code labels %i and %i\n",
+ CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
+ CODE_LABEL_NUMBER (BB_HEAD (succ)));
+
+ i = CODE_LABEL_NUMBER (BB_HEAD (new_bb));
+ CODE_LABEL_NUMBER (BB_HEAD (new_bb))
+ = CODE_LABEL_NUMBER (BB_HEAD (succ));
+ CODE_LABEL_NUMBER (BB_HEAD (succ)) = i;
+ }
+ }
+ }
+
+ return bb;
+}
+
+/* Return insn after which we must insert bookkeeping code for path(s) incoming
+ into E2->dest, except from E1->src. If the returned insn immediately
+ precedes a fence, assign that fence to *FENCE_TO_REWIND. */
+static insn_t
+find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
+{
+ insn_t place_to_insert;
+ /* Find a basic block that can hold bookkeeping. If it can be found, do not
+ create new basic block, but insert bookkeeping there. */
+ basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
+
+ if (book_block)
+ {
+ place_to_insert = BB_END (book_block);
+
+ /* Don't use a block containing only debug insns for
+ bookkeeping, this causes scheduling differences between debug
+ and non-debug compilations, for the block would have been
+ removed already. */
+ if (DEBUG_INSN_P (place_to_insert))
+ {
+ rtx insn = sel_bb_head (book_block);
+
+ while (insn != place_to_insert &&
+ (DEBUG_INSN_P (insn) || NOTE_P (insn)))
+ insn = NEXT_INSN (insn);
+
+ if (insn == place_to_insert)
+ book_block = NULL;
+ }
+ }
+
+ if (!book_block)
+ {
+ book_block = create_block_for_bookkeeping (e1, e2);
+ place_to_insert = BB_END (book_block);
+ if (sched_verbose >= 9)
+ sel_print ("New block is %i, split from bookkeeping block %i\n",
+ EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
+ }
+ else
+ {
+ if (sched_verbose >= 9)
+ sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
+ }
+
+ *fence_to_rewind = NULL;
+ /* If basic block ends with a jump, insert bookkeeping code right before it.
+ Notice if we are crossing a fence when taking PREV_INSN. */
+ if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
+ {
+ *fence_to_rewind = flist_lookup (fences, place_to_insert);
+ place_to_insert = PREV_INSN (place_to_insert);
+ }
+
+ return place_to_insert;
+}
+
+/* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
+ for JOIN_POINT. */
+static int
+find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
+{
+ int seqno;
+ rtx next;
+
+ /* Check if we are about to insert bookkeeping copy before a jump, and use
+ jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
+ next = NEXT_INSN (place_to_insert);
+ if (INSN_P (next)
+ && JUMP_P (next)
+ && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
+ {
+ gcc_assert (INSN_SCHED_TIMES (next) == 0);
+ seqno = INSN_SEQNO (next);
+ }
+ else if (INSN_SEQNO (join_point) > 0)
+ seqno = INSN_SEQNO (join_point);
+ else
+ {
+ seqno = get_seqno_by_preds (place_to_insert);
+
+ /* Sometimes the fences can move in such a way that there will be
+ no instructions with positive seqno around this bookkeeping.
+ This means that there will be no way to get to it by a regular
+ fence movement. Never mind because we pick up such pieces for
+ rescheduling anyways, so any positive value will do for now. */
+ if (seqno < 0)
+ {
+ gcc_assert (pipelining_p);
+ seqno = 1;
+ }
+ }
+
+ gcc_assert (seqno > 0);
+ return seqno;
+}
+
+/* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
+ NEW_SEQNO to it. Return created insn. */
+static insn_t
+emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
+{
+ rtx new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
+
+ vinsn_t new_vinsn
+ = create_vinsn_from_insn_rtx (new_insn_rtx,
+ VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
+
+ insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
+ place_to_insert);
+
+ INSN_SCHED_TIMES (new_insn) = 0;
+ bitmap_set_bit (current_copies, INSN_UID (new_insn));
+
+ return new_insn;
+}
+
+/* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
+ E2->dest, except from E1->src (there may be a sequence of empty blocks
+ between E1->src and E2->dest). Return block containing the copy.
+ All scheduler data is initialized for the newly created insn. */
+static basic_block
+generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
+{
+ insn_t join_point, place_to_insert, new_insn;
+ int new_seqno;
+ bool need_to_exchange_data_sets;
+ fence_t fence_to_rewind;
+
+ if (sched_verbose >= 4)
+ sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
+ e2->dest->index);
+
+ join_point = sel_bb_head (e2->dest);
+ place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
+ new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
+ need_to_exchange_data_sets
+ = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
+
+ new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
+
+ if (fence_to_rewind)
+ FENCE_INSN (fence_to_rewind) = new_insn;
+
+ /* When inserting bookkeeping insn in new block, av sets should be
+ following: old basic block (that now holds bookkeeping) data sets are
+ the same as was before generation of bookkeeping, and new basic block
+ (that now hold all other insns of old basic block) data sets are
+ invalid. So exchange data sets for these basic blocks as sel_split_block
+ mistakenly exchanges them in this case. Cannot do it earlier because
+ when single instruction is added to new basic block it should hold NULL
+ lv_set. */
+ if (need_to_exchange_data_sets)
+ exchange_data_sets (BLOCK_FOR_INSN (new_insn),
+ BLOCK_FOR_INSN (join_point));
+
+ stat_bookkeeping_copies++;
+ return BLOCK_FOR_INSN (new_insn);
+}
+
+/* Remove from AV_PTR all insns that may need bookkeeping when scheduling
+ on FENCE, but we are unable to copy them. */
+static void
+remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
+{
+ expr_t expr;
+ av_set_iterator i;
+
+ /* An expression does not need bookkeeping if it is available on all paths
+ from current block to original block and current block dominates
+ original block. We check availability on all paths by examining
+ EXPR_SPEC; this is not equivalent, because it may be positive even
+ if expr is available on all paths (but if expr is not available on
+ any path, EXPR_SPEC will be positive). */
+
+ FOR_EACH_EXPR_1 (expr, i, av_ptr)
+ {
+ if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
+ && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
+ && (EXPR_SPEC (expr)
+ || !EXPR_ORIG_BB_INDEX (expr)
+ || !dominated_by_p (CDI_DOMINATORS,
+ BASIC_BLOCK (EXPR_ORIG_BB_INDEX (expr)),
+ BLOCK_FOR_INSN (FENCE_INSN (fence)))))
+ {
+ if (sched_verbose >= 4)
+ sel_print ("Expr %d removed because it would need bookkeeping, which "
+ "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
+ av_set_iter_remove (&i);
+ }
+ }
+}
+
+/* Moving conditional jump through some instructions.
+
+ Consider example:
+
+ ... <- current scheduling point
+ NOTE BASIC BLOCK: <- bb header
+ (p8) add r14=r14+0x9;;
+ (p8) mov [r14]=r23
+ (!p8) jump L1;;
+ NOTE BASIC BLOCK:
+ ...
+
+ We can schedule jump one cycle earlier, than mov, because they cannot be
+ executed together as their predicates are mutually exclusive.
+
+ This is done in this way: first, new fallthrough basic block is created
+ after jump (it is always can be done, because there already should be a
+ fallthrough block, where control flow goes in case of predicate being true -
+ in our example; otherwise there should be a dependence between those
+ instructions and jump and we cannot schedule jump right now);
+ next, all instructions between jump and current scheduling point are moved
+ to this new block. And the result is this:
+
+ NOTE BASIC BLOCK:
+ (!p8) jump L1 <- current scheduling point
+ NOTE BASIC BLOCK: <- bb header
+ (p8) add r14=r14+0x9;;
+ (p8) mov [r14]=r23
+ NOTE BASIC BLOCK:
+ ...
+*/
+static void
+move_cond_jump (rtx insn, bnd_t bnd)
+{
+ edge ft_edge;
+ basic_block block_from, block_next, block_new, block_bnd, bb;
+ rtx next, prev, link, head;
+
+ block_from = BLOCK_FOR_INSN (insn);
+ block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
+ prev = BND_TO (bnd);
+
+#ifdef ENABLE_CHECKING
+ /* Moving of jump should not cross any other jumps or beginnings of new
+ basic blocks. The only exception is when we move a jump through
+ mutually exclusive insns along fallthru edges. */
+ if (block_from != block_bnd)
+ {
+ bb = block_from;
+ for (link = PREV_INSN (insn); link != PREV_INSN (prev);
+ link = PREV_INSN (link))
+ {
+ if (INSN_P (link))
+ gcc_assert (sched_insns_conditions_mutex_p (insn, link));
+ if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
+ {
+ gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
+ bb = BLOCK_FOR_INSN (link);
+ }
+ }
+ }
+#endif
+
+ /* Jump is moved to the boundary. */
+ next = PREV_INSN (insn);
+ BND_TO (bnd) = insn;
+
+ ft_edge = find_fallthru_edge_from (block_from);
+ block_next = ft_edge->dest;
+ /* There must be a fallthrough block (or where should go
+ control flow in case of false jump predicate otherwise?). */
+ gcc_assert (block_next);
+
+ /* Create new empty basic block after source block. */
+ block_new = sel_split_edge (ft_edge);
+ gcc_assert (block_new->next_bb == block_next
+ && block_from->next_bb == block_new);
+
+ /* Move all instructions except INSN to BLOCK_NEW. */
+ bb = block_bnd;
+ head = BB_HEAD (block_new);
+ while (bb != block_from->next_bb)
+ {
+ rtx from, to;
+ from = bb == block_bnd ? prev : sel_bb_head (bb);
+ to = bb == block_from ? next : sel_bb_end (bb);
+
+ /* The jump being moved can be the first insn in the block.
+ In this case we don't have to move anything in this block. */
+ if (NEXT_INSN (to) != from)
+ {
+ reorder_insns (from, to, head);
+
+ for (link = to; link != head; link = PREV_INSN (link))
+ EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
+ head = to;
+ }
+
+ /* Cleanup possibly empty blocks left. */
+ block_next = bb->next_bb;
+ if (bb != block_from)
+ tidy_control_flow (bb, false);
+ bb = block_next;
+ }
+
+ /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
+ gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
+
+ gcc_assert (!sel_bb_empty_p (block_from)
+ && !sel_bb_empty_p (block_new));
+
+ /* Update data sets for BLOCK_NEW to represent that INSN and
+ instructions from the other branch of INSN is no longer
+ available at BLOCK_NEW. */
+ BB_AV_LEVEL (block_new) = global_level;
+ gcc_assert (BB_LV_SET (block_new) == NULL);
+ BB_LV_SET (block_new) = get_clear_regset_from_pool ();
+ update_data_sets (sel_bb_head (block_new));
+
+ /* INSN is a new basic block header - so prepare its data
+ structures and update availability and liveness sets. */
+ update_data_sets (insn);
+
+ if (sched_verbose >= 4)
+ sel_print ("Moving jump %d\n", INSN_UID (insn));
+}
+
+/* Remove nops generated during move_op for preventing removal of empty
+ basic blocks. */
+static void
+remove_temp_moveop_nops (bool full_tidying)
+{
+ int i;
+ insn_t insn;
+
+ FOR_EACH_VEC_ELT (vec_temp_moveop_nops, i, insn)
+ {
+ gcc_assert (INSN_NOP_P (insn));
+ return_nop_to_pool (insn, full_tidying);
+ }
+
+ /* Empty the vector. */
+ if (vec_temp_moveop_nops.length () > 0)
+ vec_temp_moveop_nops.block_remove (0, vec_temp_moveop_nops.length ());
+}
+
+/* Records the maximal UID before moving up an instruction. Used for
+ distinguishing between bookkeeping copies and original insns. */
+static int max_uid_before_move_op = 0;
+
+/* Remove from AV_VLIW_P all instructions but next when debug counter
+ tells us so. Next instruction is fetched from BNDS. */
+static void
+remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
+{
+ if (! dbg_cnt (sel_sched_insn_cnt))
+ /* Leave only the next insn in av_vliw. */
+ {
+ av_set_iterator av_it;
+ expr_t expr;
+ bnd_t bnd = BLIST_BND (bnds);
+ insn_t next = BND_TO (bnd);
+
+ gcc_assert (BLIST_NEXT (bnds) == NULL);
+
+ FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
+ if (EXPR_INSN_RTX (expr) != next)
+ av_set_iter_remove (&av_it);
+ }
+}
+
+/* Compute available instructions on BNDS. FENCE is the current fence. Write
+ the computed set to *AV_VLIW_P. */
+static void
+compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
+{
+ if (sched_verbose >= 2)
+ {
+ sel_print ("Boundaries: ");
+ dump_blist (bnds);
+ sel_print ("\n");
+ }
+
+ for (; bnds; bnds = BLIST_NEXT (bnds))
+ {
+ bnd_t bnd = BLIST_BND (bnds);
+ av_set_t av1_copy;
+ insn_t bnd_to = BND_TO (bnd);
+
+ /* Rewind BND->TO to the basic block header in case some bookkeeping
+ instructions were inserted before BND->TO and it needs to be
+ adjusted. */
+ if (sel_bb_head_p (bnd_to))
+ gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
+ else
+ while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
+ {
+ bnd_to = PREV_INSN (bnd_to);
+ if (sel_bb_head_p (bnd_to))
+ break;
+ }
+
+ if (BND_TO (bnd) != bnd_to)
+ {
+ gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
+ FENCE_INSN (fence) = bnd_to;
+ BND_TO (bnd) = bnd_to;
+ }
+
+ av_set_clear (&BND_AV (bnd));
+ BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
+
+ av_set_clear (&BND_AV1 (bnd));
+ BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
+
+ moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
+
+ av1_copy = av_set_copy (BND_AV1 (bnd));
+ av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
+ }
+
+ if (sched_verbose >= 2)
+ {
+ sel_print ("Available exprs (vliw form): ");
+ dump_av_set (*av_vliw_p);
+ sel_print ("\n");
+ }
+}
+
+/* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
+ expression. When FOR_MOVEOP is true, also replace the register of
+ expressions found with the register from EXPR_VLIW. */
+static av_set_t
+find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
+{
+ av_set_t expr_seq = NULL;
+ expr_t expr;
+ av_set_iterator i;
+
+ FOR_EACH_EXPR (expr, i, BND_AV (bnd))
+ {
+ if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
+ {
+ if (for_moveop)
+ {
+ /* The sequential expression has the right form to pass
+ to move_op except when renaming happened. Put the
+ correct register in EXPR then. */
+ if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
+ {
+ if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
+ {
+ replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
+ stat_renamed_scheduled++;
+ }
+ /* Also put the correct TARGET_AVAILABLE bit on the expr.
+ This is needed when renaming came up with original
+ register. */
+ else if (EXPR_TARGET_AVAILABLE (expr)
+ != EXPR_TARGET_AVAILABLE (expr_vliw))
+ {
+ gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
+ EXPR_TARGET_AVAILABLE (expr) = 1;
+ }
+ }
+ if (EXPR_WAS_SUBSTITUTED (expr))
+ stat_substitutions_total++;
+ }
+
+ av_set_add (&expr_seq, expr);
+
+ /* With substitution inside insn group, it is possible
+ that more than one expression in expr_seq will correspond
+ to expr_vliw. In this case, choose one as the attempt to
+ move both leads to miscompiles. */
+ break;
+ }
+ }
+
+ if (for_moveop && sched_verbose >= 2)
+ {
+ sel_print ("Best expression(s) (sequential form): ");
+ dump_av_set (expr_seq);
+ sel_print ("\n");
+ }
+
+ return expr_seq;
+}
+
+
+/* Move nop to previous block. */
+static void ATTRIBUTE_UNUSED
+move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
+{
+ insn_t prev_insn, next_insn, note;
+
+ gcc_assert (sel_bb_head_p (nop)
+ && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
+ note = bb_note (BLOCK_FOR_INSN (nop));
+ prev_insn = sel_bb_end (prev_bb);
+ next_insn = NEXT_INSN (nop);
+ gcc_assert (prev_insn != NULL_RTX
+ && PREV_INSN (note) == prev_insn);
+
+ NEXT_INSN (prev_insn) = nop;
+ PREV_INSN (nop) = prev_insn;
+
+ PREV_INSN (note) = nop;
+ NEXT_INSN (note) = next_insn;
+
+ NEXT_INSN (nop) = note;
+ PREV_INSN (next_insn) = note;
+
+ BB_END (prev_bb) = nop;
+ BLOCK_FOR_INSN (nop) = prev_bb;
+}
+
+/* Prepare a place to insert the chosen expression on BND. */
+static insn_t
+prepare_place_to_insert (bnd_t bnd)
+{
+ insn_t place_to_insert;
+
+ /* Init place_to_insert before calling move_op, as the later
+ can possibly remove BND_TO (bnd). */
+ if (/* If this is not the first insn scheduled. */
+ BND_PTR (bnd))
+ {
+ /* Add it after last scheduled. */
+ place_to_insert = ILIST_INSN (BND_PTR (bnd));
+ if (DEBUG_INSN_P (place_to_insert))
+ {
+ ilist_t l = BND_PTR (bnd);
+ while ((l = ILIST_NEXT (l)) &&
+ DEBUG_INSN_P (ILIST_INSN (l)))
+ ;
+ if (!l)
+ place_to_insert = NULL;
+ }
+ }
+ else
+ place_to_insert = NULL;
+
+ if (!place_to_insert)
+ {
+ /* Add it before BND_TO. The difference is in the
+ basic block, where INSN will be added. */
+ place_to_insert = get_nop_from_pool (BND_TO (bnd));
+ gcc_assert (BLOCK_FOR_INSN (place_to_insert)
+ == BLOCK_FOR_INSN (BND_TO (bnd)));
+ }
+
+ return place_to_insert;
+}
+
+/* Find original instructions for EXPR_SEQ and move it to BND boundary.
+ Return the expression to emit in C_EXPR. */
+static bool
+move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
+ av_set_t expr_seq, expr_t c_expr)
+{
+ bool b, should_move;
+ unsigned book_uid;
+ bitmap_iterator bi;
+ int n_bookkeeping_copies_before_moveop;
+
+ /* Make a move. This call will remove the original operation,
+ insert all necessary bookkeeping instructions and update the
+ data sets. After that all we have to do is add the operation
+ at before BND_TO (BND). */
+ n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
+ max_uid_before_move_op = get_max_uid ();
+ bitmap_clear (current_copies);
+ bitmap_clear (current_originators);
+
+ b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
+ get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
+
+ /* We should be able to find the expression we've chosen for
+ scheduling. */
+ gcc_assert (b);
+
+ if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
+ stat_insns_needed_bookkeeping++;
+
+ EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
+ {
+ unsigned uid;
+ bitmap_iterator bi;
+
+ /* We allocate these bitmaps lazily. */
+ if (! INSN_ORIGINATORS_BY_UID (book_uid))
+ INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
+
+ bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
+ current_originators);
+
+ /* Transitively add all originators' originators. */
+ EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
+ if (INSN_ORIGINATORS_BY_UID (uid))
+ bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
+ INSN_ORIGINATORS_BY_UID (uid));
+ }
+
+ return should_move;
+}
+
+
+/* Debug a DFA state as an array of bytes. */
+static void
+debug_state (state_t state)
+{
+ unsigned char *p;
+ unsigned int i, size = dfa_state_size;
+
+ sel_print ("state (%u):", size);
+ for (i = 0, p = (unsigned char *) state; i < size; i++)
+ sel_print (" %d", p[i]);
+ sel_print ("\n");
+}
+
+/* Advance state on FENCE with INSN. Return true if INSN is
+ an ASM, and we should advance state once more. */
+static bool
+advance_state_on_fence (fence_t fence, insn_t insn)
+{
+ bool asm_p;
+
+ if (recog_memoized (insn) >= 0)
+ {
+ int res;
+ state_t temp_state = alloca (dfa_state_size);
+
+ gcc_assert (!INSN_ASM_P (insn));
+ asm_p = false;
+
+ memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
+ res = state_transition (FENCE_STATE (fence), insn);
+ gcc_assert (res < 0);
+
+ if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
+ {
+ FENCE_ISSUED_INSNS (fence)++;
+
+ /* We should never issue more than issue_rate insns. */
+ if (FENCE_ISSUED_INSNS (fence) > issue_rate)
+ gcc_unreachable ();
+ }
+ }
+ else
+ {
+ /* This could be an ASM insn which we'd like to schedule
+ on the next cycle. */
+ asm_p = INSN_ASM_P (insn);
+ if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
+ advance_one_cycle (fence);
+ }
+
+ if (sched_verbose >= 2)
+ debug_state (FENCE_STATE (fence));
+ if (!DEBUG_INSN_P (insn))
+ FENCE_STARTS_CYCLE_P (fence) = 0;
+ FENCE_ISSUE_MORE (fence) = can_issue_more;
+ return asm_p;
+}
+
+/* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
+ is nonzero if we need to stall after issuing INSN. */
+static void
+update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
+{
+ bool asm_p;
+
+ /* First, reflect that something is scheduled on this fence. */
+ asm_p = advance_state_on_fence (fence, insn);
+ FENCE_LAST_SCHEDULED_INSN (fence) = insn;
+ vec_safe_push (FENCE_EXECUTING_INSNS (fence), insn);
+ if (SCHED_GROUP_P (insn))
+ {
+ FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
+ SCHED_GROUP_P (insn) = 0;
+ }
+ else
+ FENCE_SCHED_NEXT (fence) = NULL_RTX;
+ if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
+ FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
+
+ /* Set instruction scheduling info. This will be used in bundling,
+ pipelining, tick computations etc. */
+ ++INSN_SCHED_TIMES (insn);
+ EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
+ EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
+ INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
+ INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
+
+ /* This does not account for adjust_cost hooks, just add the biggest
+ constant the hook may add to the latency. TODO: make this
+ a target dependent constant. */
+ INSN_READY_CYCLE (insn)
+ = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
+ ? 1
+ : maximal_insn_latency (insn) + 1);
+
+ /* Change these fields last, as they're used above. */
+ FENCE_AFTER_STALL_P (fence) = 0;
+ if (asm_p || need_stall)
+ advance_one_cycle (fence);
+
+ /* Indicate that we've scheduled something on this fence. */
+ FENCE_SCHEDULED_P (fence) = true;
+ scheduled_something_on_previous_fence = true;
+
+ /* Print debug information when insn's fields are updated. */
+ if (sched_verbose >= 2)
+ {
+ sel_print ("Scheduling insn: ");
+ dump_insn_1 (insn, 1);
+ sel_print ("\n");
+ }
+}
+
+/* Update boundary BND (and, if needed, FENCE) with INSN, remove the
+ old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
+ return it. */
+static blist_t *
+update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
+ blist_t *bnds_tailp)
+{
+ succ_iterator si;
+ insn_t succ;
+
+ advance_deps_context (BND_DC (bnd), insn);
+ FOR_EACH_SUCC_1 (succ, si, insn,
+ SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
+ {
+ ilist_t ptr = ilist_copy (BND_PTR (bnd));
+
+ ilist_add (&ptr, insn);
+
+ if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
+ && is_ineligible_successor (succ, ptr))
+ {
+ ilist_clear (&ptr);
+ continue;
+ }
+
+ if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
+ {
+ if (sched_verbose >= 9)
+ sel_print ("Updating fence insn from %i to %i\n",
+ INSN_UID (insn), INSN_UID (succ));
+ FENCE_INSN (fence) = succ;
+ }
+ blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
+ bnds_tailp = &BLIST_NEXT (*bnds_tailp);
+ }
+
+ blist_remove (bndsp);
+ return bnds_tailp;
+}
+
+/* Schedule EXPR_VLIW on BND. Return the insn emitted. */
+static insn_t
+schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
+{
+ av_set_t expr_seq;
+ expr_t c_expr = XALLOCA (expr_def);
+ insn_t place_to_insert;
+ insn_t insn;
+ bool should_move;
+
+ expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
+
+ /* In case of scheduling a jump skipping some other instructions,
+ prepare CFG. After this, jump is at the boundary and can be
+ scheduled as usual insn by MOVE_OP. */
+ if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
+ {
+ insn = EXPR_INSN_RTX (expr_vliw);
+
+ /* Speculative jumps are not handled. */
+ if (insn != BND_TO (bnd)
+ && !sel_insn_is_speculation_check (insn))
+ move_cond_jump (insn, bnd);
+ }
+
+ /* Find a place for C_EXPR to schedule. */
+ place_to_insert = prepare_place_to_insert (bnd);
+ should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
+ clear_expr (c_expr);
+
+ /* Add the instruction. The corner case to care about is when
+ the expr_seq set has more than one expr, and we chose the one that
+ is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
+ we can't use it. Generate the new vinsn. */
+ if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
+ {
+ vinsn_t vinsn_new;
+
+ vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
+ change_vinsn_in_expr (expr_vliw, vinsn_new);
+ should_move = false;
+ }
+ if (should_move)
+ insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
+ else
+ insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
+ place_to_insert);
+
+ /* Return the nops generated for preserving of data sets back
+ into pool. */
+ if (INSN_NOP_P (place_to_insert))
+ return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
+ remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
+
+ av_set_clear (&expr_seq);
+
+ /* Save the expression scheduled so to reset target availability if we'll
+ meet it later on the same fence. */
+ if (EXPR_WAS_RENAMED (expr_vliw))
+ vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
+
+ /* Check that the recent movement didn't destroyed loop
+ structure. */
+ gcc_assert (!pipelining_p
+ || current_loop_nest == NULL
+ || loop_latch_edge (current_loop_nest));
+ return insn;
+}
+
+/* Stall for N cycles on FENCE. */
+static void
+stall_for_cycles (fence_t fence, int n)
+{
+ int could_more;
+
+ could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
+ while (n--)
+ advance_one_cycle (fence);
+ if (could_more)
+ FENCE_AFTER_STALL_P (fence) = 1;
+}
+
+/* Gather a parallel group of insns at FENCE and assign their seqno
+ to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
+ list for later recalculation of seqnos. */
+static void
+fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
+{
+ blist_t bnds = NULL, *bnds_tailp;
+ av_set_t av_vliw = NULL;
+ insn_t insn = FENCE_INSN (fence);
+
+ if (sched_verbose >= 2)
+ sel_print ("Starting fill_insns for insn %d, cycle %d\n",
+ INSN_UID (insn), FENCE_CYCLE (fence));
+
+ blist_add (&bnds, insn, NULL, FENCE_DC (fence));
+ bnds_tailp = &BLIST_NEXT (bnds);
+ set_target_context (FENCE_TC (fence));
+ can_issue_more = FENCE_ISSUE_MORE (fence);
+ target_bb = INSN_BB (insn);
+
+ /* Do while we can add any operation to the current group. */
+ do
+ {
+ blist_t *bnds_tailp1, *bndsp;
+ expr_t expr_vliw;
+ int need_stall = false;
+ int was_stall = 0, scheduled_insns = 0;
+ int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
+ int max_stall = pipelining_p ? 1 : 3;
+ bool last_insn_was_debug = false;
+ bool was_debug_bb_end_p = false;
+
+ compute_av_set_on_boundaries (fence, bnds, &av_vliw);
+ remove_insns_that_need_bookkeeping (fence, &av_vliw);
+ remove_insns_for_debug (bnds, &av_vliw);
+
+ /* Return early if we have nothing to schedule. */
+ if (av_vliw == NULL)
+ break;
+
+ /* Choose the best expression and, if needed, destination register
+ for it. */
+ do
+ {
+ expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
+ if (! expr_vliw && need_stall)
+ {
+ /* All expressions required a stall. Do not recompute av sets
+ as we'll get the same answer (modulo the insns between
+ the fence and its boundary, which will not be available for
+ pipelining).
+ If we are going to stall for too long, break to recompute av
+ sets and bring more insns for pipelining. */
+ was_stall++;
+ if (need_stall <= 3)
+ stall_for_cycles (fence, need_stall);
+ else
+ {
+ stall_for_cycles (fence, 1);
+ break;
+ }
+ }
+ }
+ while (! expr_vliw && need_stall);
+
+ /* Now either we've selected expr_vliw or we have nothing to schedule. */
+ if (!expr_vliw)
+ {
+ av_set_clear (&av_vliw);
+ break;
+ }
+
+ bndsp = &bnds;
+ bnds_tailp1 = bnds_tailp;
+
+ do
+ /* This code will be executed only once until we'd have several
+ boundaries per fence. */
+ {
+ bnd_t bnd = BLIST_BND (*bndsp);
+
+ if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
+ {
+ bndsp = &BLIST_NEXT (*bndsp);
+ continue;
+ }
+
+ insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
+ last_insn_was_debug = DEBUG_INSN_P (insn);
+ if (last_insn_was_debug)
+ was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
+ update_fence_and_insn (fence, insn, need_stall);
+ bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
+
+ /* Add insn to the list of scheduled on this cycle instructions. */
+ ilist_add (*scheduled_insns_tailpp, insn);
+ *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
+ }
+ while (*bndsp != *bnds_tailp1);
+
+ av_set_clear (&av_vliw);
+ if (!last_insn_was_debug)
+ scheduled_insns++;
+
+ /* We currently support information about candidate blocks only for
+ one 'target_bb' block. Hence we can't schedule after jump insn,
+ as this will bring two boundaries and, hence, necessity to handle
+ information for two or more blocks concurrently. */
+ if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
+ || (was_stall
+ && (was_stall >= max_stall
+ || scheduled_insns >= max_insns)))
+ break;
+ }
+ while (bnds);
+
+ gcc_assert (!FENCE_BNDS (fence));
+
+ /* Update boundaries of the FENCE. */
+ while (bnds)
+ {
+ ilist_t ptr = BND_PTR (BLIST_BND (bnds));
+
+ if (ptr)
+ {
+ insn = ILIST_INSN (ptr);
+
+ if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
+ ilist_add (&FENCE_BNDS (fence), insn);
+ }
+
+ blist_remove (&bnds);
+ }
+
+ /* Update target context on the fence. */
+ reset_target_context (FENCE_TC (fence), false);
+}
+
+/* All exprs in ORIG_OPS must have the same destination register or memory.
+ Return that destination. */
+static rtx
+get_dest_from_orig_ops (av_set_t orig_ops)
+{
+ rtx dest = NULL_RTX;
+ av_set_iterator av_it;
+ expr_t expr;
+ bool first_p = true;
+
+ FOR_EACH_EXPR (expr, av_it, orig_ops)
+ {
+ rtx x = EXPR_LHS (expr);
+
+ if (first_p)
+ {
+ first_p = false;
+ dest = x;
+ }
+ else
+ gcc_assert (dest == x
+ || (dest != NULL_RTX && x != NULL_RTX
+ && rtx_equal_p (dest, x)));
+ }
+
+ return dest;
+}
+
+/* Update data sets for the bookkeeping block and record those expressions
+ which become no longer available after inserting this bookkeeping. */
+static void
+update_and_record_unavailable_insns (basic_block book_block)
+{
+ av_set_iterator i;
+ av_set_t old_av_set = NULL;
+ expr_t cur_expr;
+ rtx bb_end = sel_bb_end (book_block);
+
+ /* First, get correct liveness in the bookkeeping block. The problem is
+ the range between the bookeeping insn and the end of block. */
+ update_liveness_on_insn (bb_end);
+ if (control_flow_insn_p (bb_end))
+ update_liveness_on_insn (PREV_INSN (bb_end));
+
+ /* If there's valid av_set on BOOK_BLOCK, then there might exist another
+ fence above, where we may choose to schedule an insn which is
+ actually blocked from moving up with the bookkeeping we create here. */
+ if (AV_SET_VALID_P (sel_bb_head (book_block)))
+ {
+ old_av_set = av_set_copy (BB_AV_SET (book_block));
+ update_data_sets (sel_bb_head (book_block));
+
+ /* Traverse all the expressions in the old av_set and check whether
+ CUR_EXPR is in new AV_SET. */
+ FOR_EACH_EXPR (cur_expr, i, old_av_set)
+ {
+ expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
+ EXPR_VINSN (cur_expr));
+
+ if (! new_expr
+ /* In this case, we can just turn off the E_T_A bit, but we can't
+ represent this information with the current vector. */
+ || EXPR_TARGET_AVAILABLE (new_expr)
+ != EXPR_TARGET_AVAILABLE (cur_expr))
+ /* Unfortunately, the below code could be also fired up on
+ separable insns, e.g. when moving insns through the new
+ speculation check as in PR 53701. */
+ vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
+ }
+
+ av_set_clear (&old_av_set);
+ }
+}
+
+/* The main effect of this function is that sparams->c_expr is merged
+ with (or copied to) lparams->c_expr_merged. If there's only one successor,
+ we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
+ lparams->c_expr_merged is copied back to sparams->c_expr after all
+ successors has been traversed. lparams->c_expr_local is an expr allocated
+ on stack in the caller function, and is used if there is more than one
+ successor.
+
+ SUCC is one of the SUCCS_NORMAL successors of INSN,
+ MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
+ LPARAMS and STATIC_PARAMS contain the parameters described above. */
+static void
+move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
+ insn_t succ ATTRIBUTE_UNUSED,
+ int moveop_drv_call_res,
+ cmpd_local_params_p lparams, void *static_params)
+{
+ moveop_static_params_p sparams = (moveop_static_params_p) static_params;
+
+ /* Nothing to do, if original expr wasn't found below. */
+ if (moveop_drv_call_res != 1)
+ return;
+
+ /* If this is a first successor. */
+ if (!lparams->c_expr_merged)
+ {
+ lparams->c_expr_merged = sparams->c_expr;
+ sparams->c_expr = lparams->c_expr_local;
+ }
+ else
+ {
+ /* We must merge all found expressions to get reasonable
+ EXPR_SPEC_DONE_DS for the resulting insn. If we don't
+ do so then we can first find the expr with epsilon
+ speculation success probability and only then with the
+ good probability. As a result the insn will get epsilon
+ probability and will never be scheduled because of
+ weakness_cutoff in find_best_expr.
+
+ We call merge_expr_data here instead of merge_expr
+ because due to speculation C_EXPR and X may have the
+ same insns with different speculation types. And as of
+ now such insns are considered non-equal.
+
+ However, EXPR_SCHED_TIMES is different -- we must get
+ SCHED_TIMES from a real insn, not a bookkeeping copy.
+ We force this here. Instead, we may consider merging
+ SCHED_TIMES to the maximum instead of minimum in the
+ below function. */
+ int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
+
+ merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
+ if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
+ EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
+
+ clear_expr (sparams->c_expr);
+ }
+}
+
+/* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
+
+ SUCC is one of the SUCCS_NORMAL successors of INSN,
+ MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
+ if SUCC is one of SUCCS_BACK or SUCCS_OUT.
+ STATIC_PARAMS contain USED_REGS set. */
+static void
+fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
+ int moveop_drv_call_res,
+ cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
+ void *static_params)
+{
+ regset succ_live;
+ fur_static_params_p sparams = (fur_static_params_p) static_params;
+
+ /* Here we compute live regsets only for branches that do not lie
+ on the code motion paths. These branches correspond to value
+ MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
+ for such branches code_motion_path_driver is not called. */
+ if (moveop_drv_call_res != 0)
+ return;
+
+ /* Mark all registers that do not meet the following condition:
+ (3) not live on the other path of any conditional branch
+ that is passed by the operation, in case original
+ operations are not present on both paths of the
+ conditional branch. */
+ succ_live = compute_live (succ);
+ IOR_REG_SET (sparams->used_regs, succ_live);
+}
+
+/* This function is called after the last successor. Copies LP->C_EXPR_MERGED
+ into SP->CEXPR. */
+static void
+move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
+{
+ moveop_static_params_p sp = (moveop_static_params_p) sparams;
+
+ sp->c_expr = lp->c_expr_merged;
+}
+
+/* Track bookkeeping copies created, insns scheduled, and blocks for
+ rescheduling when INSN is found by move_op. */
+static void
+track_scheduled_insns_and_blocks (rtx insn)
+{
+ /* Even if this insn can be a copy that will be removed during current move_op,
+ we still need to count it as an originator. */
+ bitmap_set_bit (current_originators, INSN_UID (insn));
+
+ if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
+ {
+ /* Note that original block needs to be rescheduled, as we pulled an
+ instruction out of it. */
+ if (INSN_SCHED_TIMES (insn) > 0)
+ bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
+ else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
+ num_insns_scheduled++;
+ }
+
+ /* For instructions we must immediately remove insn from the
+ stream, so subsequent update_data_sets () won't include this
+ insn into av_set.
+ For expr we must make insn look like "INSN_REG (insn) := c_expr". */
+ if (INSN_UID (insn) > max_uid_before_move_op)
+ stat_bookkeeping_copies--;
+}
+
+/* Emit a register-register copy for INSN if needed. Return true if
+ emitted one. PARAMS is the move_op static parameters. */
+static bool
+maybe_emit_renaming_copy (rtx insn,
+ moveop_static_params_p params)
+{
+ bool insn_emitted = false;
+ rtx cur_reg;
+
+ /* Bail out early when expression can not be renamed at all. */
+ if (!EXPR_SEPARABLE_P (params->c_expr))
+ return false;
+
+ cur_reg = expr_dest_reg (params->c_expr);
+ gcc_assert (cur_reg && params->dest && REG_P (params->dest));
+
+ /* If original operation has expr and the register chosen for
+ that expr is not original operation's dest reg, substitute
+ operation's right hand side with the register chosen. */
+ if (REGNO (params->dest) != REGNO (cur_reg))
+ {
+ insn_t reg_move_insn, reg_move_insn_rtx;
+
+ reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
+ params->dest);
+ reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
+ INSN_EXPR (insn),
+ INSN_SEQNO (insn),
+ insn);
+ EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
+ replace_dest_with_reg_in_expr (params->c_expr, params->dest);
+
+ insn_emitted = true;
+ params->was_renamed = true;
+ }
+
+ return insn_emitted;
+}
+
+/* Emit a speculative check for INSN speculated as EXPR if needed.
+ Return true if we've emitted one. PARAMS is the move_op static
+ parameters. */
+static bool
+maybe_emit_speculative_check (rtx insn, expr_t expr,
+ moveop_static_params_p params)
+{
+ bool insn_emitted = false;
+ insn_t x;
+ ds_t check_ds;
+
+ check_ds = get_spec_check_type_for_insn (insn, expr);
+ if (check_ds != 0)
+ {
+ /* A speculation check should be inserted. */
+ x = create_speculation_check (params->c_expr, check_ds, insn);
+ insn_emitted = true;
+ }
+ else
+ {
+ EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
+ x = insn;
+ }
+
+ gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
+ && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
+ return insn_emitted;
+}
+
+/* Handle transformations that leave an insn in place of original
+ insn such as renaming/speculation. Return true if one of such
+ transformations actually happened, and we have emitted this insn. */
+static bool
+handle_emitting_transformations (rtx insn, expr_t expr,
+ moveop_static_params_p params)
+{
+ bool insn_emitted = false;
+
+ insn_emitted = maybe_emit_renaming_copy (insn, params);
+ insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
+
+ return insn_emitted;
+}
+
+/* If INSN is the only insn in the basic block (not counting JUMP,
+ which may be a jump to next insn, and DEBUG_INSNs), we want to
+ leave a NOP there till the return to fill_insns. */
+
+static bool
+need_nop_to_preserve_insn_bb (rtx insn)
+{
+ insn_t bb_head, bb_end, bb_next, in_next;
+ basic_block bb = BLOCK_FOR_INSN (insn);
+
+ bb_head = sel_bb_head (bb);
+ bb_end = sel_bb_end (bb);
+
+ if (bb_head == bb_end)
+ return true;
+
+ while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
+ bb_head = NEXT_INSN (bb_head);
+
+ if (bb_head == bb_end)
+ return true;
+
+ while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
+ bb_end = PREV_INSN (bb_end);
+
+ if (bb_head == bb_end)
+ return true;
+
+ bb_next = NEXT_INSN (bb_head);
+ while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
+ bb_next = NEXT_INSN (bb_next);
+
+ if (bb_next == bb_end && JUMP_P (bb_end))
+ return true;
+
+ in_next = NEXT_INSN (insn);
+ while (DEBUG_INSN_P (in_next))
+ in_next = NEXT_INSN (in_next);
+
+ if (IN_CURRENT_FENCE_P (in_next))
+ return true;
+
+ return false;
+}
+
+/* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
+ is not removed but reused when INSN is re-emitted. */
+static void
+remove_insn_from_stream (rtx insn, bool only_disconnect)
+{
+ /* If there's only one insn in the BB, make sure that a nop is
+ inserted into it, so the basic block won't disappear when we'll
+ delete INSN below with sel_remove_insn. It should also survive
+ till the return to fill_insns. */
+ if (need_nop_to_preserve_insn_bb (insn))
+ {
+ insn_t nop = get_nop_from_pool (insn);
+ gcc_assert (INSN_NOP_P (nop));
+ vec_temp_moveop_nops.safe_push (nop);
+ }
+
+ sel_remove_insn (insn, only_disconnect, false);
+}
+
+/* This function is called when original expr is found.
+ INSN - current insn traversed, EXPR - the corresponding expr found.
+ LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
+ is static parameters of move_op. */
+static void
+move_op_orig_expr_found (insn_t insn, expr_t expr,
+ cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
+ void *static_params)
+{
+ bool only_disconnect, insn_emitted;
+ moveop_static_params_p params = (moveop_static_params_p) static_params;
+
+ copy_expr_onside (params->c_expr, INSN_EXPR (insn));
+ track_scheduled_insns_and_blocks (insn);
+ insn_emitted = handle_emitting_transformations (insn, expr, params);
+ only_disconnect = (params->uid == INSN_UID (insn)
+ && ! insn_emitted && ! EXPR_WAS_CHANGED (expr));
+
+ /* Mark that we've disconnected an insn. */
+ if (only_disconnect)
+ params->uid = -1;
+ remove_insn_from_stream (insn, only_disconnect);
+}
+
+/* The function is called when original expr is found.
+ INSN - current insn traversed, EXPR - the corresponding expr found,
+ crosses_call and original_insns in STATIC_PARAMS are updated. */
+static void
+fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
+ cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
+ void *static_params)
+{
+ fur_static_params_p params = (fur_static_params_p) static_params;
+ regset tmp;
+
+ if (CALL_P (insn))
+ params->crosses_call = true;
+
+ def_list_add (params->original_insns, insn, params->crosses_call);
+
+ /* Mark the registers that do not meet the following condition:
+ (2) not among the live registers of the point
+ immediately following the first original operation on
+ a given downward path, except for the original target
+ register of the operation. */
+ tmp = get_clear_regset_from_pool ();
+ compute_live_below_insn (insn, tmp);
+ AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
+ AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
+ IOR_REG_SET (params->used_regs, tmp);
+ return_regset_to_pool (tmp);
+
+ /* (*1) We need to add to USED_REGS registers that are read by
+ INSN's lhs. This may lead to choosing wrong src register.
+ E.g. (scheduling const expr enabled):
+
+ 429: ax=0x0 <- Can't use AX for this expr (0x0)
+ 433: dx=[bp-0x18]
+ 427: [ax+dx+0x1]=ax
+ REG_DEAD: ax
+ 168: di=dx
+ REG_DEAD: dx
+ */
+ /* FIXME: see comment above and enable MEM_P
+ in vinsn_separable_p. */
+ gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
+ || !MEM_P (INSN_LHS (insn)));
+}
+
+/* This function is called on the ascending pass, before returning from
+ current basic block. */
+static void
+move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
+ void *static_params)
+{
+ moveop_static_params_p sparams = (moveop_static_params_p) static_params;
+ basic_block book_block = NULL;
+
+ /* When we have removed the boundary insn for scheduling, which also
+ happened to be the end insn in its bb, we don't need to update sets. */
+ if (!lparams->removed_last_insn
+ && lparams->e1
+ && sel_bb_head_p (insn))
+ {
+ /* We should generate bookkeeping code only if we are not at the
+ top level of the move_op. */
+ if (sel_num_cfg_preds_gt_1 (insn))
+ book_block = generate_bookkeeping_insn (sparams->c_expr,
+ lparams->e1, lparams->e2);
+ /* Update data sets for the current insn. */
+ update_data_sets (insn);
+ }
+
+ /* If bookkeeping code was inserted, we need to update av sets of basic
+ block that received bookkeeping. After generation of bookkeeping insn,
+ bookkeeping block does not contain valid av set because we are not following
+ the original algorithm in every detail with regards to e.g. renaming
+ simple reg-reg copies. Consider example:
+
+ bookkeeping block scheduling fence
+ \ /
+ \ join /
+ ----------
+ | |
+ ----------
+ / \
+ / \
+ r1 := r2 r1 := r3
+
+ We try to schedule insn "r1 := r3" on the current
+ scheduling fence. Also, note that av set of bookkeeping block
+ contain both insns "r1 := r2" and "r1 := r3". When the insn has
+ been scheduled, the CFG is as follows:
+
+ r1 := r3 r1 := r3
+ bookkeeping block scheduling fence
+ \ /
+ \ join /
+ ----------
+ | |
+ ----------
+ / \
+ / \
+ r1 := r2
+
+ Here, insn "r1 := r3" was scheduled at the current scheduling point
+ and bookkeeping code was generated at the bookeeping block. This
+ way insn "r1 := r2" is no longer available as a whole instruction
+ (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
+ This situation is handled by calling update_data_sets.
+
+ Since update_data_sets is called only on the bookkeeping block, and
+ it also may have predecessors with av_sets, containing instructions that
+ are no longer available, we save all such expressions that become
+ unavailable during data sets update on the bookkeeping block in
+ VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
+ expressions for scheduling. This allows us to avoid recomputation of
+ av_sets outside the code motion path. */
+
+ if (book_block)
+ update_and_record_unavailable_insns (book_block);
+
+ /* If INSN was previously marked for deletion, it's time to do it. */
+ if (lparams->removed_last_insn)
+ insn = PREV_INSN (insn);
+
+ /* Do not tidy control flow at the topmost moveop, as we can erroneously
+ kill a block with a single nop in which the insn should be emitted. */
+ if (lparams->e1)
+ tidy_control_flow (BLOCK_FOR_INSN (insn), true);
+}
+
+/* This function is called on the ascending pass, before returning from the
+ current basic block. */
+static void
+fur_at_first_insn (insn_t insn,
+ cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
+ void *static_params ATTRIBUTE_UNUSED)
+{
+ gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
+ || AV_LEVEL (insn) == -1);
+}
+
+/* Called on the backward stage of recursion to call moveup_expr for insn
+ and sparams->c_expr. */
+static void
+move_op_ascend (insn_t insn, void *static_params)
+{
+ enum MOVEUP_EXPR_CODE res;
+ moveop_static_params_p sparams = (moveop_static_params_p) static_params;
+
+ if (! INSN_NOP_P (insn))
+ {
+ res = moveup_expr_cached (sparams->c_expr, insn, false);
+ gcc_assert (res != MOVEUP_EXPR_NULL);
+ }
+
+ /* Update liveness for this insn as it was invalidated. */
+ update_liveness_on_insn (insn);
+}
+
+/* This function is called on enter to the basic block.
+ Returns TRUE if this block already have been visited and
+ code_motion_path_driver should return 1, FALSE otherwise. */
+static int
+fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
+ void *static_params, bool visited_p)
+{
+ fur_static_params_p sparams = (fur_static_params_p) static_params;
+
+ if (visited_p)
+ {
+ /* If we have found something below this block, there should be at
+ least one insn in ORIGINAL_INSNS. */
+ gcc_assert (*sparams->original_insns);
+
+ /* Adjust CROSSES_CALL, since we may have come to this block along
+ different path. */
+ DEF_LIST_DEF (*sparams->original_insns)->crosses_call
+ |= sparams->crosses_call;
+ }
+ else
+ local_params->old_original_insns = *sparams->original_insns;
+
+ return 1;
+}
+
+/* Same as above but for move_op. */
+static int
+move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
+ cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
+ void *static_params ATTRIBUTE_UNUSED, bool visited_p)
+{
+ if (visited_p)
+ return -1;
+ return 1;
+}
+
+/* This function is called while descending current basic block if current
+ insn is not the original EXPR we're searching for.
+
+ Return value: FALSE, if code_motion_path_driver should perform a local
+ cleanup and return 0 itself;
+ TRUE, if code_motion_path_driver should continue. */
+static bool
+move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
+ void *static_params)
+{
+ moveop_static_params_p sparams = (moveop_static_params_p) static_params;
+
+#ifdef ENABLE_CHECKING
+ sparams->failed_insn = insn;
+#endif
+
+ /* If we're scheduling separate expr, in order to generate correct code
+ we need to stop the search at bookkeeping code generated with the
+ same destination register or memory. */
+ if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
+ return false;
+ return true;
+}
+
+/* This function is called while descending current basic block if current
+ insn is not the original EXPR we're searching for.
+
+ Return value: TRUE (code_motion_path_driver should continue). */
+static bool
+fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
+{
+ bool mutexed;
+ expr_t r;
+ av_set_iterator avi;
+ fur_static_params_p sparams = (fur_static_params_p) static_params;
+
+ if (CALL_P (insn))
+ sparams->crosses_call = true;
+ else if (DEBUG_INSN_P (insn))
+ return true;
+
+ /* If current insn we are looking at cannot be executed together
+ with original insn, then we can skip it safely.
+
+ Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
+ INSN = (!p6) r14 = r14 + 1;
+
+ Here we can schedule ORIG_OP with lhs = r14, though only
+ looking at the set of used and set registers of INSN we must
+ forbid it. So, add set/used in INSN registers to the
+ untouchable set only if there is an insn in ORIG_OPS that can
+ affect INSN. */
+ mutexed = true;
+ FOR_EACH_EXPR (r, avi, orig_ops)
+ if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
+ {
+ mutexed = false;
+ break;
+ }
+
+ /* Mark all registers that do not meet the following condition:
+ (1) Not set or read on any path from xi to an instance of the
+ original operation. */
+ if (!mutexed)
+ {
+ IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
+ IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
+ IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
+ }
+
+ return true;
+}
+
+/* Hooks and data to perform move_op operations with code_motion_path_driver. */
+struct code_motion_path_driver_info_def move_op_hooks = {
+ move_op_on_enter,
+ move_op_orig_expr_found,
+ move_op_orig_expr_not_found,
+ move_op_merge_succs,
+ move_op_after_merge_succs,
+ move_op_ascend,
+ move_op_at_first_insn,
+ SUCCS_NORMAL,
+ "move_op"
+};
+
+/* Hooks and data to perform find_used_regs operations
+ with code_motion_path_driver. */
+struct code_motion_path_driver_info_def fur_hooks = {
+ fur_on_enter,
+ fur_orig_expr_found,
+ fur_orig_expr_not_found,
+ fur_merge_succs,
+ NULL, /* fur_after_merge_succs */
+ NULL, /* fur_ascend */
+ fur_at_first_insn,
+ SUCCS_ALL,
+ "find_used_regs"
+};
+
+/* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
+ code_motion_path_driver is called recursively. Original operation
+ was found at least on one path that is starting with one of INSN's
+ successors (this fact is asserted). ORIG_OPS is expressions we're looking
+ for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
+ of either move_op or find_used_regs depending on the caller.
+
+ Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
+ know for sure at this point. */
+static int
+code_motion_process_successors (insn_t insn, av_set_t orig_ops,
+ ilist_t path, void *static_params)
+{
+ int res = 0;
+ succ_iterator succ_i;
+ rtx succ;
+ basic_block bb;
+ int old_index;
+ unsigned old_succs;
+
+ struct cmpd_local_params lparams;
+ expr_def _x;
+
+ lparams.c_expr_local = &_x;
+ lparams.c_expr_merged = NULL;
+
+ /* We need to process only NORMAL succs for move_op, and collect live
+ registers from ALL branches (including those leading out of the
+ region) for find_used_regs.
+
+ In move_op, there can be a case when insn's bb number has changed
+ due to created bookkeeping. This happens very rare, as we need to
+ move expression from the beginning to the end of the same block.
+ Rescan successors in this case. */
+
+ rescan:
+ bb = BLOCK_FOR_INSN (insn);
+ old_index = bb->index;
+ old_succs = EDGE_COUNT (bb->succs);
+
+ FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
+ {
+ int b;
+
+ lparams.e1 = succ_i.e1;
+ lparams.e2 = succ_i.e2;
+
+ /* Go deep into recursion only for NORMAL edges (non-backedges within the
+ current region). */
+ if (succ_i.current_flags == SUCCS_NORMAL)
+ b = code_motion_path_driver (succ, orig_ops, path, &lparams,
+ static_params);
+ else
+ b = 0;
+
+ /* Merge c_expres found or unify live register sets from different
+ successors. */
+ code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
+ static_params);
+ if (b == 1)
+ res = b;
+ else if (b == -1 && res != 1)
+ res = b;
+
+ /* We have simplified the control flow below this point. In this case,
+ the iterator becomes invalid. We need to try again. */
+ if (BLOCK_FOR_INSN (insn)->index != old_index
+ || EDGE_COUNT (bb->succs) != old_succs)
+ {
+ insn = sel_bb_end (BLOCK_FOR_INSN (insn));
+ goto rescan;
+ }
+ }
+
+#ifdef ENABLE_CHECKING
+ /* Here, RES==1 if original expr was found at least for one of the
+ successors. After the loop, RES may happen to have zero value
+ only if at some point the expr searched is present in av_set, but is
+ not found below. In most cases, this situation is an error.
+ The exception is when the original operation is blocked by
+ bookkeeping generated for another fence or for another path in current
+ move_op. */
+ gcc_assert (res == 1
+ || (res == 0
+ && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
+ static_params))
+ || res == -1);
+#endif
+
+ /* Merge data, clean up, etc. */
+ if (res != -1 && code_motion_path_driver_info->after_merge_succs)
+ code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
+
+ return res;
+}
+
+
+/* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
+ is the pointer to the av set with expressions we were looking for,
+ PATH_P is the pointer to the traversed path. */
+static inline void
+code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
+{
+ ilist_remove (path_p);
+ av_set_clear (orig_ops_p);
+}
+
+/* The driver function that implements move_op or find_used_regs
+ functionality dependent whether code_motion_path_driver_INFO is set to
+ &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
+ of code (CFG traversal etc) that are shared among both functions. INSN
+ is the insn we're starting the search from, ORIG_OPS are the expressions
+ we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
+ parameters of the driver, and STATIC_PARAMS are static parameters of
+ the caller.
+
+ Returns whether original instructions were found. Note that top-level
+ code_motion_path_driver always returns true. */
+static int
+code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
+ cmpd_local_params_p local_params_in,
+ void *static_params)
+{
+ expr_t expr = NULL;
+ basic_block bb = BLOCK_FOR_INSN (insn);
+ insn_t first_insn, bb_tail, before_first;
+ bool removed_last_insn = false;
+
+ if (sched_verbose >= 6)
+ {
+ sel_print ("%s (", code_motion_path_driver_info->routine_name);
+ dump_insn (insn);
+ sel_print (",");
+ dump_av_set (orig_ops);
+ sel_print (")\n");
+ }
+
+ gcc_assert (orig_ops);
+
+ /* If no original operations exist below this insn, return immediately. */
+ if (is_ineligible_successor (insn, path))
+ {
+ if (sched_verbose >= 6)
+ sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
+ return false;
+ }
+
+ /* The block can have invalid av set, in which case it was created earlier
+ during move_op. Return immediately. */
+ if (sel_bb_head_p (insn))
+ {
+ if (! AV_SET_VALID_P (insn))
+ {
+ if (sched_verbose >= 6)
+ sel_print ("Returned from block %d as it had invalid av set\n",
+ bb->index);
+ return false;
+ }
+
+ if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
+ {
+ /* We have already found an original operation on this branch, do not
+ go any further and just return TRUE here. If we don't stop here,
+ function can have exponential behaviour even on the small code
+ with many different paths (e.g. with data speculation and
+ recovery blocks). */
+ if (sched_verbose >= 6)
+ sel_print ("Block %d already visited in this traversal\n", bb->index);
+ if (code_motion_path_driver_info->on_enter)
+ return code_motion_path_driver_info->on_enter (insn,
+ local_params_in,
+ static_params,
+ true);
+ }
+ }
+
+ if (code_motion_path_driver_info->on_enter)
+ code_motion_path_driver_info->on_enter (insn, local_params_in,
+ static_params, false);
+ orig_ops = av_set_copy (orig_ops);
+
+ /* Filter the orig_ops set. */
+ if (AV_SET_VALID_P (insn))
+ av_set_code_motion_filter (&orig_ops, AV_SET (insn));
+
+ /* If no more original ops, return immediately. */
+ if (!orig_ops)
+ {
+ if (sched_verbose >= 6)
+ sel_print ("No intersection with av set of block %d\n", bb->index);
+ return false;
+ }
+
+ /* For non-speculative insns we have to leave only one form of the
+ original operation, because if we don't, we may end up with
+ different C_EXPRes and, consequently, with bookkeepings for different
+ expression forms along the same code motion path. That may lead to
+ generation of incorrect code. So for each code motion we stick to
+ the single form of the instruction, except for speculative insns
+ which we need to keep in different forms with all speculation
+ types. */
+ av_set_leave_one_nonspec (&orig_ops);
+
+ /* It is not possible that all ORIG_OPS are filtered out. */
+ gcc_assert (orig_ops);
+
+ /* It is enough to place only heads and tails of visited basic blocks into
+ the PATH. */
+ ilist_add (&path, insn);
+ first_insn = insn;
+ bb_tail = sel_bb_end (bb);
+
+ /* Descend the basic block in search of the original expr; this part
+ corresponds to the part of the original move_op procedure executed
+ before the recursive call. */
+ for (;;)
+ {
+ /* Look at the insn and decide if it could be an ancestor of currently
+ scheduling operation. If it is so, then the insn "dest = op" could
+ either be replaced with "dest = reg", because REG now holds the result
+ of OP, or just removed, if we've scheduled the insn as a whole.
+
+ If this insn doesn't contain currently scheduling OP, then proceed
+ with searching and look at its successors. Operations we're searching
+ for could have changed when moving up through this insn via
+ substituting. In this case, perform unsubstitution on them first.
+
+ When traversing the DAG below this insn is finished, insert
+ bookkeeping code, if the insn is a joint point, and remove
+ leftovers. */
+
+ expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
+ if (expr)
+ {
+ insn_t last_insn = PREV_INSN (insn);
+
+ /* We have found the original operation. */
+ if (sched_verbose >= 6)
+ sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
+
+ code_motion_path_driver_info->orig_expr_found
+ (insn, expr, local_params_in, static_params);
+
+ /* Step back, so on the way back we'll start traversing from the
+ previous insn (or we'll see that it's bb_note and skip that
+ loop). */
+ if (insn == first_insn)
+ {
+ first_insn = NEXT_INSN (last_insn);
+ removed_last_insn = sel_bb_end_p (last_insn);
+ }
+ insn = last_insn;
+ break;
+ }
+ else
+ {
+ /* We haven't found the original expr, continue descending the basic
+ block. */
+ if (code_motion_path_driver_info->orig_expr_not_found
+ (insn, orig_ops, static_params))
+ {
+ /* Av set ops could have been changed when moving through this
+ insn. To find them below it, we have to un-substitute them. */
+ undo_transformations (&orig_ops, insn);
+ }
+ else
+ {
+ /* Clean up and return, if the hook tells us to do so. It may
+ happen if we've encountered the previously created
+ bookkeeping. */
+ code_motion_path_driver_cleanup (&orig_ops, &path);
+ return -1;
+ }
+
+ gcc_assert (orig_ops);
+ }
+
+ /* Stop at insn if we got to the end of BB. */
+ if (insn == bb_tail)
+ break;
+
+ insn = NEXT_INSN (insn);
+ }
+
+ /* Here INSN either points to the insn before the original insn (may be
+ bb_note, if original insn was a bb_head) or to the bb_end. */
+ if (!expr)
+ {
+ int res;
+ rtx last_insn = PREV_INSN (insn);
+ bool added_to_path;
+
+ gcc_assert (insn == sel_bb_end (bb));
+
+ /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
+ it's already in PATH then). */
+ if (insn != first_insn)
+ {
+ ilist_add (&path, insn);
+ added_to_path = true;
+ }
+ else
+ added_to_path = false;
+
+ /* Process_successors should be able to find at least one
+ successor for which code_motion_path_driver returns TRUE. */
+ res = code_motion_process_successors (insn, orig_ops,
+ path, static_params);
+
+ /* Jump in the end of basic block could have been removed or replaced
+ during code_motion_process_successors, so recompute insn as the
+ last insn in bb. */
+ if (NEXT_INSN (last_insn) != insn)
+ {
+ insn = sel_bb_end (bb);
+ first_insn = sel_bb_head (bb);
+ }
+
+ /* Remove bb tail from path. */
+ if (added_to_path)
+ ilist_remove (&path);
+
+ if (res != 1)
+ {
+ /* This is the case when one of the original expr is no longer available
+ due to bookkeeping created on this branch with the same register.
+ In the original algorithm, which doesn't have update_data_sets call
+ on a bookkeeping block, it would simply result in returning
+ FALSE when we've encountered a previously generated bookkeeping
+ insn in moveop_orig_expr_not_found. */
+ code_motion_path_driver_cleanup (&orig_ops, &path);
+ return res;
+ }
+ }
+
+ /* Don't need it any more. */
+ av_set_clear (&orig_ops);
+
+ /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
+ the beginning of the basic block. */
+ before_first = PREV_INSN (first_insn);
+ while (insn != before_first)
+ {
+ if (code_motion_path_driver_info->ascend)
+ code_motion_path_driver_info->ascend (insn, static_params);
+
+ insn = PREV_INSN (insn);
+ }
+
+ /* Now we're at the bb head. */
+ insn = first_insn;
+ ilist_remove (&path);
+ local_params_in->removed_last_insn = removed_last_insn;
+ code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
+
+ /* This should be the very last operation as at bb head we could change
+ the numbering by creating bookkeeping blocks. */
+ if (removed_last_insn)
+ insn = PREV_INSN (insn);
+ bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
+ return true;
+}
+
+/* Move up the operations from ORIG_OPS set traversing the dag starting
+ from INSN. PATH represents the edges traversed so far.
+ DEST is the register chosen for scheduling the current expr. Insert
+ bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
+ C_EXPR is how it looks like at the given cfg point.
+ Set *SHOULD_MOVE to indicate whether we have only disconnected
+ one of the insns found.
+
+ Returns whether original instructions were found, which is asserted
+ to be true in the caller. */
+static bool
+move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
+ rtx dest, expr_t c_expr, bool *should_move)
+{
+ struct moveop_static_params sparams;
+ struct cmpd_local_params lparams;
+ int res;
+
+ /* Init params for code_motion_path_driver. */
+ sparams.dest = dest;
+ sparams.c_expr = c_expr;
+ sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
+#ifdef ENABLE_CHECKING
+ sparams.failed_insn = NULL;
+#endif
+ sparams.was_renamed = false;
+ lparams.e1 = NULL;
+
+ /* We haven't visited any blocks yet. */
+ bitmap_clear (code_motion_visited_blocks);
+
+ /* Set appropriate hooks and data. */
+ code_motion_path_driver_info = &move_op_hooks;
+ res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
+
+ gcc_assert (res != -1);
+
+ if (sparams.was_renamed)
+ EXPR_WAS_RENAMED (expr_vliw) = true;
+
+ *should_move = (sparams.uid == -1);
+
+ return res;
+}
+
+
+/* Functions that work with regions. */
+
+/* Current number of seqno used in init_seqno and init_seqno_1. */
+static int cur_seqno;
+
+/* A helper for init_seqno. Traverse the region starting from BB and
+ compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
+ Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
+static void
+init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
+{
+ int bbi = BLOCK_TO_BB (bb->index);
+ insn_t insn, note = bb_note (bb);
+ insn_t succ_insn;
+ succ_iterator si;
+
+ bitmap_set_bit (visited_bbs, bbi);
+ if (blocks_to_reschedule)
+ bitmap_clear_bit (blocks_to_reschedule, bb->index);
+
+ FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
+ SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
+ {
+ basic_block succ = BLOCK_FOR_INSN (succ_insn);
+ int succ_bbi = BLOCK_TO_BB (succ->index);
+
+ gcc_assert (in_current_region_p (succ));
+
+ if (!bitmap_bit_p (visited_bbs, succ_bbi))
+ {
+ gcc_assert (succ_bbi > bbi);
+
+ init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
+ }
+ else if (blocks_to_reschedule)
+ bitmap_set_bit (forced_ebb_heads, succ->index);
+ }
+
+ for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
+ INSN_SEQNO (insn) = cur_seqno--;
+}
+
+/* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
+ blocks on which we're rescheduling when pipelining, FROM is the block where
+ traversing region begins (it may not be the head of the region when
+ pipelining, but the head of the loop instead).
+
+ Returns the maximal seqno found. */
+static int
+init_seqno (bitmap blocks_to_reschedule, basic_block from)
+{
+ sbitmap visited_bbs;
+ bitmap_iterator bi;
+ unsigned bbi;
+
+ visited_bbs = sbitmap_alloc (current_nr_blocks);
+
+ if (blocks_to_reschedule)
+ {
+ bitmap_ones (visited_bbs);
+ EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
+ {
+ gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
+ bitmap_clear_bit (visited_bbs, BLOCK_TO_BB (bbi));
+ }
+ }
+ else
+ {
+ bitmap_clear (visited_bbs);
+ from = EBB_FIRST_BB (0);
+ }
+
+ cur_seqno = sched_max_luid - 1;
+ init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
+
+ /* cur_seqno may be positive if the number of instructions is less than
+ sched_max_luid - 1 (when rescheduling or if some instructions have been
+ removed by the call to purge_empty_blocks in sel_sched_region_1). */
+ gcc_assert (cur_seqno >= 0);
+
+ sbitmap_free (visited_bbs);
+ return sched_max_luid - 1;
+}
+
+/* Initialize scheduling parameters for current region. */
+static void
+sel_setup_region_sched_flags (void)
+{
+ enable_schedule_as_rhs_p = 1;
+ bookkeeping_p = 1;
+ pipelining_p = (bookkeeping_p
+ && (flag_sel_sched_pipelining != 0)
+ && current_loop_nest != NULL
+ && loop_has_exit_edges (current_loop_nest));
+ max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
+ max_ws = MAX_WS;
+}
+
+/* Return true if all basic blocks of current region are empty. */
+static bool
+current_region_empty_p (void)
+{
+ int i;
+ for (i = 0; i < current_nr_blocks; i++)
+ if (! sel_bb_empty_p (BASIC_BLOCK (BB_TO_BLOCK (i))))
+ return false;
+
+ return true;
+}
+
+/* Prepare and verify loop nest for pipelining. */
+static void
+setup_current_loop_nest (int rgn, bb_vec_t *bbs)
+{
+ current_loop_nest = get_loop_nest_for_rgn (rgn);
+
+ if (!current_loop_nest)
+ return;
+
+ /* If this loop has any saved loop preheaders from nested loops,
+ add these basic blocks to the current region. */
+ sel_add_loop_preheaders (bbs);
+
+ /* Check that we're starting with a valid information. */
+ gcc_assert (loop_latch_edge (current_loop_nest));
+ gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
+}
+
+/* Compute instruction priorities for current region. */
+static void
+sel_compute_priorities (int rgn)
+{
+ sched_rgn_compute_dependencies (rgn);
+
+ /* Compute insn priorities in haifa style. Then free haifa style
+ dependencies that we've calculated for this. */
+ compute_priorities ();
+
+ if (sched_verbose >= 5)
+ debug_rgn_dependencies (0);
+
+ free_rgn_deps ();
+}
+
+/* Init scheduling data for RGN. Returns true when this region should not
+ be scheduled. */
+static bool
+sel_region_init (int rgn)
+{
+ int i;
+ bb_vec_t bbs;
+
+ rgn_setup_region (rgn);
+
+ /* Even if sched_is_disabled_for_current_region_p() is true, we still
+ do region initialization here so the region can be bundled correctly,
+ but we'll skip the scheduling in sel_sched_region (). */
+ if (current_region_empty_p ())
+ return true;
+
+ bbs.create (current_nr_blocks);
+
+ for (i = 0; i < current_nr_blocks; i++)
+ bbs.quick_push (BASIC_BLOCK (BB_TO_BLOCK (i)));
+
+ sel_init_bbs (bbs);
+
+ if (flag_sel_sched_pipelining)
+ setup_current_loop_nest (rgn, &bbs);
+
+ sel_setup_region_sched_flags ();
+
+ /* Initialize luids and dependence analysis which both sel-sched and haifa
+ need. */
+ sched_init_luids (bbs);
+ sched_deps_init (false);
+
+ /* Initialize haifa data. */
+ rgn_setup_sched_infos ();
+ sel_set_sched_flags ();
+ haifa_init_h_i_d (bbs);
+
+ sel_compute_priorities (rgn);
+ init_deps_global ();
+
+ /* Main initialization. */
+ sel_setup_sched_infos ();
+ sel_init_global_and_expr (bbs);
+
+ bbs.release ();
+
+ blocks_to_reschedule = BITMAP_ALLOC (NULL);
+
+ /* Init correct liveness sets on each instruction of a single-block loop.
+ This is the only situation when we can't update liveness when calling
+ compute_live for the first insn of the loop. */
+ if (current_loop_nest)
+ {
+ int header = (sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0)))
+ ? 1
+ : 0);
+
+ if (current_nr_blocks == header + 1)
+ update_liveness_on_insn
+ (sel_bb_head (BASIC_BLOCK (BB_TO_BLOCK (header))));
+ }
+
+ /* Set hooks so that no newly generated insn will go out unnoticed. */
+ sel_register_cfg_hooks ();
+
+ /* !!! We call target.sched.init () for the whole region, but we invoke
+ targetm.sched.finish () for every ebb. */
+ if (targetm.sched.init)
+ /* None of the arguments are actually used in any target. */
+ targetm.sched.init (sched_dump, sched_verbose, -1);
+
+ first_emitted_uid = get_max_uid () + 1;
+ preheader_removed = false;
+
+ /* Reset register allocation ticks array. */
+ memset (reg_rename_tick, 0, sizeof reg_rename_tick);
+ reg_rename_this_tick = 0;
+
+ bitmap_initialize (forced_ebb_heads, 0);
+ bitmap_clear (forced_ebb_heads);
+
+ setup_nop_vinsn ();
+ current_copies = BITMAP_ALLOC (NULL);
+ current_originators = BITMAP_ALLOC (NULL);
+ code_motion_visited_blocks = BITMAP_ALLOC (NULL);
+
+ return false;
+}
+
+/* Simplify insns after the scheduling. */
+static void
+simplify_changed_insns (void)
+{
+ int i;
+
+ for (i = 0; i < current_nr_blocks; i++)
+ {
+ basic_block bb = BASIC_BLOCK (BB_TO_BLOCK (i));
+ rtx insn;
+
+ FOR_BB_INSNS (bb, insn)
+ if (INSN_P (insn))
+ {
+ expr_t expr = INSN_EXPR (insn);
+
+ if (EXPR_WAS_SUBSTITUTED (expr))
+ validate_simplify_insn (insn);
+ }
+ }
+}
+
+/* Find boundaries of the EBB starting from basic block BB, marking blocks of
+ this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
+ PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
+static void
+find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
+{
+ insn_t head, tail;
+ basic_block bb1 = bb;
+ if (sched_verbose >= 2)
+ sel_print ("Finishing schedule in bbs: ");
+
+ do
+ {
+ bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
+
+ if (sched_verbose >= 2)
+ sel_print ("%d; ", bb1->index);
+ }
+ while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
+
+ if (sched_verbose >= 2)
+ sel_print ("\n");
+
+ get_ebb_head_tail (bb, bb1, &head, &tail);
+
+ current_sched_info->head = head;
+ current_sched_info->tail = tail;
+ current_sched_info->prev_head = PREV_INSN (head);
+ current_sched_info->next_tail = NEXT_INSN (tail);
+}
+
+/* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
+static void
+reset_sched_cycles_in_current_ebb (void)
+{
+ int last_clock = 0;
+ int haifa_last_clock = -1;
+ int haifa_clock = 0;
+ int issued_insns = 0;
+ insn_t insn;
+
+ if (targetm.sched.init)
+ {
+ /* None of the arguments are actually used in any target.
+ NB: We should have md_reset () hook for cases like this. */
+ targetm.sched.init (sched_dump, sched_verbose, -1);
+ }
+
+ state_reset (curr_state);
+ advance_state (curr_state);
+
+ for (insn = current_sched_info->head;
+ insn != current_sched_info->next_tail;
+ insn = NEXT_INSN (insn))
+ {
+ int cost, haifa_cost;
+ int sort_p;
+ bool asm_p, real_insn, after_stall, all_issued;
+ int clock;
+
+ if (!INSN_P (insn))
+ continue;
+
+ asm_p = false;
+ real_insn = recog_memoized (insn) >= 0;
+ clock = INSN_SCHED_CYCLE (insn);
+
+ cost = clock - last_clock;
+
+ /* Initialize HAIFA_COST. */
+ if (! real_insn)
+ {
+ asm_p = INSN_ASM_P (insn);
+
+ if (asm_p)
+ /* This is asm insn which *had* to be scheduled first
+ on the cycle. */
+ haifa_cost = 1;
+ else
+ /* This is a use/clobber insn. It should not change
+ cost. */
+ haifa_cost = 0;
+ }
+ else
+ haifa_cost = estimate_insn_cost (insn, curr_state);
+
+ /* Stall for whatever cycles we've stalled before. */
+ after_stall = 0;
+ if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
+ {
+ haifa_cost = cost;
+ after_stall = 1;
+ }
+ all_issued = issued_insns == issue_rate;
+ if (haifa_cost == 0 && all_issued)
+ haifa_cost = 1;
+ if (haifa_cost > 0)
+ {
+ int i = 0;
+
+ while (haifa_cost--)
+ {
+ advance_state (curr_state);
+ issued_insns = 0;
+ i++;
+
+ if (sched_verbose >= 2)
+ {
+ sel_print ("advance_state (state_transition)\n");
+ debug_state (curr_state);
+ }
+
+ /* The DFA may report that e.g. insn requires 2 cycles to be
+ issued, but on the next cycle it says that insn is ready
+ to go. Check this here. */
+ if (!after_stall
+ && real_insn
+ && haifa_cost > 0
+ && estimate_insn_cost (insn, curr_state) == 0)
+ break;
+
+ /* When the data dependency stall is longer than the DFA stall,
+ and when we have issued exactly issue_rate insns and stalled,
+ it could be that after this longer stall the insn will again
+ become unavailable to the DFA restrictions. Looks strange
+ but happens e.g. on x86-64. So recheck DFA on the last
+ iteration. */
+ if ((after_stall || all_issued)
+ && real_insn
+ && haifa_cost == 0)
+ haifa_cost = estimate_insn_cost (insn, curr_state);
+ }
+
+ haifa_clock += i;
+ if (sched_verbose >= 2)
+ sel_print ("haifa clock: %d\n", haifa_clock);
+ }
+ else
+ gcc_assert (haifa_cost == 0);
+
+ if (sched_verbose >= 2)
+ sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
+
+ if (targetm.sched.dfa_new_cycle)
+ while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
+ haifa_last_clock, haifa_clock,
+ &sort_p))
+ {
+ advance_state (curr_state);
+ issued_insns = 0;
+ haifa_clock++;
+ if (sched_verbose >= 2)
+ {
+ sel_print ("advance_state (dfa_new_cycle)\n");
+ debug_state (curr_state);
+ sel_print ("haifa clock: %d\n", haifa_clock + 1);
+ }
+ }
+
+ if (real_insn)
+ {
+ static state_t temp = NULL;
+
+ if (!temp)
+ temp = xmalloc (dfa_state_size);
+ memcpy (temp, curr_state, dfa_state_size);
+
+ cost = state_transition (curr_state, insn);
+ if (memcmp (temp, curr_state, dfa_state_size))
+ issued_insns++;
+
+ if (sched_verbose >= 2)
+ {
+ sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
+ haifa_clock + 1);
+ debug_state (curr_state);
+ }
+ gcc_assert (cost < 0);
+ }
+
+ if (targetm.sched.variable_issue)
+ targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
+
+ INSN_SCHED_CYCLE (insn) = haifa_clock;
+
+ last_clock = clock;
+ haifa_last_clock = haifa_clock;
+ }
+}
+
+/* Put TImode markers on insns starting a new issue group. */
+static void
+put_TImodes (void)
+{
+ int last_clock = -1;
+ insn_t insn;
+
+ for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
+ insn = NEXT_INSN (insn))
+ {
+ int cost, clock;
+
+ if (!INSN_P (insn))
+ continue;
+
+ clock = INSN_SCHED_CYCLE (insn);
+ cost = (last_clock == -1) ? 1 : clock - last_clock;
+
+ gcc_assert (cost >= 0);
+
+ if (issue_rate > 1
+ && GET_CODE (PATTERN (insn)) != USE
+ && GET_CODE (PATTERN (insn)) != CLOBBER)
+ {
+ if (reload_completed && cost > 0)
+ PUT_MODE (insn, TImode);
+
+ last_clock = clock;
+ }
+
+ if (sched_verbose >= 2)
+ sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
+ }
+}
+
+/* Perform MD_FINISH on EBBs comprising current region. When
+ RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
+ to produce correct sched cycles on insns. */
+static void
+sel_region_target_finish (bool reset_sched_cycles_p)
+{
+ int i;
+ bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
+
+ for (i = 0; i < current_nr_blocks; i++)
+ {
+ if (bitmap_bit_p (scheduled_blocks, i))
+ continue;
+
+ /* While pipelining outer loops, skip bundling for loop
+ preheaders. Those will be rescheduled in the outer loop. */
+ if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
+ continue;
+
+ find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
+
+ if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
+ continue;
+
+ if (reset_sched_cycles_p)
+ reset_sched_cycles_in_current_ebb ();
+
+ if (targetm.sched.init)
+ targetm.sched.init (sched_dump, sched_verbose, -1);
+
+ put_TImodes ();
+
+ if (targetm.sched.finish)
+ {
+ targetm.sched.finish (sched_dump, sched_verbose);
+
+ /* Extend luids so that insns generated by the target will
+ get zero luid. */
+ sched_extend_luids ();
+ }
+ }
+
+ BITMAP_FREE (scheduled_blocks);
+}
+
+/* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
+ is true, make an additional pass emulating scheduler to get correct insn
+ cycles for md_finish calls. */
+static void
+sel_region_finish (bool reset_sched_cycles_p)
+{
+ simplify_changed_insns ();
+ sched_finish_ready_list ();
+ free_nop_pool ();
+
+ /* Free the vectors. */
+ vec_av_set.release ();
+ BITMAP_FREE (current_copies);
+ BITMAP_FREE (current_originators);
+ BITMAP_FREE (code_motion_visited_blocks);
+ vinsn_vec_free (vec_bookkeeping_blocked_vinsns);
+ vinsn_vec_free (vec_target_unavailable_vinsns);
+
+ /* If LV_SET of the region head should be updated, do it now because
+ there will be no other chance. */
+ {
+ succ_iterator si;
+ insn_t insn;
+
+ FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
+ SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
+ {
+ basic_block bb = BLOCK_FOR_INSN (insn);
+
+ if (!BB_LV_SET_VALID_P (bb))
+ compute_live (insn);
+ }
+ }
+
+ /* Emulate the Haifa scheduler for bundling. */
+ if (reload_completed)
+ sel_region_target_finish (reset_sched_cycles_p);
+
+ sel_finish_global_and_expr ();
+
+ bitmap_clear (forced_ebb_heads);
+
+ free_nop_vinsn ();
+
+ finish_deps_global ();
+ sched_finish_luids ();
+ h_d_i_d.release ();
+
+ sel_finish_bbs ();
+ BITMAP_FREE (blocks_to_reschedule);
+
+ sel_unregister_cfg_hooks ();
+
+ max_issue_size = 0;
+}
+
+
+/* Functions that implement the scheduler driver. */
+
+/* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
+ is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
+ of insns scheduled -- these would be postprocessed later. */
+static void
+schedule_on_fences (flist_t fences, int max_seqno,
+ ilist_t **scheduled_insns_tailpp)
+{
+ flist_t old_fences = fences;
+
+ if (sched_verbose >= 1)
+ {
+ sel_print ("\nScheduling on fences: ");
+ dump_flist (fences);
+ sel_print ("\n");
+ }
+
+ scheduled_something_on_previous_fence = false;
+ for (; fences; fences = FLIST_NEXT (fences))
+ {
+ fence_t fence = NULL;
+ int seqno = 0;
+ flist_t fences2;
+ bool first_p = true;
+
+ /* Choose the next fence group to schedule.
+ The fact that insn can be scheduled only once
+ on the cycle is guaranteed by two properties:
+ 1. seqnos of parallel groups decrease with each iteration.
+ 2. If is_ineligible_successor () sees the larger seqno, it
+ checks if candidate insn is_in_current_fence_p (). */
+ for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
+ {
+ fence_t f = FLIST_FENCE (fences2);
+
+ if (!FENCE_PROCESSED_P (f))
+ {
+ int i = INSN_SEQNO (FENCE_INSN (f));
+
+ if (first_p || i > seqno)
+ {
+ seqno = i;
+ fence = f;
+ first_p = false;
+ }
+ else
+ /* ??? Seqnos of different groups should be different. */
+ gcc_assert (1 || i != seqno);
+ }
+ }
+
+ gcc_assert (fence);
+
+ /* As FENCE is nonnull, SEQNO is initialized. */
+ seqno -= max_seqno + 1;
+ fill_insns (fence, seqno, scheduled_insns_tailpp);
+ FENCE_PROCESSED_P (fence) = true;
+ }
+
+ /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
+ don't need to keep bookkeeping-invalidated and target-unavailable
+ vinsns any more. */
+ vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
+ vinsn_vec_clear (&vec_target_unavailable_vinsns);
+}
+
+/* Calculate MIN_SEQNO and MAX_SEQNO. */
+static void
+find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
+{
+ *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
+
+ /* The first element is already processed. */
+ while ((fences = FLIST_NEXT (fences)))
+ {
+ int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
+
+ if (*min_seqno > seqno)
+ *min_seqno = seqno;
+ else if (*max_seqno < seqno)
+ *max_seqno = seqno;
+ }
+}
+
+/* Calculate new fences from FENCES. */
+static flist_t
+calculate_new_fences (flist_t fences, int orig_max_seqno)
+{
+ flist_t old_fences = fences;
+ struct flist_tail_def _new_fences, *new_fences = &_new_fences;
+
+ flist_tail_init (new_fences);
+ for (; fences; fences = FLIST_NEXT (fences))
+ {
+ fence_t fence = FLIST_FENCE (fences);
+ insn_t insn;
+
+ if (!FENCE_BNDS (fence))
+ {
+ /* This fence doesn't have any successors. */
+ if (!FENCE_SCHEDULED_P (fence))
+ {
+ /* Nothing was scheduled on this fence. */
+ int seqno;
+
+ insn = FENCE_INSN (fence);
+ seqno = INSN_SEQNO (insn);
+ gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
+
+ if (sched_verbose >= 1)
+ sel_print ("Fence %d[%d] has not changed\n",
+ INSN_UID (insn),
+ BLOCK_NUM (insn));
+ move_fence_to_fences (fences, new_fences);
+ }
+ }
+ else
+ extract_new_fences_from (fences, new_fences, orig_max_seqno);
+ }
+
+ flist_clear (&old_fences);
+ return FLIST_TAIL_HEAD (new_fences);
+}
+
+/* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
+ are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
+ the highest seqno used in a region. Return the updated highest seqno. */
+static int
+update_seqnos_and_stage (int min_seqno, int max_seqno,
+ int highest_seqno_in_use,
+ ilist_t *pscheduled_insns)
+{
+ int new_hs;
+ ilist_iterator ii;
+ insn_t insn;
+
+ /* Actually, new_hs is the seqno of the instruction, that was
+ scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
+ if (*pscheduled_insns)
+ {
+ new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
+ + highest_seqno_in_use + max_seqno - min_seqno + 2);
+ gcc_assert (new_hs > highest_seqno_in_use);
+ }
+ else
+ new_hs = highest_seqno_in_use;
+
+ FOR_EACH_INSN (insn, ii, *pscheduled_insns)
+ {
+ gcc_assert (INSN_SEQNO (insn) < 0);
+ INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
+ gcc_assert (INSN_SEQNO (insn) <= new_hs);
+
+ /* When not pipelining, purge unneeded insn info on the scheduled insns.
+ For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
+ require > 1GB of memory e.g. on limit-fnargs.c. */
+ if (! pipelining_p)
+ free_data_for_scheduled_insn (insn);
+ }
+
+ ilist_clear (pscheduled_insns);
+ global_level++;
+
+ return new_hs;
+}
+
+/* The main driver for scheduling a region. This function is responsible
+ for correct propagation of fences (i.e. scheduling points) and creating
+ a group of parallel insns at each of them. It also supports
+ pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
+ of scheduling. */
+static void
+sel_sched_region_2 (int orig_max_seqno)
+{
+ int highest_seqno_in_use = orig_max_seqno;
+
+ stat_bookkeeping_copies = 0;
+ stat_insns_needed_bookkeeping = 0;
+ stat_renamed_scheduled = 0;
+ stat_substitutions_total = 0;
+ num_insns_scheduled = 0;
+
+ while (fences)
+ {
+ int min_seqno, max_seqno;
+ ilist_t scheduled_insns = NULL;
+ ilist_t *scheduled_insns_tailp = &scheduled_insns;
+
+ find_min_max_seqno (fences, &min_seqno, &max_seqno);
+ schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
+ fences = calculate_new_fences (fences, orig_max_seqno);
+ highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
+ highest_seqno_in_use,
+ &scheduled_insns);
+ }
+
+ if (sched_verbose >= 1)
+ sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
+ "bookkeeping, %d insns renamed, %d insns substituted\n",
+ stat_bookkeeping_copies,
+ stat_insns_needed_bookkeeping,
+ stat_renamed_scheduled,
+ stat_substitutions_total);
+}
+
+/* Schedule a region. When pipelining, search for possibly never scheduled
+ bookkeeping code and schedule it. Reschedule pipelined code without
+ pipelining after. */
+static void
+sel_sched_region_1 (void)
+{
+ int orig_max_seqno;
+
+ /* Remove empty blocks that might be in the region from the beginning. */
+ purge_empty_blocks ();
+
+ orig_max_seqno = init_seqno (NULL, NULL);
+ gcc_assert (orig_max_seqno >= 1);
+
+ /* When pipelining outer loops, create fences on the loop header,
+ not preheader. */
+ fences = NULL;
+ if (current_loop_nest)
+ init_fences (BB_END (EBB_FIRST_BB (0)));
+ else
+ init_fences (bb_note (EBB_FIRST_BB (0)));
+ global_level = 1;
+
+ sel_sched_region_2 (orig_max_seqno);
+
+ gcc_assert (fences == NULL);
+
+ if (pipelining_p)
+ {
+ int i;
+ basic_block bb;
+ struct flist_tail_def _new_fences;
+ flist_tail_t new_fences = &_new_fences;
+ bool do_p = true;
+
+ pipelining_p = false;
+ max_ws = MIN (max_ws, issue_rate * 3 / 2);
+ bookkeeping_p = false;
+ enable_schedule_as_rhs_p = false;
+
+ /* Schedule newly created code, that has not been scheduled yet. */
+ do_p = true;
+
+ while (do_p)
+ {
+ do_p = false;
+
+ for (i = 0; i < current_nr_blocks; i++)
+ {
+ basic_block bb = EBB_FIRST_BB (i);
+
+ if (bitmap_bit_p (blocks_to_reschedule, bb->index))
+ {
+ if (! bb_ends_ebb_p (bb))
+ bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
+ if (sel_bb_empty_p (bb))
+ {
+ bitmap_clear_bit (blocks_to_reschedule, bb->index);
+ continue;
+ }
+ clear_outdated_rtx_info (bb);
+ if (sel_insn_is_speculation_check (BB_END (bb))
+ && JUMP_P (BB_END (bb)))
+ bitmap_set_bit (blocks_to_reschedule,
+ BRANCH_EDGE (bb)->dest->index);
+ }
+ else if (! sel_bb_empty_p (bb)
+ && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
+ bitmap_set_bit (blocks_to_reschedule, bb->index);
+ }
+
+ for (i = 0; i < current_nr_blocks; i++)
+ {
+ bb = EBB_FIRST_BB (i);
+
+ /* While pipelining outer loops, skip bundling for loop
+ preheaders. Those will be rescheduled in the outer
+ loop. */
+ if (sel_is_loop_preheader_p (bb))
+ {
+ clear_outdated_rtx_info (bb);
+ continue;
+ }
+
+ if (bitmap_bit_p (blocks_to_reschedule, bb->index))
+ {
+ flist_tail_init (new_fences);
+
+ orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
+
+ /* Mark BB as head of the new ebb. */
+ bitmap_set_bit (forced_ebb_heads, bb->index);
+
+ gcc_assert (fences == NULL);
+
+ init_fences (bb_note (bb));
+
+ sel_sched_region_2 (orig_max_seqno);
+
+ do_p = true;
+ break;
+ }
+ }
+ }
+ }
+}
+
+/* Schedule the RGN region. */
+void
+sel_sched_region (int rgn)
+{
+ bool schedule_p;
+ bool reset_sched_cycles_p;
+
+ if (sel_region_init (rgn))
+ return;
+
+ if (sched_verbose >= 1)
+ sel_print ("Scheduling region %d\n", rgn);
+
+ schedule_p = (!sched_is_disabled_for_current_region_p ()
+ && dbg_cnt (sel_sched_region_cnt));
+ reset_sched_cycles_p = pipelining_p;
+ if (schedule_p)
+ sel_sched_region_1 ();
+ else
+ /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
+ reset_sched_cycles_p = true;
+
+ sel_region_finish (reset_sched_cycles_p);
+}
+
+/* Perform global init for the scheduler. */
+static void
+sel_global_init (void)
+{
+ calculate_dominance_info (CDI_DOMINATORS);
+ alloc_sched_pools ();
+
+ /* Setup the infos for sched_init. */
+ sel_setup_sched_infos ();
+ setup_sched_dump ();
+
+ sched_rgn_init (false);
+ sched_init ();
+
+ sched_init_bbs ();
+ /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
+ after_recovery = 0;
+ can_issue_more = issue_rate;
+
+ sched_extend_target ();
+ sched_deps_init (true);
+ setup_nop_and_exit_insns ();
+ sel_extend_global_bb_info ();
+ init_lv_sets ();
+ init_hard_regs_data ();
+}
+
+/* Free the global data of the scheduler. */
+static void
+sel_global_finish (void)
+{
+ free_bb_note_pool ();
+ free_lv_sets ();
+ sel_finish_global_bb_info ();
+
+ free_regset_pool ();
+ free_nop_and_exit_insns ();
+
+ sched_rgn_finish ();
+ sched_deps_finish ();
+ sched_finish ();
+
+ if (current_loops)
+ sel_finish_pipelining ();
+
+ free_sched_pools ();
+ free_dominance_info (CDI_DOMINATORS);
+}
+
+/* Return true when we need to skip selective scheduling. Used for debugging. */
+bool
+maybe_skip_selective_scheduling (void)
+{
+ return ! dbg_cnt (sel_sched_cnt);
+}
+
+/* The entry point. */
+void
+run_selective_scheduling (void)
+{
+ int rgn;
+
+ if (n_basic_blocks == NUM_FIXED_BLOCKS)
+ return;
+
+ sel_global_init ();
+
+ for (rgn = 0; rgn < nr_regions; rgn++)
+ sel_sched_region (rgn);
+
+ sel_global_finish ();
+}
+
+#endif