diff options
author | Dan Albert <danalbert@google.com> | 2015-06-17 11:09:54 -0700 |
---|---|---|
committer | Dan Albert <danalbert@google.com> | 2015-06-17 14:15:22 -0700 |
commit | f378ebf14df0952eae870c9865bab8326aa8f137 (patch) | |
tree | 31794503eb2a8c64ea5f313b93100f1163afcffb /gcc-4.7/libquadmath/math/cosq_kernel.c | |
parent | 2c58169824949d3a597d9fa81931e001ef9b1bd0 (diff) | |
download | toolchain_gcc-f378ebf14df0952eae870c9865bab8326aa8f137.tar.gz toolchain_gcc-f378ebf14df0952eae870c9865bab8326aa8f137.tar.bz2 toolchain_gcc-f378ebf14df0952eae870c9865bab8326aa8f137.zip |
Delete old versions of GCC.
Change-Id: I710f125d905290e1024cbd67f48299861790c66c
Diffstat (limited to 'gcc-4.7/libquadmath/math/cosq_kernel.c')
-rw-r--r-- | gcc-4.7/libquadmath/math/cosq_kernel.c | 127 |
1 files changed, 0 insertions, 127 deletions
diff --git a/gcc-4.7/libquadmath/math/cosq_kernel.c b/gcc-4.7/libquadmath/math/cosq_kernel.c deleted file mode 100644 index 86f39551c..000000000 --- a/gcc-4.7/libquadmath/math/cosq_kernel.c +++ /dev/null @@ -1,127 +0,0 @@ -/* Quad-precision floating point cosine on <-pi/4,pi/4>. - Copyright (C) 1999 Free Software Foundation, Inc. - This file is part of the GNU C Library. - Contributed by Jakub Jelinek <jj@ultra.linux.cz> - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, write to the Free - Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA - 02111-1307 USA. */ - -#include "quadmath-imp.h" - -static const __float128 c[] = { -#define ONE c[0] - 1.00000000000000000000000000000000000E+00Q, /* 3fff0000000000000000000000000000 */ - -/* cos x ~ ONE + x^2 ( SCOS1 + SCOS2 * x^2 + ... + SCOS4 * x^6 + SCOS5 * x^8 ) - x in <0,1/256> */ -#define SCOS1 c[1] -#define SCOS2 c[2] -#define SCOS3 c[3] -#define SCOS4 c[4] -#define SCOS5 c[5] --5.00000000000000000000000000000000000E-01Q, /* bffe0000000000000000000000000000 */ - 4.16666666666666666666666666556146073E-02Q, /* 3ffa5555555555555555555555395023 */ --1.38888888888888888888309442601939728E-03Q, /* bff56c16c16c16c16c16a566e42c0375 */ - 2.48015873015862382987049502531095061E-05Q, /* 3fefa01a01a019ee02dcf7da2d6d5444 */ --2.75573112601362126593516899592158083E-07Q, /* bfe927e4f5dce637cb0b54908754bde0 */ - -/* cos x ~ ONE + x^2 ( COS1 + COS2 * x^2 + ... + COS7 * x^12 + COS8 * x^14 ) - x in <0,0.1484375> */ -#define COS1 c[6] -#define COS2 c[7] -#define COS3 c[8] -#define COS4 c[9] -#define COS5 c[10] -#define COS6 c[11] -#define COS7 c[12] -#define COS8 c[13] --4.99999999999999999999999999999999759E-01Q, /* bffdfffffffffffffffffffffffffffb */ - 4.16666666666666666666666666651287795E-02Q, /* 3ffa5555555555555555555555516f30 */ --1.38888888888888888888888742314300284E-03Q, /* bff56c16c16c16c16c16c16a463dfd0d */ - 2.48015873015873015867694002851118210E-05Q, /* 3fefa01a01a01a01a0195cebe6f3d3a5 */ --2.75573192239858811636614709689300351E-07Q, /* bfe927e4fb7789f5aa8142a22044b51f */ - 2.08767569877762248667431926878073669E-09Q, /* 3fe21eed8eff881d1e9262d7adff4373 */ --1.14707451049343817400420280514614892E-11Q, /* bfda9397496922a9601ed3d4ca48944b */ - 4.77810092804389587579843296923533297E-14Q, /* 3fd2ae5f8197cbcdcaf7c3fb4523414c */ - -/* sin x ~ ONE * x + x^3 ( SSIN1 + SSIN2 * x^2 + ... + SSIN4 * x^6 + SSIN5 * x^8 ) - x in <0,1/256> */ -#define SSIN1 c[14] -#define SSIN2 c[15] -#define SSIN3 c[16] -#define SSIN4 c[17] -#define SSIN5 c[18] --1.66666666666666666666666666666666659E-01Q, /* bffc5555555555555555555555555555 */ - 8.33333333333333333333333333146298442E-03Q, /* 3ff81111111111111111111110fe195d */ --1.98412698412698412697726277416810661E-04Q, /* bff2a01a01a01a01a019e7121e080d88 */ - 2.75573192239848624174178393552189149E-06Q, /* 3fec71de3a556c640c6aaa51aa02ab41 */ --2.50521016467996193495359189395805639E-08Q, /* bfe5ae644ee90c47dc71839de75b2787 */ -}; - -#define SINCOSQ_COS_HI 0 -#define SINCOSQ_COS_LO 1 -#define SINCOSQ_SIN_HI 2 -#define SINCOSQ_SIN_LO 3 -extern const __float128 __sincosq_table[]; - -__float128 -__quadmath_kernel_cosq (__float128 x, __float128 y) -{ - __float128 h, l, z, sin_l, cos_l_m1; - int64_t ix; - uint32_t tix, hix, index; - GET_FLT128_MSW64 (ix, x); - tix = ((uint64_t)ix) >> 32; - tix &= ~0x80000000; /* tix = |x|'s high 32 bits */ - if (tix < 0x3ffc3000) /* |x| < 0.1484375 */ - { - /* Argument is small enough to approximate it by a Chebyshev - polynomial of degree 16. */ - if (tix < 0x3fc60000) /* |x| < 2^-57 */ - if (!((int)x)) return ONE; /* generate inexact */ - z = x * x; - return ONE + (z*(COS1+z*(COS2+z*(COS3+z*(COS4+ - z*(COS5+z*(COS6+z*(COS7+z*COS8)))))))); - } - else - { - /* So that we don't have to use too large polynomial, we find - l and h such that x = l + h, where fabsl(l) <= 1.0/256 with 83 - possible values for h. We look up cosl(h) and sinl(h) in - pre-computed tables, compute cosl(l) and sinl(l) using a - Chebyshev polynomial of degree 10(11) and compute - cosl(h+l) = cosl(h)cosl(l) - sinl(h)sinl(l). */ - index = 0x3ffe - (tix >> 16); - hix = (tix + (0x200 << index)) & (0xfffffc00 << index); - x = fabsq (x); - switch (index) - { - case 0: index = ((45 << 10) + hix - 0x3ffe0000) >> 8; break; - case 1: index = ((13 << 11) + hix - 0x3ffd0000) >> 9; break; - default: - case 2: index = (hix - 0x3ffc3000) >> 10; break; - } - - SET_FLT128_WORDS64(h, ((uint64_t)hix) << 32, 0); - l = y - (h - x); - z = l * l; - sin_l = l*(ONE+z*(SSIN1+z*(SSIN2+z*(SSIN3+z*(SSIN4+z*SSIN5))))); - cos_l_m1 = z*(SCOS1+z*(SCOS2+z*(SCOS3+z*(SCOS4+z*SCOS5)))); - return __sincosq_table [index + SINCOSQ_COS_HI] - + (__sincosq_table [index + SINCOSQ_COS_LO] - - (__sincosq_table [index + SINCOSQ_SIN_HI] * sin_l - - __sincosq_table [index + SINCOSQ_COS_HI] * cos_l_m1)); - } -} |