aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.7/gcc/simplify-rtx.c
diff options
context:
space:
mode:
authorDan Albert <danalbert@google.com>2015-06-17 11:09:54 -0700
committerDan Albert <danalbert@google.com>2015-06-17 14:15:22 -0700
commitf378ebf14df0952eae870c9865bab8326aa8f137 (patch)
tree31794503eb2a8c64ea5f313b93100f1163afcffb /gcc-4.7/gcc/simplify-rtx.c
parent2c58169824949d3a597d9fa81931e001ef9b1bd0 (diff)
downloadtoolchain_gcc-f378ebf14df0952eae870c9865bab8326aa8f137.tar.gz
toolchain_gcc-f378ebf14df0952eae870c9865bab8326aa8f137.tar.bz2
toolchain_gcc-f378ebf14df0952eae870c9865bab8326aa8f137.zip
Delete old versions of GCC.
Change-Id: I710f125d905290e1024cbd67f48299861790c66c
Diffstat (limited to 'gcc-4.7/gcc/simplify-rtx.c')
-rw-r--r--gcc-4.7/gcc/simplify-rtx.c5875
1 files changed, 0 insertions, 5875 deletions
diff --git a/gcc-4.7/gcc/simplify-rtx.c b/gcc-4.7/gcc/simplify-rtx.c
deleted file mode 100644
index bba565ddf..000000000
--- a/gcc-4.7/gcc/simplify-rtx.c
+++ /dev/null
@@ -1,5875 +0,0 @@
-/* RTL simplification functions for GNU compiler.
- Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
- 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
- 2011 Free Software Foundation, Inc.
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 3, or (at your option) any later
-version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
-<http://www.gnu.org/licenses/>. */
-
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "rtl.h"
-#include "tree.h"
-#include "tm_p.h"
-#include "regs.h"
-#include "hard-reg-set.h"
-#include "flags.h"
-#include "insn-config.h"
-#include "recog.h"
-#include "function.h"
-#include "expr.h"
-#include "diagnostic-core.h"
-#include "output.h"
-#include "ggc.h"
-#include "target.h"
-
-/* Simplification and canonicalization of RTL. */
-
-/* Much code operates on (low, high) pairs; the low value is an
- unsigned wide int, the high value a signed wide int. We
- occasionally need to sign extend from low to high as if low were a
- signed wide int. */
-#define HWI_SIGN_EXTEND(low) \
- ((((HOST_WIDE_INT) low) < 0) ? ((HOST_WIDE_INT) -1) : ((HOST_WIDE_INT) 0))
-
-static rtx neg_const_int (enum machine_mode, const_rtx);
-static bool plus_minus_operand_p (const_rtx);
-static bool simplify_plus_minus_op_data_cmp (rtx, rtx);
-static rtx simplify_plus_minus (enum rtx_code, enum machine_mode, rtx, rtx);
-static rtx simplify_immed_subreg (enum machine_mode, rtx, enum machine_mode,
- unsigned int);
-static rtx simplify_associative_operation (enum rtx_code, enum machine_mode,
- rtx, rtx);
-static rtx simplify_relational_operation_1 (enum rtx_code, enum machine_mode,
- enum machine_mode, rtx, rtx);
-static rtx simplify_unary_operation_1 (enum rtx_code, enum machine_mode, rtx);
-static rtx simplify_binary_operation_1 (enum rtx_code, enum machine_mode,
- rtx, rtx, rtx, rtx);
-
-/* Negate a CONST_INT rtx, truncating (because a conversion from a
- maximally negative number can overflow). */
-static rtx
-neg_const_int (enum machine_mode mode, const_rtx i)
-{
- return gen_int_mode (- INTVAL (i), mode);
-}
-
-/* Test whether expression, X, is an immediate constant that represents
- the most significant bit of machine mode MODE. */
-
-bool
-mode_signbit_p (enum machine_mode mode, const_rtx x)
-{
- unsigned HOST_WIDE_INT val;
- unsigned int width;
-
- if (GET_MODE_CLASS (mode) != MODE_INT)
- return false;
-
- width = GET_MODE_PRECISION (mode);
- if (width == 0)
- return false;
-
- if (width <= HOST_BITS_PER_WIDE_INT
- && CONST_INT_P (x))
- val = INTVAL (x);
- else if (width <= 2 * HOST_BITS_PER_WIDE_INT
- && GET_CODE (x) == CONST_DOUBLE
- && CONST_DOUBLE_LOW (x) == 0)
- {
- val = CONST_DOUBLE_HIGH (x);
- width -= HOST_BITS_PER_WIDE_INT;
- }
- else
- return false;
-
- if (width < HOST_BITS_PER_WIDE_INT)
- val &= ((unsigned HOST_WIDE_INT) 1 << width) - 1;
- return val == ((unsigned HOST_WIDE_INT) 1 << (width - 1));
-}
-
-/* Test whether VAL is equal to the most significant bit of mode MODE
- (after masking with the mode mask of MODE). Returns false if the
- precision of MODE is too large to handle. */
-
-bool
-val_signbit_p (enum machine_mode mode, unsigned HOST_WIDE_INT val)
-{
- unsigned int width;
-
- if (GET_MODE_CLASS (mode) != MODE_INT)
- return false;
-
- width = GET_MODE_PRECISION (mode);
- if (width == 0 || width > HOST_BITS_PER_WIDE_INT)
- return false;
-
- val &= GET_MODE_MASK (mode);
- return val == ((unsigned HOST_WIDE_INT) 1 << (width - 1));
-}
-
-/* Test whether the most significant bit of mode MODE is set in VAL.
- Returns false if the precision of MODE is too large to handle. */
-bool
-val_signbit_known_set_p (enum machine_mode mode, unsigned HOST_WIDE_INT val)
-{
- unsigned int width;
-
- if (GET_MODE_CLASS (mode) != MODE_INT)
- return false;
-
- width = GET_MODE_PRECISION (mode);
- if (width == 0 || width > HOST_BITS_PER_WIDE_INT)
- return false;
-
- val &= (unsigned HOST_WIDE_INT) 1 << (width - 1);
- return val != 0;
-}
-
-/* Test whether the most significant bit of mode MODE is clear in VAL.
- Returns false if the precision of MODE is too large to handle. */
-bool
-val_signbit_known_clear_p (enum machine_mode mode, unsigned HOST_WIDE_INT val)
-{
- unsigned int width;
-
- if (GET_MODE_CLASS (mode) != MODE_INT)
- return false;
-
- width = GET_MODE_PRECISION (mode);
- if (width == 0 || width > HOST_BITS_PER_WIDE_INT)
- return false;
-
- val &= (unsigned HOST_WIDE_INT) 1 << (width - 1);
- return val == 0;
-}
-
-/* Make a binary operation by properly ordering the operands and
- seeing if the expression folds. */
-
-rtx
-simplify_gen_binary (enum rtx_code code, enum machine_mode mode, rtx op0,
- rtx op1)
-{
- rtx tem;
-
- /* If this simplifies, do it. */
- tem = simplify_binary_operation (code, mode, op0, op1);
- if (tem)
- return tem;
-
- /* Put complex operands first and constants second if commutative. */
- if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
- && swap_commutative_operands_p (op0, op1))
- tem = op0, op0 = op1, op1 = tem;
-
- return gen_rtx_fmt_ee (code, mode, op0, op1);
-}
-
-/* If X is a MEM referencing the constant pool, return the real value.
- Otherwise return X. */
-rtx
-avoid_constant_pool_reference (rtx x)
-{
- rtx c, tmp, addr;
- enum machine_mode cmode;
- HOST_WIDE_INT offset = 0;
-
- switch (GET_CODE (x))
- {
- case MEM:
- break;
-
- case FLOAT_EXTEND:
- /* Handle float extensions of constant pool references. */
- tmp = XEXP (x, 0);
- c = avoid_constant_pool_reference (tmp);
- if (c != tmp && GET_CODE (c) == CONST_DOUBLE)
- {
- REAL_VALUE_TYPE d;
-
- REAL_VALUE_FROM_CONST_DOUBLE (d, c);
- return CONST_DOUBLE_FROM_REAL_VALUE (d, GET_MODE (x));
- }
- return x;
-
- default:
- return x;
- }
-
- if (GET_MODE (x) == BLKmode)
- return x;
-
- addr = XEXP (x, 0);
-
- /* Call target hook to avoid the effects of -fpic etc.... */
- addr = targetm.delegitimize_address (addr);
-
- /* Split the address into a base and integer offset. */
- if (GET_CODE (addr) == CONST
- && GET_CODE (XEXP (addr, 0)) == PLUS
- && CONST_INT_P (XEXP (XEXP (addr, 0), 1)))
- {
- offset = INTVAL (XEXP (XEXP (addr, 0), 1));
- addr = XEXP (XEXP (addr, 0), 0);
- }
-
- if (GET_CODE (addr) == LO_SUM)
- addr = XEXP (addr, 1);
-
- /* If this is a constant pool reference, we can turn it into its
- constant and hope that simplifications happen. */
- if (GET_CODE (addr) == SYMBOL_REF
- && CONSTANT_POOL_ADDRESS_P (addr))
- {
- c = get_pool_constant (addr);
- cmode = get_pool_mode (addr);
-
- /* If we're accessing the constant in a different mode than it was
- originally stored, attempt to fix that up via subreg simplifications.
- If that fails we have no choice but to return the original memory. */
- if (offset != 0 || cmode != GET_MODE (x))
- {
- rtx tem = simplify_subreg (GET_MODE (x), c, cmode, offset);
- if (tem && CONSTANT_P (tem))
- return tem;
- }
- else
- return c;
- }
-
- return x;
-}
-
-/* Simplify a MEM based on its attributes. This is the default
- delegitimize_address target hook, and it's recommended that every
- overrider call it. */
-
-rtx
-delegitimize_mem_from_attrs (rtx x)
-{
- /* MEMs without MEM_OFFSETs may have been offset, so we can't just
- use their base addresses as equivalent. */
- if (MEM_P (x)
- && MEM_EXPR (x)
- && MEM_OFFSET_KNOWN_P (x))
- {
- tree decl = MEM_EXPR (x);
- enum machine_mode mode = GET_MODE (x);
- HOST_WIDE_INT offset = 0;
-
- switch (TREE_CODE (decl))
- {
- default:
- decl = NULL;
- break;
-
- case VAR_DECL:
- break;
-
- case ARRAY_REF:
- case ARRAY_RANGE_REF:
- case COMPONENT_REF:
- case BIT_FIELD_REF:
- case REALPART_EXPR:
- case IMAGPART_EXPR:
- case VIEW_CONVERT_EXPR:
- {
- HOST_WIDE_INT bitsize, bitpos;
- tree toffset;
- int unsignedp = 0, volatilep = 0;
-
- decl = get_inner_reference (decl, &bitsize, &bitpos, &toffset,
- &mode, &unsignedp, &volatilep, false);
- if (bitsize != GET_MODE_BITSIZE (mode)
- || (bitpos % BITS_PER_UNIT)
- || (toffset && !host_integerp (toffset, 0)))
- decl = NULL;
- else
- {
- offset += bitpos / BITS_PER_UNIT;
- if (toffset)
- offset += TREE_INT_CST_LOW (toffset);
- }
- break;
- }
- }
-
- if (decl
- && mode == GET_MODE (x)
- && TREE_CODE (decl) == VAR_DECL
- && (TREE_STATIC (decl)
- || DECL_THREAD_LOCAL_P (decl))
- && DECL_RTL_SET_P (decl)
- && MEM_P (DECL_RTL (decl)))
- {
- rtx newx;
-
- offset += MEM_OFFSET (x);
-
- newx = DECL_RTL (decl);
-
- if (MEM_P (newx))
- {
- rtx n = XEXP (newx, 0), o = XEXP (x, 0);
-
- /* Avoid creating a new MEM needlessly if we already had
- the same address. We do if there's no OFFSET and the
- old address X is identical to NEWX, or if X is of the
- form (plus NEWX OFFSET), or the NEWX is of the form
- (plus Y (const_int Z)) and X is that with the offset
- added: (plus Y (const_int Z+OFFSET)). */
- if (!((offset == 0
- || (GET_CODE (o) == PLUS
- && GET_CODE (XEXP (o, 1)) == CONST_INT
- && (offset == INTVAL (XEXP (o, 1))
- || (GET_CODE (n) == PLUS
- && GET_CODE (XEXP (n, 1)) == CONST_INT
- && (INTVAL (XEXP (n, 1)) + offset
- == INTVAL (XEXP (o, 1)))
- && (n = XEXP (n, 0))))
- && (o = XEXP (o, 0))))
- && rtx_equal_p (o, n)))
- x = adjust_address_nv (newx, mode, offset);
- }
- else if (GET_MODE (x) == GET_MODE (newx)
- && offset == 0)
- x = newx;
- }
- }
-
- return x;
-}
-
-/* Make a unary operation by first seeing if it folds and otherwise making
- the specified operation. */
-
-rtx
-simplify_gen_unary (enum rtx_code code, enum machine_mode mode, rtx op,
- enum machine_mode op_mode)
-{
- rtx tem;
-
- /* If this simplifies, use it. */
- if ((tem = simplify_unary_operation (code, mode, op, op_mode)) != 0)
- return tem;
-
- return gen_rtx_fmt_e (code, mode, op);
-}
-
-/* Likewise for ternary operations. */
-
-rtx
-simplify_gen_ternary (enum rtx_code code, enum machine_mode mode,
- enum machine_mode op0_mode, rtx op0, rtx op1, rtx op2)
-{
- rtx tem;
-
- /* If this simplifies, use it. */
- if (0 != (tem = simplify_ternary_operation (code, mode, op0_mode,
- op0, op1, op2)))
- return tem;
-
- return gen_rtx_fmt_eee (code, mode, op0, op1, op2);
-}
-
-/* Likewise, for relational operations.
- CMP_MODE specifies mode comparison is done in. */
-
-rtx
-simplify_gen_relational (enum rtx_code code, enum machine_mode mode,
- enum machine_mode cmp_mode, rtx op0, rtx op1)
-{
- rtx tem;
-
- if (0 != (tem = simplify_relational_operation (code, mode, cmp_mode,
- op0, op1)))
- return tem;
-
- return gen_rtx_fmt_ee (code, mode, op0, op1);
-}
-
-/* If FN is NULL, replace all occurrences of OLD_RTX in X with copy_rtx (DATA)
- and simplify the result. If FN is non-NULL, call this callback on each
- X, if it returns non-NULL, replace X with its return value and simplify the
- result. */
-
-rtx
-simplify_replace_fn_rtx (rtx x, const_rtx old_rtx,
- rtx (*fn) (rtx, const_rtx, void *), void *data)
-{
- enum rtx_code code = GET_CODE (x);
- enum machine_mode mode = GET_MODE (x);
- enum machine_mode op_mode;
- const char *fmt;
- rtx op0, op1, op2, newx, op;
- rtvec vec, newvec;
- int i, j;
-
- if (__builtin_expect (fn != NULL, 0))
- {
- newx = fn (x, old_rtx, data);
- if (newx)
- return newx;
- }
- else if (rtx_equal_p (x, old_rtx))
- return copy_rtx ((rtx) data);
-
- switch (GET_RTX_CLASS (code))
- {
- case RTX_UNARY:
- op0 = XEXP (x, 0);
- op_mode = GET_MODE (op0);
- op0 = simplify_replace_fn_rtx (op0, old_rtx, fn, data);
- if (op0 == XEXP (x, 0))
- return x;
- return simplify_gen_unary (code, mode, op0, op_mode);
-
- case RTX_BIN_ARITH:
- case RTX_COMM_ARITH:
- op0 = simplify_replace_fn_rtx (XEXP (x, 0), old_rtx, fn, data);
- op1 = simplify_replace_fn_rtx (XEXP (x, 1), old_rtx, fn, data);
- if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
- return x;
- return simplify_gen_binary (code, mode, op0, op1);
-
- case RTX_COMPARE:
- case RTX_COMM_COMPARE:
- op0 = XEXP (x, 0);
- op1 = XEXP (x, 1);
- op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
- op0 = simplify_replace_fn_rtx (op0, old_rtx, fn, data);
- op1 = simplify_replace_fn_rtx (op1, old_rtx, fn, data);
- if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
- return x;
- return simplify_gen_relational (code, mode, op_mode, op0, op1);
-
- case RTX_TERNARY:
- case RTX_BITFIELD_OPS:
- op0 = XEXP (x, 0);
- op_mode = GET_MODE (op0);
- op0 = simplify_replace_fn_rtx (op0, old_rtx, fn, data);
- op1 = simplify_replace_fn_rtx (XEXP (x, 1), old_rtx, fn, data);
- op2 = simplify_replace_fn_rtx (XEXP (x, 2), old_rtx, fn, data);
- if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
- return x;
- if (op_mode == VOIDmode)
- op_mode = GET_MODE (op0);
- return simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
-
- case RTX_EXTRA:
- if (code == SUBREG)
- {
- op0 = simplify_replace_fn_rtx (SUBREG_REG (x), old_rtx, fn, data);
- if (op0 == SUBREG_REG (x))
- return x;
- op0 = simplify_gen_subreg (GET_MODE (x), op0,
- GET_MODE (SUBREG_REG (x)),
- SUBREG_BYTE (x));
- return op0 ? op0 : x;
- }
- break;
-
- case RTX_OBJ:
- if (code == MEM)
- {
- op0 = simplify_replace_fn_rtx (XEXP (x, 0), old_rtx, fn, data);
- if (op0 == XEXP (x, 0))
- return x;
- return replace_equiv_address_nv (x, op0);
- }
- else if (code == LO_SUM)
- {
- op0 = simplify_replace_fn_rtx (XEXP (x, 0), old_rtx, fn, data);
- op1 = simplify_replace_fn_rtx (XEXP (x, 1), old_rtx, fn, data);
-
- /* (lo_sum (high x) x) -> x */
- if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
- return op1;
-
- if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
- return x;
- return gen_rtx_LO_SUM (mode, op0, op1);
- }
- break;
-
- default:
- break;
- }
-
- newx = x;
- fmt = GET_RTX_FORMAT (code);
- for (i = 0; fmt[i]; i++)
- switch (fmt[i])
- {
- case 'E':
- vec = XVEC (x, i);
- newvec = XVEC (newx, i);
- for (j = 0; j < GET_NUM_ELEM (vec); j++)
- {
- op = simplify_replace_fn_rtx (RTVEC_ELT (vec, j),
- old_rtx, fn, data);
- if (op != RTVEC_ELT (vec, j))
- {
- if (newvec == vec)
- {
- newvec = shallow_copy_rtvec (vec);
- if (x == newx)
- newx = shallow_copy_rtx (x);
- XVEC (newx, i) = newvec;
- }
- RTVEC_ELT (newvec, j) = op;
- }
- }
- break;
-
- case 'e':
- if (XEXP (x, i))
- {
- op = simplify_replace_fn_rtx (XEXP (x, i), old_rtx, fn, data);
- if (op != XEXP (x, i))
- {
- if (x == newx)
- newx = shallow_copy_rtx (x);
- XEXP (newx, i) = op;
- }
- }
- break;
- }
- return newx;
-}
-
-/* Replace all occurrences of OLD_RTX in X with NEW_RTX and try to simplify the
- resulting RTX. Return a new RTX which is as simplified as possible. */
-
-rtx
-simplify_replace_rtx (rtx x, const_rtx old_rtx, rtx new_rtx)
-{
- return simplify_replace_fn_rtx (x, old_rtx, 0, new_rtx);
-}
-
-/* Try to simplify a unary operation CODE whose output mode is to be
- MODE with input operand OP whose mode was originally OP_MODE.
- Return zero if no simplification can be made. */
-rtx
-simplify_unary_operation (enum rtx_code code, enum machine_mode mode,
- rtx op, enum machine_mode op_mode)
-{
- rtx trueop, tem;
-
- trueop = avoid_constant_pool_reference (op);
-
- tem = simplify_const_unary_operation (code, mode, trueop, op_mode);
- if (tem)
- return tem;
-
- return simplify_unary_operation_1 (code, mode, op);
-}
-
-/* Perform some simplifications we can do even if the operands
- aren't constant. */
-static rtx
-simplify_unary_operation_1 (enum rtx_code code, enum machine_mode mode, rtx op)
-{
- enum rtx_code reversed;
- rtx temp;
-
- switch (code)
- {
- case NOT:
- /* (not (not X)) == X. */
- if (GET_CODE (op) == NOT)
- return XEXP (op, 0);
-
- /* (not (eq X Y)) == (ne X Y), etc. if BImode or the result of the
- comparison is all ones. */
- if (COMPARISON_P (op)
- && (mode == BImode || STORE_FLAG_VALUE == -1)
- && ((reversed = reversed_comparison_code (op, NULL_RTX)) != UNKNOWN))
- return simplify_gen_relational (reversed, mode, VOIDmode,
- XEXP (op, 0), XEXP (op, 1));
-
- /* (not (plus X -1)) can become (neg X). */
- if (GET_CODE (op) == PLUS
- && XEXP (op, 1) == constm1_rtx)
- return simplify_gen_unary (NEG, mode, XEXP (op, 0), mode);
-
- /* Similarly, (not (neg X)) is (plus X -1). */
- if (GET_CODE (op) == NEG)
- return plus_constant (XEXP (op, 0), -1);
-
- /* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
- if (GET_CODE (op) == XOR
- && CONST_INT_P (XEXP (op, 1))
- && (temp = simplify_unary_operation (NOT, mode,
- XEXP (op, 1), mode)) != 0)
- return simplify_gen_binary (XOR, mode, XEXP (op, 0), temp);
-
- /* (not (plus X C)) for signbit C is (xor X D) with D = ~C. */
- if (GET_CODE (op) == PLUS
- && CONST_INT_P (XEXP (op, 1))
- && mode_signbit_p (mode, XEXP (op, 1))
- && (temp = simplify_unary_operation (NOT, mode,
- XEXP (op, 1), mode)) != 0)
- return simplify_gen_binary (XOR, mode, XEXP (op, 0), temp);
-
-
- /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for
- operands other than 1, but that is not valid. We could do a
- similar simplification for (not (lshiftrt C X)) where C is
- just the sign bit, but this doesn't seem common enough to
- bother with. */
- if (GET_CODE (op) == ASHIFT
- && XEXP (op, 0) == const1_rtx)
- {
- temp = simplify_gen_unary (NOT, mode, const1_rtx, mode);
- return simplify_gen_binary (ROTATE, mode, temp, XEXP (op, 1));
- }
-
- /* (not (ashiftrt foo C)) where C is the number of bits in FOO
- minus 1 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1,
- so we can perform the above simplification. */
-
- if (STORE_FLAG_VALUE == -1
- && GET_CODE (op) == ASHIFTRT
- && GET_CODE (XEXP (op, 1))
- && INTVAL (XEXP (op, 1)) == GET_MODE_PRECISION (mode) - 1)
- return simplify_gen_relational (GE, mode, VOIDmode,
- XEXP (op, 0), const0_rtx);
-
-
- if (GET_CODE (op) == SUBREG
- && subreg_lowpart_p (op)
- && (GET_MODE_SIZE (GET_MODE (op))
- < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))))
- && GET_CODE (SUBREG_REG (op)) == ASHIFT
- && XEXP (SUBREG_REG (op), 0) == const1_rtx)
- {
- enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op));
- rtx x;
-
- x = gen_rtx_ROTATE (inner_mode,
- simplify_gen_unary (NOT, inner_mode, const1_rtx,
- inner_mode),
- XEXP (SUBREG_REG (op), 1));
- return rtl_hooks.gen_lowpart_no_emit (mode, x);
- }
-
- /* Apply De Morgan's laws to reduce number of patterns for machines
- with negating logical insns (and-not, nand, etc.). If result has
- only one NOT, put it first, since that is how the patterns are
- coded. */
-
- if (GET_CODE (op) == IOR || GET_CODE (op) == AND)
- {
- rtx in1 = XEXP (op, 0), in2 = XEXP (op, 1);
- enum machine_mode op_mode;
-
- op_mode = GET_MODE (in1);
- in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
-
- op_mode = GET_MODE (in2);
- if (op_mode == VOIDmode)
- op_mode = mode;
- in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
-
- if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
- {
- rtx tem = in2;
- in2 = in1; in1 = tem;
- }
-
- return gen_rtx_fmt_ee (GET_CODE (op) == IOR ? AND : IOR,
- mode, in1, in2);
- }
- break;
-
- case NEG:
- /* (neg (neg X)) == X. */
- if (GET_CODE (op) == NEG)
- return XEXP (op, 0);
-
- /* (neg (plus X 1)) can become (not X). */
- if (GET_CODE (op) == PLUS
- && XEXP (op, 1) == const1_rtx)
- return simplify_gen_unary (NOT, mode, XEXP (op, 0), mode);
-
- /* Similarly, (neg (not X)) is (plus X 1). */
- if (GET_CODE (op) == NOT)
- return plus_constant (XEXP (op, 0), 1);
-
- /* (neg (minus X Y)) can become (minus Y X). This transformation
- isn't safe for modes with signed zeros, since if X and Y are
- both +0, (minus Y X) is the same as (minus X Y). If the
- rounding mode is towards +infinity (or -infinity) then the two
- expressions will be rounded differently. */
- if (GET_CODE (op) == MINUS
- && !HONOR_SIGNED_ZEROS (mode)
- && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
- return simplify_gen_binary (MINUS, mode, XEXP (op, 1), XEXP (op, 0));
-
- if (GET_CODE (op) == PLUS
- && !HONOR_SIGNED_ZEROS (mode)
- && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
- {
- /* (neg (plus A C)) is simplified to (minus -C A). */
- if (CONST_INT_P (XEXP (op, 1))
- || GET_CODE (XEXP (op, 1)) == CONST_DOUBLE)
- {
- temp = simplify_unary_operation (NEG, mode, XEXP (op, 1), mode);
- if (temp)
- return simplify_gen_binary (MINUS, mode, temp, XEXP (op, 0));
- }
-
- /* (neg (plus A B)) is canonicalized to (minus (neg A) B). */
- temp = simplify_gen_unary (NEG, mode, XEXP (op, 0), mode);
- return simplify_gen_binary (MINUS, mode, temp, XEXP (op, 1));
- }
-
- /* (neg (mult A B)) becomes (mult A (neg B)).
- This works even for floating-point values. */
- if (GET_CODE (op) == MULT
- && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
- {
- temp = simplify_gen_unary (NEG, mode, XEXP (op, 1), mode);
- return simplify_gen_binary (MULT, mode, XEXP (op, 0), temp);
- }
-
- /* NEG commutes with ASHIFT since it is multiplication. Only do
- this if we can then eliminate the NEG (e.g., if the operand
- is a constant). */
- if (GET_CODE (op) == ASHIFT)
- {
- temp = simplify_unary_operation (NEG, mode, XEXP (op, 0), mode);
- if (temp)
- return simplify_gen_binary (ASHIFT, mode, temp, XEXP (op, 1));
- }
-
- /* (neg (ashiftrt X C)) can be replaced by (lshiftrt X C) when
- C is equal to the width of MODE minus 1. */
- if (GET_CODE (op) == ASHIFTRT
- && CONST_INT_P (XEXP (op, 1))
- && INTVAL (XEXP (op, 1)) == GET_MODE_PRECISION (mode) - 1)
- return simplify_gen_binary (LSHIFTRT, mode,
- XEXP (op, 0), XEXP (op, 1));
-
- /* (neg (lshiftrt X C)) can be replaced by (ashiftrt X C) when
- C is equal to the width of MODE minus 1. */
- if (GET_CODE (op) == LSHIFTRT
- && CONST_INT_P (XEXP (op, 1))
- && INTVAL (XEXP (op, 1)) == GET_MODE_PRECISION (mode) - 1)
- return simplify_gen_binary (ASHIFTRT, mode,
- XEXP (op, 0), XEXP (op, 1));
-
- /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
- if (GET_CODE (op) == XOR
- && XEXP (op, 1) == const1_rtx
- && nonzero_bits (XEXP (op, 0), mode) == 1)
- return plus_constant (XEXP (op, 0), -1);
-
- /* (neg (lt x 0)) is (ashiftrt X C) if STORE_FLAG_VALUE is 1. */
- /* (neg (lt x 0)) is (lshiftrt X C) if STORE_FLAG_VALUE is -1. */
- if (GET_CODE (op) == LT
- && XEXP (op, 1) == const0_rtx
- && SCALAR_INT_MODE_P (GET_MODE (XEXP (op, 0))))
- {
- enum machine_mode inner = GET_MODE (XEXP (op, 0));
- int isize = GET_MODE_PRECISION (inner);
- if (STORE_FLAG_VALUE == 1)
- {
- temp = simplify_gen_binary (ASHIFTRT, inner, XEXP (op, 0),
- GEN_INT (isize - 1));
- if (mode == inner)
- return temp;
- if (GET_MODE_PRECISION (mode) > isize)
- return simplify_gen_unary (SIGN_EXTEND, mode, temp, inner);
- return simplify_gen_unary (TRUNCATE, mode, temp, inner);
- }
- else if (STORE_FLAG_VALUE == -1)
- {
- temp = simplify_gen_binary (LSHIFTRT, inner, XEXP (op, 0),
- GEN_INT (isize - 1));
- if (mode == inner)
- return temp;
- if (GET_MODE_PRECISION (mode) > isize)
- return simplify_gen_unary (ZERO_EXTEND, mode, temp, inner);
- return simplify_gen_unary (TRUNCATE, mode, temp, inner);
- }
- }
- break;
-
- case TRUNCATE:
- /* We can't handle truncation to a partial integer mode here
- because we don't know the real bitsize of the partial
- integer mode. */
- if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
- break;
-
- /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
- if ((GET_CODE (op) == SIGN_EXTEND
- || GET_CODE (op) == ZERO_EXTEND)
- && GET_MODE (XEXP (op, 0)) == mode)
- return XEXP (op, 0);
-
- /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
- (OP:SI foo:SI) if OP is NEG or ABS. */
- if ((GET_CODE (op) == ABS
- || GET_CODE (op) == NEG)
- && (GET_CODE (XEXP (op, 0)) == SIGN_EXTEND
- || GET_CODE (XEXP (op, 0)) == ZERO_EXTEND)
- && GET_MODE (XEXP (XEXP (op, 0), 0)) == mode)
- return simplify_gen_unary (GET_CODE (op), mode,
- XEXP (XEXP (op, 0), 0), mode);
-
- /* (truncate:A (subreg:B (truncate:C X) 0)) is
- (truncate:A X). */
- if (GET_CODE (op) == SUBREG
- && GET_CODE (SUBREG_REG (op)) == TRUNCATE
- && subreg_lowpart_p (op))
- return simplify_gen_unary (TRUNCATE, mode, XEXP (SUBREG_REG (op), 0),
- GET_MODE (XEXP (SUBREG_REG (op), 0)));
-
- /* If we know that the value is already truncated, we can
- replace the TRUNCATE with a SUBREG. Note that this is also
- valid if TRULY_NOOP_TRUNCATION is false for the corresponding
- modes we just have to apply a different definition for
- truncation. But don't do this for an (LSHIFTRT (MULT ...))
- since this will cause problems with the umulXi3_highpart
- patterns. */
- if ((TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (op))
- ? (num_sign_bit_copies (op, GET_MODE (op))
- > (unsigned int) (GET_MODE_PRECISION (GET_MODE (op))
- - GET_MODE_PRECISION (mode)))
- : truncated_to_mode (mode, op))
- && ! (GET_CODE (op) == LSHIFTRT
- && GET_CODE (XEXP (op, 0)) == MULT))
- return rtl_hooks.gen_lowpart_no_emit (mode, op);
-
- /* A truncate of a comparison can be replaced with a subreg if
- STORE_FLAG_VALUE permits. This is like the previous test,
- but it works even if the comparison is done in a mode larger
- than HOST_BITS_PER_WIDE_INT. */
- if (HWI_COMPUTABLE_MODE_P (mode)
- && COMPARISON_P (op)
- && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
- return rtl_hooks.gen_lowpart_no_emit (mode, op);
- break;
-
- case FLOAT_TRUNCATE:
- if (DECIMAL_FLOAT_MODE_P (mode))
- break;
-
- /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
- if (GET_CODE (op) == FLOAT_EXTEND
- && GET_MODE (XEXP (op, 0)) == mode)
- return XEXP (op, 0);
-
- /* (float_truncate:SF (float_truncate:DF foo:XF))
- = (float_truncate:SF foo:XF).
- This may eliminate double rounding, so it is unsafe.
-
- (float_truncate:SF (float_extend:XF foo:DF))
- = (float_truncate:SF foo:DF).
-
- (float_truncate:DF (float_extend:XF foo:SF))
- = (float_extend:SF foo:DF). */
- if ((GET_CODE (op) == FLOAT_TRUNCATE
- && flag_unsafe_math_optimizations)
- || GET_CODE (op) == FLOAT_EXTEND)
- return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (op,
- 0)))
- > GET_MODE_SIZE (mode)
- ? FLOAT_TRUNCATE : FLOAT_EXTEND,
- mode,
- XEXP (op, 0), mode);
-
- /* (float_truncate (float x)) is (float x) */
- if (GET_CODE (op) == FLOAT
- && (flag_unsafe_math_optimizations
- || (SCALAR_FLOAT_MODE_P (GET_MODE (op))
- && ((unsigned)significand_size (GET_MODE (op))
- >= (GET_MODE_PRECISION (GET_MODE (XEXP (op, 0)))
- - num_sign_bit_copies (XEXP (op, 0),
- GET_MODE (XEXP (op, 0))))))))
- return simplify_gen_unary (FLOAT, mode,
- XEXP (op, 0),
- GET_MODE (XEXP (op, 0)));
-
- /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
- (OP:SF foo:SF) if OP is NEG or ABS. */
- if ((GET_CODE (op) == ABS
- || GET_CODE (op) == NEG)
- && GET_CODE (XEXP (op, 0)) == FLOAT_EXTEND
- && GET_MODE (XEXP (XEXP (op, 0), 0)) == mode)
- return simplify_gen_unary (GET_CODE (op), mode,
- XEXP (XEXP (op, 0), 0), mode);
-
- /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
- is (float_truncate:SF x). */
- if (GET_CODE (op) == SUBREG
- && subreg_lowpart_p (op)
- && GET_CODE (SUBREG_REG (op)) == FLOAT_TRUNCATE)
- return SUBREG_REG (op);
- break;
-
- case FLOAT_EXTEND:
- if (DECIMAL_FLOAT_MODE_P (mode))
- break;
-
- /* (float_extend (float_extend x)) is (float_extend x)
-
- (float_extend (float x)) is (float x) assuming that double
- rounding can't happen.
- */
- if (GET_CODE (op) == FLOAT_EXTEND
- || (GET_CODE (op) == FLOAT
- && SCALAR_FLOAT_MODE_P (GET_MODE (op))
- && ((unsigned)significand_size (GET_MODE (op))
- >= (GET_MODE_PRECISION (GET_MODE (XEXP (op, 0)))
- - num_sign_bit_copies (XEXP (op, 0),
- GET_MODE (XEXP (op, 0)))))))
- return simplify_gen_unary (GET_CODE (op), mode,
- XEXP (op, 0),
- GET_MODE (XEXP (op, 0)));
-
- break;
-
- case ABS:
- /* (abs (neg <foo>)) -> (abs <foo>) */
- if (GET_CODE (op) == NEG)
- return simplify_gen_unary (ABS, mode, XEXP (op, 0),
- GET_MODE (XEXP (op, 0)));
-
- /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
- do nothing. */
- if (GET_MODE (op) == VOIDmode)
- break;
-
- /* If operand is something known to be positive, ignore the ABS. */
- if (GET_CODE (op) == FFS || GET_CODE (op) == ABS
- || val_signbit_known_clear_p (GET_MODE (op),
- nonzero_bits (op, GET_MODE (op))))
- return op;
-
- /* If operand is known to be only -1 or 0, convert ABS to NEG. */
- if (num_sign_bit_copies (op, mode) == GET_MODE_PRECISION (mode))
- return gen_rtx_NEG (mode, op);
-
- break;
-
- case FFS:
- /* (ffs (*_extend <X>)) = (ffs <X>) */
- if (GET_CODE (op) == SIGN_EXTEND
- || GET_CODE (op) == ZERO_EXTEND)
- return simplify_gen_unary (FFS, mode, XEXP (op, 0),
- GET_MODE (XEXP (op, 0)));
- break;
-
- case POPCOUNT:
- switch (GET_CODE (op))
- {
- case BSWAP:
- case ZERO_EXTEND:
- /* (popcount (zero_extend <X>)) = (popcount <X>) */
- return simplify_gen_unary (POPCOUNT, mode, XEXP (op, 0),
- GET_MODE (XEXP (op, 0)));
-
- case ROTATE:
- case ROTATERT:
- /* Rotations don't affect popcount. */
- if (!side_effects_p (XEXP (op, 1)))
- return simplify_gen_unary (POPCOUNT, mode, XEXP (op, 0),
- GET_MODE (XEXP (op, 0)));
- break;
-
- default:
- break;
- }
- break;
-
- case PARITY:
- switch (GET_CODE (op))
- {
- case NOT:
- case BSWAP:
- case ZERO_EXTEND:
- case SIGN_EXTEND:
- return simplify_gen_unary (PARITY, mode, XEXP (op, 0),
- GET_MODE (XEXP (op, 0)));
-
- case ROTATE:
- case ROTATERT:
- /* Rotations don't affect parity. */
- if (!side_effects_p (XEXP (op, 1)))
- return simplify_gen_unary (PARITY, mode, XEXP (op, 0),
- GET_MODE (XEXP (op, 0)));
- break;
-
- default:
- break;
- }
- break;
-
- case BSWAP:
- /* (bswap (bswap x)) -> x. */
- if (GET_CODE (op) == BSWAP)
- return XEXP (op, 0);
- break;
-
- case FLOAT:
- /* (float (sign_extend <X>)) = (float <X>). */
- if (GET_CODE (op) == SIGN_EXTEND)
- return simplify_gen_unary (FLOAT, mode, XEXP (op, 0),
- GET_MODE (XEXP (op, 0)));
- break;
-
- case SIGN_EXTEND:
- /* (sign_extend (truncate (minus (label_ref L1) (label_ref L2))))
- becomes just the MINUS if its mode is MODE. This allows
- folding switch statements on machines using casesi (such as
- the VAX). */
- if (GET_CODE (op) == TRUNCATE
- && GET_MODE (XEXP (op, 0)) == mode
- && GET_CODE (XEXP (op, 0)) == MINUS
- && GET_CODE (XEXP (XEXP (op, 0), 0)) == LABEL_REF
- && GET_CODE (XEXP (XEXP (op, 0), 1)) == LABEL_REF)
- return XEXP (op, 0);
-
- /* Extending a widening multiplication should be canonicalized to
- a wider widening multiplication. */
- if (GET_CODE (op) == MULT)
- {
- rtx lhs = XEXP (op, 0);
- rtx rhs = XEXP (op, 1);
- enum rtx_code lcode = GET_CODE (lhs);
- enum rtx_code rcode = GET_CODE (rhs);
-
- /* Widening multiplies usually extend both operands, but sometimes
- they use a shift to extract a portion of a register. */
- if ((lcode == SIGN_EXTEND
- || (lcode == ASHIFTRT && CONST_INT_P (XEXP (lhs, 1))))
- && (rcode == SIGN_EXTEND
- || (rcode == ASHIFTRT && CONST_INT_P (XEXP (rhs, 1)))))
- {
- enum machine_mode lmode = GET_MODE (lhs);
- enum machine_mode rmode = GET_MODE (rhs);
- int bits;
-
- if (lcode == ASHIFTRT)
- /* Number of bits not shifted off the end. */
- bits = GET_MODE_PRECISION (lmode) - INTVAL (XEXP (lhs, 1));
- else /* lcode == SIGN_EXTEND */
- /* Size of inner mode. */
- bits = GET_MODE_PRECISION (GET_MODE (XEXP (lhs, 0)));
-
- if (rcode == ASHIFTRT)
- bits += GET_MODE_PRECISION (rmode) - INTVAL (XEXP (rhs, 1));
- else /* rcode == SIGN_EXTEND */
- bits += GET_MODE_PRECISION (GET_MODE (XEXP (rhs, 0)));
-
- /* We can only widen multiplies if the result is mathematiclly
- equivalent. I.e. if overflow was impossible. */
- if (bits <= GET_MODE_PRECISION (GET_MODE (op)))
- return simplify_gen_binary
- (MULT, mode,
- simplify_gen_unary (SIGN_EXTEND, mode, lhs, lmode),
- simplify_gen_unary (SIGN_EXTEND, mode, rhs, rmode));
- }
- }
-
- /* Check for a sign extension of a subreg of a promoted
- variable, where the promotion is sign-extended, and the
- target mode is the same as the variable's promotion. */
- if (GET_CODE (op) == SUBREG
- && SUBREG_PROMOTED_VAR_P (op)
- && ! SUBREG_PROMOTED_UNSIGNED_P (op)
- && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (GET_MODE (XEXP (op, 0))))
- return rtl_hooks.gen_lowpart_no_emit (mode, op);
-
- /* (sign_extend:M (sign_extend:N <X>)) is (sign_extend:M <X>).
- (sign_extend:M (zero_extend:N <X>)) is (zero_extend:M <X>). */
- if (GET_CODE (op) == SIGN_EXTEND || GET_CODE (op) == ZERO_EXTEND)
- {
- gcc_assert (GET_MODE_BITSIZE (mode)
- > GET_MODE_BITSIZE (GET_MODE (op)));
- return simplify_gen_unary (GET_CODE (op), mode, XEXP (op, 0),
- GET_MODE (XEXP (op, 0)));
- }
-
- /* (sign_extend:M (ashiftrt:N (ashift <X> (const_int I)) (const_int I)))
- is (sign_extend:M (subreg:O <X>)) if there is mode with
- GET_MODE_BITSIZE (N) - I bits.
- (sign_extend:M (lshiftrt:N (ashift <X> (const_int I)) (const_int I)))
- is similarly (zero_extend:M (subreg:O <X>)). */
- if ((GET_CODE (op) == ASHIFTRT || GET_CODE (op) == LSHIFTRT)
- && GET_CODE (XEXP (op, 0)) == ASHIFT
- && CONST_INT_P (XEXP (op, 1))
- && XEXP (XEXP (op, 0), 1) == XEXP (op, 1)
- && GET_MODE_BITSIZE (GET_MODE (op)) > INTVAL (XEXP (op, 1)))
- {
- enum machine_mode tmode
- = mode_for_size (GET_MODE_BITSIZE (GET_MODE (op))
- - INTVAL (XEXP (op, 1)), MODE_INT, 1);
- gcc_assert (GET_MODE_BITSIZE (mode)
- > GET_MODE_BITSIZE (GET_MODE (op)));
- if (tmode != BLKmode)
- {
- rtx inner =
- rtl_hooks.gen_lowpart_no_emit (tmode, XEXP (XEXP (op, 0), 0));
- return simplify_gen_unary (GET_CODE (op) == ASHIFTRT
- ? SIGN_EXTEND : ZERO_EXTEND,
- mode, inner, tmode);
- }
- }
-
-#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
- /* As we do not know which address space the pointer is refering to,
- we can do this only if the target does not support different pointer
- or address modes depending on the address space. */
- if (target_default_pointer_address_modes_p ()
- && ! POINTERS_EXTEND_UNSIGNED
- && mode == Pmode && GET_MODE (op) == ptr_mode
- && (CONSTANT_P (op)
- || (GET_CODE (op) == SUBREG
- && REG_P (SUBREG_REG (op))
- && REG_POINTER (SUBREG_REG (op))
- && GET_MODE (SUBREG_REG (op)) == Pmode)))
- return convert_memory_address (Pmode, op);
-#endif
- break;
-
- case ZERO_EXTEND:
- /* Check for a zero extension of a subreg of a promoted
- variable, where the promotion is zero-extended, and the
- target mode is the same as the variable's promotion. */
- if (GET_CODE (op) == SUBREG
- && SUBREG_PROMOTED_VAR_P (op)
- && SUBREG_PROMOTED_UNSIGNED_P (op) > 0
- && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (GET_MODE (XEXP (op, 0))))
- return rtl_hooks.gen_lowpart_no_emit (mode, op);
-
- /* Extending a widening multiplication should be canonicalized to
- a wider widening multiplication. */
- if (GET_CODE (op) == MULT)
- {
- rtx lhs = XEXP (op, 0);
- rtx rhs = XEXP (op, 1);
- enum rtx_code lcode = GET_CODE (lhs);
- enum rtx_code rcode = GET_CODE (rhs);
-
- /* Widening multiplies usually extend both operands, but sometimes
- they use a shift to extract a portion of a register. */
- if ((lcode == ZERO_EXTEND
- || (lcode == LSHIFTRT && CONST_INT_P (XEXP (lhs, 1))))
- && (rcode == ZERO_EXTEND
- || (rcode == LSHIFTRT && CONST_INT_P (XEXP (rhs, 1)))))
- {
- enum machine_mode lmode = GET_MODE (lhs);
- enum machine_mode rmode = GET_MODE (rhs);
- int bits;
-
- if (lcode == LSHIFTRT)
- /* Number of bits not shifted off the end. */
- bits = GET_MODE_PRECISION (lmode) - INTVAL (XEXP (lhs, 1));
- else /* lcode == ZERO_EXTEND */
- /* Size of inner mode. */
- bits = GET_MODE_PRECISION (GET_MODE (XEXP (lhs, 0)));
-
- if (rcode == LSHIFTRT)
- bits += GET_MODE_PRECISION (rmode) - INTVAL (XEXP (rhs, 1));
- else /* rcode == ZERO_EXTEND */
- bits += GET_MODE_PRECISION (GET_MODE (XEXP (rhs, 0)));
-
- /* We can only widen multiplies if the result is mathematiclly
- equivalent. I.e. if overflow was impossible. */
- if (bits <= GET_MODE_PRECISION (GET_MODE (op)))
- return simplify_gen_binary
- (MULT, mode,
- simplify_gen_unary (ZERO_EXTEND, mode, lhs, lmode),
- simplify_gen_unary (ZERO_EXTEND, mode, rhs, rmode));
- }
- }
-
- /* (zero_extend:M (zero_extend:N <X>)) is (zero_extend:M <X>). */
- if (GET_CODE (op) == ZERO_EXTEND)
- return simplify_gen_unary (ZERO_EXTEND, mode, XEXP (op, 0),
- GET_MODE (XEXP (op, 0)));
-
- /* (zero_extend:M (lshiftrt:N (ashift <X> (const_int I)) (const_int I)))
- is (zero_extend:M (subreg:O <X>)) if there is mode with
- GET_MODE_BITSIZE (N) - I bits. */
- if (GET_CODE (op) == LSHIFTRT
- && GET_CODE (XEXP (op, 0)) == ASHIFT
- && CONST_INT_P (XEXP (op, 1))
- && XEXP (XEXP (op, 0), 1) == XEXP (op, 1)
- && GET_MODE_BITSIZE (GET_MODE (op)) > INTVAL (XEXP (op, 1)))
- {
- enum machine_mode tmode
- = mode_for_size (GET_MODE_BITSIZE (GET_MODE (op))
- - INTVAL (XEXP (op, 1)), MODE_INT, 1);
- if (tmode != BLKmode)
- {
- rtx inner =
- rtl_hooks.gen_lowpart_no_emit (tmode, XEXP (XEXP (op, 0), 0));
- return simplify_gen_unary (ZERO_EXTEND, mode, inner, tmode);
- }
- }
-
-#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
- /* As we do not know which address space the pointer is refering to,
- we can do this only if the target does not support different pointer
- or address modes depending on the address space. */
- if (target_default_pointer_address_modes_p ()
- && POINTERS_EXTEND_UNSIGNED > 0
- && mode == Pmode && GET_MODE (op) == ptr_mode
- && (CONSTANT_P (op)
- || (GET_CODE (op) == SUBREG
- && REG_P (SUBREG_REG (op))
- && REG_POINTER (SUBREG_REG (op))
- && GET_MODE (SUBREG_REG (op)) == Pmode)))
- return convert_memory_address (Pmode, op);
-#endif
- break;
-
- default:
- break;
- }
-
- return 0;
-}
-
-/* Try to compute the value of a unary operation CODE whose output mode is to
- be MODE with input operand OP whose mode was originally OP_MODE.
- Return zero if the value cannot be computed. */
-rtx
-simplify_const_unary_operation (enum rtx_code code, enum machine_mode mode,
- rtx op, enum machine_mode op_mode)
-{
- unsigned int width = GET_MODE_PRECISION (mode);
- unsigned int op_width = GET_MODE_PRECISION (op_mode);
-
- if (code == VEC_DUPLICATE)
- {
- gcc_assert (VECTOR_MODE_P (mode));
- if (GET_MODE (op) != VOIDmode)
- {
- if (!VECTOR_MODE_P (GET_MODE (op)))
- gcc_assert (GET_MODE_INNER (mode) == GET_MODE (op));
- else
- gcc_assert (GET_MODE_INNER (mode) == GET_MODE_INNER
- (GET_MODE (op)));
- }
- if (CONST_INT_P (op) || GET_CODE (op) == CONST_DOUBLE
- || GET_CODE (op) == CONST_VECTOR)
- {
- int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
- unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
- rtvec v = rtvec_alloc (n_elts);
- unsigned int i;
-
- if (GET_CODE (op) != CONST_VECTOR)
- for (i = 0; i < n_elts; i++)
- RTVEC_ELT (v, i) = op;
- else
- {
- enum machine_mode inmode = GET_MODE (op);
- int in_elt_size = GET_MODE_SIZE (GET_MODE_INNER (inmode));
- unsigned in_n_elts = (GET_MODE_SIZE (inmode) / in_elt_size);
-
- gcc_assert (in_n_elts < n_elts);
- gcc_assert ((n_elts % in_n_elts) == 0);
- for (i = 0; i < n_elts; i++)
- RTVEC_ELT (v, i) = CONST_VECTOR_ELT (op, i % in_n_elts);
- }
- return gen_rtx_CONST_VECTOR (mode, v);
- }
- }
-
- if (VECTOR_MODE_P (mode) && GET_CODE (op) == CONST_VECTOR)
- {
- int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
- unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
- enum machine_mode opmode = GET_MODE (op);
- int op_elt_size = GET_MODE_SIZE (GET_MODE_INNER (opmode));
- unsigned op_n_elts = (GET_MODE_SIZE (opmode) / op_elt_size);
- rtvec v = rtvec_alloc (n_elts);
- unsigned int i;
-
- gcc_assert (op_n_elts == n_elts);
- for (i = 0; i < n_elts; i++)
- {
- rtx x = simplify_unary_operation (code, GET_MODE_INNER (mode),
- CONST_VECTOR_ELT (op, i),
- GET_MODE_INNER (opmode));
- if (!x)
- return 0;
- RTVEC_ELT (v, i) = x;
- }
- return gen_rtx_CONST_VECTOR (mode, v);
- }
-
- /* The order of these tests is critical so that, for example, we don't
- check the wrong mode (input vs. output) for a conversion operation,
- such as FIX. At some point, this should be simplified. */
-
- if (code == FLOAT && GET_MODE (op) == VOIDmode
- && (GET_CODE (op) == CONST_DOUBLE || CONST_INT_P (op)))
- {
- HOST_WIDE_INT hv, lv;
- REAL_VALUE_TYPE d;
-
- if (CONST_INT_P (op))
- lv = INTVAL (op), hv = HWI_SIGN_EXTEND (lv);
- else
- lv = CONST_DOUBLE_LOW (op), hv = CONST_DOUBLE_HIGH (op);
-
- REAL_VALUE_FROM_INT (d, lv, hv, mode);
- d = real_value_truncate (mode, d);
- return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
- }
- else if (code == UNSIGNED_FLOAT && GET_MODE (op) == VOIDmode
- && (GET_CODE (op) == CONST_DOUBLE
- || CONST_INT_P (op)))
- {
- HOST_WIDE_INT hv, lv;
- REAL_VALUE_TYPE d;
-
- if (CONST_INT_P (op))
- lv = INTVAL (op), hv = HWI_SIGN_EXTEND (lv);
- else
- lv = CONST_DOUBLE_LOW (op), hv = CONST_DOUBLE_HIGH (op);
-
- if (op_mode == VOIDmode)
- {
- /* We don't know how to interpret negative-looking numbers in
- this case, so don't try to fold those. */
- if (hv < 0)
- return 0;
- }
- else if (GET_MODE_PRECISION (op_mode) >= HOST_BITS_PER_WIDE_INT * 2)
- ;
- else
- hv = 0, lv &= GET_MODE_MASK (op_mode);
-
- REAL_VALUE_FROM_UNSIGNED_INT (d, lv, hv, mode);
- d = real_value_truncate (mode, d);
- return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
- }
-
- if (CONST_INT_P (op)
- && width <= HOST_BITS_PER_WIDE_INT && width > 0)
- {
- HOST_WIDE_INT arg0 = INTVAL (op);
- HOST_WIDE_INT val;
-
- switch (code)
- {
- case NOT:
- val = ~ arg0;
- break;
-
- case NEG:
- val = - arg0;
- break;
-
- case ABS:
- val = (arg0 >= 0 ? arg0 : - arg0);
- break;
-
- case FFS:
- arg0 &= GET_MODE_MASK (mode);
- val = ffs_hwi (arg0);
- break;
-
- case CLZ:
- arg0 &= GET_MODE_MASK (mode);
- if (arg0 == 0 && CLZ_DEFINED_VALUE_AT_ZERO (mode, val))
- ;
- else
- val = GET_MODE_PRECISION (mode) - floor_log2 (arg0) - 1;
- break;
-
- case CLRSB:
- arg0 &= GET_MODE_MASK (mode);
- if (arg0 == 0)
- val = GET_MODE_PRECISION (mode) - 1;
- else if (arg0 >= 0)
- val = GET_MODE_PRECISION (mode) - floor_log2 (arg0) - 2;
- else if (arg0 < 0)
- val = GET_MODE_PRECISION (mode) - floor_log2 (~arg0) - 2;
- break;
-
- case CTZ:
- arg0 &= GET_MODE_MASK (mode);
- if (arg0 == 0)
- {
- /* Even if the value at zero is undefined, we have to come
- up with some replacement. Seems good enough. */
- if (! CTZ_DEFINED_VALUE_AT_ZERO (mode, val))
- val = GET_MODE_PRECISION (mode);
- }
- else
- val = ctz_hwi (arg0);
- break;
-
- case POPCOUNT:
- arg0 &= GET_MODE_MASK (mode);
- val = 0;
- while (arg0)
- val++, arg0 &= arg0 - 1;
- break;
-
- case PARITY:
- arg0 &= GET_MODE_MASK (mode);
- val = 0;
- while (arg0)
- val++, arg0 &= arg0 - 1;
- val &= 1;
- break;
-
- case BSWAP:
- {
- unsigned int s;
-
- val = 0;
- for (s = 0; s < width; s += 8)
- {
- unsigned int d = width - s - 8;
- unsigned HOST_WIDE_INT byte;
- byte = (arg0 >> s) & 0xff;
- val |= byte << d;
- }
- }
- break;
-
- case TRUNCATE:
- val = arg0;
- break;
-
- case ZERO_EXTEND:
- /* When zero-extending a CONST_INT, we need to know its
- original mode. */
- gcc_assert (op_mode != VOIDmode);
- if (op_width == HOST_BITS_PER_WIDE_INT)
- {
- /* If we were really extending the mode,
- we would have to distinguish between zero-extension
- and sign-extension. */
- gcc_assert (width == op_width);
- val = arg0;
- }
- else if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT)
- val = arg0 & GET_MODE_MASK (op_mode);
- else
- return 0;
- break;
-
- case SIGN_EXTEND:
- if (op_mode == VOIDmode)
- op_mode = mode;
- op_width = GET_MODE_PRECISION (op_mode);
- if (op_width == HOST_BITS_PER_WIDE_INT)
- {
- /* If we were really extending the mode,
- we would have to distinguish between zero-extension
- and sign-extension. */
- gcc_assert (width == op_width);
- val = arg0;
- }
- else if (op_width < HOST_BITS_PER_WIDE_INT)
- {
- val = arg0 & GET_MODE_MASK (op_mode);
- if (val_signbit_known_set_p (op_mode, val))
- val |= ~GET_MODE_MASK (op_mode);
- }
- else
- return 0;
- break;
-
- case SQRT:
- case FLOAT_EXTEND:
- case FLOAT_TRUNCATE:
- case SS_TRUNCATE:
- case US_TRUNCATE:
- case SS_NEG:
- case US_NEG:
- case SS_ABS:
- return 0;
-
- default:
- gcc_unreachable ();
- }
-
- return gen_int_mode (val, mode);
- }
-
- /* We can do some operations on integer CONST_DOUBLEs. Also allow
- for a DImode operation on a CONST_INT. */
- else if (GET_MODE (op) == VOIDmode
- && width <= HOST_BITS_PER_WIDE_INT * 2
- && (GET_CODE (op) == CONST_DOUBLE
- || CONST_INT_P (op)))
- {
- unsigned HOST_WIDE_INT l1, lv;
- HOST_WIDE_INT h1, hv;
-
- if (GET_CODE (op) == CONST_DOUBLE)
- l1 = CONST_DOUBLE_LOW (op), h1 = CONST_DOUBLE_HIGH (op);
- else
- l1 = INTVAL (op), h1 = HWI_SIGN_EXTEND (l1);
-
- switch (code)
- {
- case NOT:
- lv = ~ l1;
- hv = ~ h1;
- break;
-
- case NEG:
- neg_double (l1, h1, &lv, &hv);
- break;
-
- case ABS:
- if (h1 < 0)
- neg_double (l1, h1, &lv, &hv);
- else
- lv = l1, hv = h1;
- break;
-
- case FFS:
- hv = 0;
- if (l1 != 0)
- lv = ffs_hwi (l1);
- else if (h1 != 0)
- lv = HOST_BITS_PER_WIDE_INT + ffs_hwi (h1);
- else
- lv = 0;
- break;
-
- case CLZ:
- hv = 0;
- if (h1 != 0)
- lv = GET_MODE_PRECISION (mode) - floor_log2 (h1) - 1
- - HOST_BITS_PER_WIDE_INT;
- else if (l1 != 0)
- lv = GET_MODE_PRECISION (mode) - floor_log2 (l1) - 1;
- else if (! CLZ_DEFINED_VALUE_AT_ZERO (mode, lv))
- lv = GET_MODE_PRECISION (mode);
- break;
-
- case CTZ:
- hv = 0;
- if (l1 != 0)
- lv = ctz_hwi (l1);
- else if (h1 != 0)
- lv = HOST_BITS_PER_WIDE_INT + ctz_hwi (h1);
- else if (! CTZ_DEFINED_VALUE_AT_ZERO (mode, lv))
- lv = GET_MODE_PRECISION (mode);
- break;
-
- case POPCOUNT:
- hv = 0;
- lv = 0;
- while (l1)
- lv++, l1 &= l1 - 1;
- while (h1)
- lv++, h1 &= h1 - 1;
- break;
-
- case PARITY:
- hv = 0;
- lv = 0;
- while (l1)
- lv++, l1 &= l1 - 1;
- while (h1)
- lv++, h1 &= h1 - 1;
- lv &= 1;
- break;
-
- case BSWAP:
- {
- unsigned int s;
-
- hv = 0;
- lv = 0;
- for (s = 0; s < width; s += 8)
- {
- unsigned int d = width - s - 8;
- unsigned HOST_WIDE_INT byte;
-
- if (s < HOST_BITS_PER_WIDE_INT)
- byte = (l1 >> s) & 0xff;
- else
- byte = (h1 >> (s - HOST_BITS_PER_WIDE_INT)) & 0xff;
-
- if (d < HOST_BITS_PER_WIDE_INT)
- lv |= byte << d;
- else
- hv |= byte << (d - HOST_BITS_PER_WIDE_INT);
- }
- }
- break;
-
- case TRUNCATE:
- /* This is just a change-of-mode, so do nothing. */
- lv = l1, hv = h1;
- break;
-
- case ZERO_EXTEND:
- gcc_assert (op_mode != VOIDmode);
-
- if (op_width > HOST_BITS_PER_WIDE_INT)
- return 0;
-
- hv = 0;
- lv = l1 & GET_MODE_MASK (op_mode);
- break;
-
- case SIGN_EXTEND:
- if (op_mode == VOIDmode
- || op_width > HOST_BITS_PER_WIDE_INT)
- return 0;
- else
- {
- lv = l1 & GET_MODE_MASK (op_mode);
- if (val_signbit_known_set_p (op_mode, lv))
- lv |= ~GET_MODE_MASK (op_mode);
-
- hv = HWI_SIGN_EXTEND (lv);
- }
- break;
-
- case SQRT:
- return 0;
-
- default:
- return 0;
- }
-
- return immed_double_const (lv, hv, mode);
- }
-
- else if (GET_CODE (op) == CONST_DOUBLE
- && SCALAR_FLOAT_MODE_P (mode)
- && SCALAR_FLOAT_MODE_P (GET_MODE (op)))
- {
- REAL_VALUE_TYPE d, t;
- REAL_VALUE_FROM_CONST_DOUBLE (d, op);
-
- switch (code)
- {
- case SQRT:
- if (HONOR_SNANS (mode) && real_isnan (&d))
- return 0;
- real_sqrt (&t, mode, &d);
- d = t;
- break;
- case ABS:
- d = real_value_abs (&d);
- break;
- case NEG:
- d = real_value_negate (&d);
- break;
- case FLOAT_TRUNCATE:
- d = real_value_truncate (mode, d);
- break;
- case FLOAT_EXTEND:
- /* All this does is change the mode, unless changing
- mode class. */
- if (GET_MODE_CLASS (mode) != GET_MODE_CLASS (GET_MODE (op)))
- real_convert (&d, mode, &d);
- break;
- case FIX:
- real_arithmetic (&d, FIX_TRUNC_EXPR, &d, NULL);
- break;
- case NOT:
- {
- long tmp[4];
- int i;
-
- real_to_target (tmp, &d, GET_MODE (op));
- for (i = 0; i < 4; i++)
- tmp[i] = ~tmp[i];
- real_from_target (&d, tmp, mode);
- break;
- }
- default:
- gcc_unreachable ();
- }
- return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
- }
-
- else if (GET_CODE (op) == CONST_DOUBLE
- && SCALAR_FLOAT_MODE_P (GET_MODE (op))
- && GET_MODE_CLASS (mode) == MODE_INT
- && width <= 2*HOST_BITS_PER_WIDE_INT && width > 0)
- {
- /* Although the overflow semantics of RTL's FIX and UNSIGNED_FIX
- operators are intentionally left unspecified (to ease implementation
- by target backends), for consistency, this routine implements the
- same semantics for constant folding as used by the middle-end. */
-
- /* This was formerly used only for non-IEEE float.
- eggert@twinsun.com says it is safe for IEEE also. */
- HOST_WIDE_INT xh, xl, th, tl;
- REAL_VALUE_TYPE x, t;
- REAL_VALUE_FROM_CONST_DOUBLE (x, op);
- switch (code)
- {
- case FIX:
- if (REAL_VALUE_ISNAN (x))
- return const0_rtx;
-
- /* Test against the signed upper bound. */
- if (width > HOST_BITS_PER_WIDE_INT)
- {
- th = ((unsigned HOST_WIDE_INT) 1
- << (width - HOST_BITS_PER_WIDE_INT - 1)) - 1;
- tl = -1;
- }
- else
- {
- th = 0;
- tl = ((unsigned HOST_WIDE_INT) 1 << (width - 1)) - 1;
- }
- real_from_integer (&t, VOIDmode, tl, th, 0);
- if (REAL_VALUES_LESS (t, x))
- {
- xh = th;
- xl = tl;
- break;
- }
-
- /* Test against the signed lower bound. */
- if (width > HOST_BITS_PER_WIDE_INT)
- {
- th = (unsigned HOST_WIDE_INT) (-1)
- << (width - HOST_BITS_PER_WIDE_INT - 1);
- tl = 0;
- }
- else
- {
- th = -1;
- tl = (unsigned HOST_WIDE_INT) (-1) << (width - 1);
- }
- real_from_integer (&t, VOIDmode, tl, th, 0);
- if (REAL_VALUES_LESS (x, t))
- {
- xh = th;
- xl = tl;
- break;
- }
- REAL_VALUE_TO_INT (&xl, &xh, x);
- break;
-
- case UNSIGNED_FIX:
- if (REAL_VALUE_ISNAN (x) || REAL_VALUE_NEGATIVE (x))
- return const0_rtx;
-
- /* Test against the unsigned upper bound. */
- if (width == 2*HOST_BITS_PER_WIDE_INT)
- {
- th = -1;
- tl = -1;
- }
- else if (width >= HOST_BITS_PER_WIDE_INT)
- {
- th = ((unsigned HOST_WIDE_INT) 1
- << (width - HOST_BITS_PER_WIDE_INT)) - 1;
- tl = -1;
- }
- else
- {
- th = 0;
- tl = ((unsigned HOST_WIDE_INT) 1 << width) - 1;
- }
- real_from_integer (&t, VOIDmode, tl, th, 1);
- if (REAL_VALUES_LESS (t, x))
- {
- xh = th;
- xl = tl;
- break;
- }
-
- REAL_VALUE_TO_INT (&xl, &xh, x);
- break;
-
- default:
- gcc_unreachable ();
- }
- return immed_double_const (xl, xh, mode);
- }
-
- return NULL_RTX;
-}
-
-/* Subroutine of simplify_binary_operation to simplify a commutative,
- associative binary operation CODE with result mode MODE, operating
- on OP0 and OP1. CODE is currently one of PLUS, MULT, AND, IOR, XOR,
- SMIN, SMAX, UMIN or UMAX. Return zero if no simplification or
- canonicalization is possible. */
-
-static rtx
-simplify_associative_operation (enum rtx_code code, enum machine_mode mode,
- rtx op0, rtx op1)
-{
- rtx tem;
-
- /* Linearize the operator to the left. */
- if (GET_CODE (op1) == code)
- {
- /* "(a op b) op (c op d)" becomes "((a op b) op c) op d)". */
- if (GET_CODE (op0) == code)
- {
- tem = simplify_gen_binary (code, mode, op0, XEXP (op1, 0));
- return simplify_gen_binary (code, mode, tem, XEXP (op1, 1));
- }
-
- /* "a op (b op c)" becomes "(b op c) op a". */
- if (! swap_commutative_operands_p (op1, op0))
- return simplify_gen_binary (code, mode, op1, op0);
-
- tem = op0;
- op0 = op1;
- op1 = tem;
- }
-
- if (GET_CODE (op0) == code)
- {
- /* Canonicalize "(x op c) op y" as "(x op y) op c". */
- if (swap_commutative_operands_p (XEXP (op0, 1), op1))
- {
- tem = simplify_gen_binary (code, mode, XEXP (op0, 0), op1);
- return simplify_gen_binary (code, mode, tem, XEXP (op0, 1));
- }
-
- /* Attempt to simplify "(a op b) op c" as "a op (b op c)". */
- tem = simplify_binary_operation (code, mode, XEXP (op0, 1), op1);
- if (tem != 0)
- return simplify_gen_binary (code, mode, XEXP (op0, 0), tem);
-
- /* Attempt to simplify "(a op b) op c" as "(a op c) op b". */
- tem = simplify_binary_operation (code, mode, XEXP (op0, 0), op1);
- if (tem != 0)
- return simplify_gen_binary (code, mode, tem, XEXP (op0, 1));
- }
-
- return 0;
-}
-
-
-/* Simplify a binary operation CODE with result mode MODE, operating on OP0
- and OP1. Return 0 if no simplification is possible.
-
- Don't use this for relational operations such as EQ or LT.
- Use simplify_relational_operation instead. */
-rtx
-simplify_binary_operation (enum rtx_code code, enum machine_mode mode,
- rtx op0, rtx op1)
-{
- rtx trueop0, trueop1;
- rtx tem;
-
- /* Relational operations don't work here. We must know the mode
- of the operands in order to do the comparison correctly.
- Assuming a full word can give incorrect results.
- Consider comparing 128 with -128 in QImode. */
- gcc_assert (GET_RTX_CLASS (code) != RTX_COMPARE);
- gcc_assert (GET_RTX_CLASS (code) != RTX_COMM_COMPARE);
-
- /* Make sure the constant is second. */
- if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
- && swap_commutative_operands_p (op0, op1))
- {
- tem = op0, op0 = op1, op1 = tem;
- }
-
- trueop0 = avoid_constant_pool_reference (op0);
- trueop1 = avoid_constant_pool_reference (op1);
-
- tem = simplify_const_binary_operation (code, mode, trueop0, trueop1);
- if (tem)
- return tem;
- return simplify_binary_operation_1 (code, mode, op0, op1, trueop0, trueop1);
-}
-
-/* Subroutine of simplify_binary_operation. Simplify a binary operation
- CODE with result mode MODE, operating on OP0 and OP1. If OP0 and/or
- OP1 are constant pool references, TRUEOP0 and TRUEOP1 represent the
- actual constants. */
-
-static rtx
-simplify_binary_operation_1 (enum rtx_code code, enum machine_mode mode,
- rtx op0, rtx op1, rtx trueop0, rtx trueop1)
-{
- rtx tem, reversed, opleft, opright;
- HOST_WIDE_INT val;
- unsigned int width = GET_MODE_PRECISION (mode);
-
- /* Even if we can't compute a constant result,
- there are some cases worth simplifying. */
-
- switch (code)
- {
- case PLUS:
- /* Maybe simplify x + 0 to x. The two expressions are equivalent
- when x is NaN, infinite, or finite and nonzero. They aren't
- when x is -0 and the rounding mode is not towards -infinity,
- since (-0) + 0 is then 0. */
- if (!HONOR_SIGNED_ZEROS (mode) && trueop1 == CONST0_RTX (mode))
- return op0;
-
- /* ((-a) + b) -> (b - a) and similarly for (a + (-b)). These
- transformations are safe even for IEEE. */
- if (GET_CODE (op0) == NEG)
- return simplify_gen_binary (MINUS, mode, op1, XEXP (op0, 0));
- else if (GET_CODE (op1) == NEG)
- return simplify_gen_binary (MINUS, mode, op0, XEXP (op1, 0));
-
- /* (~a) + 1 -> -a */
- if (INTEGRAL_MODE_P (mode)
- && GET_CODE (op0) == NOT
- && trueop1 == const1_rtx)
- return simplify_gen_unary (NEG, mode, XEXP (op0, 0), mode);
-
- /* Handle both-operands-constant cases. We can only add
- CONST_INTs to constants since the sum of relocatable symbols
- can't be handled by most assemblers. Don't add CONST_INT
- to CONST_INT since overflow won't be computed properly if wider
- than HOST_BITS_PER_WIDE_INT. */
-
- if ((GET_CODE (op0) == CONST
- || GET_CODE (op0) == SYMBOL_REF
- || GET_CODE (op0) == LABEL_REF)
- && CONST_INT_P (op1))
- return plus_constant (op0, INTVAL (op1));
- else if ((GET_CODE (op1) == CONST
- || GET_CODE (op1) == SYMBOL_REF
- || GET_CODE (op1) == LABEL_REF)
- && CONST_INT_P (op0))
- return plus_constant (op1, INTVAL (op0));
-
- /* See if this is something like X * C - X or vice versa or
- if the multiplication is written as a shift. If so, we can
- distribute and make a new multiply, shift, or maybe just
- have X (if C is 2 in the example above). But don't make
- something more expensive than we had before. */
-
- if (SCALAR_INT_MODE_P (mode))
- {
- double_int coeff0, coeff1;
- rtx lhs = op0, rhs = op1;
-
- coeff0 = double_int_one;
- coeff1 = double_int_one;
-
- if (GET_CODE (lhs) == NEG)
- {
- coeff0 = double_int_minus_one;
- lhs = XEXP (lhs, 0);
- }
- else if (GET_CODE (lhs) == MULT
- && CONST_INT_P (XEXP (lhs, 1)))
- {
- coeff0 = shwi_to_double_int (INTVAL (XEXP (lhs, 1)));
- lhs = XEXP (lhs, 0);
- }
- else if (GET_CODE (lhs) == ASHIFT
- && CONST_INT_P (XEXP (lhs, 1))
- && INTVAL (XEXP (lhs, 1)) >= 0
- && INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
- {
- coeff0 = double_int_setbit (double_int_zero,
- INTVAL (XEXP (lhs, 1)));
- lhs = XEXP (lhs, 0);
- }
-
- if (GET_CODE (rhs) == NEG)
- {
- coeff1 = double_int_minus_one;
- rhs = XEXP (rhs, 0);
- }
- else if (GET_CODE (rhs) == MULT
- && CONST_INT_P (XEXP (rhs, 1)))
- {
- coeff1 = shwi_to_double_int (INTVAL (XEXP (rhs, 1)));
- rhs = XEXP (rhs, 0);
- }
- else if (GET_CODE (rhs) == ASHIFT
- && CONST_INT_P (XEXP (rhs, 1))
- && INTVAL (XEXP (rhs, 1)) >= 0
- && INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
- {
- coeff1 = double_int_setbit (double_int_zero,
- INTVAL (XEXP (rhs, 1)));
- rhs = XEXP (rhs, 0);
- }
-
- if (rtx_equal_p (lhs, rhs))
- {
- rtx orig = gen_rtx_PLUS (mode, op0, op1);
- rtx coeff;
- double_int val;
- bool speed = optimize_function_for_speed_p (cfun);
-
- val = double_int_add (coeff0, coeff1);
- coeff = immed_double_int_const (val, mode);
-
- tem = simplify_gen_binary (MULT, mode, lhs, coeff);
- return set_src_cost (tem, speed) <= set_src_cost (orig, speed)
- ? tem : 0;
- }
- }
-
- /* (plus (xor X C1) C2) is (xor X (C1^C2)) if C2 is signbit. */
- if ((CONST_INT_P (op1)
- || GET_CODE (op1) == CONST_DOUBLE)
- && GET_CODE (op0) == XOR
- && (CONST_INT_P (XEXP (op0, 1))
- || GET_CODE (XEXP (op0, 1)) == CONST_DOUBLE)
- && mode_signbit_p (mode, op1))
- return simplify_gen_binary (XOR, mode, XEXP (op0, 0),
- simplify_gen_binary (XOR, mode, op1,
- XEXP (op0, 1)));
-
- /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)). */
- if (!HONOR_SIGN_DEPENDENT_ROUNDING (mode)
- && GET_CODE (op0) == MULT
- && GET_CODE (XEXP (op0, 0)) == NEG)
- {
- rtx in1, in2;
-
- in1 = XEXP (XEXP (op0, 0), 0);
- in2 = XEXP (op0, 1);
- return simplify_gen_binary (MINUS, mode, op1,
- simplify_gen_binary (MULT, mode,
- in1, in2));
- }
-
- /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
- C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
- is 1. */
- if (COMPARISON_P (op0)
- && ((STORE_FLAG_VALUE == -1 && trueop1 == const1_rtx)
- || (STORE_FLAG_VALUE == 1 && trueop1 == constm1_rtx))
- && (reversed = reversed_comparison (op0, mode)))
- return
- simplify_gen_unary (NEG, mode, reversed, mode);
-
- /* If one of the operands is a PLUS or a MINUS, see if we can
- simplify this by the associative law.
- Don't use the associative law for floating point.
- The inaccuracy makes it nonassociative,
- and subtle programs can break if operations are associated. */
-
- if (INTEGRAL_MODE_P (mode)
- && (plus_minus_operand_p (op0)
- || plus_minus_operand_p (op1))
- && (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
- return tem;
-
- /* Reassociate floating point addition only when the user
- specifies associative math operations. */
- if (FLOAT_MODE_P (mode)
- && flag_associative_math)
- {
- tem = simplify_associative_operation (code, mode, op0, op1);
- if (tem)
- return tem;
- }
- break;
-
- case COMPARE:
- /* Convert (compare (gt (flags) 0) (lt (flags) 0)) to (flags). */
- if (((GET_CODE (op0) == GT && GET_CODE (op1) == LT)
- || (GET_CODE (op0) == GTU && GET_CODE (op1) == LTU))
- && XEXP (op0, 1) == const0_rtx && XEXP (op1, 1) == const0_rtx)
- {
- rtx xop00 = XEXP (op0, 0);
- rtx xop10 = XEXP (op1, 0);
-
-#ifdef HAVE_cc0
- if (GET_CODE (xop00) == CC0 && GET_CODE (xop10) == CC0)
-#else
- if (REG_P (xop00) && REG_P (xop10)
- && GET_MODE (xop00) == GET_MODE (xop10)
- && REGNO (xop00) == REGNO (xop10)
- && GET_MODE_CLASS (GET_MODE (xop00)) == MODE_CC
- && GET_MODE_CLASS (GET_MODE (xop10)) == MODE_CC)
-#endif
- return xop00;
- }
- break;
-
- case MINUS:
- /* We can't assume x-x is 0 even with non-IEEE floating point,
- but since it is zero except in very strange circumstances, we
- will treat it as zero with -ffinite-math-only. */
- if (rtx_equal_p (trueop0, trueop1)
- && ! side_effects_p (op0)
- && (!FLOAT_MODE_P (mode) || !HONOR_NANS (mode)))
- return CONST0_RTX (mode);
-
- /* Change subtraction from zero into negation. (0 - x) is the
- same as -x when x is NaN, infinite, or finite and nonzero.
- But if the mode has signed zeros, and does not round towards
- -infinity, then 0 - 0 is 0, not -0. */
- if (!HONOR_SIGNED_ZEROS (mode) && trueop0 == CONST0_RTX (mode))
- return simplify_gen_unary (NEG, mode, op1, mode);
-
- /* (-1 - a) is ~a. */
- if (trueop0 == constm1_rtx)
- return simplify_gen_unary (NOT, mode, op1, mode);
-
- /* Subtracting 0 has no effect unless the mode has signed zeros
- and supports rounding towards -infinity. In such a case,
- 0 - 0 is -0. */
- if (!(HONOR_SIGNED_ZEROS (mode)
- && HONOR_SIGN_DEPENDENT_ROUNDING (mode))
- && trueop1 == CONST0_RTX (mode))
- return op0;
-
- /* See if this is something like X * C - X or vice versa or
- if the multiplication is written as a shift. If so, we can
- distribute and make a new multiply, shift, or maybe just
- have X (if C is 2 in the example above). But don't make
- something more expensive than we had before. */
-
- if (SCALAR_INT_MODE_P (mode))
- {
- double_int coeff0, negcoeff1;
- rtx lhs = op0, rhs = op1;
-
- coeff0 = double_int_one;
- negcoeff1 = double_int_minus_one;
-
- if (GET_CODE (lhs) == NEG)
- {
- coeff0 = double_int_minus_one;
- lhs = XEXP (lhs, 0);
- }
- else if (GET_CODE (lhs) == MULT
- && CONST_INT_P (XEXP (lhs, 1)))
- {
- coeff0 = shwi_to_double_int (INTVAL (XEXP (lhs, 1)));
- lhs = XEXP (lhs, 0);
- }
- else if (GET_CODE (lhs) == ASHIFT
- && CONST_INT_P (XEXP (lhs, 1))
- && INTVAL (XEXP (lhs, 1)) >= 0
- && INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
- {
- coeff0 = double_int_setbit (double_int_zero,
- INTVAL (XEXP (lhs, 1)));
- lhs = XEXP (lhs, 0);
- }
-
- if (GET_CODE (rhs) == NEG)
- {
- negcoeff1 = double_int_one;
- rhs = XEXP (rhs, 0);
- }
- else if (GET_CODE (rhs) == MULT
- && CONST_INT_P (XEXP (rhs, 1)))
- {
- negcoeff1 = shwi_to_double_int (-INTVAL (XEXP (rhs, 1)));
- rhs = XEXP (rhs, 0);
- }
- else if (GET_CODE (rhs) == ASHIFT
- && CONST_INT_P (XEXP (rhs, 1))
- && INTVAL (XEXP (rhs, 1)) >= 0
- && INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
- {
- negcoeff1 = double_int_setbit (double_int_zero,
- INTVAL (XEXP (rhs, 1)));
- negcoeff1 = double_int_neg (negcoeff1);
- rhs = XEXP (rhs, 0);
- }
-
- if (rtx_equal_p (lhs, rhs))
- {
- rtx orig = gen_rtx_MINUS (mode, op0, op1);
- rtx coeff;
- double_int val;
- bool speed = optimize_function_for_speed_p (cfun);
-
- val = double_int_add (coeff0, negcoeff1);
- coeff = immed_double_int_const (val, mode);
-
- tem = simplify_gen_binary (MULT, mode, lhs, coeff);
- return set_src_cost (tem, speed) <= set_src_cost (orig, speed)
- ? tem : 0;
- }
- }
-
- /* (a - (-b)) -> (a + b). True even for IEEE. */
- if (GET_CODE (op1) == NEG)
- return simplify_gen_binary (PLUS, mode, op0, XEXP (op1, 0));
-
- /* (-x - c) may be simplified as (-c - x). */
- if (GET_CODE (op0) == NEG
- && (CONST_INT_P (op1)
- || GET_CODE (op1) == CONST_DOUBLE))
- {
- tem = simplify_unary_operation (NEG, mode, op1, mode);
- if (tem)
- return simplify_gen_binary (MINUS, mode, tem, XEXP (op0, 0));
- }
-
- /* Don't let a relocatable value get a negative coeff. */
- if (CONST_INT_P (op1) && GET_MODE (op0) != VOIDmode)
- return simplify_gen_binary (PLUS, mode,
- op0,
- neg_const_int (mode, op1));
-
- /* (x - (x & y)) -> (x & ~y) */
- if (GET_CODE (op1) == AND)
- {
- if (rtx_equal_p (op0, XEXP (op1, 0)))
- {
- tem = simplify_gen_unary (NOT, mode, XEXP (op1, 1),
- GET_MODE (XEXP (op1, 1)));
- return simplify_gen_binary (AND, mode, op0, tem);
- }
- if (rtx_equal_p (op0, XEXP (op1, 1)))
- {
- tem = simplify_gen_unary (NOT, mode, XEXP (op1, 0),
- GET_MODE (XEXP (op1, 0)));
- return simplify_gen_binary (AND, mode, op0, tem);
- }
- }
-
- /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
- by reversing the comparison code if valid. */
- if (STORE_FLAG_VALUE == 1
- && trueop0 == const1_rtx
- && COMPARISON_P (op1)
- && (reversed = reversed_comparison (op1, mode)))
- return reversed;
-
- /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A). */
- if (!HONOR_SIGN_DEPENDENT_ROUNDING (mode)
- && GET_CODE (op1) == MULT
- && GET_CODE (XEXP (op1, 0)) == NEG)
- {
- rtx in1, in2;
-
- in1 = XEXP (XEXP (op1, 0), 0);
- in2 = XEXP (op1, 1);
- return simplify_gen_binary (PLUS, mode,
- simplify_gen_binary (MULT, mode,
- in1, in2),
- op0);
- }
-
- /* Canonicalize (minus (neg A) (mult B C)) to
- (minus (mult (neg B) C) A). */
- if (!HONOR_SIGN_DEPENDENT_ROUNDING (mode)
- && GET_CODE (op1) == MULT
- && GET_CODE (op0) == NEG)
- {
- rtx in1, in2;
-
- in1 = simplify_gen_unary (NEG, mode, XEXP (op1, 0), mode);
- in2 = XEXP (op1, 1);
- return simplify_gen_binary (MINUS, mode,
- simplify_gen_binary (MULT, mode,
- in1, in2),
- XEXP (op0, 0));
- }
-
- /* If one of the operands is a PLUS or a MINUS, see if we can
- simplify this by the associative law. This will, for example,
- canonicalize (minus A (plus B C)) to (minus (minus A B) C).
- Don't use the associative law for floating point.
- The inaccuracy makes it nonassociative,
- and subtle programs can break if operations are associated. */
-
- if (INTEGRAL_MODE_P (mode)
- && (plus_minus_operand_p (op0)
- || plus_minus_operand_p (op1))
- && (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
- return tem;
- break;
-
- case MULT:
- if (trueop1 == constm1_rtx)
- return simplify_gen_unary (NEG, mode, op0, mode);
-
- if (GET_CODE (op0) == NEG)
- {
- rtx temp = simplify_unary_operation (NEG, mode, op1, mode);
- /* If op1 is a MULT as well and simplify_unary_operation
- just moved the NEG to the second operand, simplify_gen_binary
- below could through simplify_associative_operation move
- the NEG around again and recurse endlessly. */
- if (temp
- && GET_CODE (op1) == MULT
- && GET_CODE (temp) == MULT
- && XEXP (op1, 0) == XEXP (temp, 0)
- && GET_CODE (XEXP (temp, 1)) == NEG
- && XEXP (op1, 1) == XEXP (XEXP (temp, 1), 0))
- temp = NULL_RTX;
- if (temp)
- return simplify_gen_binary (MULT, mode, XEXP (op0, 0), temp);
- }
- if (GET_CODE (op1) == NEG)
- {
- rtx temp = simplify_unary_operation (NEG, mode, op0, mode);
- /* If op0 is a MULT as well and simplify_unary_operation
- just moved the NEG to the second operand, simplify_gen_binary
- below could through simplify_associative_operation move
- the NEG around again and recurse endlessly. */
- if (temp
- && GET_CODE (op0) == MULT
- && GET_CODE (temp) == MULT
- && XEXP (op0, 0) == XEXP (temp, 0)
- && GET_CODE (XEXP (temp, 1)) == NEG
- && XEXP (op0, 1) == XEXP (XEXP (temp, 1), 0))
- temp = NULL_RTX;
- if (temp)
- return simplify_gen_binary (MULT, mode, temp, XEXP (op1, 0));
- }
-
- /* Maybe simplify x * 0 to 0. The reduction is not valid if
- x is NaN, since x * 0 is then also NaN. Nor is it valid
- when the mode has signed zeros, since multiplying a negative
- number by 0 will give -0, not 0. */
- if (!HONOR_NANS (mode)
- && !HONOR_SIGNED_ZEROS (mode)
- && trueop1 == CONST0_RTX (mode)
- && ! side_effects_p (op0))
- return op1;
-
- /* In IEEE floating point, x*1 is not equivalent to x for
- signalling NaNs. */
- if (!HONOR_SNANS (mode)
- && trueop1 == CONST1_RTX (mode))
- return op0;
-
- /* Convert multiply by constant power of two into shift unless
- we are still generating RTL. This test is a kludge. */
- if (CONST_INT_P (trueop1)
- && (val = exact_log2 (UINTVAL (trueop1))) >= 0
- /* If the mode is larger than the host word size, and the
- uppermost bit is set, then this isn't a power of two due
- to implicit sign extension. */
- && (width <= HOST_BITS_PER_WIDE_INT
- || val != HOST_BITS_PER_WIDE_INT - 1))
- return simplify_gen_binary (ASHIFT, mode, op0, GEN_INT (val));
-
- /* Likewise for multipliers wider than a word. */
- if (GET_CODE (trueop1) == CONST_DOUBLE
- && (GET_MODE (trueop1) == VOIDmode
- || GET_MODE_CLASS (GET_MODE (trueop1)) == MODE_INT)
- && GET_MODE (op0) == mode
- && CONST_DOUBLE_LOW (trueop1) == 0
- && (val = exact_log2 (CONST_DOUBLE_HIGH (trueop1))) >= 0)
- return simplify_gen_binary (ASHIFT, mode, op0,
- GEN_INT (val + HOST_BITS_PER_WIDE_INT));
-
- /* x*2 is x+x and x*(-1) is -x */
- if (GET_CODE (trueop1) == CONST_DOUBLE
- && SCALAR_FLOAT_MODE_P (GET_MODE (trueop1))
- && !DECIMAL_FLOAT_MODE_P (GET_MODE (trueop1))
- && GET_MODE (op0) == mode)
- {
- REAL_VALUE_TYPE d;
- REAL_VALUE_FROM_CONST_DOUBLE (d, trueop1);
-
- if (REAL_VALUES_EQUAL (d, dconst2))
- return simplify_gen_binary (PLUS, mode, op0, copy_rtx (op0));
-
- if (!HONOR_SNANS (mode)
- && REAL_VALUES_EQUAL (d, dconstm1))
- return simplify_gen_unary (NEG, mode, op0, mode);
- }
-
- /* Optimize -x * -x as x * x. */
- if (FLOAT_MODE_P (mode)
- && GET_CODE (op0) == NEG
- && GET_CODE (op1) == NEG
- && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
- && !side_effects_p (XEXP (op0, 0)))
- return simplify_gen_binary (MULT, mode, XEXP (op0, 0), XEXP (op1, 0));
-
- /* Likewise, optimize abs(x) * abs(x) as x * x. */
- if (SCALAR_FLOAT_MODE_P (mode)
- && GET_CODE (op0) == ABS
- && GET_CODE (op1) == ABS
- && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
- && !side_effects_p (XEXP (op0, 0)))
- return simplify_gen_binary (MULT, mode, XEXP (op0, 0), XEXP (op1, 0));
-
- /* Reassociate multiplication, but for floating point MULTs
- only when the user specifies unsafe math optimizations. */
- if (! FLOAT_MODE_P (mode)
- || flag_unsafe_math_optimizations)
- {
- tem = simplify_associative_operation (code, mode, op0, op1);
- if (tem)
- return tem;
- }
- break;
-
- case IOR:
- if (trueop1 == CONST0_RTX (mode))
- return op0;
- if (INTEGRAL_MODE_P (mode) && trueop1 == CONSTM1_RTX (mode))
- return op1;
- if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
- return op0;
- /* A | (~A) -> -1 */
- if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
- || (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
- && ! side_effects_p (op0)
- && SCALAR_INT_MODE_P (mode))
- return constm1_rtx;
-
- /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
- if (CONST_INT_P (op1)
- && HWI_COMPUTABLE_MODE_P (mode)
- && (nonzero_bits (op0, mode) & ~UINTVAL (op1)) == 0)
- return op1;
-
- /* Canonicalize (X & C1) | C2. */
- if (GET_CODE (op0) == AND
- && CONST_INT_P (trueop1)
- && CONST_INT_P (XEXP (op0, 1)))
- {
- HOST_WIDE_INT mask = GET_MODE_MASK (mode);
- HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
- HOST_WIDE_INT c2 = INTVAL (trueop1);
-
- /* If (C1&C2) == C1, then (X&C1)|C2 becomes X. */
- if ((c1 & c2) == c1
- && !side_effects_p (XEXP (op0, 0)))
- return trueop1;
-
- /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
- if (((c1|c2) & mask) == mask)
- return simplify_gen_binary (IOR, mode, XEXP (op0, 0), op1);
-
- /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2. */
- if (((c1 & ~c2) & mask) != (c1 & mask))
- {
- tem = simplify_gen_binary (AND, mode, XEXP (op0, 0),
- gen_int_mode (c1 & ~c2, mode));
- return simplify_gen_binary (IOR, mode, tem, op1);
- }
- }
-
- /* Convert (A & B) | A to A. */
- if (GET_CODE (op0) == AND
- && (rtx_equal_p (XEXP (op0, 0), op1)
- || rtx_equal_p (XEXP (op0, 1), op1))
- && ! side_effects_p (XEXP (op0, 0))
- && ! side_effects_p (XEXP (op0, 1)))
- return op1;
-
- /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
- mode size to (rotate A CX). */
-
- if (GET_CODE (op1) == ASHIFT
- || GET_CODE (op1) == SUBREG)
- {
- opleft = op1;
- opright = op0;
- }
- else
- {
- opright = op1;
- opleft = op0;
- }
-
- if (GET_CODE (opleft) == ASHIFT && GET_CODE (opright) == LSHIFTRT
- && rtx_equal_p (XEXP (opleft, 0), XEXP (opright, 0))
- && CONST_INT_P (XEXP (opleft, 1))
- && CONST_INT_P (XEXP (opright, 1))
- && (INTVAL (XEXP (opleft, 1)) + INTVAL (XEXP (opright, 1))
- == GET_MODE_PRECISION (mode)))
- return gen_rtx_ROTATE (mode, XEXP (opright, 0), XEXP (opleft, 1));
-
- /* Same, but for ashift that has been "simplified" to a wider mode
- by simplify_shift_const. */
-
- if (GET_CODE (opleft) == SUBREG
- && GET_CODE (SUBREG_REG (opleft)) == ASHIFT
- && GET_CODE (opright) == LSHIFTRT
- && GET_CODE (XEXP (opright, 0)) == SUBREG
- && GET_MODE (opleft) == GET_MODE (XEXP (opright, 0))
- && SUBREG_BYTE (opleft) == SUBREG_BYTE (XEXP (opright, 0))
- && (GET_MODE_SIZE (GET_MODE (opleft))
- < GET_MODE_SIZE (GET_MODE (SUBREG_REG (opleft))))
- && rtx_equal_p (XEXP (SUBREG_REG (opleft), 0),
- SUBREG_REG (XEXP (opright, 0)))
- && CONST_INT_P (XEXP (SUBREG_REG (opleft), 1))
- && CONST_INT_P (XEXP (opright, 1))
- && (INTVAL (XEXP (SUBREG_REG (opleft), 1)) + INTVAL (XEXP (opright, 1))
- == GET_MODE_PRECISION (mode)))
- return gen_rtx_ROTATE (mode, XEXP (opright, 0),
- XEXP (SUBREG_REG (opleft), 1));
-
- /* If we have (ior (and (X C1) C2)), simplify this by making
- C1 as small as possible if C1 actually changes. */
- if (CONST_INT_P (op1)
- && (HWI_COMPUTABLE_MODE_P (mode)
- || INTVAL (op1) > 0)
- && GET_CODE (op0) == AND
- && CONST_INT_P (XEXP (op0, 1))
- && CONST_INT_P (op1)
- && (UINTVAL (XEXP (op0, 1)) & UINTVAL (op1)) != 0)
- return simplify_gen_binary (IOR, mode,
- simplify_gen_binary
- (AND, mode, XEXP (op0, 0),
- GEN_INT (UINTVAL (XEXP (op0, 1))
- & ~UINTVAL (op1))),
- op1);
-
- /* If OP0 is (ashiftrt (plus ...) C), it might actually be
- a (sign_extend (plus ...)). Then check if OP1 is a CONST_INT and
- the PLUS does not affect any of the bits in OP1: then we can do
- the IOR as a PLUS and we can associate. This is valid if OP1
- can be safely shifted left C bits. */
- if (CONST_INT_P (trueop1) && GET_CODE (op0) == ASHIFTRT
- && GET_CODE (XEXP (op0, 0)) == PLUS
- && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
- && CONST_INT_P (XEXP (op0, 1))
- && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
- {
- int count = INTVAL (XEXP (op0, 1));
- HOST_WIDE_INT mask = INTVAL (trueop1) << count;
-
- if (mask >> count == INTVAL (trueop1)
- && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
- return simplify_gen_binary (ASHIFTRT, mode,
- plus_constant (XEXP (op0, 0), mask),
- XEXP (op0, 1));
- }
-
- tem = simplify_associative_operation (code, mode, op0, op1);
- if (tem)
- return tem;
- break;
-
- case XOR:
- if (trueop1 == CONST0_RTX (mode))
- return op0;
- if (INTEGRAL_MODE_P (mode) && trueop1 == CONSTM1_RTX (mode))
- return simplify_gen_unary (NOT, mode, op0, mode);
- if (rtx_equal_p (trueop0, trueop1)
- && ! side_effects_p (op0)
- && GET_MODE_CLASS (mode) != MODE_CC)
- return CONST0_RTX (mode);
-
- /* Canonicalize XOR of the most significant bit to PLUS. */
- if ((CONST_INT_P (op1)
- || GET_CODE (op1) == CONST_DOUBLE)
- && mode_signbit_p (mode, op1))
- return simplify_gen_binary (PLUS, mode, op0, op1);
- /* (xor (plus X C1) C2) is (xor X (C1^C2)) if C1 is signbit. */
- if ((CONST_INT_P (op1)
- || GET_CODE (op1) == CONST_DOUBLE)
- && GET_CODE (op0) == PLUS
- && (CONST_INT_P (XEXP (op0, 1))
- || GET_CODE (XEXP (op0, 1)) == CONST_DOUBLE)
- && mode_signbit_p (mode, XEXP (op0, 1)))
- return simplify_gen_binary (XOR, mode, XEXP (op0, 0),
- simplify_gen_binary (XOR, mode, op1,
- XEXP (op0, 1)));
-
- /* If we are XORing two things that have no bits in common,
- convert them into an IOR. This helps to detect rotation encoded
- using those methods and possibly other simplifications. */
-
- if (HWI_COMPUTABLE_MODE_P (mode)
- && (nonzero_bits (op0, mode)
- & nonzero_bits (op1, mode)) == 0)
- return (simplify_gen_binary (IOR, mode, op0, op1));
-
- /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
- Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
- (NOT y). */
- {
- int num_negated = 0;
-
- if (GET_CODE (op0) == NOT)
- num_negated++, op0 = XEXP (op0, 0);
- if (GET_CODE (op1) == NOT)
- num_negated++, op1 = XEXP (op1, 0);
-
- if (num_negated == 2)
- return simplify_gen_binary (XOR, mode, op0, op1);
- else if (num_negated == 1)
- return simplify_gen_unary (NOT, mode,
- simplify_gen_binary (XOR, mode, op0, op1),
- mode);
- }
-
- /* Convert (xor (and A B) B) to (and (not A) B). The latter may
- correspond to a machine insn or result in further simplifications
- if B is a constant. */
-
- if (GET_CODE (op0) == AND
- && rtx_equal_p (XEXP (op0, 1), op1)
- && ! side_effects_p (op1))
- return simplify_gen_binary (AND, mode,
- simplify_gen_unary (NOT, mode,
- XEXP (op0, 0), mode),
- op1);
-
- else if (GET_CODE (op0) == AND
- && rtx_equal_p (XEXP (op0, 0), op1)
- && ! side_effects_p (op1))
- return simplify_gen_binary (AND, mode,
- simplify_gen_unary (NOT, mode,
- XEXP (op0, 1), mode),
- op1);
-
- /* Given (xor (and A B) C), using P^Q == (~P&Q) | (~Q&P),
- we can transform like this:
- (A&B)^C == ~(A&B)&C | ~C&(A&B)
- == (~A|~B)&C | ~C&(A&B) * DeMorgan's Law
- == ~A&C | ~B&C | A&(~C&B) * Distribute and re-order
- Attempt a few simplifications when B and C are both constants. */
- if (GET_CODE (op0) == AND
- && CONST_INT_P (op1)
- && CONST_INT_P (XEXP (op0, 1)))
- {
- rtx a = XEXP (op0, 0);
- rtx b = XEXP (op0, 1);
- rtx c = op1;
- HOST_WIDE_INT bval = INTVAL (b);
- HOST_WIDE_INT cval = INTVAL (c);
-
- rtx na_c
- = simplify_binary_operation (AND, mode,
- simplify_gen_unary (NOT, mode, a, mode),
- c);
- if ((~cval & bval) == 0)
- {
- /* Try to simplify ~A&C | ~B&C. */
- if (na_c != NULL_RTX)
- return simplify_gen_binary (IOR, mode, na_c,
- GEN_INT (~bval & cval));
- }
- else
- {
- /* If ~A&C is zero, simplify A&(~C&B) | ~B&C. */
- if (na_c == const0_rtx)
- {
- rtx a_nc_b = simplify_gen_binary (AND, mode, a,
- GEN_INT (~cval & bval));
- return simplify_gen_binary (IOR, mode, a_nc_b,
- GEN_INT (~bval & cval));
- }
- }
- }
-
- /* (xor (comparison foo bar) (const_int 1)) can become the reversed
- comparison if STORE_FLAG_VALUE is 1. */
- if (STORE_FLAG_VALUE == 1
- && trueop1 == const1_rtx
- && COMPARISON_P (op0)
- && (reversed = reversed_comparison (op0, mode)))
- return reversed;
-
- /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
- is (lt foo (const_int 0)), so we can perform the above
- simplification if STORE_FLAG_VALUE is 1. */
-
- if (STORE_FLAG_VALUE == 1
- && trueop1 == const1_rtx
- && GET_CODE (op0) == LSHIFTRT
- && CONST_INT_P (XEXP (op0, 1))
- && INTVAL (XEXP (op0, 1)) == GET_MODE_PRECISION (mode) - 1)
- return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
-
- /* (xor (comparison foo bar) (const_int sign-bit))
- when STORE_FLAG_VALUE is the sign bit. */
- if (val_signbit_p (mode, STORE_FLAG_VALUE)
- && trueop1 == const_true_rtx
- && COMPARISON_P (op0)
- && (reversed = reversed_comparison (op0, mode)))
- return reversed;
-
- tem = simplify_associative_operation (code, mode, op0, op1);
- if (tem)
- return tem;
- break;
-
- case AND:
- if (trueop1 == CONST0_RTX (mode) && ! side_effects_p (op0))
- return trueop1;
- if (INTEGRAL_MODE_P (mode) && trueop1 == CONSTM1_RTX (mode))
- return op0;
- if (HWI_COMPUTABLE_MODE_P (mode))
- {
- HOST_WIDE_INT nzop0 = nonzero_bits (trueop0, mode);
- HOST_WIDE_INT nzop1;
- if (CONST_INT_P (trueop1))
- {
- HOST_WIDE_INT val1 = INTVAL (trueop1);
- /* If we are turning off bits already known off in OP0, we need
- not do an AND. */
- if ((nzop0 & ~val1) == 0)
- return op0;
- }
- nzop1 = nonzero_bits (trueop1, mode);
- /* If we are clearing all the nonzero bits, the result is zero. */
- if ((nzop1 & nzop0) == 0
- && !side_effects_p (op0) && !side_effects_p (op1))
- return CONST0_RTX (mode);
- }
- if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0)
- && GET_MODE_CLASS (mode) != MODE_CC)
- return op0;
- /* A & (~A) -> 0 */
- if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
- || (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
- && ! side_effects_p (op0)
- && GET_MODE_CLASS (mode) != MODE_CC)
- return CONST0_RTX (mode);
-
- /* Transform (and (extend X) C) into (zero_extend (and X C)) if
- there are no nonzero bits of C outside of X's mode. */
- if ((GET_CODE (op0) == SIGN_EXTEND
- || GET_CODE (op0) == ZERO_EXTEND)
- && CONST_INT_P (trueop1)
- && HWI_COMPUTABLE_MODE_P (mode)
- && (~GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))
- & UINTVAL (trueop1)) == 0)
- {
- enum machine_mode imode = GET_MODE (XEXP (op0, 0));
- tem = simplify_gen_binary (AND, imode, XEXP (op0, 0),
- gen_int_mode (INTVAL (trueop1),
- imode));
- return simplify_gen_unary (ZERO_EXTEND, mode, tem, imode);
- }
-
- /* Transform (and (truncate X) C) into (truncate (and X C)). This way
- we might be able to further simplify the AND with X and potentially
- remove the truncation altogether. */
- if (GET_CODE (op0) == TRUNCATE && CONST_INT_P (trueop1))
- {
- rtx x = XEXP (op0, 0);
- enum machine_mode xmode = GET_MODE (x);
- tem = simplify_gen_binary (AND, xmode, x,
- gen_int_mode (INTVAL (trueop1), xmode));
- return simplify_gen_unary (TRUNCATE, mode, tem, xmode);
- }
-
- /* Canonicalize (A | C1) & C2 as (A & C2) | (C1 & C2). */
- if (GET_CODE (op0) == IOR
- && CONST_INT_P (trueop1)
- && CONST_INT_P (XEXP (op0, 1)))
- {
- HOST_WIDE_INT tmp = INTVAL (trueop1) & INTVAL (XEXP (op0, 1));
- return simplify_gen_binary (IOR, mode,
- simplify_gen_binary (AND, mode,
- XEXP (op0, 0), op1),
- gen_int_mode (tmp, mode));
- }
-
- /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
- insn (and may simplify more). */
- if (GET_CODE (op0) == XOR
- && rtx_equal_p (XEXP (op0, 0), op1)
- && ! side_effects_p (op1))
- return simplify_gen_binary (AND, mode,
- simplify_gen_unary (NOT, mode,
- XEXP (op0, 1), mode),
- op1);
-
- if (GET_CODE (op0) == XOR
- && rtx_equal_p (XEXP (op0, 1), op1)
- && ! side_effects_p (op1))
- return simplify_gen_binary (AND, mode,
- simplify_gen_unary (NOT, mode,
- XEXP (op0, 0), mode),
- op1);
-
- /* Similarly for (~(A ^ B)) & A. */
- if (GET_CODE (op0) == NOT
- && GET_CODE (XEXP (op0, 0)) == XOR
- && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
- && ! side_effects_p (op1))
- return simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
-
- if (GET_CODE (op0) == NOT
- && GET_CODE (XEXP (op0, 0)) == XOR
- && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
- && ! side_effects_p (op1))
- return simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
-
- /* Convert (A | B) & A to A. */
- if (GET_CODE (op0) == IOR
- && (rtx_equal_p (XEXP (op0, 0), op1)
- || rtx_equal_p (XEXP (op0, 1), op1))
- && ! side_effects_p (XEXP (op0, 0))
- && ! side_effects_p (XEXP (op0, 1)))
- return op1;
-
- /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
- ((A & N) + B) & M -> (A + B) & M
- Similarly if (N & M) == 0,
- ((A | N) + B) & M -> (A + B) & M
- and for - instead of + and/or ^ instead of |.
- Also, if (N & M) == 0, then
- (A +- N) & M -> A & M. */
- if (CONST_INT_P (trueop1)
- && HWI_COMPUTABLE_MODE_P (mode)
- && ~UINTVAL (trueop1)
- && (UINTVAL (trueop1) & (UINTVAL (trueop1) + 1)) == 0
- && (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS))
- {
- rtx pmop[2];
- int which;
-
- pmop[0] = XEXP (op0, 0);
- pmop[1] = XEXP (op0, 1);
-
- if (CONST_INT_P (pmop[1])
- && (UINTVAL (pmop[1]) & UINTVAL (trueop1)) == 0)
- return simplify_gen_binary (AND, mode, pmop[0], op1);
-
- for (which = 0; which < 2; which++)
- {
- tem = pmop[which];
- switch (GET_CODE (tem))
- {
- case AND:
- if (CONST_INT_P (XEXP (tem, 1))
- && (UINTVAL (XEXP (tem, 1)) & UINTVAL (trueop1))
- == UINTVAL (trueop1))
- pmop[which] = XEXP (tem, 0);
- break;
- case IOR:
- case XOR:
- if (CONST_INT_P (XEXP (tem, 1))
- && (UINTVAL (XEXP (tem, 1)) & UINTVAL (trueop1)) == 0)
- pmop[which] = XEXP (tem, 0);
- break;
- default:
- break;
- }
- }
-
- if (pmop[0] != XEXP (op0, 0) || pmop[1] != XEXP (op0, 1))
- {
- tem = simplify_gen_binary (GET_CODE (op0), mode,
- pmop[0], pmop[1]);
- return simplify_gen_binary (code, mode, tem, op1);
- }
- }
-
- /* (and X (ior (not X) Y) -> (and X Y) */
- if (GET_CODE (op1) == IOR
- && GET_CODE (XEXP (op1, 0)) == NOT
- && op0 == XEXP (XEXP (op1, 0), 0))
- return simplify_gen_binary (AND, mode, op0, XEXP (op1, 1));
-
- /* (and (ior (not X) Y) X) -> (and X Y) */
- if (GET_CODE (op0) == IOR
- && GET_CODE (XEXP (op0, 0)) == NOT
- && op1 == XEXP (XEXP (op0, 0), 0))
- return simplify_gen_binary (AND, mode, op1, XEXP (op0, 1));
-
- tem = simplify_associative_operation (code, mode, op0, op1);
- if (tem)
- return tem;
- break;
-
- case UDIV:
- /* 0/x is 0 (or x&0 if x has side-effects). */
- if (trueop0 == CONST0_RTX (mode))
- {
- if (side_effects_p (op1))
- return simplify_gen_binary (AND, mode, op1, trueop0);
- return trueop0;
- }
- /* x/1 is x. */
- if (trueop1 == CONST1_RTX (mode))
- return rtl_hooks.gen_lowpart_no_emit (mode, op0);
- /* Convert divide by power of two into shift. */
- if (CONST_INT_P (trueop1)
- && (val = exact_log2 (UINTVAL (trueop1))) > 0)
- return simplify_gen_binary (LSHIFTRT, mode, op0, GEN_INT (val));
- break;
-
- case DIV:
- /* Handle floating point and integers separately. */
- if (SCALAR_FLOAT_MODE_P (mode))
- {
- /* Maybe change 0.0 / x to 0.0. This transformation isn't
- safe for modes with NaNs, since 0.0 / 0.0 will then be
- NaN rather than 0.0. Nor is it safe for modes with signed
- zeros, since dividing 0 by a negative number gives -0.0 */
- if (trueop0 == CONST0_RTX (mode)
- && !HONOR_NANS (mode)
- && !HONOR_SIGNED_ZEROS (mode)
- && ! side_effects_p (op1))
- return op0;
- /* x/1.0 is x. */
- if (trueop1 == CONST1_RTX (mode)
- && !HONOR_SNANS (mode))
- return op0;
-
- if (GET_CODE (trueop1) == CONST_DOUBLE
- && trueop1 != CONST0_RTX (mode))
- {
- REAL_VALUE_TYPE d;
- REAL_VALUE_FROM_CONST_DOUBLE (d, trueop1);
-
- /* x/-1.0 is -x. */
- if (REAL_VALUES_EQUAL (d, dconstm1)
- && !HONOR_SNANS (mode))
- return simplify_gen_unary (NEG, mode, op0, mode);
-
- /* Change FP division by a constant into multiplication.
- Only do this with -freciprocal-math. */
- if (flag_reciprocal_math
- && !REAL_VALUES_EQUAL (d, dconst0))
- {
- REAL_ARITHMETIC (d, RDIV_EXPR, dconst1, d);
- tem = CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
- return simplify_gen_binary (MULT, mode, op0, tem);
- }
- }
- }
- else if (SCALAR_INT_MODE_P (mode))
- {
- /* 0/x is 0 (or x&0 if x has side-effects). */
- if (trueop0 == CONST0_RTX (mode)
- && !cfun->can_throw_non_call_exceptions)
- {
- if (side_effects_p (op1))
- return simplify_gen_binary (AND, mode, op1, trueop0);
- return trueop0;
- }
- /* x/1 is x. */
- if (trueop1 == CONST1_RTX (mode))
- return rtl_hooks.gen_lowpart_no_emit (mode, op0);
- /* x/-1 is -x. */
- if (trueop1 == constm1_rtx)
- {
- rtx x = rtl_hooks.gen_lowpart_no_emit (mode, op0);
- return simplify_gen_unary (NEG, mode, x, mode);
- }
- }
- break;
-
- case UMOD:
- /* 0%x is 0 (or x&0 if x has side-effects). */
- if (trueop0 == CONST0_RTX (mode))
- {
- if (side_effects_p (op1))
- return simplify_gen_binary (AND, mode, op1, trueop0);
- return trueop0;
- }
- /* x%1 is 0 (of x&0 if x has side-effects). */
- if (trueop1 == CONST1_RTX (mode))
- {
- if (side_effects_p (op0))
- return simplify_gen_binary (AND, mode, op0, CONST0_RTX (mode));
- return CONST0_RTX (mode);
- }
- /* Implement modulus by power of two as AND. */
- if (CONST_INT_P (trueop1)
- && exact_log2 (UINTVAL (trueop1)) > 0)
- return simplify_gen_binary (AND, mode, op0,
- GEN_INT (INTVAL (op1) - 1));
- break;
-
- case MOD:
- /* 0%x is 0 (or x&0 if x has side-effects). */
- if (trueop0 == CONST0_RTX (mode))
- {
- if (side_effects_p (op1))
- return simplify_gen_binary (AND, mode, op1, trueop0);
- return trueop0;
- }
- /* x%1 and x%-1 is 0 (or x&0 if x has side-effects). */
- if (trueop1 == CONST1_RTX (mode) || trueop1 == constm1_rtx)
- {
- if (side_effects_p (op0))
- return simplify_gen_binary (AND, mode, op0, CONST0_RTX (mode));
- return CONST0_RTX (mode);
- }
- break;
-
- case ROTATERT:
- case ROTATE:
- case ASHIFTRT:
- if (trueop1 == CONST0_RTX (mode))
- return op0;
- if (trueop0 == CONST0_RTX (mode) && ! side_effects_p (op1))
- return op0;
- /* Rotating ~0 always results in ~0. */
- if (CONST_INT_P (trueop0) && width <= HOST_BITS_PER_WIDE_INT
- && UINTVAL (trueop0) == GET_MODE_MASK (mode)
- && ! side_effects_p (op1))
- return op0;
- canonicalize_shift:
- if (SHIFT_COUNT_TRUNCATED && CONST_INT_P (op1))
- {
- val = INTVAL (op1) & (GET_MODE_BITSIZE (mode) - 1);
- if (val != INTVAL (op1))
- return simplify_gen_binary (code, mode, op0, GEN_INT (val));
- }
- break;
-
- case ASHIFT:
- case SS_ASHIFT:
- case US_ASHIFT:
- if (trueop1 == CONST0_RTX (mode))
- return op0;
- if (trueop0 == CONST0_RTX (mode) && ! side_effects_p (op1))
- return op0;
- goto canonicalize_shift;
-
- case LSHIFTRT:
- if (trueop1 == CONST0_RTX (mode))
- return op0;
- if (trueop0 == CONST0_RTX (mode) && ! side_effects_p (op1))
- return op0;
- /* Optimize (lshiftrt (clz X) C) as (eq X 0). */
- if (GET_CODE (op0) == CLZ
- && CONST_INT_P (trueop1)
- && STORE_FLAG_VALUE == 1
- && INTVAL (trueop1) < (HOST_WIDE_INT)width)
- {
- enum machine_mode imode = GET_MODE (XEXP (op0, 0));
- unsigned HOST_WIDE_INT zero_val = 0;
-
- if (CLZ_DEFINED_VALUE_AT_ZERO (imode, zero_val)
- && zero_val == GET_MODE_PRECISION (imode)
- && INTVAL (trueop1) == exact_log2 (zero_val))
- return simplify_gen_relational (EQ, mode, imode,
- XEXP (op0, 0), const0_rtx);
- }
- goto canonicalize_shift;
-
- case SMIN:
- if (width <= HOST_BITS_PER_WIDE_INT
- && mode_signbit_p (mode, trueop1)
- && ! side_effects_p (op0))
- return op1;
- if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
- return op0;
- tem = simplify_associative_operation (code, mode, op0, op1);
- if (tem)
- return tem;
- break;
-
- case SMAX:
- if (width <= HOST_BITS_PER_WIDE_INT
- && CONST_INT_P (trueop1)
- && (UINTVAL (trueop1) == GET_MODE_MASK (mode) >> 1)
- && ! side_effects_p (op0))
- return op1;
- if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
- return op0;
- tem = simplify_associative_operation (code, mode, op0, op1);
- if (tem)
- return tem;
- break;
-
- case UMIN:
- if (trueop1 == CONST0_RTX (mode) && ! side_effects_p (op0))
- return op1;
- if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
- return op0;
- tem = simplify_associative_operation (code, mode, op0, op1);
- if (tem)
- return tem;
- break;
-
- case UMAX:
- if (trueop1 == constm1_rtx && ! side_effects_p (op0))
- return op1;
- if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
- return op0;
- tem = simplify_associative_operation (code, mode, op0, op1);
- if (tem)
- return tem;
- break;
-
- case SS_PLUS:
- case US_PLUS:
- case SS_MINUS:
- case US_MINUS:
- case SS_MULT:
- case US_MULT:
- case SS_DIV:
- case US_DIV:
- /* ??? There are simplifications that can be done. */
- return 0;
-
- case VEC_SELECT:
- if (!VECTOR_MODE_P (mode))
- {
- gcc_assert (VECTOR_MODE_P (GET_MODE (trueop0)));
- gcc_assert (mode == GET_MODE_INNER (GET_MODE (trueop0)));
- gcc_assert (GET_CODE (trueop1) == PARALLEL);
- gcc_assert (XVECLEN (trueop1, 0) == 1);
- gcc_assert (CONST_INT_P (XVECEXP (trueop1, 0, 0)));
-
- if (GET_CODE (trueop0) == CONST_VECTOR)
- return CONST_VECTOR_ELT (trueop0, INTVAL (XVECEXP
- (trueop1, 0, 0)));
-
- /* Extract a scalar element from a nested VEC_SELECT expression
- (with optional nested VEC_CONCAT expression). Some targets
- (i386) extract scalar element from a vector using chain of
- nested VEC_SELECT expressions. When input operand is a memory
- operand, this operation can be simplified to a simple scalar
- load from an offseted memory address. */
- if (GET_CODE (trueop0) == VEC_SELECT)
- {
- rtx op0 = XEXP (trueop0, 0);
- rtx op1 = XEXP (trueop0, 1);
-
- enum machine_mode opmode = GET_MODE (op0);
- int elt_size = GET_MODE_SIZE (GET_MODE_INNER (opmode));
- int n_elts = GET_MODE_SIZE (opmode) / elt_size;
-
- int i = INTVAL (XVECEXP (trueop1, 0, 0));
- int elem;
-
- rtvec vec;
- rtx tmp_op, tmp;
-
- gcc_assert (GET_CODE (op1) == PARALLEL);
- gcc_assert (i < n_elts);
-
- /* Select element, pointed by nested selector. */
- elem = INTVAL (XVECEXP (op1, 0, i));
-
- /* Handle the case when nested VEC_SELECT wraps VEC_CONCAT. */
- if (GET_CODE (op0) == VEC_CONCAT)
- {
- rtx op00 = XEXP (op0, 0);
- rtx op01 = XEXP (op0, 1);
-
- enum machine_mode mode00, mode01;
- int n_elts00, n_elts01;
-
- mode00 = GET_MODE (op00);
- mode01 = GET_MODE (op01);
-
- /* Find out number of elements of each operand. */
- if (VECTOR_MODE_P (mode00))
- {
- elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode00));
- n_elts00 = GET_MODE_SIZE (mode00) / elt_size;
- }
- else
- n_elts00 = 1;
-
- if (VECTOR_MODE_P (mode01))
- {
- elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode01));
- n_elts01 = GET_MODE_SIZE (mode01) / elt_size;
- }
- else
- n_elts01 = 1;
-
- gcc_assert (n_elts == n_elts00 + n_elts01);
-
- /* Select correct operand of VEC_CONCAT
- and adjust selector. */
- if (elem < n_elts01)
- tmp_op = op00;
- else
- {
- tmp_op = op01;
- elem -= n_elts00;
- }
- }
- else
- tmp_op = op0;
-
- vec = rtvec_alloc (1);
- RTVEC_ELT (vec, 0) = GEN_INT (elem);
-
- tmp = gen_rtx_fmt_ee (code, mode,
- tmp_op, gen_rtx_PARALLEL (VOIDmode, vec));
- return tmp;
- }
- if (GET_CODE (trueop0) == VEC_DUPLICATE
- && GET_MODE (XEXP (trueop0, 0)) == mode)
- return XEXP (trueop0, 0);
- }
- else
- {
- gcc_assert (VECTOR_MODE_P (GET_MODE (trueop0)));
- gcc_assert (GET_MODE_INNER (mode)
- == GET_MODE_INNER (GET_MODE (trueop0)));
- gcc_assert (GET_CODE (trueop1) == PARALLEL);
-
- if (GET_CODE (trueop0) == CONST_VECTOR)
- {
- int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
- unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
- rtvec v = rtvec_alloc (n_elts);
- unsigned int i;
-
- gcc_assert (XVECLEN (trueop1, 0) == (int) n_elts);
- for (i = 0; i < n_elts; i++)
- {
- rtx x = XVECEXP (trueop1, 0, i);
-
- gcc_assert (CONST_INT_P (x));
- RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop0,
- INTVAL (x));
- }
-
- return gen_rtx_CONST_VECTOR (mode, v);
- }
- }
-
- if (XVECLEN (trueop1, 0) == 1
- && CONST_INT_P (XVECEXP (trueop1, 0, 0))
- && GET_CODE (trueop0) == VEC_CONCAT)
- {
- rtx vec = trueop0;
- int offset = INTVAL (XVECEXP (trueop1, 0, 0)) * GET_MODE_SIZE (mode);
-
- /* Try to find the element in the VEC_CONCAT. */
- while (GET_MODE (vec) != mode
- && GET_CODE (vec) == VEC_CONCAT)
- {
- HOST_WIDE_INT vec_size = GET_MODE_SIZE (GET_MODE (XEXP (vec, 0)));
- if (offset < vec_size)
- vec = XEXP (vec, 0);
- else
- {
- offset -= vec_size;
- vec = XEXP (vec, 1);
- }
- vec = avoid_constant_pool_reference (vec);
- }
-
- if (GET_MODE (vec) == mode)
- return vec;
- }
-
- return 0;
- case VEC_CONCAT:
- {
- enum machine_mode op0_mode = (GET_MODE (trueop0) != VOIDmode
- ? GET_MODE (trueop0)
- : GET_MODE_INNER (mode));
- enum machine_mode op1_mode = (GET_MODE (trueop1) != VOIDmode
- ? GET_MODE (trueop1)
- : GET_MODE_INNER (mode));
-
- gcc_assert (VECTOR_MODE_P (mode));
- gcc_assert (GET_MODE_SIZE (op0_mode) + GET_MODE_SIZE (op1_mode)
- == GET_MODE_SIZE (mode));
-
- if (VECTOR_MODE_P (op0_mode))
- gcc_assert (GET_MODE_INNER (mode)
- == GET_MODE_INNER (op0_mode));
- else
- gcc_assert (GET_MODE_INNER (mode) == op0_mode);
-
- if (VECTOR_MODE_P (op1_mode))
- gcc_assert (GET_MODE_INNER (mode)
- == GET_MODE_INNER (op1_mode));
- else
- gcc_assert (GET_MODE_INNER (mode) == op1_mode);
-
- if ((GET_CODE (trueop0) == CONST_VECTOR
- || CONST_INT_P (trueop0)
- || GET_CODE (trueop0) == CONST_DOUBLE)
- && (GET_CODE (trueop1) == CONST_VECTOR
- || CONST_INT_P (trueop1)
- || GET_CODE (trueop1) == CONST_DOUBLE))
- {
- int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
- unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
- rtvec v = rtvec_alloc (n_elts);
- unsigned int i;
- unsigned in_n_elts = 1;
-
- if (VECTOR_MODE_P (op0_mode))
- in_n_elts = (GET_MODE_SIZE (op0_mode) / elt_size);
- for (i = 0; i < n_elts; i++)
- {
- if (i < in_n_elts)
- {
- if (!VECTOR_MODE_P (op0_mode))
- RTVEC_ELT (v, i) = trueop0;
- else
- RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop0, i);
- }
- else
- {
- if (!VECTOR_MODE_P (op1_mode))
- RTVEC_ELT (v, i) = trueop1;
- else
- RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop1,
- i - in_n_elts);
- }
- }
-
- return gen_rtx_CONST_VECTOR (mode, v);
- }
- }
- return 0;
-
- default:
- gcc_unreachable ();
- }
-
- return 0;
-}
-
-rtx
-simplify_const_binary_operation (enum rtx_code code, enum machine_mode mode,
- rtx op0, rtx op1)
-{
- HOST_WIDE_INT arg0, arg1, arg0s, arg1s;
- HOST_WIDE_INT val;
- unsigned int width = GET_MODE_PRECISION (mode);
-
- if (VECTOR_MODE_P (mode)
- && code != VEC_CONCAT
- && GET_CODE (op0) == CONST_VECTOR
- && GET_CODE (op1) == CONST_VECTOR)
- {
- unsigned n_elts = GET_MODE_NUNITS (mode);
- enum machine_mode op0mode = GET_MODE (op0);
- unsigned op0_n_elts = GET_MODE_NUNITS (op0mode);
- enum machine_mode op1mode = GET_MODE (op1);
- unsigned op1_n_elts = GET_MODE_NUNITS (op1mode);
- rtvec v = rtvec_alloc (n_elts);
- unsigned int i;
-
- gcc_assert (op0_n_elts == n_elts);
- gcc_assert (op1_n_elts == n_elts);
- for (i = 0; i < n_elts; i++)
- {
- rtx x = simplify_binary_operation (code, GET_MODE_INNER (mode),
- CONST_VECTOR_ELT (op0, i),
- CONST_VECTOR_ELT (op1, i));
- if (!x)
- return 0;
- RTVEC_ELT (v, i) = x;
- }
-
- return gen_rtx_CONST_VECTOR (mode, v);
- }
-
- if (VECTOR_MODE_P (mode)
- && code == VEC_CONCAT
- && (CONST_INT_P (op0)
- || GET_CODE (op0) == CONST_DOUBLE
- || GET_CODE (op0) == CONST_FIXED)
- && (CONST_INT_P (op1)
- || GET_CODE (op1) == CONST_DOUBLE
- || GET_CODE (op1) == CONST_FIXED))
- {
- unsigned n_elts = GET_MODE_NUNITS (mode);
- rtvec v = rtvec_alloc (n_elts);
-
- gcc_assert (n_elts >= 2);
- if (n_elts == 2)
- {
- gcc_assert (GET_CODE (op0) != CONST_VECTOR);
- gcc_assert (GET_CODE (op1) != CONST_VECTOR);
-
- RTVEC_ELT (v, 0) = op0;
- RTVEC_ELT (v, 1) = op1;
- }
- else
- {
- unsigned op0_n_elts = GET_MODE_NUNITS (GET_MODE (op0));
- unsigned op1_n_elts = GET_MODE_NUNITS (GET_MODE (op1));
- unsigned i;
-
- gcc_assert (GET_CODE (op0) == CONST_VECTOR);
- gcc_assert (GET_CODE (op1) == CONST_VECTOR);
- gcc_assert (op0_n_elts + op1_n_elts == n_elts);
-
- for (i = 0; i < op0_n_elts; ++i)
- RTVEC_ELT (v, i) = XVECEXP (op0, 0, i);
- for (i = 0; i < op1_n_elts; ++i)
- RTVEC_ELT (v, op0_n_elts+i) = XVECEXP (op1, 0, i);
- }
-
- return gen_rtx_CONST_VECTOR (mode, v);
- }
-
- if (SCALAR_FLOAT_MODE_P (mode)
- && GET_CODE (op0) == CONST_DOUBLE
- && GET_CODE (op1) == CONST_DOUBLE
- && mode == GET_MODE (op0) && mode == GET_MODE (op1))
- {
- if (code == AND
- || code == IOR
- || code == XOR)
- {
- long tmp0[4];
- long tmp1[4];
- REAL_VALUE_TYPE r;
- int i;
-
- real_to_target (tmp0, CONST_DOUBLE_REAL_VALUE (op0),
- GET_MODE (op0));
- real_to_target (tmp1, CONST_DOUBLE_REAL_VALUE (op1),
- GET_MODE (op1));
- for (i = 0; i < 4; i++)
- {
- switch (code)
- {
- case AND:
- tmp0[i] &= tmp1[i];
- break;
- case IOR:
- tmp0[i] |= tmp1[i];
- break;
- case XOR:
- tmp0[i] ^= tmp1[i];
- break;
- default:
- gcc_unreachable ();
- }
- }
- real_from_target (&r, tmp0, mode);
- return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
- }
- else
- {
- REAL_VALUE_TYPE f0, f1, value, result;
- bool inexact;
-
- REAL_VALUE_FROM_CONST_DOUBLE (f0, op0);
- REAL_VALUE_FROM_CONST_DOUBLE (f1, op1);
- real_convert (&f0, mode, &f0);
- real_convert (&f1, mode, &f1);
-
- if (HONOR_SNANS (mode)
- && (REAL_VALUE_ISNAN (f0) || REAL_VALUE_ISNAN (f1)))
- return 0;
-
- if (code == DIV
- && REAL_VALUES_EQUAL (f1, dconst0)
- && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
- return 0;
-
- if (MODE_HAS_INFINITIES (mode) && HONOR_NANS (mode)
- && flag_trapping_math
- && REAL_VALUE_ISINF (f0) && REAL_VALUE_ISINF (f1))
- {
- int s0 = REAL_VALUE_NEGATIVE (f0);
- int s1 = REAL_VALUE_NEGATIVE (f1);
-
- switch (code)
- {
- case PLUS:
- /* Inf + -Inf = NaN plus exception. */
- if (s0 != s1)
- return 0;
- break;
- case MINUS:
- /* Inf - Inf = NaN plus exception. */
- if (s0 == s1)
- return 0;
- break;
- case DIV:
- /* Inf / Inf = NaN plus exception. */
- return 0;
- default:
- break;
- }
- }
-
- if (code == MULT && MODE_HAS_INFINITIES (mode) && HONOR_NANS (mode)
- && flag_trapping_math
- && ((REAL_VALUE_ISINF (f0) && REAL_VALUES_EQUAL (f1, dconst0))
- || (REAL_VALUE_ISINF (f1)
- && REAL_VALUES_EQUAL (f0, dconst0))))
- /* Inf * 0 = NaN plus exception. */
- return 0;
-
- inexact = real_arithmetic (&value, rtx_to_tree_code (code),
- &f0, &f1);
- real_convert (&result, mode, &value);
-
- /* Don't constant fold this floating point operation if
- the result has overflowed and flag_trapping_math. */
-
- if (flag_trapping_math
- && MODE_HAS_INFINITIES (mode)
- && REAL_VALUE_ISINF (result)
- && !REAL_VALUE_ISINF (f0)
- && !REAL_VALUE_ISINF (f1))
- /* Overflow plus exception. */
- return 0;
-
- /* Don't constant fold this floating point operation if the
- result may dependent upon the run-time rounding mode and
- flag_rounding_math is set, or if GCC's software emulation
- is unable to accurately represent the result. */
-
- if ((flag_rounding_math
- || (MODE_COMPOSITE_P (mode) && !flag_unsafe_math_optimizations))
- && (inexact || !real_identical (&result, &value)))
- return NULL_RTX;
-
- return CONST_DOUBLE_FROM_REAL_VALUE (result, mode);
- }
- }
-
- /* We can fold some multi-word operations. */
- if (GET_MODE_CLASS (mode) == MODE_INT
- && width == HOST_BITS_PER_DOUBLE_INT
- && (CONST_DOUBLE_P (op0) || CONST_INT_P (op0))
- && (CONST_DOUBLE_P (op1) || CONST_INT_P (op1)))
- {
- double_int o0, o1, res, tmp;
-
- o0 = rtx_to_double_int (op0);
- o1 = rtx_to_double_int (op1);
-
- switch (code)
- {
- case MINUS:
- /* A - B == A + (-B). */
- o1 = double_int_neg (o1);
-
- /* Fall through.... */
-
- case PLUS:
- res = double_int_add (o0, o1);
- break;
-
- case MULT:
- res = double_int_mul (o0, o1);
- break;
-
- case DIV:
- if (div_and_round_double (TRUNC_DIV_EXPR, 0,
- o0.low, o0.high, o1.low, o1.high,
- &res.low, &res.high,
- &tmp.low, &tmp.high))
- return 0;
- break;
-
- case MOD:
- if (div_and_round_double (TRUNC_DIV_EXPR, 0,
- o0.low, o0.high, o1.low, o1.high,
- &tmp.low, &tmp.high,
- &res.low, &res.high))
- return 0;
- break;
-
- case UDIV:
- if (div_and_round_double (TRUNC_DIV_EXPR, 1,
- o0.low, o0.high, o1.low, o1.high,
- &res.low, &res.high,
- &tmp.low, &tmp.high))
- return 0;
- break;
-
- case UMOD:
- if (div_and_round_double (TRUNC_DIV_EXPR, 1,
- o0.low, o0.high, o1.low, o1.high,
- &tmp.low, &tmp.high,
- &res.low, &res.high))
- return 0;
- break;
-
- case AND:
- res = double_int_and (o0, o1);
- break;
-
- case IOR:
- res = double_int_ior (o0, o1);
- break;
-
- case XOR:
- res = double_int_xor (o0, o1);
- break;
-
- case SMIN:
- res = double_int_smin (o0, o1);
- break;
-
- case SMAX:
- res = double_int_smax (o0, o1);
- break;
-
- case UMIN:
- res = double_int_umin (o0, o1);
- break;
-
- case UMAX:
- res = double_int_umax (o0, o1);
- break;
-
- case LSHIFTRT: case ASHIFTRT:
- case ASHIFT:
- case ROTATE: case ROTATERT:
- {
- unsigned HOST_WIDE_INT cnt;
-
- if (SHIFT_COUNT_TRUNCATED)
- o1 = double_int_zext (o1, GET_MODE_PRECISION (mode));
-
- if (!double_int_fits_in_uhwi_p (o1)
- || double_int_to_uhwi (o1) >= GET_MODE_PRECISION (mode))
- return 0;
-
- cnt = double_int_to_uhwi (o1);
-
- if (code == LSHIFTRT || code == ASHIFTRT)
- res = double_int_rshift (o0, cnt, GET_MODE_PRECISION (mode),
- code == ASHIFTRT);
- else if (code == ASHIFT)
- res = double_int_lshift (o0, cnt, GET_MODE_PRECISION (mode),
- true);
- else if (code == ROTATE)
- res = double_int_lrotate (o0, cnt, GET_MODE_PRECISION (mode));
- else /* code == ROTATERT */
- res = double_int_rrotate (o0, cnt, GET_MODE_PRECISION (mode));
- }
- break;
-
- default:
- return 0;
- }
-
- return immed_double_int_const (res, mode);
- }
-
- if (CONST_INT_P (op0) && CONST_INT_P (op1)
- && width <= HOST_BITS_PER_WIDE_INT && width != 0)
- {
- /* Get the integer argument values in two forms:
- zero-extended in ARG0, ARG1 and sign-extended in ARG0S, ARG1S. */
-
- arg0 = INTVAL (op0);
- arg1 = INTVAL (op1);
-
- if (width < HOST_BITS_PER_WIDE_INT)
- {
- arg0 &= GET_MODE_MASK (mode);
- arg1 &= GET_MODE_MASK (mode);
-
- arg0s = arg0;
- if (val_signbit_known_set_p (mode, arg0s))
- arg0s |= ~GET_MODE_MASK (mode);
-
- arg1s = arg1;
- if (val_signbit_known_set_p (mode, arg1s))
- arg1s |= ~GET_MODE_MASK (mode);
- }
- else
- {
- arg0s = arg0;
- arg1s = arg1;
- }
-
- /* Compute the value of the arithmetic. */
-
- switch (code)
- {
- case PLUS:
- val = arg0s + arg1s;
- break;
-
- case MINUS:
- val = arg0s - arg1s;
- break;
-
- case MULT:
- val = arg0s * arg1s;
- break;
-
- case DIV:
- if (arg1s == 0
- || ((unsigned HOST_WIDE_INT) arg0s
- == (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
- && arg1s == -1))
- return 0;
- val = arg0s / arg1s;
- break;
-
- case MOD:
- if (arg1s == 0
- || ((unsigned HOST_WIDE_INT) arg0s
- == (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
- && arg1s == -1))
- return 0;
- val = arg0s % arg1s;
- break;
-
- case UDIV:
- if (arg1 == 0
- || ((unsigned HOST_WIDE_INT) arg0s
- == (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
- && arg1s == -1))
- return 0;
- val = (unsigned HOST_WIDE_INT) arg0 / arg1;
- break;
-
- case UMOD:
- if (arg1 == 0
- || ((unsigned HOST_WIDE_INT) arg0s
- == (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
- && arg1s == -1))
- return 0;
- val = (unsigned HOST_WIDE_INT) arg0 % arg1;
- break;
-
- case AND:
- val = arg0 & arg1;
- break;
-
- case IOR:
- val = arg0 | arg1;
- break;
-
- case XOR:
- val = arg0 ^ arg1;
- break;
-
- case LSHIFTRT:
- case ASHIFT:
- case ASHIFTRT:
- /* Truncate the shift if SHIFT_COUNT_TRUNCATED, otherwise make sure
- the value is in range. We can't return any old value for
- out-of-range arguments because either the middle-end (via
- shift_truncation_mask) or the back-end might be relying on
- target-specific knowledge. Nor can we rely on
- shift_truncation_mask, since the shift might not be part of an
- ashlM3, lshrM3 or ashrM3 instruction. */
- if (SHIFT_COUNT_TRUNCATED)
- arg1 = (unsigned HOST_WIDE_INT) arg1 % width;
- else if (arg1 < 0 || arg1 >= GET_MODE_BITSIZE (mode))
- return 0;
-
- val = (code == ASHIFT
- ? ((unsigned HOST_WIDE_INT) arg0) << arg1
- : ((unsigned HOST_WIDE_INT) arg0) >> arg1);
-
- /* Sign-extend the result for arithmetic right shifts. */
- if (code == ASHIFTRT && arg0s < 0 && arg1 > 0)
- val |= ((unsigned HOST_WIDE_INT) (-1)) << (width - arg1);
- break;
-
- case ROTATERT:
- if (arg1 < 0)
- return 0;
-
- arg1 %= width;
- val = ((((unsigned HOST_WIDE_INT) arg0) << (width - arg1))
- | (((unsigned HOST_WIDE_INT) arg0) >> arg1));
- break;
-
- case ROTATE:
- if (arg1 < 0)
- return 0;
-
- arg1 %= width;
- val = ((((unsigned HOST_WIDE_INT) arg0) << arg1)
- | (((unsigned HOST_WIDE_INT) arg0) >> (width - arg1)));
- break;
-
- case COMPARE:
- /* Do nothing here. */
- return 0;
-
- case SMIN:
- val = arg0s <= arg1s ? arg0s : arg1s;
- break;
-
- case UMIN:
- val = ((unsigned HOST_WIDE_INT) arg0
- <= (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
- break;
-
- case SMAX:
- val = arg0s > arg1s ? arg0s : arg1s;
- break;
-
- case UMAX:
- val = ((unsigned HOST_WIDE_INT) arg0
- > (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
- break;
-
- case SS_PLUS:
- case US_PLUS:
- case SS_MINUS:
- case US_MINUS:
- case SS_MULT:
- case US_MULT:
- case SS_DIV:
- case US_DIV:
- case SS_ASHIFT:
- case US_ASHIFT:
- /* ??? There are simplifications that can be done. */
- return 0;
-
- default:
- gcc_unreachable ();
- }
-
- return gen_int_mode (val, mode);
- }
-
- return NULL_RTX;
-}
-
-
-
-/* Simplify a PLUS or MINUS, at least one of whose operands may be another
- PLUS or MINUS.
-
- Rather than test for specific case, we do this by a brute-force method
- and do all possible simplifications until no more changes occur. Then
- we rebuild the operation. */
-
-struct simplify_plus_minus_op_data
-{
- rtx op;
- short neg;
-};
-
-static bool
-simplify_plus_minus_op_data_cmp (rtx x, rtx y)
-{
- int result;
-
- result = (commutative_operand_precedence (y)
- - commutative_operand_precedence (x));
- if (result)
- return result > 0;
-
- /* Group together equal REGs to do more simplification. */
- if (REG_P (x) && REG_P (y))
- return REGNO (x) > REGNO (y);
- else
- return false;
-}
-
-static rtx
-simplify_plus_minus (enum rtx_code code, enum machine_mode mode, rtx op0,
- rtx op1)
-{
- struct simplify_plus_minus_op_data ops[8];
- rtx result, tem;
- int n_ops = 2, input_ops = 2;
- int changed, n_constants = 0, canonicalized = 0;
- int i, j;
-
- memset (ops, 0, sizeof ops);
-
- /* Set up the two operands and then expand them until nothing has been
- changed. If we run out of room in our array, give up; this should
- almost never happen. */
-
- ops[0].op = op0;
- ops[0].neg = 0;
- ops[1].op = op1;
- ops[1].neg = (code == MINUS);
-
- do
- {
- changed = 0;
-
- for (i = 0; i < n_ops; i++)
- {
- rtx this_op = ops[i].op;
- int this_neg = ops[i].neg;
- enum rtx_code this_code = GET_CODE (this_op);
-
- switch (this_code)
- {
- case PLUS:
- case MINUS:
- if (n_ops == 7)
- return NULL_RTX;
-
- ops[n_ops].op = XEXP (this_op, 1);
- ops[n_ops].neg = (this_code == MINUS) ^ this_neg;
- n_ops++;
-
- ops[i].op = XEXP (this_op, 0);
- input_ops++;
- changed = 1;
- canonicalized |= this_neg;
- break;
-
- case NEG:
- ops[i].op = XEXP (this_op, 0);
- ops[i].neg = ! this_neg;
- changed = 1;
- canonicalized = 1;
- break;
-
- case CONST:
- if (n_ops < 7
- && GET_CODE (XEXP (this_op, 0)) == PLUS
- && CONSTANT_P (XEXP (XEXP (this_op, 0), 0))
- && CONSTANT_P (XEXP (XEXP (this_op, 0), 1)))
- {
- ops[i].op = XEXP (XEXP (this_op, 0), 0);
- ops[n_ops].op = XEXP (XEXP (this_op, 0), 1);
- ops[n_ops].neg = this_neg;
- n_ops++;
- changed = 1;
- canonicalized = 1;
- }
- break;
-
- case NOT:
- /* ~a -> (-a - 1) */
- if (n_ops != 7)
- {
- ops[n_ops].op = CONSTM1_RTX (mode);
- ops[n_ops++].neg = this_neg;
- ops[i].op = XEXP (this_op, 0);
- ops[i].neg = !this_neg;
- changed = 1;
- canonicalized = 1;
- }
- break;
-
- case CONST_INT:
- n_constants++;
- if (this_neg)
- {
- ops[i].op = neg_const_int (mode, this_op);
- ops[i].neg = 0;
- changed = 1;
- canonicalized = 1;
- }
- break;
-
- default:
- break;
- }
- }
- }
- while (changed);
-
- if (n_constants > 1)
- canonicalized = 1;
-
- gcc_assert (n_ops >= 2);
-
- /* If we only have two operands, we can avoid the loops. */
- if (n_ops == 2)
- {
- enum rtx_code code = ops[0].neg || ops[1].neg ? MINUS : PLUS;
- rtx lhs, rhs;
-
- /* Get the two operands. Be careful with the order, especially for
- the cases where code == MINUS. */
- if (ops[0].neg && ops[1].neg)
- {
- lhs = gen_rtx_NEG (mode, ops[0].op);
- rhs = ops[1].op;
- }
- else if (ops[0].neg)
- {
- lhs = ops[1].op;
- rhs = ops[0].op;
- }
- else
- {
- lhs = ops[0].op;
- rhs = ops[1].op;
- }
-
- return simplify_const_binary_operation (code, mode, lhs, rhs);
- }
-
- /* Now simplify each pair of operands until nothing changes. */
- do
- {
- /* Insertion sort is good enough for an eight-element array. */
- for (i = 1; i < n_ops; i++)
- {
- struct simplify_plus_minus_op_data save;
- j = i - 1;
- if (!simplify_plus_minus_op_data_cmp (ops[j].op, ops[i].op))
- continue;
-
- canonicalized = 1;
- save = ops[i];
- do
- ops[j + 1] = ops[j];
- while (j-- && simplify_plus_minus_op_data_cmp (ops[j].op, save.op));
- ops[j + 1] = save;
- }
-
- changed = 0;
- for (i = n_ops - 1; i > 0; i--)
- for (j = i - 1; j >= 0; j--)
- {
- rtx lhs = ops[j].op, rhs = ops[i].op;
- int lneg = ops[j].neg, rneg = ops[i].neg;
-
- if (lhs != 0 && rhs != 0)
- {
- enum rtx_code ncode = PLUS;
-
- if (lneg != rneg)
- {
- ncode = MINUS;
- if (lneg)
- tem = lhs, lhs = rhs, rhs = tem;
- }
- else if (swap_commutative_operands_p (lhs, rhs))
- tem = lhs, lhs = rhs, rhs = tem;
-
- if ((GET_CODE (lhs) == CONST || CONST_INT_P (lhs))
- && (GET_CODE (rhs) == CONST || CONST_INT_P (rhs)))
- {
- rtx tem_lhs, tem_rhs;
-
- tem_lhs = GET_CODE (lhs) == CONST ? XEXP (lhs, 0) : lhs;
- tem_rhs = GET_CODE (rhs) == CONST ? XEXP (rhs, 0) : rhs;
- tem = simplify_binary_operation (ncode, mode, tem_lhs, tem_rhs);
-
- if (tem && !CONSTANT_P (tem))
- tem = gen_rtx_CONST (GET_MODE (tem), tem);
- }
- else
- tem = simplify_binary_operation (ncode, mode, lhs, rhs);
-
- /* Reject "simplifications" that just wrap the two
- arguments in a CONST. Failure to do so can result
- in infinite recursion with simplify_binary_operation
- when it calls us to simplify CONST operations. */
- if (tem
- && ! (GET_CODE (tem) == CONST
- && GET_CODE (XEXP (tem, 0)) == ncode
- && XEXP (XEXP (tem, 0), 0) == lhs
- && XEXP (XEXP (tem, 0), 1) == rhs))
- {
- lneg &= rneg;
- if (GET_CODE (tem) == NEG)
- tem = XEXP (tem, 0), lneg = !lneg;
- if (CONST_INT_P (tem) && lneg)
- tem = neg_const_int (mode, tem), lneg = 0;
-
- ops[i].op = tem;
- ops[i].neg = lneg;
- ops[j].op = NULL_RTX;
- changed = 1;
- canonicalized = 1;
- }
- }
- }
-
- /* If nothing changed, fail. */
- if (!canonicalized)
- return NULL_RTX;
-
- /* Pack all the operands to the lower-numbered entries. */
- for (i = 0, j = 0; j < n_ops; j++)
- if (ops[j].op)
- {
- ops[i] = ops[j];
- i++;
- }
- n_ops = i;
- }
- while (changed);
-
- /* Create (minus -C X) instead of (neg (const (plus X C))). */
- if (n_ops == 2
- && CONST_INT_P (ops[1].op)
- && CONSTANT_P (ops[0].op)
- && ops[0].neg)
- return gen_rtx_fmt_ee (MINUS, mode, ops[1].op, ops[0].op);
-
- /* We suppressed creation of trivial CONST expressions in the
- combination loop to avoid recursion. Create one manually now.
- The combination loop should have ensured that there is exactly
- one CONST_INT, and the sort will have ensured that it is last
- in the array and that any other constant will be next-to-last. */
-
- if (n_ops > 1
- && CONST_INT_P (ops[n_ops - 1].op)
- && CONSTANT_P (ops[n_ops - 2].op))
- {
- rtx value = ops[n_ops - 1].op;
- if (ops[n_ops - 1].neg ^ ops[n_ops - 2].neg)
- value = neg_const_int (mode, value);
- ops[n_ops - 2].op = plus_constant (ops[n_ops - 2].op, INTVAL (value));
- n_ops--;
- }
-
- /* Put a non-negated operand first, if possible. */
-
- for (i = 0; i < n_ops && ops[i].neg; i++)
- continue;
- if (i == n_ops)
- ops[0].op = gen_rtx_NEG (mode, ops[0].op);
- else if (i != 0)
- {
- tem = ops[0].op;
- ops[0] = ops[i];
- ops[i].op = tem;
- ops[i].neg = 1;
- }
-
- /* Now make the result by performing the requested operations. */
- result = ops[0].op;
- for (i = 1; i < n_ops; i++)
- result = gen_rtx_fmt_ee (ops[i].neg ? MINUS : PLUS,
- mode, result, ops[i].op);
-
- return result;
-}
-
-/* Check whether an operand is suitable for calling simplify_plus_minus. */
-static bool
-plus_minus_operand_p (const_rtx x)
-{
- return GET_CODE (x) == PLUS
- || GET_CODE (x) == MINUS
- || (GET_CODE (x) == CONST
- && GET_CODE (XEXP (x, 0)) == PLUS
- && CONSTANT_P (XEXP (XEXP (x, 0), 0))
- && CONSTANT_P (XEXP (XEXP (x, 0), 1)));
-}
-
-/* Like simplify_binary_operation except used for relational operators.
- MODE is the mode of the result. If MODE is VOIDmode, both operands must
- not also be VOIDmode.
-
- CMP_MODE specifies in which mode the comparison is done in, so it is
- the mode of the operands. If CMP_MODE is VOIDmode, it is taken from
- the operands or, if both are VOIDmode, the operands are compared in
- "infinite precision". */
-rtx
-simplify_relational_operation (enum rtx_code code, enum machine_mode mode,
- enum machine_mode cmp_mode, rtx op0, rtx op1)
-{
- rtx tem, trueop0, trueop1;
-
- if (cmp_mode == VOIDmode)
- cmp_mode = GET_MODE (op0);
- if (cmp_mode == VOIDmode)
- cmp_mode = GET_MODE (op1);
-
- tem = simplify_const_relational_operation (code, cmp_mode, op0, op1);
- if (tem)
- {
- if (SCALAR_FLOAT_MODE_P (mode))
- {
- if (tem == const0_rtx)
- return CONST0_RTX (mode);
-#ifdef FLOAT_STORE_FLAG_VALUE
- {
- REAL_VALUE_TYPE val;
- val = FLOAT_STORE_FLAG_VALUE (mode);
- return CONST_DOUBLE_FROM_REAL_VALUE (val, mode);
- }
-#else
- return NULL_RTX;
-#endif
- }
- if (VECTOR_MODE_P (mode))
- {
- if (tem == const0_rtx)
- return CONST0_RTX (mode);
-#ifdef VECTOR_STORE_FLAG_VALUE
- {
- int i, units;
- rtvec v;
-
- rtx val = VECTOR_STORE_FLAG_VALUE (mode);
- if (val == NULL_RTX)
- return NULL_RTX;
- if (val == const1_rtx)
- return CONST1_RTX (mode);
-
- units = GET_MODE_NUNITS (mode);
- v = rtvec_alloc (units);
- for (i = 0; i < units; i++)
- RTVEC_ELT (v, i) = val;
- return gen_rtx_raw_CONST_VECTOR (mode, v);
- }
-#else
- return NULL_RTX;
-#endif
- }
-
- return tem;
- }
-
- /* For the following tests, ensure const0_rtx is op1. */
- if (swap_commutative_operands_p (op0, op1)
- || (op0 == const0_rtx && op1 != const0_rtx))
- tem = op0, op0 = op1, op1 = tem, code = swap_condition (code);
-
- /* If op0 is a compare, extract the comparison arguments from it. */
- if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
- return simplify_gen_relational (code, mode, VOIDmode,
- XEXP (op0, 0), XEXP (op0, 1));
-
- if (GET_MODE_CLASS (cmp_mode) == MODE_CC
- || CC0_P (op0))
- return NULL_RTX;
-
- trueop0 = avoid_constant_pool_reference (op0);
- trueop1 = avoid_constant_pool_reference (op1);
- return simplify_relational_operation_1 (code, mode, cmp_mode,
- trueop0, trueop1);
-}
-
-/* This part of simplify_relational_operation is only used when CMP_MODE
- is not in class MODE_CC (i.e. it is a real comparison).
-
- MODE is the mode of the result, while CMP_MODE specifies in which
- mode the comparison is done in, so it is the mode of the operands. */
-
-static rtx
-simplify_relational_operation_1 (enum rtx_code code, enum machine_mode mode,
- enum machine_mode cmp_mode, rtx op0, rtx op1)
-{
- enum rtx_code op0code = GET_CODE (op0);
-
- if (op1 == const0_rtx && COMPARISON_P (op0))
- {
- /* If op0 is a comparison, extract the comparison arguments
- from it. */
- if (code == NE)
- {
- if (GET_MODE (op0) == mode)
- return simplify_rtx (op0);
- else
- return simplify_gen_relational (GET_CODE (op0), mode, VOIDmode,
- XEXP (op0, 0), XEXP (op0, 1));
- }
- else if (code == EQ)
- {
- enum rtx_code new_code = reversed_comparison_code (op0, NULL_RTX);
- if (new_code != UNKNOWN)
- return simplify_gen_relational (new_code, mode, VOIDmode,
- XEXP (op0, 0), XEXP (op0, 1));
- }
- }
-
- /* (LTU/GEU (PLUS a C) C), where C is constant, can be simplified to
- (GEU/LTU a -C). Likewise for (LTU/GEU (PLUS a C) a). */
- if ((code == LTU || code == GEU)
- && GET_CODE (op0) == PLUS
- && CONST_INT_P (XEXP (op0, 1))
- && (rtx_equal_p (op1, XEXP (op0, 0))
- || rtx_equal_p (op1, XEXP (op0, 1))))
- {
- rtx new_cmp
- = simplify_gen_unary (NEG, cmp_mode, XEXP (op0, 1), cmp_mode);
- return simplify_gen_relational ((code == LTU ? GEU : LTU), mode,
- cmp_mode, XEXP (op0, 0), new_cmp);
- }
-
- /* Canonicalize (LTU/GEU (PLUS a b) b) as (LTU/GEU (PLUS a b) a). */
- if ((code == LTU || code == GEU)
- && GET_CODE (op0) == PLUS
- && rtx_equal_p (op1, XEXP (op0, 1))
- /* Don't recurse "infinitely" for (LTU/GEU (PLUS b b) b). */
- && !rtx_equal_p (op1, XEXP (op0, 0)))
- return simplify_gen_relational (code, mode, cmp_mode, op0,
- copy_rtx (XEXP (op0, 0)));
-
- if (op1 == const0_rtx)
- {
- /* Canonicalize (GTU x 0) as (NE x 0). */
- if (code == GTU)
- return simplify_gen_relational (NE, mode, cmp_mode, op0, op1);
- /* Canonicalize (LEU x 0) as (EQ x 0). */
- if (code == LEU)
- return simplify_gen_relational (EQ, mode, cmp_mode, op0, op1);
- }
- else if (op1 == const1_rtx)
- {
- switch (code)
- {
- case GE:
- /* Canonicalize (GE x 1) as (GT x 0). */
- return simplify_gen_relational (GT, mode, cmp_mode,
- op0, const0_rtx);
- case GEU:
- /* Canonicalize (GEU x 1) as (NE x 0). */
- return simplify_gen_relational (NE, mode, cmp_mode,
- op0, const0_rtx);
- case LT:
- /* Canonicalize (LT x 1) as (LE x 0). */
- return simplify_gen_relational (LE, mode, cmp_mode,
- op0, const0_rtx);
- case LTU:
- /* Canonicalize (LTU x 1) as (EQ x 0). */
- return simplify_gen_relational (EQ, mode, cmp_mode,
- op0, const0_rtx);
- default:
- break;
- }
- }
- else if (op1 == constm1_rtx)
- {
- /* Canonicalize (LE x -1) as (LT x 0). */
- if (code == LE)
- return simplify_gen_relational (LT, mode, cmp_mode, op0, const0_rtx);
- /* Canonicalize (GT x -1) as (GE x 0). */
- if (code == GT)
- return simplify_gen_relational (GE, mode, cmp_mode, op0, const0_rtx);
- }
-
- /* (eq/ne (plus x cst1) cst2) simplifies to (eq/ne x (cst2 - cst1)) */
- if ((code == EQ || code == NE)
- && (op0code == PLUS || op0code == MINUS)
- && CONSTANT_P (op1)
- && CONSTANT_P (XEXP (op0, 1))
- && (INTEGRAL_MODE_P (cmp_mode) || flag_unsafe_math_optimizations))
- {
- rtx x = XEXP (op0, 0);
- rtx c = XEXP (op0, 1);
- enum rtx_code invcode = op0code == PLUS ? MINUS : PLUS;
- rtx tem = simplify_gen_binary (invcode, cmp_mode, op1, c);
-
- /* Detect an infinite recursive condition, where we oscillate at this
- simplification case between:
- A + B == C <---> C - B == A,
- where A, B, and C are all constants with non-simplifiable expressions,
- usually SYMBOL_REFs. */
- if (GET_CODE (tem) == invcode
- && CONSTANT_P (x)
- && rtx_equal_p (c, XEXP (tem, 1)))
- return NULL_RTX;
-
- return simplify_gen_relational (code, mode, cmp_mode, x, tem);
- }
-
- /* (ne:SI (zero_extract:SI FOO (const_int 1) BAR) (const_int 0))) is
- the same as (zero_extract:SI FOO (const_int 1) BAR). */
- if (code == NE
- && op1 == const0_rtx
- && GET_MODE_CLASS (mode) == MODE_INT
- && cmp_mode != VOIDmode
- /* ??? Work-around BImode bugs in the ia64 backend. */
- && mode != BImode
- && cmp_mode != BImode
- && nonzero_bits (op0, cmp_mode) == 1
- && STORE_FLAG_VALUE == 1)
- return GET_MODE_SIZE (mode) > GET_MODE_SIZE (cmp_mode)
- ? simplify_gen_unary (ZERO_EXTEND, mode, op0, cmp_mode)
- : lowpart_subreg (mode, op0, cmp_mode);
-
- /* (eq/ne (xor x y) 0) simplifies to (eq/ne x y). */
- if ((code == EQ || code == NE)
- && op1 == const0_rtx
- && op0code == XOR)
- return simplify_gen_relational (code, mode, cmp_mode,
- XEXP (op0, 0), XEXP (op0, 1));
-
- /* (eq/ne (xor x y) x) simplifies to (eq/ne y 0). */
- if ((code == EQ || code == NE)
- && op0code == XOR
- && rtx_equal_p (XEXP (op0, 0), op1)
- && !side_effects_p (XEXP (op0, 0)))
- return simplify_gen_relational (code, mode, cmp_mode,
- XEXP (op0, 1), const0_rtx);
-
- /* Likewise (eq/ne (xor x y) y) simplifies to (eq/ne x 0). */
- if ((code == EQ || code == NE)
- && op0code == XOR
- && rtx_equal_p (XEXP (op0, 1), op1)
- && !side_effects_p (XEXP (op0, 1)))
- return simplify_gen_relational (code, mode, cmp_mode,
- XEXP (op0, 0), const0_rtx);
-
- /* (eq/ne (xor x C1) C2) simplifies to (eq/ne x (C1^C2)). */
- if ((code == EQ || code == NE)
- && op0code == XOR
- && (CONST_INT_P (op1)
- || GET_CODE (op1) == CONST_DOUBLE)
- && (CONST_INT_P (XEXP (op0, 1))
- || GET_CODE (XEXP (op0, 1)) == CONST_DOUBLE))
- return simplify_gen_relational (code, mode, cmp_mode, XEXP (op0, 0),
- simplify_gen_binary (XOR, cmp_mode,
- XEXP (op0, 1), op1));
-
- if (op0code == POPCOUNT && op1 == const0_rtx)
- switch (code)
- {
- case EQ:
- case LE:
- case LEU:
- /* (eq (popcount x) (const_int 0)) -> (eq x (const_int 0)). */
- return simplify_gen_relational (EQ, mode, GET_MODE (XEXP (op0, 0)),
- XEXP (op0, 0), const0_rtx);
-
- case NE:
- case GT:
- case GTU:
- /* (ne (popcount x) (const_int 0)) -> (ne x (const_int 0)). */
- return simplify_gen_relational (NE, mode, GET_MODE (XEXP (op0, 0)),
- XEXP (op0, 0), const0_rtx);
-
- default:
- break;
- }
-
- return NULL_RTX;
-}
-
-enum
-{
- CMP_EQ = 1,
- CMP_LT = 2,
- CMP_GT = 4,
- CMP_LTU = 8,
- CMP_GTU = 16
-};
-
-
-/* Convert the known results for EQ, LT, GT, LTU, GTU contained in
- KNOWN_RESULT to a CONST_INT, based on the requested comparison CODE
- For KNOWN_RESULT to make sense it should be either CMP_EQ, or the
- logical OR of one of (CMP_LT, CMP_GT) and one of (CMP_LTU, CMP_GTU).
- For floating-point comparisons, assume that the operands were ordered. */
-
-static rtx
-comparison_result (enum rtx_code code, int known_results)
-{
- switch (code)
- {
- case EQ:
- case UNEQ:
- return (known_results & CMP_EQ) ? const_true_rtx : const0_rtx;
- case NE:
- case LTGT:
- return (known_results & CMP_EQ) ? const0_rtx : const_true_rtx;
-
- case LT:
- case UNLT:
- return (known_results & CMP_LT) ? const_true_rtx : const0_rtx;
- case GE:
- case UNGE:
- return (known_results & CMP_LT) ? const0_rtx : const_true_rtx;
-
- case GT:
- case UNGT:
- return (known_results & CMP_GT) ? const_true_rtx : const0_rtx;
- case LE:
- case UNLE:
- return (known_results & CMP_GT) ? const0_rtx : const_true_rtx;
-
- case LTU:
- return (known_results & CMP_LTU) ? const_true_rtx : const0_rtx;
- case GEU:
- return (known_results & CMP_LTU) ? const0_rtx : const_true_rtx;
-
- case GTU:
- return (known_results & CMP_GTU) ? const_true_rtx : const0_rtx;
- case LEU:
- return (known_results & CMP_GTU) ? const0_rtx : const_true_rtx;
-
- case ORDERED:
- return const_true_rtx;
- case UNORDERED:
- return const0_rtx;
- default:
- gcc_unreachable ();
- }
-}
-
-/* Check if the given comparison (done in the given MODE) is actually a
- tautology or a contradiction.
- If no simplification is possible, this function returns zero.
- Otherwise, it returns either const_true_rtx or const0_rtx. */
-
-rtx
-simplify_const_relational_operation (enum rtx_code code,
- enum machine_mode mode,
- rtx op0, rtx op1)
-{
- rtx tem;
- rtx trueop0;
- rtx trueop1;
-
- gcc_assert (mode != VOIDmode
- || (GET_MODE (op0) == VOIDmode
- && GET_MODE (op1) == VOIDmode));
-
- /* If op0 is a compare, extract the comparison arguments from it. */
- if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
- {
- op1 = XEXP (op0, 1);
- op0 = XEXP (op0, 0);
-
- if (GET_MODE (op0) != VOIDmode)
- mode = GET_MODE (op0);
- else if (GET_MODE (op1) != VOIDmode)
- mode = GET_MODE (op1);
- else
- return 0;
- }
-
- /* We can't simplify MODE_CC values since we don't know what the
- actual comparison is. */
- if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC || CC0_P (op0))
- return 0;
-
- /* Make sure the constant is second. */
- if (swap_commutative_operands_p (op0, op1))
- {
- tem = op0, op0 = op1, op1 = tem;
- code = swap_condition (code);
- }
-
- trueop0 = avoid_constant_pool_reference (op0);
- trueop1 = avoid_constant_pool_reference (op1);
-
- /* For integer comparisons of A and B maybe we can simplify A - B and can
- then simplify a comparison of that with zero. If A and B are both either
- a register or a CONST_INT, this can't help; testing for these cases will
- prevent infinite recursion here and speed things up.
-
- We can only do this for EQ and NE comparisons as otherwise we may
- lose or introduce overflow which we cannot disregard as undefined as
- we do not know the signedness of the operation on either the left or
- the right hand side of the comparison. */
-
- if (INTEGRAL_MODE_P (mode) && trueop1 != const0_rtx
- && (code == EQ || code == NE)
- && ! ((REG_P (op0) || CONST_INT_P (trueop0))
- && (REG_P (op1) || CONST_INT_P (trueop1)))
- && 0 != (tem = simplify_binary_operation (MINUS, mode, op0, op1))
- /* We cannot do this if tem is a nonzero address. */
- && ! nonzero_address_p (tem))
- return simplify_const_relational_operation (signed_condition (code),
- mode, tem, const0_rtx);
-
- if (! HONOR_NANS (mode) && code == ORDERED)
- return const_true_rtx;
-
- if (! HONOR_NANS (mode) && code == UNORDERED)
- return const0_rtx;
-
- /* For modes without NaNs, if the two operands are equal, we know the
- result except if they have side-effects. Even with NaNs we know
- the result of unordered comparisons and, if signaling NaNs are
- irrelevant, also the result of LT/GT/LTGT. */
- if ((! HONOR_NANS (GET_MODE (trueop0))
- || code == UNEQ || code == UNLE || code == UNGE
- || ((code == LT || code == GT || code == LTGT)
- && ! HONOR_SNANS (GET_MODE (trueop0))))
- && rtx_equal_p (trueop0, trueop1)
- && ! side_effects_p (trueop0))
- return comparison_result (code, CMP_EQ);
-
- /* If the operands are floating-point constants, see if we can fold
- the result. */
- if (GET_CODE (trueop0) == CONST_DOUBLE
- && GET_CODE (trueop1) == CONST_DOUBLE
- && SCALAR_FLOAT_MODE_P (GET_MODE (trueop0)))
- {
- REAL_VALUE_TYPE d0, d1;
-
- REAL_VALUE_FROM_CONST_DOUBLE (d0, trueop0);
- REAL_VALUE_FROM_CONST_DOUBLE (d1, trueop1);
-
- /* Comparisons are unordered iff at least one of the values is NaN. */
- if (REAL_VALUE_ISNAN (d0) || REAL_VALUE_ISNAN (d1))
- switch (code)
- {
- case UNEQ:
- case UNLT:
- case UNGT:
- case UNLE:
- case UNGE:
- case NE:
- case UNORDERED:
- return const_true_rtx;
- case EQ:
- case LT:
- case GT:
- case LE:
- case GE:
- case LTGT:
- case ORDERED:
- return const0_rtx;
- default:
- return 0;
- }
-
- return comparison_result (code,
- (REAL_VALUES_EQUAL (d0, d1) ? CMP_EQ :
- REAL_VALUES_LESS (d0, d1) ? CMP_LT : CMP_GT));
- }
-
- /* Otherwise, see if the operands are both integers. */
- if ((GET_MODE_CLASS (mode) == MODE_INT || mode == VOIDmode)
- && (GET_CODE (trueop0) == CONST_DOUBLE
- || CONST_INT_P (trueop0))
- && (GET_CODE (trueop1) == CONST_DOUBLE
- || CONST_INT_P (trueop1)))
- {
- int width = GET_MODE_PRECISION (mode);
- HOST_WIDE_INT l0s, h0s, l1s, h1s;
- unsigned HOST_WIDE_INT l0u, h0u, l1u, h1u;
-
- /* Get the two words comprising each integer constant. */
- if (GET_CODE (trueop0) == CONST_DOUBLE)
- {
- l0u = l0s = CONST_DOUBLE_LOW (trueop0);
- h0u = h0s = CONST_DOUBLE_HIGH (trueop0);
- }
- else
- {
- l0u = l0s = INTVAL (trueop0);
- h0u = h0s = HWI_SIGN_EXTEND (l0s);
- }
-
- if (GET_CODE (trueop1) == CONST_DOUBLE)
- {
- l1u = l1s = CONST_DOUBLE_LOW (trueop1);
- h1u = h1s = CONST_DOUBLE_HIGH (trueop1);
- }
- else
- {
- l1u = l1s = INTVAL (trueop1);
- h1u = h1s = HWI_SIGN_EXTEND (l1s);
- }
-
- /* If WIDTH is nonzero and smaller than HOST_BITS_PER_WIDE_INT,
- we have to sign or zero-extend the values. */
- if (width != 0 && width < HOST_BITS_PER_WIDE_INT)
- {
- l0u &= GET_MODE_MASK (mode);
- l1u &= GET_MODE_MASK (mode);
-
- if (val_signbit_known_set_p (mode, l0s))
- l0s |= ~GET_MODE_MASK (mode);
-
- if (val_signbit_known_set_p (mode, l1s))
- l1s |= ~GET_MODE_MASK (mode);
- }
- if (width != 0 && width <= HOST_BITS_PER_WIDE_INT)
- h0u = h1u = 0, h0s = HWI_SIGN_EXTEND (l0s), h1s = HWI_SIGN_EXTEND (l1s);
-
- if (h0u == h1u && l0u == l1u)
- return comparison_result (code, CMP_EQ);
- else
- {
- int cr;
- cr = (h0s < h1s || (h0s == h1s && l0u < l1u)) ? CMP_LT : CMP_GT;
- cr |= (h0u < h1u || (h0u == h1u && l0u < l1u)) ? CMP_LTU : CMP_GTU;
- return comparison_result (code, cr);
- }
- }
-
- /* Optimize comparisons with upper and lower bounds. */
- if (HWI_COMPUTABLE_MODE_P (mode)
- && CONST_INT_P (trueop1))
- {
- int sign;
- unsigned HOST_WIDE_INT nonzero = nonzero_bits (trueop0, mode);
- HOST_WIDE_INT val = INTVAL (trueop1);
- HOST_WIDE_INT mmin, mmax;
-
- if (code == GEU
- || code == LEU
- || code == GTU
- || code == LTU)
- sign = 0;
- else
- sign = 1;
-
- /* Get a reduced range if the sign bit is zero. */
- if (nonzero <= (GET_MODE_MASK (mode) >> 1))
- {
- mmin = 0;
- mmax = nonzero;
- }
- else
- {
- rtx mmin_rtx, mmax_rtx;
- get_mode_bounds (mode, sign, mode, &mmin_rtx, &mmax_rtx);
-
- mmin = INTVAL (mmin_rtx);
- mmax = INTVAL (mmax_rtx);
- if (sign)
- {
- unsigned int sign_copies = num_sign_bit_copies (trueop0, mode);
-
- mmin >>= (sign_copies - 1);
- mmax >>= (sign_copies - 1);
- }
- }
-
- switch (code)
- {
- /* x >= y is always true for y <= mmin, always false for y > mmax. */
- case GEU:
- if ((unsigned HOST_WIDE_INT) val <= (unsigned HOST_WIDE_INT) mmin)
- return const_true_rtx;
- if ((unsigned HOST_WIDE_INT) val > (unsigned HOST_WIDE_INT) mmax)
- return const0_rtx;
- break;
- case GE:
- if (val <= mmin)
- return const_true_rtx;
- if (val > mmax)
- return const0_rtx;
- break;
-
- /* x <= y is always true for y >= mmax, always false for y < mmin. */
- case LEU:
- if ((unsigned HOST_WIDE_INT) val >= (unsigned HOST_WIDE_INT) mmax)
- return const_true_rtx;
- if ((unsigned HOST_WIDE_INT) val < (unsigned HOST_WIDE_INT) mmin)
- return const0_rtx;
- break;
- case LE:
- if (val >= mmax)
- return const_true_rtx;
- if (val < mmin)
- return const0_rtx;
- break;
-
- case EQ:
- /* x == y is always false for y out of range. */
- if (val < mmin || val > mmax)
- return const0_rtx;
- break;
-
- /* x > y is always false for y >= mmax, always true for y < mmin. */
- case GTU:
- if ((unsigned HOST_WIDE_INT) val >= (unsigned HOST_WIDE_INT) mmax)
- return const0_rtx;
- if ((unsigned HOST_WIDE_INT) val < (unsigned HOST_WIDE_INT) mmin)
- return const_true_rtx;
- break;
- case GT:
- if (val >= mmax)
- return const0_rtx;
- if (val < mmin)
- return const_true_rtx;
- break;
-
- /* x < y is always false for y <= mmin, always true for y > mmax. */
- case LTU:
- if ((unsigned HOST_WIDE_INT) val <= (unsigned HOST_WIDE_INT) mmin)
- return const0_rtx;
- if ((unsigned HOST_WIDE_INT) val > (unsigned HOST_WIDE_INT) mmax)
- return const_true_rtx;
- break;
- case LT:
- if (val <= mmin)
- return const0_rtx;
- if (val > mmax)
- return const_true_rtx;
- break;
-
- case NE:
- /* x != y is always true for y out of range. */
- if (val < mmin || val > mmax)
- return const_true_rtx;
- break;
-
- default:
- break;
- }
- }
-
- /* Optimize integer comparisons with zero. */
- if (trueop1 == const0_rtx)
- {
- /* Some addresses are known to be nonzero. We don't know
- their sign, but equality comparisons are known. */
- if (nonzero_address_p (trueop0))
- {
- if (code == EQ || code == LEU)
- return const0_rtx;
- if (code == NE || code == GTU)
- return const_true_rtx;
- }
-
- /* See if the first operand is an IOR with a constant. If so, we
- may be able to determine the result of this comparison. */
- if (GET_CODE (op0) == IOR)
- {
- rtx inner_const = avoid_constant_pool_reference (XEXP (op0, 1));
- if (CONST_INT_P (inner_const) && inner_const != const0_rtx)
- {
- int sign_bitnum = GET_MODE_PRECISION (mode) - 1;
- int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
- && (UINTVAL (inner_const)
- & ((unsigned HOST_WIDE_INT) 1
- << sign_bitnum)));
-
- switch (code)
- {
- case EQ:
- case LEU:
- return const0_rtx;
- case NE:
- case GTU:
- return const_true_rtx;
- case LT:
- case LE:
- if (has_sign)
- return const_true_rtx;
- break;
- case GT:
- case GE:
- if (has_sign)
- return const0_rtx;
- break;
- default:
- break;
- }
- }
- }
- }
-
- /* Optimize comparison of ABS with zero. */
- if (trueop1 == CONST0_RTX (mode)
- && (GET_CODE (trueop0) == ABS
- || (GET_CODE (trueop0) == FLOAT_EXTEND
- && GET_CODE (XEXP (trueop0, 0)) == ABS)))
- {
- switch (code)
- {
- case LT:
- /* Optimize abs(x) < 0.0. */
- if (!HONOR_SNANS (mode)
- && (!INTEGRAL_MODE_P (mode)
- || (!flag_wrapv && !flag_trapv && flag_strict_overflow)))
- {
- if (INTEGRAL_MODE_P (mode)
- && (issue_strict_overflow_warning
- (WARN_STRICT_OVERFLOW_CONDITIONAL)))
- warning (OPT_Wstrict_overflow,
- ("assuming signed overflow does not occur when "
- "assuming abs (x) < 0 is false"));
- return const0_rtx;
- }
- break;
-
- case GE:
- /* Optimize abs(x) >= 0.0. */
- if (!HONOR_NANS (mode)
- && (!INTEGRAL_MODE_P (mode)
- || (!flag_wrapv && !flag_trapv && flag_strict_overflow)))
- {
- if (INTEGRAL_MODE_P (mode)
- && (issue_strict_overflow_warning
- (WARN_STRICT_OVERFLOW_CONDITIONAL)))
- warning (OPT_Wstrict_overflow,
- ("assuming signed overflow does not occur when "
- "assuming abs (x) >= 0 is true"));
- return const_true_rtx;
- }
- break;
-
- case UNGE:
- /* Optimize ! (abs(x) < 0.0). */
- return const_true_rtx;
-
- default:
- break;
- }
- }
-
- return 0;
-}
-
-/* Simplify CODE, an operation with result mode MODE and three operands,
- OP0, OP1, and OP2. OP0_MODE was the mode of OP0 before it became
- a constant. Return 0 if no simplifications is possible. */
-
-rtx
-simplify_ternary_operation (enum rtx_code code, enum machine_mode mode,
- enum machine_mode op0_mode, rtx op0, rtx op1,
- rtx op2)
-{
- unsigned int width = GET_MODE_PRECISION (mode);
- bool any_change = false;
- rtx tem;
-
- /* VOIDmode means "infinite" precision. */
- if (width == 0)
- width = HOST_BITS_PER_WIDE_INT;
-
- switch (code)
- {
- case FMA:
- /* Simplify negations around the multiplication. */
- /* -a * -b + c => a * b + c. */
- if (GET_CODE (op0) == NEG)
- {
- tem = simplify_unary_operation (NEG, mode, op1, mode);
- if (tem)
- op1 = tem, op0 = XEXP (op0, 0), any_change = true;
- }
- else if (GET_CODE (op1) == NEG)
- {
- tem = simplify_unary_operation (NEG, mode, op0, mode);
- if (tem)
- op0 = tem, op1 = XEXP (op1, 0), any_change = true;
- }
-
- /* Canonicalize the two multiplication operands. */
- /* a * -b + c => -b * a + c. */
- if (swap_commutative_operands_p (op0, op1))
- tem = op0, op0 = op1, op1 = tem, any_change = true;
-
- if (any_change)
- return gen_rtx_FMA (mode, op0, op1, op2);
- return NULL_RTX;
-
- case SIGN_EXTRACT:
- case ZERO_EXTRACT:
- if (CONST_INT_P (op0)
- && CONST_INT_P (op1)
- && CONST_INT_P (op2)
- && ((unsigned) INTVAL (op1) + (unsigned) INTVAL (op2) <= width)
- && width <= (unsigned) HOST_BITS_PER_WIDE_INT)
- {
- /* Extracting a bit-field from a constant */
- unsigned HOST_WIDE_INT val = UINTVAL (op0);
- HOST_WIDE_INT op1val = INTVAL (op1);
- HOST_WIDE_INT op2val = INTVAL (op2);
- if (BITS_BIG_ENDIAN)
- val >>= GET_MODE_PRECISION (op0_mode) - op2val - op1val;
- else
- val >>= op2val;
-
- if (HOST_BITS_PER_WIDE_INT != op1val)
- {
- /* First zero-extend. */
- val &= ((unsigned HOST_WIDE_INT) 1 << op1val) - 1;
- /* If desired, propagate sign bit. */
- if (code == SIGN_EXTRACT
- && (val & ((unsigned HOST_WIDE_INT) 1 << (op1val - 1)))
- != 0)
- val |= ~ (((unsigned HOST_WIDE_INT) 1 << op1val) - 1);
- }
-
- return gen_int_mode (val, mode);
- }
- break;
-
- case IF_THEN_ELSE:
- if (CONST_INT_P (op0))
- return op0 != const0_rtx ? op1 : op2;
-
- /* Convert c ? a : a into "a". */
- if (rtx_equal_p (op1, op2) && ! side_effects_p (op0))
- return op1;
-
- /* Convert a != b ? a : b into "a". */
- if (GET_CODE (op0) == NE
- && ! side_effects_p (op0)
- && ! HONOR_NANS (mode)
- && ! HONOR_SIGNED_ZEROS (mode)
- && ((rtx_equal_p (XEXP (op0, 0), op1)
- && rtx_equal_p (XEXP (op0, 1), op2))
- || (rtx_equal_p (XEXP (op0, 0), op2)
- && rtx_equal_p (XEXP (op0, 1), op1))))
- return op1;
-
- /* Convert a == b ? a : b into "b". */
- if (GET_CODE (op0) == EQ
- && ! side_effects_p (op0)
- && ! HONOR_NANS (mode)
- && ! HONOR_SIGNED_ZEROS (mode)
- && ((rtx_equal_p (XEXP (op0, 0), op1)
- && rtx_equal_p (XEXP (op0, 1), op2))
- || (rtx_equal_p (XEXP (op0, 0), op2)
- && rtx_equal_p (XEXP (op0, 1), op1))))
- return op2;
-
- if (COMPARISON_P (op0) && ! side_effects_p (op0))
- {
- enum machine_mode cmp_mode = (GET_MODE (XEXP (op0, 0)) == VOIDmode
- ? GET_MODE (XEXP (op0, 1))
- : GET_MODE (XEXP (op0, 0)));
- rtx temp;
-
- /* Look for happy constants in op1 and op2. */
- if (CONST_INT_P (op1) && CONST_INT_P (op2))
- {
- HOST_WIDE_INT t = INTVAL (op1);
- HOST_WIDE_INT f = INTVAL (op2);
-
- if (t == STORE_FLAG_VALUE && f == 0)
- code = GET_CODE (op0);
- else if (t == 0 && f == STORE_FLAG_VALUE)
- {
- enum rtx_code tmp;
- tmp = reversed_comparison_code (op0, NULL_RTX);
- if (tmp == UNKNOWN)
- break;
- code = tmp;
- }
- else
- break;
-
- return simplify_gen_relational (code, mode, cmp_mode,
- XEXP (op0, 0), XEXP (op0, 1));
- }
-
- if (cmp_mode == VOIDmode)
- cmp_mode = op0_mode;
- temp = simplify_relational_operation (GET_CODE (op0), op0_mode,
- cmp_mode, XEXP (op0, 0),
- XEXP (op0, 1));
-
- /* See if any simplifications were possible. */
- if (temp)
- {
- if (CONST_INT_P (temp))
- return temp == const0_rtx ? op2 : op1;
- else if (temp)
- return gen_rtx_IF_THEN_ELSE (mode, temp, op1, op2);
- }
- }
- break;
-
- case VEC_MERGE:
- gcc_assert (GET_MODE (op0) == mode);
- gcc_assert (GET_MODE (op1) == mode);
- gcc_assert (VECTOR_MODE_P (mode));
- op2 = avoid_constant_pool_reference (op2);
- if (CONST_INT_P (op2))
- {
- int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
- unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
- int mask = (1 << n_elts) - 1;
-
- if (!(INTVAL (op2) & mask))
- return op1;
- if ((INTVAL (op2) & mask) == mask)
- return op0;
-
- op0 = avoid_constant_pool_reference (op0);
- op1 = avoid_constant_pool_reference (op1);
- if (GET_CODE (op0) == CONST_VECTOR
- && GET_CODE (op1) == CONST_VECTOR)
- {
- rtvec v = rtvec_alloc (n_elts);
- unsigned int i;
-
- for (i = 0; i < n_elts; i++)
- RTVEC_ELT (v, i) = (INTVAL (op2) & (1 << i)
- ? CONST_VECTOR_ELT (op0, i)
- : CONST_VECTOR_ELT (op1, i));
- return gen_rtx_CONST_VECTOR (mode, v);
- }
- }
- break;
-
- default:
- gcc_unreachable ();
- }
-
- return 0;
-}
-
-/* Evaluate a SUBREG of a CONST_INT or CONST_DOUBLE or CONST_FIXED
- or CONST_VECTOR,
- returning another CONST_INT or CONST_DOUBLE or CONST_FIXED or CONST_VECTOR.
-
- Works by unpacking OP into a collection of 8-bit values
- represented as a little-endian array of 'unsigned char', selecting by BYTE,
- and then repacking them again for OUTERMODE. */
-
-static rtx
-simplify_immed_subreg (enum machine_mode outermode, rtx op,
- enum machine_mode innermode, unsigned int byte)
-{
- /* We support up to 512-bit values (for V8DFmode). */
- enum {
- max_bitsize = 512,
- value_bit = 8,
- value_mask = (1 << value_bit) - 1
- };
- unsigned char value[max_bitsize / value_bit];
- int value_start;
- int i;
- int elem;
-
- int num_elem;
- rtx * elems;
- int elem_bitsize;
- rtx result_s;
- rtvec result_v = NULL;
- enum mode_class outer_class;
- enum machine_mode outer_submode;
-
- /* Some ports misuse CCmode. */
- if (GET_MODE_CLASS (outermode) == MODE_CC && CONST_INT_P (op))
- return op;
-
- /* We have no way to represent a complex constant at the rtl level. */
- if (COMPLEX_MODE_P (outermode))
- return NULL_RTX;
-
- /* Unpack the value. */
-
- if (GET_CODE (op) == CONST_VECTOR)
- {
- num_elem = CONST_VECTOR_NUNITS (op);
- elems = &CONST_VECTOR_ELT (op, 0);
- elem_bitsize = GET_MODE_BITSIZE (GET_MODE_INNER (innermode));
- }
- else
- {
- num_elem = 1;
- elems = &op;
- elem_bitsize = max_bitsize;
- }
- /* If this asserts, it is too complicated; reducing value_bit may help. */
- gcc_assert (BITS_PER_UNIT % value_bit == 0);
- /* I don't know how to handle endianness of sub-units. */
- gcc_assert (elem_bitsize % BITS_PER_UNIT == 0);
-
- for (elem = 0; elem < num_elem; elem++)
- {
- unsigned char * vp;
- rtx el = elems[elem];
-
- /* Vectors are kept in target memory order. (This is probably
- a mistake.) */
- {
- unsigned byte = (elem * elem_bitsize) / BITS_PER_UNIT;
- unsigned ibyte = (((num_elem - 1 - elem) * elem_bitsize)
- / BITS_PER_UNIT);
- unsigned word_byte = WORDS_BIG_ENDIAN ? ibyte : byte;
- unsigned subword_byte = BYTES_BIG_ENDIAN ? ibyte : byte;
- unsigned bytele = (subword_byte % UNITS_PER_WORD
- + (word_byte / UNITS_PER_WORD) * UNITS_PER_WORD);
- vp = value + (bytele * BITS_PER_UNIT) / value_bit;
- }
-
- switch (GET_CODE (el))
- {
- case CONST_INT:
- for (i = 0;
- i < HOST_BITS_PER_WIDE_INT && i < elem_bitsize;
- i += value_bit)
- *vp++ = INTVAL (el) >> i;
- /* CONST_INTs are always logically sign-extended. */
- for (; i < elem_bitsize; i += value_bit)
- *vp++ = INTVAL (el) < 0 ? -1 : 0;
- break;
-
- case CONST_DOUBLE:
- if (GET_MODE (el) == VOIDmode)
- {
- /* If this triggers, someone should have generated a
- CONST_INT instead. */
- gcc_assert (elem_bitsize > HOST_BITS_PER_WIDE_INT);
-
- for (i = 0; i < HOST_BITS_PER_WIDE_INT; i += value_bit)
- *vp++ = CONST_DOUBLE_LOW (el) >> i;
- while (i < HOST_BITS_PER_WIDE_INT * 2 && i < elem_bitsize)
- {
- *vp++
- = CONST_DOUBLE_HIGH (el) >> (i - HOST_BITS_PER_WIDE_INT);
- i += value_bit;
- }
- /* It shouldn't matter what's done here, so fill it with
- zero. */
- for (; i < elem_bitsize; i += value_bit)
- *vp++ = 0;
- }
- else
- {
- long tmp[max_bitsize / 32];
- int bitsize = GET_MODE_BITSIZE (GET_MODE (el));
-
- gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (el)));
- gcc_assert (bitsize <= elem_bitsize);
- gcc_assert (bitsize % value_bit == 0);
-
- real_to_target (tmp, CONST_DOUBLE_REAL_VALUE (el),
- GET_MODE (el));
-
- /* real_to_target produces its result in words affected by
- FLOAT_WORDS_BIG_ENDIAN. However, we ignore this,
- and use WORDS_BIG_ENDIAN instead; see the documentation
- of SUBREG in rtl.texi. */
- for (i = 0; i < bitsize; i += value_bit)
- {
- int ibase;
- if (WORDS_BIG_ENDIAN)
- ibase = bitsize - 1 - i;
- else
- ibase = i;
- *vp++ = tmp[ibase / 32] >> i % 32;
- }
-
- /* It shouldn't matter what's done here, so fill it with
- zero. */
- for (; i < elem_bitsize; i += value_bit)
- *vp++ = 0;
- }
- break;
-
- case CONST_FIXED:
- if (elem_bitsize <= HOST_BITS_PER_WIDE_INT)
- {
- for (i = 0; i < elem_bitsize; i += value_bit)
- *vp++ = CONST_FIXED_VALUE_LOW (el) >> i;
- }
- else
- {
- for (i = 0; i < HOST_BITS_PER_WIDE_INT; i += value_bit)
- *vp++ = CONST_FIXED_VALUE_LOW (el) >> i;
- for (; i < 2 * HOST_BITS_PER_WIDE_INT && i < elem_bitsize;
- i += value_bit)
- *vp++ = CONST_FIXED_VALUE_HIGH (el)
- >> (i - HOST_BITS_PER_WIDE_INT);
- for (; i < elem_bitsize; i += value_bit)
- *vp++ = 0;
- }
- break;
-
- default:
- gcc_unreachable ();
- }
- }
-
- /* Now, pick the right byte to start with. */
- /* Renumber BYTE so that the least-significant byte is byte 0. A special
- case is paradoxical SUBREGs, which shouldn't be adjusted since they
- will already have offset 0. */
- if (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode))
- {
- unsigned ibyte = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode)
- - byte);
- unsigned word_byte = WORDS_BIG_ENDIAN ? ibyte : byte;
- unsigned subword_byte = BYTES_BIG_ENDIAN ? ibyte : byte;
- byte = (subword_byte % UNITS_PER_WORD
- + (word_byte / UNITS_PER_WORD) * UNITS_PER_WORD);
- }
-
- /* BYTE should still be inside OP. (Note that BYTE is unsigned,
- so if it's become negative it will instead be very large.) */
- gcc_assert (byte < GET_MODE_SIZE (innermode));
-
- /* Convert from bytes to chunks of size value_bit. */
- value_start = byte * (BITS_PER_UNIT / value_bit);
-
- /* Re-pack the value. */
-
- if (VECTOR_MODE_P (outermode))
- {
- num_elem = GET_MODE_NUNITS (outermode);
- result_v = rtvec_alloc (num_elem);
- elems = &RTVEC_ELT (result_v, 0);
- outer_submode = GET_MODE_INNER (outermode);
- }
- else
- {
- num_elem = 1;
- elems = &result_s;
- outer_submode = outermode;
- }
-
- outer_class = GET_MODE_CLASS (outer_submode);
- elem_bitsize = GET_MODE_BITSIZE (outer_submode);
-
- gcc_assert (elem_bitsize % value_bit == 0);
- gcc_assert (elem_bitsize + value_start * value_bit <= max_bitsize);
-
- for (elem = 0; elem < num_elem; elem++)
- {
- unsigned char *vp;
-
- /* Vectors are stored in target memory order. (This is probably
- a mistake.) */
- {
- unsigned byte = (elem * elem_bitsize) / BITS_PER_UNIT;
- unsigned ibyte = (((num_elem - 1 - elem) * elem_bitsize)
- / BITS_PER_UNIT);
- unsigned word_byte = WORDS_BIG_ENDIAN ? ibyte : byte;
- unsigned subword_byte = BYTES_BIG_ENDIAN ? ibyte : byte;
- unsigned bytele = (subword_byte % UNITS_PER_WORD
- + (word_byte / UNITS_PER_WORD) * UNITS_PER_WORD);
- vp = value + value_start + (bytele * BITS_PER_UNIT) / value_bit;
- }
-
- switch (outer_class)
- {
- case MODE_INT:
- case MODE_PARTIAL_INT:
- {
- unsigned HOST_WIDE_INT hi = 0, lo = 0;
-
- for (i = 0;
- i < HOST_BITS_PER_WIDE_INT && i < elem_bitsize;
- i += value_bit)
- lo |= (unsigned HOST_WIDE_INT)(*vp++ & value_mask) << i;
- for (; i < elem_bitsize; i += value_bit)
- hi |= (unsigned HOST_WIDE_INT)(*vp++ & value_mask)
- << (i - HOST_BITS_PER_WIDE_INT);
-
- /* immed_double_const doesn't call trunc_int_for_mode. I don't
- know why. */
- if (elem_bitsize <= HOST_BITS_PER_WIDE_INT)
- elems[elem] = gen_int_mode (lo, outer_submode);
- else if (elem_bitsize <= 2 * HOST_BITS_PER_WIDE_INT)
- elems[elem] = immed_double_const (lo, hi, outer_submode);
- else
- return NULL_RTX;
- }
- break;
-
- case MODE_FLOAT:
- case MODE_DECIMAL_FLOAT:
- {
- REAL_VALUE_TYPE r;
- long tmp[max_bitsize / 32];
-
- /* real_from_target wants its input in words affected by
- FLOAT_WORDS_BIG_ENDIAN. However, we ignore this,
- and use WORDS_BIG_ENDIAN instead; see the documentation
- of SUBREG in rtl.texi. */
- for (i = 0; i < max_bitsize / 32; i++)
- tmp[i] = 0;
- for (i = 0; i < elem_bitsize; i += value_bit)
- {
- int ibase;
- if (WORDS_BIG_ENDIAN)
- ibase = elem_bitsize - 1 - i;
- else
- ibase = i;
- tmp[ibase / 32] |= (*vp++ & value_mask) << i % 32;
- }
-
- real_from_target (&r, tmp, outer_submode);
- elems[elem] = CONST_DOUBLE_FROM_REAL_VALUE (r, outer_submode);
- }
- break;
-
- case MODE_FRACT:
- case MODE_UFRACT:
- case MODE_ACCUM:
- case MODE_UACCUM:
- {
- FIXED_VALUE_TYPE f;
- f.data.low = 0;
- f.data.high = 0;
- f.mode = outer_submode;
-
- for (i = 0;
- i < HOST_BITS_PER_WIDE_INT && i < elem_bitsize;
- i += value_bit)
- f.data.low |= (unsigned HOST_WIDE_INT)(*vp++ & value_mask) << i;
- for (; i < elem_bitsize; i += value_bit)
- f.data.high |= ((unsigned HOST_WIDE_INT)(*vp++ & value_mask)
- << (i - HOST_BITS_PER_WIDE_INT));
-
- elems[elem] = CONST_FIXED_FROM_FIXED_VALUE (f, outer_submode);
- }
- break;
-
- default:
- gcc_unreachable ();
- }
- }
- if (VECTOR_MODE_P (outermode))
- return gen_rtx_CONST_VECTOR (outermode, result_v);
- else
- return result_s;
-}
-
-/* Simplify SUBREG:OUTERMODE(OP:INNERMODE, BYTE)
- Return 0 if no simplifications are possible. */
-rtx
-simplify_subreg (enum machine_mode outermode, rtx op,
- enum machine_mode innermode, unsigned int byte)
-{
- /* Little bit of sanity checking. */
- gcc_assert (innermode != VOIDmode);
- gcc_assert (outermode != VOIDmode);
- gcc_assert (innermode != BLKmode);
- gcc_assert (outermode != BLKmode);
-
- gcc_assert (GET_MODE (op) == innermode
- || GET_MODE (op) == VOIDmode);
-
- gcc_assert ((byte % GET_MODE_SIZE (outermode)) == 0);
- gcc_assert (byte < GET_MODE_SIZE (innermode));
-
- if (outermode == innermode && !byte)
- return op;
-
- if (CONST_INT_P (op)
- || GET_CODE (op) == CONST_DOUBLE
- || GET_CODE (op) == CONST_FIXED
- || GET_CODE (op) == CONST_VECTOR)
- return simplify_immed_subreg (outermode, op, innermode, byte);
-
- /* Changing mode twice with SUBREG => just change it once,
- or not at all if changing back op starting mode. */
- if (GET_CODE (op) == SUBREG)
- {
- enum machine_mode innermostmode = GET_MODE (SUBREG_REG (op));
- int final_offset = byte + SUBREG_BYTE (op);
- rtx newx;
-
- if (outermode == innermostmode
- && byte == 0 && SUBREG_BYTE (op) == 0)
- return SUBREG_REG (op);
-
- /* The SUBREG_BYTE represents offset, as if the value were stored
- in memory. Irritating exception is paradoxical subreg, where
- we define SUBREG_BYTE to be 0. On big endian machines, this
- value should be negative. For a moment, undo this exception. */
- if (byte == 0 && GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
- {
- int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
- if (WORDS_BIG_ENDIAN)
- final_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
- if (BYTES_BIG_ENDIAN)
- final_offset += difference % UNITS_PER_WORD;
- }
- if (SUBREG_BYTE (op) == 0
- && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
- {
- int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
- if (WORDS_BIG_ENDIAN)
- final_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
- if (BYTES_BIG_ENDIAN)
- final_offset += difference % UNITS_PER_WORD;
- }
-
- /* See whether resulting subreg will be paradoxical. */
- if (GET_MODE_SIZE (innermostmode) > GET_MODE_SIZE (outermode))
- {
- /* In nonparadoxical subregs we can't handle negative offsets. */
- if (final_offset < 0)
- return NULL_RTX;
- /* Bail out in case resulting subreg would be incorrect. */
- if (final_offset % GET_MODE_SIZE (outermode)
- || (unsigned) final_offset >= GET_MODE_SIZE (innermostmode))
- return NULL_RTX;
- }
- else
- {
- int offset = 0;
- int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (outermode));
-
- /* In paradoxical subreg, see if we are still looking on lower part.
- If so, our SUBREG_BYTE will be 0. */
- if (WORDS_BIG_ENDIAN)
- offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
- if (BYTES_BIG_ENDIAN)
- offset += difference % UNITS_PER_WORD;
- if (offset == final_offset)
- final_offset = 0;
- else
- return NULL_RTX;
- }
-
- /* Recurse for further possible simplifications. */
- newx = simplify_subreg (outermode, SUBREG_REG (op), innermostmode,
- final_offset);
- if (newx)
- return newx;
- if (validate_subreg (outermode, innermostmode,
- SUBREG_REG (op), final_offset))
- {
- newx = gen_rtx_SUBREG (outermode, SUBREG_REG (op), final_offset);
- if (SUBREG_PROMOTED_VAR_P (op)
- && SUBREG_PROMOTED_UNSIGNED_P (op) >= 0
- && GET_MODE_CLASS (outermode) == MODE_INT
- && IN_RANGE (GET_MODE_SIZE (outermode),
- GET_MODE_SIZE (innermode),
- GET_MODE_SIZE (innermostmode))
- && subreg_lowpart_p (newx))
- {
- SUBREG_PROMOTED_VAR_P (newx) = 1;
- SUBREG_PROMOTED_UNSIGNED_SET
- (newx, SUBREG_PROMOTED_UNSIGNED_P (op));
- }
- return newx;
- }
- return NULL_RTX;
- }
-
- /* Merge implicit and explicit truncations. */
-
- if (GET_CODE (op) == TRUNCATE
- && GET_MODE_SIZE (outermode) < GET_MODE_SIZE (innermode)
- && subreg_lowpart_offset (outermode, innermode) == byte)
- return simplify_gen_unary (TRUNCATE, outermode, XEXP (op, 0),
- GET_MODE (XEXP (op, 0)));
-
- /* SUBREG of a hard register => just change the register number
- and/or mode. If the hard register is not valid in that mode,
- suppress this simplification. If the hard register is the stack,
- frame, or argument pointer, leave this as a SUBREG. */
-
- if (REG_P (op) && HARD_REGISTER_P (op))
- {
- unsigned int regno, final_regno;
-
- regno = REGNO (op);
- final_regno = simplify_subreg_regno (regno, innermode, byte, outermode);
- if (HARD_REGISTER_NUM_P (final_regno))
- {
- rtx x;
- int final_offset = byte;
-
- /* Adjust offset for paradoxical subregs. */
- if (byte == 0
- && GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
- {
- int difference = (GET_MODE_SIZE (innermode)
- - GET_MODE_SIZE (outermode));
- if (WORDS_BIG_ENDIAN)
- final_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
- if (BYTES_BIG_ENDIAN)
- final_offset += difference % UNITS_PER_WORD;
- }
-
- x = gen_rtx_REG_offset (op, outermode, final_regno, final_offset);
-
- /* Propagate original regno. We don't have any way to specify
- the offset inside original regno, so do so only for lowpart.
- The information is used only by alias analysis that can not
- grog partial register anyway. */
-
- if (subreg_lowpart_offset (outermode, innermode) == byte)
- ORIGINAL_REGNO (x) = ORIGINAL_REGNO (op);
- return x;
- }
- }
-
- /* If we have a SUBREG of a register that we are replacing and we are
- replacing it with a MEM, make a new MEM and try replacing the
- SUBREG with it. Don't do this if the MEM has a mode-dependent address
- or if we would be widening it. */
-
- if (MEM_P (op)
- && ! mode_dependent_address_p (XEXP (op, 0))
- /* Allow splitting of volatile memory references in case we don't
- have instruction to move the whole thing. */
- && (! MEM_VOLATILE_P (op)
- || ! have_insn_for (SET, innermode))
- && GET_MODE_SIZE (outermode) <= GET_MODE_SIZE (GET_MODE (op)))
- return adjust_address_nv (op, outermode, byte);
-
- /* Handle complex values represented as CONCAT
- of real and imaginary part. */
- if (GET_CODE (op) == CONCAT)
- {
- unsigned int part_size, final_offset;
- rtx part, res;
-
- part_size = GET_MODE_UNIT_SIZE (GET_MODE (XEXP (op, 0)));
- if (byte < part_size)
- {
- part = XEXP (op, 0);
- final_offset = byte;
- }
- else
- {
- part = XEXP (op, 1);
- final_offset = byte - part_size;
- }
-
- if (final_offset + GET_MODE_SIZE (outermode) > part_size)
- return NULL_RTX;
-
- res = simplify_subreg (outermode, part, GET_MODE (part), final_offset);
- if (res)
- return res;
- if (validate_subreg (outermode, GET_MODE (part), part, final_offset))
- return gen_rtx_SUBREG (outermode, part, final_offset);
- return NULL_RTX;
- }
-
- /* Optimize SUBREG truncations of zero and sign extended values. */
- if ((GET_CODE (op) == ZERO_EXTEND
- || GET_CODE (op) == SIGN_EXTEND)
- && SCALAR_INT_MODE_P (innermode)
- && GET_MODE_PRECISION (outermode) < GET_MODE_PRECISION (innermode))
- {
- unsigned int bitpos = subreg_lsb_1 (outermode, innermode, byte);
-
- /* If we're requesting the lowpart of a zero or sign extension,
- there are three possibilities. If the outermode is the same
- as the origmode, we can omit both the extension and the subreg.
- If the outermode is not larger than the origmode, we can apply
- the truncation without the extension. Finally, if the outermode
- is larger than the origmode, but both are integer modes, we
- can just extend to the appropriate mode. */
- if (bitpos == 0)
- {
- enum machine_mode origmode = GET_MODE (XEXP (op, 0));
- if (outermode == origmode)
- return XEXP (op, 0);
- if (GET_MODE_PRECISION (outermode) <= GET_MODE_PRECISION (origmode))
- return simplify_gen_subreg (outermode, XEXP (op, 0), origmode,
- subreg_lowpart_offset (outermode,
- origmode));
- if (SCALAR_INT_MODE_P (outermode))
- return simplify_gen_unary (GET_CODE (op), outermode,
- XEXP (op, 0), origmode);
- }
-
- /* A SUBREG resulting from a zero extension may fold to zero if
- it extracts higher bits that the ZERO_EXTEND's source bits. */
- if (GET_CODE (op) == ZERO_EXTEND
- && bitpos >= GET_MODE_PRECISION (GET_MODE (XEXP (op, 0))))
- return CONST0_RTX (outermode);
- }
-
- /* Simplify (subreg:QI (lshiftrt:SI (sign_extend:SI (x:QI)) C), 0) into
- to (ashiftrt:QI (x:QI) C), where C is a suitable small constant and
- the outer subreg is effectively a truncation to the original mode. */
- if ((GET_CODE (op) == LSHIFTRT
- || GET_CODE (op) == ASHIFTRT)
- && SCALAR_INT_MODE_P (outermode)
- && SCALAR_INT_MODE_P (innermode)
- /* Ensure that OUTERMODE is at least twice as wide as the INNERMODE
- to avoid the possibility that an outer LSHIFTRT shifts by more
- than the sign extension's sign_bit_copies and introduces zeros
- into the high bits of the result. */
- && (2 * GET_MODE_PRECISION (outermode)) <= GET_MODE_PRECISION (innermode)
- && CONST_INT_P (XEXP (op, 1))
- && GET_CODE (XEXP (op, 0)) == SIGN_EXTEND
- && GET_MODE (XEXP (XEXP (op, 0), 0)) == outermode
- && INTVAL (XEXP (op, 1)) < GET_MODE_PRECISION (outermode)
- && subreg_lsb_1 (outermode, innermode, byte) == 0)
- return simplify_gen_binary (ASHIFTRT, outermode,
- XEXP (XEXP (op, 0), 0), XEXP (op, 1));
-
- /* Likewise (subreg:QI (lshiftrt:SI (zero_extend:SI (x:QI)) C), 0) into
- to (lshiftrt:QI (x:QI) C), where C is a suitable small constant and
- the outer subreg is effectively a truncation to the original mode. */
- if ((GET_CODE (op) == LSHIFTRT
- || GET_CODE (op) == ASHIFTRT)
- && SCALAR_INT_MODE_P (outermode)
- && SCALAR_INT_MODE_P (innermode)
- && GET_MODE_PRECISION (outermode) < GET_MODE_PRECISION (innermode)
- && CONST_INT_P (XEXP (op, 1))
- && GET_CODE (XEXP (op, 0)) == ZERO_EXTEND
- && GET_MODE (XEXP (XEXP (op, 0), 0)) == outermode
- && INTVAL (XEXP (op, 1)) < GET_MODE_PRECISION (outermode)
- && subreg_lsb_1 (outermode, innermode, byte) == 0)
- return simplify_gen_binary (LSHIFTRT, outermode,
- XEXP (XEXP (op, 0), 0), XEXP (op, 1));
-
- /* Likewise (subreg:QI (ashift:SI (zero_extend:SI (x:QI)) C), 0) into
- to (ashift:QI (x:QI) C), where C is a suitable small constant and
- the outer subreg is effectively a truncation to the original mode. */
- if (GET_CODE (op) == ASHIFT
- && SCALAR_INT_MODE_P (outermode)
- && SCALAR_INT_MODE_P (innermode)
- && GET_MODE_PRECISION (outermode) < GET_MODE_PRECISION (innermode)
- && CONST_INT_P (XEXP (op, 1))
- && (GET_CODE (XEXP (op, 0)) == ZERO_EXTEND
- || GET_CODE (XEXP (op, 0)) == SIGN_EXTEND)
- && GET_MODE (XEXP (XEXP (op, 0), 0)) == outermode
- && INTVAL (XEXP (op, 1)) < GET_MODE_PRECISION (outermode)
- && subreg_lsb_1 (outermode, innermode, byte) == 0)
- return simplify_gen_binary (ASHIFT, outermode,
- XEXP (XEXP (op, 0), 0), XEXP (op, 1));
-
- /* Recognize a word extraction from a multi-word subreg. */
- if ((GET_CODE (op) == LSHIFTRT
- || GET_CODE (op) == ASHIFTRT)
- && SCALAR_INT_MODE_P (innermode)
- && GET_MODE_PRECISION (outermode) >= BITS_PER_WORD
- && GET_MODE_PRECISION (innermode) >= (2 * GET_MODE_PRECISION (outermode))
- && CONST_INT_P (XEXP (op, 1))
- && (INTVAL (XEXP (op, 1)) & (GET_MODE_PRECISION (outermode) - 1)) == 0
- && INTVAL (XEXP (op, 1)) >= 0
- && INTVAL (XEXP (op, 1)) < GET_MODE_PRECISION (innermode)
- && byte == subreg_lowpart_offset (outermode, innermode))
- {
- int shifted_bytes = INTVAL (XEXP (op, 1)) / BITS_PER_UNIT;
- return simplify_gen_subreg (outermode, XEXP (op, 0), innermode,
- (WORDS_BIG_ENDIAN
- ? byte - shifted_bytes
- : byte + shifted_bytes));
- }
-
- /* If we have a lowpart SUBREG of a right shift of MEM, make a new MEM
- and try replacing the SUBREG and shift with it. Don't do this if
- the MEM has a mode-dependent address or if we would be widening it. */
-
- if ((GET_CODE (op) == LSHIFTRT
- || GET_CODE (op) == ASHIFTRT)
- && SCALAR_INT_MODE_P (innermode)
- && MEM_P (XEXP (op, 0))
- && CONST_INT_P (XEXP (op, 1))
- && GET_MODE_SIZE (outermode) < GET_MODE_SIZE (GET_MODE (op))
- && (INTVAL (XEXP (op, 1)) % GET_MODE_BITSIZE (outermode)) == 0
- && INTVAL (XEXP (op, 1)) > 0
- && INTVAL (XEXP (op, 1)) < GET_MODE_BITSIZE (innermode)
- && ! mode_dependent_address_p (XEXP (XEXP (op, 0), 0))
- && ! MEM_VOLATILE_P (XEXP (op, 0))
- && byte == subreg_lowpart_offset (outermode, innermode)
- && (GET_MODE_SIZE (outermode) >= UNITS_PER_WORD
- || WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN))
- {
- int shifted_bytes = INTVAL (XEXP (op, 1)) / BITS_PER_UNIT;
- return adjust_address_nv (XEXP (op, 0), outermode,
- (WORDS_BIG_ENDIAN
- ? byte - shifted_bytes
- : byte + shifted_bytes));
- }
-
- return NULL_RTX;
-}
-
-/* Make a SUBREG operation or equivalent if it folds. */
-
-rtx
-simplify_gen_subreg (enum machine_mode outermode, rtx op,
- enum machine_mode innermode, unsigned int byte)
-{
- rtx newx;
-
- newx = simplify_subreg (outermode, op, innermode, byte);
- if (newx)
- return newx;
-
- if (GET_CODE (op) == SUBREG
- || GET_CODE (op) == CONCAT
- || GET_MODE (op) == VOIDmode)
- return NULL_RTX;
-
- if (validate_subreg (outermode, innermode, op, byte))
- return gen_rtx_SUBREG (outermode, op, byte);
-
- return NULL_RTX;
-}
-
-/* Simplify X, an rtx expression.
-
- Return the simplified expression or NULL if no simplifications
- were possible.
-
- This is the preferred entry point into the simplification routines;
- however, we still allow passes to call the more specific routines.
-
- Right now GCC has three (yes, three) major bodies of RTL simplification
- code that need to be unified.
-
- 1. fold_rtx in cse.c. This code uses various CSE specific
- information to aid in RTL simplification.
-
- 2. simplify_rtx in combine.c. Similar to fold_rtx, except that
- it uses combine specific information to aid in RTL
- simplification.
-
- 3. The routines in this file.
-
-
- Long term we want to only have one body of simplification code; to
- get to that state I recommend the following steps:
-
- 1. Pour over fold_rtx & simplify_rtx and move any simplifications
- which are not pass dependent state into these routines.
-
- 2. As code is moved by #1, change fold_rtx & simplify_rtx to
- use this routine whenever possible.
-
- 3. Allow for pass dependent state to be provided to these
- routines and add simplifications based on the pass dependent
- state. Remove code from cse.c & combine.c that becomes
- redundant/dead.
-
- It will take time, but ultimately the compiler will be easier to
- maintain and improve. It's totally silly that when we add a
- simplification that it needs to be added to 4 places (3 for RTL
- simplification and 1 for tree simplification. */
-
-rtx
-simplify_rtx (const_rtx x)
-{
- const enum rtx_code code = GET_CODE (x);
- const enum machine_mode mode = GET_MODE (x);
-
- switch (GET_RTX_CLASS (code))
- {
- case RTX_UNARY:
- return simplify_unary_operation (code, mode,
- XEXP (x, 0), GET_MODE (XEXP (x, 0)));
- case RTX_COMM_ARITH:
- if (swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
- return simplify_gen_binary (code, mode, XEXP (x, 1), XEXP (x, 0));
-
- /* Fall through.... */
-
- case RTX_BIN_ARITH:
- return simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
-
- case RTX_TERNARY:
- case RTX_BITFIELD_OPS:
- return simplify_ternary_operation (code, mode, GET_MODE (XEXP (x, 0)),
- XEXP (x, 0), XEXP (x, 1),
- XEXP (x, 2));
-
- case RTX_COMPARE:
- case RTX_COMM_COMPARE:
- return simplify_relational_operation (code, mode,
- ((GET_MODE (XEXP (x, 0))
- != VOIDmode)
- ? GET_MODE (XEXP (x, 0))
- : GET_MODE (XEXP (x, 1))),
- XEXP (x, 0),
- XEXP (x, 1));
-
- case RTX_EXTRA:
- if (code == SUBREG)
- return simplify_subreg (mode, SUBREG_REG (x),
- GET_MODE (SUBREG_REG (x)),
- SUBREG_BYTE (x));
- break;
-
- case RTX_OBJ:
- if (code == LO_SUM)
- {
- /* Convert (lo_sum (high FOO) FOO) to FOO. */
- if (GET_CODE (XEXP (x, 0)) == HIGH
- && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
- return XEXP (x, 1);
- }
- break;
-
- default:
- break;
- }
- return NULL;
-}