aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.7/gcc/optabs.c
diff options
context:
space:
mode:
authorBen Cheng <bccheng@google.com>2012-10-01 10:30:31 -0700
committerBen Cheng <bccheng@google.com>2012-10-01 10:30:31 -0700
commit82bcbebce43f0227f506d75a5b764b6847041bae (patch)
treefe9f8597b48a430c4daeb5123e3e8eb28e6f9da9 /gcc-4.7/gcc/optabs.c
parent3c052de3bb16ac53b6b6ed659ec7557eb84c7590 (diff)
downloadtoolchain_gcc-82bcbebce43f0227f506d75a5b764b6847041bae.tar.gz
toolchain_gcc-82bcbebce43f0227f506d75a5b764b6847041bae.tar.bz2
toolchain_gcc-82bcbebce43f0227f506d75a5b764b6847041bae.zip
Initial check-in of gcc 4.7.2.
Change-Id: I4a2f5a921c21741a0e18bda986d77e5f1bef0365
Diffstat (limited to 'gcc-4.7/gcc/optabs.c')
-rw-r--r--gcc-4.7/gcc/optabs.c8403
1 files changed, 8403 insertions, 0 deletions
diff --git a/gcc-4.7/gcc/optabs.c b/gcc-4.7/gcc/optabs.c
new file mode 100644
index 000000000..fd353d7e6
--- /dev/null
+++ b/gcc-4.7/gcc/optabs.c
@@ -0,0 +1,8403 @@
+/* Expand the basic unary and binary arithmetic operations, for GNU compiler.
+ Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
+ 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
+ 2011, 2012 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "diagnostic-core.h"
+
+/* Include insn-config.h before expr.h so that HAVE_conditional_move
+ is properly defined. */
+#include "insn-config.h"
+#include "rtl.h"
+#include "tree.h"
+#include "tm_p.h"
+#include "flags.h"
+#include "function.h"
+#include "except.h"
+#include "expr.h"
+#include "optabs.h"
+#include "libfuncs.h"
+#include "recog.h"
+#include "reload.h"
+#include "ggc.h"
+#include "basic-block.h"
+#include "target.h"
+
+struct target_optabs default_target_optabs;
+struct target_libfuncs default_target_libfuncs;
+#if SWITCHABLE_TARGET
+struct target_optabs *this_target_optabs = &default_target_optabs;
+struct target_libfuncs *this_target_libfuncs = &default_target_libfuncs;
+#endif
+
+#define libfunc_hash \
+ (this_target_libfuncs->x_libfunc_hash)
+
+/* Contains the optab used for each rtx code. */
+optab code_to_optab[NUM_RTX_CODE + 1];
+
+static void prepare_float_lib_cmp (rtx, rtx, enum rtx_code, rtx *,
+ enum machine_mode *);
+static rtx expand_unop_direct (enum machine_mode, optab, rtx, rtx, int);
+
+/* Debug facility for use in GDB. */
+void debug_optab_libfuncs (void);
+
+/* Prefixes for the current version of decimal floating point (BID vs. DPD) */
+#if ENABLE_DECIMAL_BID_FORMAT
+#define DECIMAL_PREFIX "bid_"
+#else
+#define DECIMAL_PREFIX "dpd_"
+#endif
+
+/* Used for libfunc_hash. */
+
+static hashval_t
+hash_libfunc (const void *p)
+{
+ const struct libfunc_entry *const e = (const struct libfunc_entry *) p;
+
+ return (((int) e->mode1 + (int) e->mode2 * NUM_MACHINE_MODES)
+ ^ e->optab);
+}
+
+/* Used for libfunc_hash. */
+
+static int
+eq_libfunc (const void *p, const void *q)
+{
+ const struct libfunc_entry *const e1 = (const struct libfunc_entry *) p;
+ const struct libfunc_entry *const e2 = (const struct libfunc_entry *) q;
+
+ return (e1->optab == e2->optab
+ && e1->mode1 == e2->mode1
+ && e1->mode2 == e2->mode2);
+}
+
+/* Return libfunc corresponding operation defined by OPTAB converting
+ from MODE2 to MODE1. Trigger lazy initialization if needed, return NULL
+ if no libfunc is available. */
+rtx
+convert_optab_libfunc (convert_optab optab, enum machine_mode mode1,
+ enum machine_mode mode2)
+{
+ struct libfunc_entry e;
+ struct libfunc_entry **slot;
+
+ e.optab = (size_t) (optab - &convert_optab_table[0]);
+ e.mode1 = mode1;
+ e.mode2 = mode2;
+ slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, NO_INSERT);
+ if (!slot)
+ {
+ if (optab->libcall_gen)
+ {
+ optab->libcall_gen (optab, optab->libcall_basename, mode1, mode2);
+ slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, NO_INSERT);
+ if (slot)
+ return (*slot)->libfunc;
+ else
+ return NULL;
+ }
+ return NULL;
+ }
+ return (*slot)->libfunc;
+}
+
+/* Return libfunc corresponding operation defined by OPTAB in MODE.
+ Trigger lazy initialization if needed, return NULL if no libfunc is
+ available. */
+rtx
+optab_libfunc (optab optab, enum machine_mode mode)
+{
+ struct libfunc_entry e;
+ struct libfunc_entry **slot;
+
+ e.optab = (size_t) (optab - &optab_table[0]);
+ e.mode1 = mode;
+ e.mode2 = VOIDmode;
+ slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, NO_INSERT);
+ if (!slot)
+ {
+ if (optab->libcall_gen)
+ {
+ optab->libcall_gen (optab, optab->libcall_basename,
+ optab->libcall_suffix, mode);
+ slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash,
+ &e, NO_INSERT);
+ if (slot)
+ return (*slot)->libfunc;
+ else
+ return NULL;
+ }
+ return NULL;
+ }
+ return (*slot)->libfunc;
+}
+
+
+/* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
+ the result of operation CODE applied to OP0 (and OP1 if it is a binary
+ operation).
+
+ If the last insn does not set TARGET, don't do anything, but return 1.
+
+ If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
+ don't add the REG_EQUAL note but return 0. Our caller can then try
+ again, ensuring that TARGET is not one of the operands. */
+
+static int
+add_equal_note (rtx insns, rtx target, enum rtx_code code, rtx op0, rtx op1)
+{
+ rtx last_insn, insn, set;
+ rtx note;
+
+ gcc_assert (insns && INSN_P (insns) && NEXT_INSN (insns));
+
+ if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
+ && GET_RTX_CLASS (code) != RTX_BIN_ARITH
+ && GET_RTX_CLASS (code) != RTX_COMM_COMPARE
+ && GET_RTX_CLASS (code) != RTX_COMPARE
+ && GET_RTX_CLASS (code) != RTX_UNARY)
+ return 1;
+
+ if (GET_CODE (target) == ZERO_EXTRACT)
+ return 1;
+
+ for (last_insn = insns;
+ NEXT_INSN (last_insn) != NULL_RTX;
+ last_insn = NEXT_INSN (last_insn))
+ ;
+
+ set = single_set (last_insn);
+ if (set == NULL_RTX)
+ return 1;
+
+ if (! rtx_equal_p (SET_DEST (set), target)
+ /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
+ && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
+ || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
+ return 1;
+
+ /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
+ besides the last insn. */
+ if (reg_overlap_mentioned_p (target, op0)
+ || (op1 && reg_overlap_mentioned_p (target, op1)))
+ {
+ insn = PREV_INSN (last_insn);
+ while (insn != NULL_RTX)
+ {
+ if (reg_set_p (target, insn))
+ return 0;
+
+ insn = PREV_INSN (insn);
+ }
+ }
+
+ if (GET_RTX_CLASS (code) == RTX_UNARY)
+ switch (code)
+ {
+ case FFS:
+ case CLZ:
+ case CTZ:
+ case CLRSB:
+ case POPCOUNT:
+ case PARITY:
+ case BSWAP:
+ if (GET_MODE (op0) != VOIDmode && GET_MODE (target) != GET_MODE (op0))
+ {
+ note = gen_rtx_fmt_e (code, GET_MODE (op0), copy_rtx (op0));
+ if (GET_MODE_SIZE (GET_MODE (op0))
+ > GET_MODE_SIZE (GET_MODE (target)))
+ note = simplify_gen_unary (TRUNCATE, GET_MODE (target),
+ note, GET_MODE (op0));
+ else
+ note = simplify_gen_unary (ZERO_EXTEND, GET_MODE (target),
+ note, GET_MODE (op0));
+ break;
+ }
+ /* FALLTHRU */
+ default:
+ note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
+ break;
+ }
+ else
+ note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
+
+ set_unique_reg_note (last_insn, REG_EQUAL, note);
+
+ return 1;
+}
+
+/* Given two input operands, OP0 and OP1, determine what the correct from_mode
+ for a widening operation would be. In most cases this would be OP0, but if
+ that's a constant it'll be VOIDmode, which isn't useful. */
+
+static enum machine_mode
+widened_mode (enum machine_mode to_mode, rtx op0, rtx op1)
+{
+ enum machine_mode m0 = GET_MODE (op0);
+ enum machine_mode m1 = GET_MODE (op1);
+ enum machine_mode result;
+
+ if (m0 == VOIDmode && m1 == VOIDmode)
+ return to_mode;
+ else if (m0 == VOIDmode || GET_MODE_SIZE (m0) < GET_MODE_SIZE (m1))
+ result = m1;
+ else
+ result = m0;
+
+ if (GET_MODE_SIZE (result) > GET_MODE_SIZE (to_mode))
+ return to_mode;
+
+ return result;
+}
+
+/* Find a widening optab even if it doesn't widen as much as we want.
+ E.g. if from_mode is HImode, and to_mode is DImode, and there is no
+ direct HI->SI insn, then return SI->DI, if that exists.
+ If PERMIT_NON_WIDENING is non-zero then this can be used with
+ non-widening optabs also. */
+
+enum insn_code
+find_widening_optab_handler_and_mode (optab op, enum machine_mode to_mode,
+ enum machine_mode from_mode,
+ int permit_non_widening,
+ enum machine_mode *found_mode)
+{
+ for (; (permit_non_widening || from_mode != to_mode)
+ && GET_MODE_SIZE (from_mode) <= GET_MODE_SIZE (to_mode)
+ && from_mode != VOIDmode;
+ from_mode = GET_MODE_WIDER_MODE (from_mode))
+ {
+ enum insn_code handler = widening_optab_handler (op, to_mode,
+ from_mode);
+
+ if (handler != CODE_FOR_nothing)
+ {
+ if (found_mode)
+ *found_mode = from_mode;
+ return handler;
+ }
+ }
+
+ return CODE_FOR_nothing;
+}
+
+/* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
+ says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
+ not actually do a sign-extend or zero-extend, but can leave the
+ higher-order bits of the result rtx undefined, for example, in the case
+ of logical operations, but not right shifts. */
+
+static rtx
+widen_operand (rtx op, enum machine_mode mode, enum machine_mode oldmode,
+ int unsignedp, int no_extend)
+{
+ rtx result;
+
+ /* If we don't have to extend and this is a constant, return it. */
+ if (no_extend && GET_MODE (op) == VOIDmode)
+ return op;
+
+ /* If we must extend do so. If OP is a SUBREG for a promoted object, also
+ extend since it will be more efficient to do so unless the signedness of
+ a promoted object differs from our extension. */
+ if (! no_extend
+ || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
+ && SUBREG_PROMOTED_UNSIGNED_P (op) == unsignedp))
+ return convert_modes (mode, oldmode, op, unsignedp);
+
+ /* If MODE is no wider than a single word, we return a paradoxical
+ SUBREG. */
+ if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
+ return gen_rtx_SUBREG (mode, force_reg (GET_MODE (op), op), 0);
+
+ /* Otherwise, get an object of MODE, clobber it, and set the low-order
+ part to OP. */
+
+ result = gen_reg_rtx (mode);
+ emit_clobber (result);
+ emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
+ return result;
+}
+
+/* Return the optab used for computing the operation given by the tree code,
+ CODE and the tree EXP. This function is not always usable (for example, it
+ cannot give complete results for multiplication or division) but probably
+ ought to be relied on more widely throughout the expander. */
+optab
+optab_for_tree_code (enum tree_code code, const_tree type,
+ enum optab_subtype subtype)
+{
+ bool trapv;
+ switch (code)
+ {
+ case BIT_AND_EXPR:
+ return and_optab;
+
+ case BIT_IOR_EXPR:
+ return ior_optab;
+
+ case BIT_NOT_EXPR:
+ return one_cmpl_optab;
+
+ case BIT_XOR_EXPR:
+ return xor_optab;
+
+ case TRUNC_MOD_EXPR:
+ case CEIL_MOD_EXPR:
+ case FLOOR_MOD_EXPR:
+ case ROUND_MOD_EXPR:
+ return TYPE_UNSIGNED (type) ? umod_optab : smod_optab;
+
+ case RDIV_EXPR:
+ case TRUNC_DIV_EXPR:
+ case CEIL_DIV_EXPR:
+ case FLOOR_DIV_EXPR:
+ case ROUND_DIV_EXPR:
+ case EXACT_DIV_EXPR:
+ if (TYPE_SATURATING(type))
+ return TYPE_UNSIGNED(type) ? usdiv_optab : ssdiv_optab;
+ return TYPE_UNSIGNED (type) ? udiv_optab : sdiv_optab;
+
+ case LSHIFT_EXPR:
+ if (TREE_CODE (type) == VECTOR_TYPE)
+ {
+ if (subtype == optab_vector)
+ return TYPE_SATURATING (type) ? NULL : vashl_optab;
+
+ gcc_assert (subtype == optab_scalar);
+ }
+ if (TYPE_SATURATING(type))
+ return TYPE_UNSIGNED(type) ? usashl_optab : ssashl_optab;
+ return ashl_optab;
+
+ case RSHIFT_EXPR:
+ if (TREE_CODE (type) == VECTOR_TYPE)
+ {
+ if (subtype == optab_vector)
+ return TYPE_UNSIGNED (type) ? vlshr_optab : vashr_optab;
+
+ gcc_assert (subtype == optab_scalar);
+ }
+ return TYPE_UNSIGNED (type) ? lshr_optab : ashr_optab;
+
+ case LROTATE_EXPR:
+ if (TREE_CODE (type) == VECTOR_TYPE)
+ {
+ if (subtype == optab_vector)
+ return vrotl_optab;
+
+ gcc_assert (subtype == optab_scalar);
+ }
+ return rotl_optab;
+
+ case RROTATE_EXPR:
+ if (TREE_CODE (type) == VECTOR_TYPE)
+ {
+ if (subtype == optab_vector)
+ return vrotr_optab;
+
+ gcc_assert (subtype == optab_scalar);
+ }
+ return rotr_optab;
+
+ case MAX_EXPR:
+ return TYPE_UNSIGNED (type) ? umax_optab : smax_optab;
+
+ case MIN_EXPR:
+ return TYPE_UNSIGNED (type) ? umin_optab : smin_optab;
+
+ case REALIGN_LOAD_EXPR:
+ return vec_realign_load_optab;
+
+ case WIDEN_SUM_EXPR:
+ return TYPE_UNSIGNED (type) ? usum_widen_optab : ssum_widen_optab;
+
+ case DOT_PROD_EXPR:
+ return TYPE_UNSIGNED (type) ? udot_prod_optab : sdot_prod_optab;
+
+ case WIDEN_MULT_PLUS_EXPR:
+ return (TYPE_UNSIGNED (type)
+ ? (TYPE_SATURATING (type)
+ ? usmadd_widen_optab : umadd_widen_optab)
+ : (TYPE_SATURATING (type)
+ ? ssmadd_widen_optab : smadd_widen_optab));
+
+ case WIDEN_MULT_MINUS_EXPR:
+ return (TYPE_UNSIGNED (type)
+ ? (TYPE_SATURATING (type)
+ ? usmsub_widen_optab : umsub_widen_optab)
+ : (TYPE_SATURATING (type)
+ ? ssmsub_widen_optab : smsub_widen_optab));
+
+ case FMA_EXPR:
+ return fma_optab;
+
+ case REDUC_MAX_EXPR:
+ return TYPE_UNSIGNED (type) ? reduc_umax_optab : reduc_smax_optab;
+
+ case REDUC_MIN_EXPR:
+ return TYPE_UNSIGNED (type) ? reduc_umin_optab : reduc_smin_optab;
+
+ case REDUC_PLUS_EXPR:
+ return TYPE_UNSIGNED (type) ? reduc_uplus_optab : reduc_splus_optab;
+
+ case VEC_LSHIFT_EXPR:
+ return vec_shl_optab;
+
+ case VEC_RSHIFT_EXPR:
+ return vec_shr_optab;
+
+ case VEC_WIDEN_MULT_HI_EXPR:
+ return TYPE_UNSIGNED (type) ?
+ vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
+
+ case VEC_WIDEN_MULT_LO_EXPR:
+ return TYPE_UNSIGNED (type) ?
+ vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
+
+ case VEC_WIDEN_LSHIFT_HI_EXPR:
+ return TYPE_UNSIGNED (type) ?
+ vec_widen_ushiftl_hi_optab : vec_widen_sshiftl_hi_optab;
+
+ case VEC_WIDEN_LSHIFT_LO_EXPR:
+ return TYPE_UNSIGNED (type) ?
+ vec_widen_ushiftl_lo_optab : vec_widen_sshiftl_lo_optab;
+
+ case VEC_UNPACK_HI_EXPR:
+ return TYPE_UNSIGNED (type) ?
+ vec_unpacku_hi_optab : vec_unpacks_hi_optab;
+
+ case VEC_UNPACK_LO_EXPR:
+ return TYPE_UNSIGNED (type) ?
+ vec_unpacku_lo_optab : vec_unpacks_lo_optab;
+
+ case VEC_UNPACK_FLOAT_HI_EXPR:
+ /* The signedness is determined from input operand. */
+ return TYPE_UNSIGNED (type) ?
+ vec_unpacku_float_hi_optab : vec_unpacks_float_hi_optab;
+
+ case VEC_UNPACK_FLOAT_LO_EXPR:
+ /* The signedness is determined from input operand. */
+ return TYPE_UNSIGNED (type) ?
+ vec_unpacku_float_lo_optab : vec_unpacks_float_lo_optab;
+
+ case VEC_PACK_TRUNC_EXPR:
+ return vec_pack_trunc_optab;
+
+ case VEC_PACK_SAT_EXPR:
+ return TYPE_UNSIGNED (type) ? vec_pack_usat_optab : vec_pack_ssat_optab;
+
+ case VEC_PACK_FIX_TRUNC_EXPR:
+ /* The signedness is determined from output operand. */
+ return TYPE_UNSIGNED (type) ?
+ vec_pack_ufix_trunc_optab : vec_pack_sfix_trunc_optab;
+
+ default:
+ break;
+ }
+
+ trapv = INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type);
+ switch (code)
+ {
+ case POINTER_PLUS_EXPR:
+ case PLUS_EXPR:
+ if (TYPE_SATURATING(type))
+ return TYPE_UNSIGNED(type) ? usadd_optab : ssadd_optab;
+ return trapv ? addv_optab : add_optab;
+
+ case MINUS_EXPR:
+ if (TYPE_SATURATING(type))
+ return TYPE_UNSIGNED(type) ? ussub_optab : sssub_optab;
+ return trapv ? subv_optab : sub_optab;
+
+ case MULT_EXPR:
+ if (TYPE_SATURATING(type))
+ return TYPE_UNSIGNED(type) ? usmul_optab : ssmul_optab;
+ return trapv ? smulv_optab : smul_optab;
+
+ case NEGATE_EXPR:
+ if (TYPE_SATURATING(type))
+ return TYPE_UNSIGNED(type) ? usneg_optab : ssneg_optab;
+ return trapv ? negv_optab : neg_optab;
+
+ case ABS_EXPR:
+ return trapv ? absv_optab : abs_optab;
+
+ default:
+ return NULL;
+ }
+}
+
+
+/* Expand vector widening operations.
+
+ There are two different classes of operations handled here:
+ 1) Operations whose result is wider than all the arguments to the operation.
+ Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
+ In this case OP0 and optionally OP1 would be initialized,
+ but WIDE_OP wouldn't (not relevant for this case).
+ 2) Operations whose result is of the same size as the last argument to the
+ operation, but wider than all the other arguments to the operation.
+ Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
+ In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
+
+ E.g, when called to expand the following operations, this is how
+ the arguments will be initialized:
+ nops OP0 OP1 WIDE_OP
+ widening-sum 2 oprnd0 - oprnd1
+ widening-dot-product 3 oprnd0 oprnd1 oprnd2
+ widening-mult 2 oprnd0 oprnd1 -
+ type-promotion (vec-unpack) 1 oprnd0 - - */
+
+rtx
+expand_widen_pattern_expr (sepops ops, rtx op0, rtx op1, rtx wide_op,
+ rtx target, int unsignedp)
+{
+ struct expand_operand eops[4];
+ tree oprnd0, oprnd1, oprnd2;
+ enum machine_mode wmode = VOIDmode, tmode0, tmode1 = VOIDmode;
+ optab widen_pattern_optab;
+ enum insn_code icode;
+ int nops = TREE_CODE_LENGTH (ops->code);
+ int op;
+
+ oprnd0 = ops->op0;
+ tmode0 = TYPE_MODE (TREE_TYPE (oprnd0));
+ widen_pattern_optab =
+ optab_for_tree_code (ops->code, TREE_TYPE (oprnd0), optab_default);
+ if (ops->code == WIDEN_MULT_PLUS_EXPR
+ || ops->code == WIDEN_MULT_MINUS_EXPR)
+ icode = find_widening_optab_handler (widen_pattern_optab,
+ TYPE_MODE (TREE_TYPE (ops->op2)),
+ tmode0, 0);
+ else
+ icode = optab_handler (widen_pattern_optab, tmode0);
+ gcc_assert (icode != CODE_FOR_nothing);
+
+ if (nops >= 2)
+ {
+ oprnd1 = ops->op1;
+ tmode1 = TYPE_MODE (TREE_TYPE (oprnd1));
+ }
+
+ /* The last operand is of a wider mode than the rest of the operands. */
+ if (nops == 2)
+ wmode = tmode1;
+ else if (nops == 3)
+ {
+ gcc_assert (tmode1 == tmode0);
+ gcc_assert (op1);
+ oprnd2 = ops->op2;
+ wmode = TYPE_MODE (TREE_TYPE (oprnd2));
+ }
+
+ op = 0;
+ create_output_operand (&eops[op++], target, TYPE_MODE (ops->type));
+ create_convert_operand_from (&eops[op++], op0, tmode0, unsignedp);
+ if (op1)
+ create_convert_operand_from (&eops[op++], op1, tmode1, unsignedp);
+ if (wide_op)
+ create_convert_operand_from (&eops[op++], wide_op, wmode, unsignedp);
+ expand_insn (icode, op, eops);
+ return eops[0].value;
+}
+
+/* Generate code to perform an operation specified by TERNARY_OPTAB
+ on operands OP0, OP1 and OP2, with result having machine-mode MODE.
+
+ UNSIGNEDP is for the case where we have to widen the operands
+ to perform the operation. It says to use zero-extension.
+
+ If TARGET is nonzero, the value
+ is generated there, if it is convenient to do so.
+ In all cases an rtx is returned for the locus of the value;
+ this may or may not be TARGET. */
+
+rtx
+expand_ternary_op (enum machine_mode mode, optab ternary_optab, rtx op0,
+ rtx op1, rtx op2, rtx target, int unsignedp)
+{
+ struct expand_operand ops[4];
+ enum insn_code icode = optab_handler (ternary_optab, mode);
+
+ gcc_assert (optab_handler (ternary_optab, mode) != CODE_FOR_nothing);
+
+ create_output_operand (&ops[0], target, mode);
+ create_convert_operand_from (&ops[1], op0, mode, unsignedp);
+ create_convert_operand_from (&ops[2], op1, mode, unsignedp);
+ create_convert_operand_from (&ops[3], op2, mode, unsignedp);
+ expand_insn (icode, 4, ops);
+ return ops[0].value;
+}
+
+
+/* Like expand_binop, but return a constant rtx if the result can be
+ calculated at compile time. The arguments and return value are
+ otherwise the same as for expand_binop. */
+
+rtx
+simplify_expand_binop (enum machine_mode mode, optab binoptab,
+ rtx op0, rtx op1, rtx target, int unsignedp,
+ enum optab_methods methods)
+{
+ if (CONSTANT_P (op0) && CONSTANT_P (op1))
+ {
+ rtx x = simplify_binary_operation (binoptab->code, mode, op0, op1);
+
+ if (x)
+ return x;
+ }
+
+ return expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods);
+}
+
+/* Like simplify_expand_binop, but always put the result in TARGET.
+ Return true if the expansion succeeded. */
+
+bool
+force_expand_binop (enum machine_mode mode, optab binoptab,
+ rtx op0, rtx op1, rtx target, int unsignedp,
+ enum optab_methods methods)
+{
+ rtx x = simplify_expand_binop (mode, binoptab, op0, op1,
+ target, unsignedp, methods);
+ if (x == 0)
+ return false;
+ if (x != target)
+ emit_move_insn (target, x);
+ return true;
+}
+
+/* Generate insns for VEC_LSHIFT_EXPR, VEC_RSHIFT_EXPR. */
+
+rtx
+expand_vec_shift_expr (sepops ops, rtx target)
+{
+ struct expand_operand eops[3];
+ enum insn_code icode;
+ rtx rtx_op1, rtx_op2;
+ enum machine_mode mode = TYPE_MODE (ops->type);
+ tree vec_oprnd = ops->op0;
+ tree shift_oprnd = ops->op1;
+ optab shift_optab;
+
+ switch (ops->code)
+ {
+ case VEC_RSHIFT_EXPR:
+ shift_optab = vec_shr_optab;
+ break;
+ case VEC_LSHIFT_EXPR:
+ shift_optab = vec_shl_optab;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ icode = optab_handler (shift_optab, mode);
+ gcc_assert (icode != CODE_FOR_nothing);
+
+ rtx_op1 = expand_normal (vec_oprnd);
+ rtx_op2 = expand_normal (shift_oprnd);
+
+ create_output_operand (&eops[0], target, mode);
+ create_input_operand (&eops[1], rtx_op1, GET_MODE (rtx_op1));
+ create_convert_operand_from_type (&eops[2], rtx_op2, TREE_TYPE (shift_oprnd));
+ expand_insn (icode, 3, eops);
+
+ return eops[0].value;
+}
+
+/* Create a new vector value in VMODE with all elements set to OP. The
+ mode of OP must be the element mode of VMODE. If OP is a constant,
+ then the return value will be a constant. */
+
+static rtx
+expand_vector_broadcast (enum machine_mode vmode, rtx op)
+{
+ enum insn_code icode;
+ rtvec vec;
+ rtx ret;
+ int i, n;
+
+ gcc_checking_assert (VECTOR_MODE_P (vmode));
+
+ n = GET_MODE_NUNITS (vmode);
+ vec = rtvec_alloc (n);
+ for (i = 0; i < n; ++i)
+ RTVEC_ELT (vec, i) = op;
+
+ if (CONSTANT_P (op))
+ return gen_rtx_CONST_VECTOR (vmode, vec);
+
+ /* ??? If the target doesn't have a vec_init, then we have no easy way
+ of performing this operation. Most of this sort of generic support
+ is hidden away in the vector lowering support in gimple. */
+ icode = optab_handler (vec_init_optab, vmode);
+ if (icode == CODE_FOR_nothing)
+ return NULL;
+
+ ret = gen_reg_rtx (vmode);
+ emit_insn (GEN_FCN (icode) (ret, gen_rtx_PARALLEL (vmode, vec)));
+
+ return ret;
+}
+
+/* This subroutine of expand_doubleword_shift handles the cases in which
+ the effective shift value is >= BITS_PER_WORD. The arguments and return
+ value are the same as for the parent routine, except that SUPERWORD_OP1
+ is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
+ INTO_TARGET may be null if the caller has decided to calculate it. */
+
+static bool
+expand_superword_shift (optab binoptab, rtx outof_input, rtx superword_op1,
+ rtx outof_target, rtx into_target,
+ int unsignedp, enum optab_methods methods)
+{
+ if (into_target != 0)
+ if (!force_expand_binop (word_mode, binoptab, outof_input, superword_op1,
+ into_target, unsignedp, methods))
+ return false;
+
+ if (outof_target != 0)
+ {
+ /* For a signed right shift, we must fill OUTOF_TARGET with copies
+ of the sign bit, otherwise we must fill it with zeros. */
+ if (binoptab != ashr_optab)
+ emit_move_insn (outof_target, CONST0_RTX (word_mode));
+ else
+ if (!force_expand_binop (word_mode, binoptab,
+ outof_input, GEN_INT (BITS_PER_WORD - 1),
+ outof_target, unsignedp, methods))
+ return false;
+ }
+ return true;
+}
+
+/* This subroutine of expand_doubleword_shift handles the cases in which
+ the effective shift value is < BITS_PER_WORD. The arguments and return
+ value are the same as for the parent routine. */
+
+static bool
+expand_subword_shift (enum machine_mode op1_mode, optab binoptab,
+ rtx outof_input, rtx into_input, rtx op1,
+ rtx outof_target, rtx into_target,
+ int unsignedp, enum optab_methods methods,
+ unsigned HOST_WIDE_INT shift_mask)
+{
+ optab reverse_unsigned_shift, unsigned_shift;
+ rtx tmp, carries;
+
+ reverse_unsigned_shift = (binoptab == ashl_optab ? lshr_optab : ashl_optab);
+ unsigned_shift = (binoptab == ashl_optab ? ashl_optab : lshr_optab);
+
+ /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
+ We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
+ the opposite direction to BINOPTAB. */
+ if (CONSTANT_P (op1) || shift_mask >= BITS_PER_WORD)
+ {
+ carries = outof_input;
+ tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
+ tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
+ 0, true, methods);
+ }
+ else
+ {
+ /* We must avoid shifting by BITS_PER_WORD bits since that is either
+ the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
+ has unknown behavior. Do a single shift first, then shift by the
+ remainder. It's OK to use ~OP1 as the remainder if shift counts
+ are truncated to the mode size. */
+ carries = expand_binop (word_mode, reverse_unsigned_shift,
+ outof_input, const1_rtx, 0, unsignedp, methods);
+ if (shift_mask == BITS_PER_WORD - 1)
+ {
+ tmp = immed_double_const (-1, -1, op1_mode);
+ tmp = simplify_expand_binop (op1_mode, xor_optab, op1, tmp,
+ 0, true, methods);
+ }
+ else
+ {
+ tmp = immed_double_const (BITS_PER_WORD - 1, 0, op1_mode);
+ tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
+ 0, true, methods);
+ }
+ }
+ if (tmp == 0 || carries == 0)
+ return false;
+ carries = expand_binop (word_mode, reverse_unsigned_shift,
+ carries, tmp, 0, unsignedp, methods);
+ if (carries == 0)
+ return false;
+
+ /* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
+ so the result can go directly into INTO_TARGET if convenient. */
+ tmp = expand_binop (word_mode, unsigned_shift, into_input, op1,
+ into_target, unsignedp, methods);
+ if (tmp == 0)
+ return false;
+
+ /* Now OR in the bits carried over from OUTOF_INPUT. */
+ if (!force_expand_binop (word_mode, ior_optab, tmp, carries,
+ into_target, unsignedp, methods))
+ return false;
+
+ /* Use a standard word_mode shift for the out-of half. */
+ if (outof_target != 0)
+ if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
+ outof_target, unsignedp, methods))
+ return false;
+
+ return true;
+}
+
+
+#ifdef HAVE_conditional_move
+/* Try implementing expand_doubleword_shift using conditional moves.
+ The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
+ otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
+ are the shift counts to use in the former and latter case. All other
+ arguments are the same as the parent routine. */
+
+static bool
+expand_doubleword_shift_condmove (enum machine_mode op1_mode, optab binoptab,
+ enum rtx_code cmp_code, rtx cmp1, rtx cmp2,
+ rtx outof_input, rtx into_input,
+ rtx subword_op1, rtx superword_op1,
+ rtx outof_target, rtx into_target,
+ int unsignedp, enum optab_methods methods,
+ unsigned HOST_WIDE_INT shift_mask)
+{
+ rtx outof_superword, into_superword;
+
+ /* Put the superword version of the output into OUTOF_SUPERWORD and
+ INTO_SUPERWORD. */
+ outof_superword = outof_target != 0 ? gen_reg_rtx (word_mode) : 0;
+ if (outof_target != 0 && subword_op1 == superword_op1)
+ {
+ /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
+ OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
+ into_superword = outof_target;
+ if (!expand_superword_shift (binoptab, outof_input, superword_op1,
+ outof_superword, 0, unsignedp, methods))
+ return false;
+ }
+ else
+ {
+ into_superword = gen_reg_rtx (word_mode);
+ if (!expand_superword_shift (binoptab, outof_input, superword_op1,
+ outof_superword, into_superword,
+ unsignedp, methods))
+ return false;
+ }
+
+ /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
+ if (!expand_subword_shift (op1_mode, binoptab,
+ outof_input, into_input, subword_op1,
+ outof_target, into_target,
+ unsignedp, methods, shift_mask))
+ return false;
+
+ /* Select between them. Do the INTO half first because INTO_SUPERWORD
+ might be the current value of OUTOF_TARGET. */
+ if (!emit_conditional_move (into_target, cmp_code, cmp1, cmp2, op1_mode,
+ into_target, into_superword, word_mode, false))
+ return false;
+
+ if (outof_target != 0)
+ if (!emit_conditional_move (outof_target, cmp_code, cmp1, cmp2, op1_mode,
+ outof_target, outof_superword,
+ word_mode, false))
+ return false;
+
+ return true;
+}
+#endif
+
+/* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
+ OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
+ input operand; the shift moves bits in the direction OUTOF_INPUT->
+ INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
+ of the target. OP1 is the shift count and OP1_MODE is its mode.
+ If OP1 is constant, it will have been truncated as appropriate
+ and is known to be nonzero.
+
+ If SHIFT_MASK is zero, the result of word shifts is undefined when the
+ shift count is outside the range [0, BITS_PER_WORD). This routine must
+ avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
+
+ If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
+ masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
+ fill with zeros or sign bits as appropriate.
+
+ If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
+ a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
+ Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
+ In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
+ are undefined.
+
+ BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
+ may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
+ OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
+ function wants to calculate it itself.
+
+ Return true if the shift could be successfully synthesized. */
+
+static bool
+expand_doubleword_shift (enum machine_mode op1_mode, optab binoptab,
+ rtx outof_input, rtx into_input, rtx op1,
+ rtx outof_target, rtx into_target,
+ int unsignedp, enum optab_methods methods,
+ unsigned HOST_WIDE_INT shift_mask)
+{
+ rtx superword_op1, tmp, cmp1, cmp2;
+ rtx subword_label, done_label;
+ enum rtx_code cmp_code;
+
+ /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
+ fill the result with sign or zero bits as appropriate. If so, the value
+ of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
+ this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
+ and INTO_INPUT), then emit code to set up OUTOF_TARGET.
+
+ This isn't worthwhile for constant shifts since the optimizers will
+ cope better with in-range shift counts. */
+ if (shift_mask >= BITS_PER_WORD
+ && outof_target != 0
+ && !CONSTANT_P (op1))
+ {
+ if (!expand_doubleword_shift (op1_mode, binoptab,
+ outof_input, into_input, op1,
+ 0, into_target,
+ unsignedp, methods, shift_mask))
+ return false;
+ if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
+ outof_target, unsignedp, methods))
+ return false;
+ return true;
+ }
+
+ /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
+ is true when the effective shift value is less than BITS_PER_WORD.
+ Set SUPERWORD_OP1 to the shift count that should be used to shift
+ OUTOF_INPUT into INTO_TARGET when the condition is false. */
+ tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
+ if (!CONSTANT_P (op1) && shift_mask == BITS_PER_WORD - 1)
+ {
+ /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
+ is a subword shift count. */
+ cmp1 = simplify_expand_binop (op1_mode, and_optab, op1, tmp,
+ 0, true, methods);
+ cmp2 = CONST0_RTX (op1_mode);
+ cmp_code = EQ;
+ superword_op1 = op1;
+ }
+ else
+ {
+ /* Set CMP1 to OP1 - BITS_PER_WORD. */
+ cmp1 = simplify_expand_binop (op1_mode, sub_optab, op1, tmp,
+ 0, true, methods);
+ cmp2 = CONST0_RTX (op1_mode);
+ cmp_code = LT;
+ superword_op1 = cmp1;
+ }
+ if (cmp1 == 0)
+ return false;
+
+ /* If we can compute the condition at compile time, pick the
+ appropriate subroutine. */
+ tmp = simplify_relational_operation (cmp_code, SImode, op1_mode, cmp1, cmp2);
+ if (tmp != 0 && CONST_INT_P (tmp))
+ {
+ if (tmp == const0_rtx)
+ return expand_superword_shift (binoptab, outof_input, superword_op1,
+ outof_target, into_target,
+ unsignedp, methods);
+ else
+ return expand_subword_shift (op1_mode, binoptab,
+ outof_input, into_input, op1,
+ outof_target, into_target,
+ unsignedp, methods, shift_mask);
+ }
+
+#ifdef HAVE_conditional_move
+ /* Try using conditional moves to generate straight-line code. */
+ {
+ rtx start = get_last_insn ();
+ if (expand_doubleword_shift_condmove (op1_mode, binoptab,
+ cmp_code, cmp1, cmp2,
+ outof_input, into_input,
+ op1, superword_op1,
+ outof_target, into_target,
+ unsignedp, methods, shift_mask))
+ return true;
+ delete_insns_since (start);
+ }
+#endif
+
+ /* As a last resort, use branches to select the correct alternative. */
+ subword_label = gen_label_rtx ();
+ done_label = gen_label_rtx ();
+
+ NO_DEFER_POP;
+ do_compare_rtx_and_jump (cmp1, cmp2, cmp_code, false, op1_mode,
+ 0, 0, subword_label, -1);
+ OK_DEFER_POP;
+
+ if (!expand_superword_shift (binoptab, outof_input, superword_op1,
+ outof_target, into_target,
+ unsignedp, methods))
+ return false;
+
+ emit_jump_insn (gen_jump (done_label));
+ emit_barrier ();
+ emit_label (subword_label);
+
+ if (!expand_subword_shift (op1_mode, binoptab,
+ outof_input, into_input, op1,
+ outof_target, into_target,
+ unsignedp, methods, shift_mask))
+ return false;
+
+ emit_label (done_label);
+ return true;
+}
+
+/* Subroutine of expand_binop. Perform a double word multiplication of
+ operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
+ as the target's word_mode. This function return NULL_RTX if anything
+ goes wrong, in which case it may have already emitted instructions
+ which need to be deleted.
+
+ If we want to multiply two two-word values and have normal and widening
+ multiplies of single-word values, we can do this with three smaller
+ multiplications.
+
+ The multiplication proceeds as follows:
+ _______________________
+ [__op0_high_|__op0_low__]
+ _______________________
+ * [__op1_high_|__op1_low__]
+ _______________________________________________
+ _______________________
+ (1) [__op0_low__*__op1_low__]
+ _______________________
+ (2a) [__op0_low__*__op1_high_]
+ _______________________
+ (2b) [__op0_high_*__op1_low__]
+ _______________________
+ (3) [__op0_high_*__op1_high_]
+
+
+ This gives a 4-word result. Since we are only interested in the
+ lower 2 words, partial result (3) and the upper words of (2a) and
+ (2b) don't need to be calculated. Hence (2a) and (2b) can be
+ calculated using non-widening multiplication.
+
+ (1), however, needs to be calculated with an unsigned widening
+ multiplication. If this operation is not directly supported we
+ try using a signed widening multiplication and adjust the result.
+ This adjustment works as follows:
+
+ If both operands are positive then no adjustment is needed.
+
+ If the operands have different signs, for example op0_low < 0 and
+ op1_low >= 0, the instruction treats the most significant bit of
+ op0_low as a sign bit instead of a bit with significance
+ 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
+ with 2**BITS_PER_WORD - op0_low, and two's complements the
+ result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
+ the result.
+
+ Similarly, if both operands are negative, we need to add
+ (op0_low + op1_low) * 2**BITS_PER_WORD.
+
+ We use a trick to adjust quickly. We logically shift op0_low right
+ (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
+ op0_high (op1_high) before it is used to calculate 2b (2a). If no
+ logical shift exists, we do an arithmetic right shift and subtract
+ the 0 or -1. */
+
+static rtx
+expand_doubleword_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
+ bool umulp, enum optab_methods methods)
+{
+ int low = (WORDS_BIG_ENDIAN ? 1 : 0);
+ int high = (WORDS_BIG_ENDIAN ? 0 : 1);
+ rtx wordm1 = umulp ? NULL_RTX : GEN_INT (BITS_PER_WORD - 1);
+ rtx product, adjust, product_high, temp;
+
+ rtx op0_high = operand_subword_force (op0, high, mode);
+ rtx op0_low = operand_subword_force (op0, low, mode);
+ rtx op1_high = operand_subword_force (op1, high, mode);
+ rtx op1_low = operand_subword_force (op1, low, mode);
+
+ /* If we're using an unsigned multiply to directly compute the product
+ of the low-order words of the operands and perform any required
+ adjustments of the operands, we begin by trying two more multiplications
+ and then computing the appropriate sum.
+
+ We have checked above that the required addition is provided.
+ Full-word addition will normally always succeed, especially if
+ it is provided at all, so we don't worry about its failure. The
+ multiplication may well fail, however, so we do handle that. */
+
+ if (!umulp)
+ {
+ /* ??? This could be done with emit_store_flag where available. */
+ temp = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
+ NULL_RTX, 1, methods);
+ if (temp)
+ op0_high = expand_binop (word_mode, add_optab, op0_high, temp,
+ NULL_RTX, 0, OPTAB_DIRECT);
+ else
+ {
+ temp = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
+ NULL_RTX, 0, methods);
+ if (!temp)
+ return NULL_RTX;
+ op0_high = expand_binop (word_mode, sub_optab, op0_high, temp,
+ NULL_RTX, 0, OPTAB_DIRECT);
+ }
+
+ if (!op0_high)
+ return NULL_RTX;
+ }
+
+ adjust = expand_binop (word_mode, smul_optab, op0_high, op1_low,
+ NULL_RTX, 0, OPTAB_DIRECT);
+ if (!adjust)
+ return NULL_RTX;
+
+ /* OP0_HIGH should now be dead. */
+
+ if (!umulp)
+ {
+ /* ??? This could be done with emit_store_flag where available. */
+ temp = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
+ NULL_RTX, 1, methods);
+ if (temp)
+ op1_high = expand_binop (word_mode, add_optab, op1_high, temp,
+ NULL_RTX, 0, OPTAB_DIRECT);
+ else
+ {
+ temp = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
+ NULL_RTX, 0, methods);
+ if (!temp)
+ return NULL_RTX;
+ op1_high = expand_binop (word_mode, sub_optab, op1_high, temp,
+ NULL_RTX, 0, OPTAB_DIRECT);
+ }
+
+ if (!op1_high)
+ return NULL_RTX;
+ }
+
+ temp = expand_binop (word_mode, smul_optab, op1_high, op0_low,
+ NULL_RTX, 0, OPTAB_DIRECT);
+ if (!temp)
+ return NULL_RTX;
+
+ /* OP1_HIGH should now be dead. */
+
+ adjust = expand_binop (word_mode, add_optab, adjust, temp,
+ NULL_RTX, 0, OPTAB_DIRECT);
+
+ if (target && !REG_P (target))
+ target = NULL_RTX;
+
+ if (umulp)
+ product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
+ target, 1, OPTAB_DIRECT);
+ else
+ product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
+ target, 1, OPTAB_DIRECT);
+
+ if (!product)
+ return NULL_RTX;
+
+ product_high = operand_subword (product, high, 1, mode);
+ adjust = expand_binop (word_mode, add_optab, product_high, adjust,
+ NULL_RTX, 0, OPTAB_DIRECT);
+ emit_move_insn (product_high, adjust);
+ return product;
+}
+
+/* Wrapper around expand_binop which takes an rtx code to specify
+ the operation to perform, not an optab pointer. All other
+ arguments are the same. */
+rtx
+expand_simple_binop (enum machine_mode mode, enum rtx_code code, rtx op0,
+ rtx op1, rtx target, int unsignedp,
+ enum optab_methods methods)
+{
+ optab binop = code_to_optab[(int) code];
+ gcc_assert (binop);
+
+ return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
+}
+
+/* Return whether OP0 and OP1 should be swapped when expanding a commutative
+ binop. Order them according to commutative_operand_precedence and, if
+ possible, try to put TARGET or a pseudo first. */
+static bool
+swap_commutative_operands_with_target (rtx target, rtx op0, rtx op1)
+{
+ int op0_prec = commutative_operand_precedence (op0);
+ int op1_prec = commutative_operand_precedence (op1);
+
+ if (op0_prec < op1_prec)
+ return true;
+
+ if (op0_prec > op1_prec)
+ return false;
+
+ /* With equal precedence, both orders are ok, but it is better if the
+ first operand is TARGET, or if both TARGET and OP0 are pseudos. */
+ if (target == 0 || REG_P (target))
+ return (REG_P (op1) && !REG_P (op0)) || target == op1;
+ else
+ return rtx_equal_p (op1, target);
+}
+
+/* Return true if BINOPTAB implements a shift operation. */
+
+static bool
+shift_optab_p (optab binoptab)
+{
+ switch (binoptab->code)
+ {
+ case ASHIFT:
+ case SS_ASHIFT:
+ case US_ASHIFT:
+ case ASHIFTRT:
+ case LSHIFTRT:
+ case ROTATE:
+ case ROTATERT:
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+/* Return true if BINOPTAB implements a commutative binary operation. */
+
+static bool
+commutative_optab_p (optab binoptab)
+{
+ return (GET_RTX_CLASS (binoptab->code) == RTX_COMM_ARITH
+ || binoptab == smul_widen_optab
+ || binoptab == umul_widen_optab
+ || binoptab == smul_highpart_optab
+ || binoptab == umul_highpart_optab);
+}
+
+/* X is to be used in mode MODE as operand OPN to BINOPTAB. If we're
+ optimizing, and if the operand is a constant that costs more than
+ 1 instruction, force the constant into a register and return that
+ register. Return X otherwise. UNSIGNEDP says whether X is unsigned. */
+
+static rtx
+avoid_expensive_constant (enum machine_mode mode, optab binoptab,
+ int opn, rtx x, bool unsignedp)
+{
+ bool speed = optimize_insn_for_speed_p ();
+
+ if (mode != VOIDmode
+ && optimize
+ && CONSTANT_P (x)
+ && rtx_cost (x, binoptab->code, opn, speed) > set_src_cost (x, speed))
+ {
+ if (CONST_INT_P (x))
+ {
+ HOST_WIDE_INT intval = trunc_int_for_mode (INTVAL (x), mode);
+ if (intval != INTVAL (x))
+ x = GEN_INT (intval);
+ }
+ else
+ x = convert_modes (mode, VOIDmode, x, unsignedp);
+ x = force_reg (mode, x);
+ }
+ return x;
+}
+
+/* Helper function for expand_binop: handle the case where there
+ is an insn that directly implements the indicated operation.
+ Returns null if this is not possible. */
+static rtx
+expand_binop_directly (enum machine_mode mode, optab binoptab,
+ rtx op0, rtx op1,
+ rtx target, int unsignedp, enum optab_methods methods,
+ rtx last)
+{
+ enum machine_mode from_mode = widened_mode (mode, op0, op1);
+ enum insn_code icode = find_widening_optab_handler (binoptab, mode,
+ from_mode, 1);
+ enum machine_mode xmode0 = insn_data[(int) icode].operand[1].mode;
+ enum machine_mode xmode1 = insn_data[(int) icode].operand[2].mode;
+ enum machine_mode mode0, mode1, tmp_mode;
+ struct expand_operand ops[3];
+ bool commutative_p;
+ rtx pat;
+ rtx xop0 = op0, xop1 = op1;
+ rtx swap;
+
+ /* If it is a commutative operator and the modes would match
+ if we would swap the operands, we can save the conversions. */
+ commutative_p = commutative_optab_p (binoptab);
+ if (commutative_p
+ && GET_MODE (xop0) != xmode0 && GET_MODE (xop1) != xmode1
+ && GET_MODE (xop0) == xmode1 && GET_MODE (xop1) == xmode1)
+ {
+ swap = xop0;
+ xop0 = xop1;
+ xop1 = swap;
+ }
+
+ /* If we are optimizing, force expensive constants into a register. */
+ xop0 = avoid_expensive_constant (xmode0, binoptab, 0, xop0, unsignedp);
+ if (!shift_optab_p (binoptab))
+ xop1 = avoid_expensive_constant (xmode1, binoptab, 1, xop1, unsignedp);
+
+ /* In case the insn wants input operands in modes different from
+ those of the actual operands, convert the operands. It would
+ seem that we don't need to convert CONST_INTs, but we do, so
+ that they're properly zero-extended, sign-extended or truncated
+ for their mode. */
+
+ mode0 = GET_MODE (xop0) != VOIDmode ? GET_MODE (xop0) : mode;
+ if (xmode0 != VOIDmode && xmode0 != mode0)
+ {
+ xop0 = convert_modes (xmode0, mode0, xop0, unsignedp);
+ mode0 = xmode0;
+ }
+
+ mode1 = GET_MODE (xop1) != VOIDmode ? GET_MODE (xop1) : mode;
+ if (xmode1 != VOIDmode && xmode1 != mode1)
+ {
+ xop1 = convert_modes (xmode1, mode1, xop1, unsignedp);
+ mode1 = xmode1;
+ }
+
+ /* If operation is commutative,
+ try to make the first operand a register.
+ Even better, try to make it the same as the target.
+ Also try to make the last operand a constant. */
+ if (commutative_p
+ && swap_commutative_operands_with_target (target, xop0, xop1))
+ {
+ swap = xop1;
+ xop1 = xop0;
+ xop0 = swap;
+ }
+
+ /* Now, if insn's predicates don't allow our operands, put them into
+ pseudo regs. */
+
+ if (binoptab == vec_pack_trunc_optab
+ || binoptab == vec_pack_usat_optab
+ || binoptab == vec_pack_ssat_optab
+ || binoptab == vec_pack_ufix_trunc_optab
+ || binoptab == vec_pack_sfix_trunc_optab)
+ {
+ /* The mode of the result is different then the mode of the
+ arguments. */
+ tmp_mode = insn_data[(int) icode].operand[0].mode;
+ if (GET_MODE_NUNITS (tmp_mode) != 2 * GET_MODE_NUNITS (mode))
+ {
+ delete_insns_since (last);
+ return NULL_RTX;
+ }
+ }
+ else
+ tmp_mode = mode;
+
+ create_output_operand (&ops[0], target, tmp_mode);
+ create_input_operand (&ops[1], xop0, mode0);
+ create_input_operand (&ops[2], xop1, mode1);
+ pat = maybe_gen_insn (icode, 3, ops);
+ if (pat)
+ {
+ /* If PAT is composed of more than one insn, try to add an appropriate
+ REG_EQUAL note to it. If we can't because TEMP conflicts with an
+ operand, call expand_binop again, this time without a target. */
+ if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
+ && ! add_equal_note (pat, ops[0].value, binoptab->code,
+ ops[1].value, ops[2].value))
+ {
+ delete_insns_since (last);
+ return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
+ unsignedp, methods);
+ }
+
+ emit_insn (pat);
+ return ops[0].value;
+ }
+ delete_insns_since (last);
+ return NULL_RTX;
+}
+
+/* Generate code to perform an operation specified by BINOPTAB
+ on operands OP0 and OP1, with result having machine-mode MODE.
+
+ UNSIGNEDP is for the case where we have to widen the operands
+ to perform the operation. It says to use zero-extension.
+
+ If TARGET is nonzero, the value
+ is generated there, if it is convenient to do so.
+ In all cases an rtx is returned for the locus of the value;
+ this may or may not be TARGET. */
+
+rtx
+expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1,
+ rtx target, int unsignedp, enum optab_methods methods)
+{
+ enum optab_methods next_methods
+ = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
+ ? OPTAB_WIDEN : methods);
+ enum mode_class mclass;
+ enum machine_mode wider_mode;
+ rtx libfunc;
+ rtx temp;
+ rtx entry_last = get_last_insn ();
+ rtx last;
+
+ mclass = GET_MODE_CLASS (mode);
+
+ /* If subtracting an integer constant, convert this into an addition of
+ the negated constant. */
+
+ if (binoptab == sub_optab && CONST_INT_P (op1))
+ {
+ op1 = negate_rtx (mode, op1);
+ binoptab = add_optab;
+ }
+
+ /* Record where to delete back to if we backtrack. */
+ last = get_last_insn ();
+
+ /* If we can do it with a three-operand insn, do so. */
+
+ if (methods != OPTAB_MUST_WIDEN
+ && find_widening_optab_handler (binoptab, mode,
+ widened_mode (mode, op0, op1), 1)
+ != CODE_FOR_nothing)
+ {
+ temp = expand_binop_directly (mode, binoptab, op0, op1, target,
+ unsignedp, methods, last);
+ if (temp)
+ return temp;
+ }
+
+ /* If we were trying to rotate, and that didn't work, try rotating
+ the other direction before falling back to shifts and bitwise-or. */
+ if (((binoptab == rotl_optab
+ && optab_handler (rotr_optab, mode) != CODE_FOR_nothing)
+ || (binoptab == rotr_optab
+ && optab_handler (rotl_optab, mode) != CODE_FOR_nothing))
+ && mclass == MODE_INT)
+ {
+ optab otheroptab = (binoptab == rotl_optab ? rotr_optab : rotl_optab);
+ rtx newop1;
+ unsigned int bits = GET_MODE_PRECISION (mode);
+
+ if (CONST_INT_P (op1))
+ newop1 = GEN_INT (bits - INTVAL (op1));
+ else if (targetm.shift_truncation_mask (mode) == bits - 1)
+ newop1 = negate_rtx (GET_MODE (op1), op1);
+ else
+ newop1 = expand_binop (GET_MODE (op1), sub_optab,
+ GEN_INT (bits), op1,
+ NULL_RTX, unsignedp, OPTAB_DIRECT);
+
+ temp = expand_binop_directly (mode, otheroptab, op0, newop1,
+ target, unsignedp, methods, last);
+ if (temp)
+ return temp;
+ }
+
+ /* If this is a multiply, see if we can do a widening operation that
+ takes operands of this mode and makes a wider mode. */
+
+ if (binoptab == smul_optab
+ && GET_MODE_2XWIDER_MODE (mode) != VOIDmode
+ && (widening_optab_handler ((unsignedp ? umul_widen_optab
+ : smul_widen_optab),
+ GET_MODE_2XWIDER_MODE (mode), mode)
+ != CODE_FOR_nothing))
+ {
+ temp = expand_binop (GET_MODE_2XWIDER_MODE (mode),
+ unsignedp ? umul_widen_optab : smul_widen_optab,
+ op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
+
+ if (temp != 0)
+ {
+ if (GET_MODE_CLASS (mode) == MODE_INT
+ && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (temp)))
+ return gen_lowpart (mode, temp);
+ else
+ return convert_to_mode (mode, temp, unsignedp);
+ }
+ }
+
+ /* If this is a vector shift by a scalar, see if we can do a vector
+ shift by a vector. If so, broadcast the scalar into a vector. */
+ if (mclass == MODE_VECTOR_INT)
+ {
+ optab otheroptab = NULL;
+
+ if (binoptab == ashl_optab)
+ otheroptab = vashl_optab;
+ else if (binoptab == ashr_optab)
+ otheroptab = vashr_optab;
+ else if (binoptab == lshr_optab)
+ otheroptab = vlshr_optab;
+ else if (binoptab == rotl_optab)
+ otheroptab = vrotl_optab;
+ else if (binoptab == rotr_optab)
+ otheroptab = vrotr_optab;
+
+ if (otheroptab && optab_handler (otheroptab, mode) != CODE_FOR_nothing)
+ {
+ rtx vop1 = expand_vector_broadcast (mode, op1);
+ if (vop1)
+ {
+ temp = expand_binop_directly (mode, otheroptab, op0, vop1,
+ target, unsignedp, methods, last);
+ if (temp)
+ return temp;
+ }
+ }
+ }
+
+ /* Look for a wider mode of the same class for which we think we
+ can open-code the operation. Check for a widening multiply at the
+ wider mode as well. */
+
+ if (CLASS_HAS_WIDER_MODES_P (mclass)
+ && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
+ for (wider_mode = GET_MODE_WIDER_MODE (mode);
+ wider_mode != VOIDmode;
+ wider_mode = GET_MODE_WIDER_MODE (wider_mode))
+ {
+ if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing
+ || (binoptab == smul_optab
+ && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
+ && (find_widening_optab_handler ((unsignedp
+ ? umul_widen_optab
+ : smul_widen_optab),
+ GET_MODE_WIDER_MODE (wider_mode),
+ mode, 0)
+ != CODE_FOR_nothing)))
+ {
+ rtx xop0 = op0, xop1 = op1;
+ int no_extend = 0;
+
+ /* For certain integer operations, we need not actually extend
+ the narrow operands, as long as we will truncate
+ the results to the same narrowness. */
+
+ if ((binoptab == ior_optab || binoptab == and_optab
+ || binoptab == xor_optab
+ || binoptab == add_optab || binoptab == sub_optab
+ || binoptab == smul_optab || binoptab == ashl_optab)
+ && mclass == MODE_INT)
+ {
+ no_extend = 1;
+ xop0 = avoid_expensive_constant (mode, binoptab, 0,
+ xop0, unsignedp);
+ if (binoptab != ashl_optab)
+ xop1 = avoid_expensive_constant (mode, binoptab, 1,
+ xop1, unsignedp);
+ }
+
+ xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
+
+ /* The second operand of a shift must always be extended. */
+ xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
+ no_extend && binoptab != ashl_optab);
+
+ temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
+ unsignedp, OPTAB_DIRECT);
+ if (temp)
+ {
+ if (mclass != MODE_INT
+ || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
+ {
+ if (target == 0)
+ target = gen_reg_rtx (mode);
+ convert_move (target, temp, 0);
+ return target;
+ }
+ else
+ return gen_lowpart (mode, temp);
+ }
+ else
+ delete_insns_since (last);
+ }
+ }
+
+ /* If operation is commutative,
+ try to make the first operand a register.
+ Even better, try to make it the same as the target.
+ Also try to make the last operand a constant. */
+ if (commutative_optab_p (binoptab)
+ && swap_commutative_operands_with_target (target, op0, op1))
+ {
+ temp = op1;
+ op1 = op0;
+ op0 = temp;
+ }
+
+ /* These can be done a word at a time. */
+ if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
+ && mclass == MODE_INT
+ && GET_MODE_SIZE (mode) > UNITS_PER_WORD
+ && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
+ {
+ int i;
+ rtx insns;
+
+ /* If TARGET is the same as one of the operands, the REG_EQUAL note
+ won't be accurate, so use a new target. */
+ if (target == 0
+ || target == op0
+ || target == op1
+ || !valid_multiword_target_p (target))
+ target = gen_reg_rtx (mode);
+
+ start_sequence ();
+
+ /* Do the actual arithmetic. */
+ for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
+ {
+ rtx target_piece = operand_subword (target, i, 1, mode);
+ rtx x = expand_binop (word_mode, binoptab,
+ operand_subword_force (op0, i, mode),
+ operand_subword_force (op1, i, mode),
+ target_piece, unsignedp, next_methods);
+
+ if (x == 0)
+ break;
+
+ if (target_piece != x)
+ emit_move_insn (target_piece, x);
+ }
+
+ insns = get_insns ();
+ end_sequence ();
+
+ if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
+ {
+ emit_insn (insns);
+ return target;
+ }
+ }
+
+ /* Synthesize double word shifts from single word shifts. */
+ if ((binoptab == lshr_optab || binoptab == ashl_optab
+ || binoptab == ashr_optab)
+ && mclass == MODE_INT
+ && (CONST_INT_P (op1) || optimize_insn_for_speed_p ())
+ && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
+ && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode)
+ && optab_handler (binoptab, word_mode) != CODE_FOR_nothing
+ && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
+ && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
+ {
+ unsigned HOST_WIDE_INT shift_mask, double_shift_mask;
+ enum machine_mode op1_mode;
+
+ double_shift_mask = targetm.shift_truncation_mask (mode);
+ shift_mask = targetm.shift_truncation_mask (word_mode);
+ op1_mode = GET_MODE (op1) != VOIDmode ? GET_MODE (op1) : word_mode;
+
+ /* Apply the truncation to constant shifts. */
+ if (double_shift_mask > 0 && CONST_INT_P (op1))
+ op1 = GEN_INT (INTVAL (op1) & double_shift_mask);
+
+ if (op1 == CONST0_RTX (op1_mode))
+ return op0;
+
+ /* Make sure that this is a combination that expand_doubleword_shift
+ can handle. See the comments there for details. */
+ if (double_shift_mask == 0
+ || (shift_mask == BITS_PER_WORD - 1
+ && double_shift_mask == BITS_PER_WORD * 2 - 1))
+ {
+ rtx insns;
+ rtx into_target, outof_target;
+ rtx into_input, outof_input;
+ int left_shift, outof_word;
+
+ /* If TARGET is the same as one of the operands, the REG_EQUAL note
+ won't be accurate, so use a new target. */
+ if (target == 0
+ || target == op0
+ || target == op1
+ || !valid_multiword_target_p (target))
+ target = gen_reg_rtx (mode);
+
+ start_sequence ();
+
+ /* OUTOF_* is the word we are shifting bits away from, and
+ INTO_* is the word that we are shifting bits towards, thus
+ they differ depending on the direction of the shift and
+ WORDS_BIG_ENDIAN. */
+
+ left_shift = binoptab == ashl_optab;
+ outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
+
+ outof_target = operand_subword (target, outof_word, 1, mode);
+ into_target = operand_subword (target, 1 - outof_word, 1, mode);
+
+ outof_input = operand_subword_force (op0, outof_word, mode);
+ into_input = operand_subword_force (op0, 1 - outof_word, mode);
+
+ if (expand_doubleword_shift (op1_mode, binoptab,
+ outof_input, into_input, op1,
+ outof_target, into_target,
+ unsignedp, next_methods, shift_mask))
+ {
+ insns = get_insns ();
+ end_sequence ();
+
+ emit_insn (insns);
+ return target;
+ }
+ end_sequence ();
+ }
+ }
+
+ /* Synthesize double word rotates from single word shifts. */
+ if ((binoptab == rotl_optab || binoptab == rotr_optab)
+ && mclass == MODE_INT
+ && CONST_INT_P (op1)
+ && GET_MODE_PRECISION (mode) == 2 * BITS_PER_WORD
+ && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
+ && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
+ {
+ rtx insns;
+ rtx into_target, outof_target;
+ rtx into_input, outof_input;
+ rtx inter;
+ int shift_count, left_shift, outof_word;
+
+ /* If TARGET is the same as one of the operands, the REG_EQUAL note
+ won't be accurate, so use a new target. Do this also if target is not
+ a REG, first because having a register instead may open optimization
+ opportunities, and second because if target and op0 happen to be MEMs
+ designating the same location, we would risk clobbering it too early
+ in the code sequence we generate below. */
+ if (target == 0
+ || target == op0
+ || target == op1
+ || !REG_P (target)
+ || !valid_multiword_target_p (target))
+ target = gen_reg_rtx (mode);
+
+ start_sequence ();
+
+ shift_count = INTVAL (op1);
+
+ /* OUTOF_* is the word we are shifting bits away from, and
+ INTO_* is the word that we are shifting bits towards, thus
+ they differ depending on the direction of the shift and
+ WORDS_BIG_ENDIAN. */
+
+ left_shift = (binoptab == rotl_optab);
+ outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
+
+ outof_target = operand_subword (target, outof_word, 1, mode);
+ into_target = operand_subword (target, 1 - outof_word, 1, mode);
+
+ outof_input = operand_subword_force (op0, outof_word, mode);
+ into_input = operand_subword_force (op0, 1 - outof_word, mode);
+
+ if (shift_count == BITS_PER_WORD)
+ {
+ /* This is just a word swap. */
+ emit_move_insn (outof_target, into_input);
+ emit_move_insn (into_target, outof_input);
+ inter = const0_rtx;
+ }
+ else
+ {
+ rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
+ rtx first_shift_count, second_shift_count;
+ optab reverse_unsigned_shift, unsigned_shift;
+
+ reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
+ ? lshr_optab : ashl_optab);
+
+ unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
+ ? ashl_optab : lshr_optab);
+
+ if (shift_count > BITS_PER_WORD)
+ {
+ first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
+ second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
+ }
+ else
+ {
+ first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
+ second_shift_count = GEN_INT (shift_count);
+ }
+
+ into_temp1 = expand_binop (word_mode, unsigned_shift,
+ outof_input, first_shift_count,
+ NULL_RTX, unsignedp, next_methods);
+ into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
+ into_input, second_shift_count,
+ NULL_RTX, unsignedp, next_methods);
+
+ if (into_temp1 != 0 && into_temp2 != 0)
+ inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
+ into_target, unsignedp, next_methods);
+ else
+ inter = 0;
+
+ if (inter != 0 && inter != into_target)
+ emit_move_insn (into_target, inter);
+
+ outof_temp1 = expand_binop (word_mode, unsigned_shift,
+ into_input, first_shift_count,
+ NULL_RTX, unsignedp, next_methods);
+ outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
+ outof_input, second_shift_count,
+ NULL_RTX, unsignedp, next_methods);
+
+ if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
+ inter = expand_binop (word_mode, ior_optab,
+ outof_temp1, outof_temp2,
+ outof_target, unsignedp, next_methods);
+
+ if (inter != 0 && inter != outof_target)
+ emit_move_insn (outof_target, inter);
+ }
+
+ insns = get_insns ();
+ end_sequence ();
+
+ if (inter != 0)
+ {
+ emit_insn (insns);
+ return target;
+ }
+ }
+
+ /* These can be done a word at a time by propagating carries. */
+ if ((binoptab == add_optab || binoptab == sub_optab)
+ && mclass == MODE_INT
+ && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
+ && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
+ {
+ unsigned int i;
+ optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
+ const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
+ rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
+ rtx xop0, xop1, xtarget;
+
+ /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
+ value is one of those, use it. Otherwise, use 1 since it is the
+ one easiest to get. */
+#if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
+ int normalizep = STORE_FLAG_VALUE;
+#else
+ int normalizep = 1;
+#endif
+
+ /* Prepare the operands. */
+ xop0 = force_reg (mode, op0);
+ xop1 = force_reg (mode, op1);
+
+ xtarget = gen_reg_rtx (mode);
+
+ if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
+ target = xtarget;
+
+ /* Indicate for flow that the entire target reg is being set. */
+ if (REG_P (target))
+ emit_clobber (xtarget);
+
+ /* Do the actual arithmetic. */
+ for (i = 0; i < nwords; i++)
+ {
+ int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
+ rtx target_piece = operand_subword (xtarget, index, 1, mode);
+ rtx op0_piece = operand_subword_force (xop0, index, mode);
+ rtx op1_piece = operand_subword_force (xop1, index, mode);
+ rtx x;
+
+ /* Main add/subtract of the input operands. */
+ x = expand_binop (word_mode, binoptab,
+ op0_piece, op1_piece,
+ target_piece, unsignedp, next_methods);
+ if (x == 0)
+ break;
+
+ if (i + 1 < nwords)
+ {
+ /* Store carry from main add/subtract. */
+ carry_out = gen_reg_rtx (word_mode);
+ carry_out = emit_store_flag_force (carry_out,
+ (binoptab == add_optab
+ ? LT : GT),
+ x, op0_piece,
+ word_mode, 1, normalizep);
+ }
+
+ if (i > 0)
+ {
+ rtx newx;
+
+ /* Add/subtract previous carry to main result. */
+ newx = expand_binop (word_mode,
+ normalizep == 1 ? binoptab : otheroptab,
+ x, carry_in,
+ NULL_RTX, 1, next_methods);
+
+ if (i + 1 < nwords)
+ {
+ /* Get out carry from adding/subtracting carry in. */
+ rtx carry_tmp = gen_reg_rtx (word_mode);
+ carry_tmp = emit_store_flag_force (carry_tmp,
+ (binoptab == add_optab
+ ? LT : GT),
+ newx, x,
+ word_mode, 1, normalizep);
+
+ /* Logical-ior the two poss. carry together. */
+ carry_out = expand_binop (word_mode, ior_optab,
+ carry_out, carry_tmp,
+ carry_out, 0, next_methods);
+ if (carry_out == 0)
+ break;
+ }
+ emit_move_insn (target_piece, newx);
+ }
+ else
+ {
+ if (x != target_piece)
+ emit_move_insn (target_piece, x);
+ }
+
+ carry_in = carry_out;
+ }
+
+ if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
+ {
+ if (optab_handler (mov_optab, mode) != CODE_FOR_nothing
+ || ! rtx_equal_p (target, xtarget))
+ {
+ rtx temp = emit_move_insn (target, xtarget);
+
+ set_dst_reg_note (temp, REG_EQUAL,
+ gen_rtx_fmt_ee (binoptab->code, mode,
+ copy_rtx (xop0),
+ copy_rtx (xop1)),
+ target);
+ }
+ else
+ target = xtarget;
+
+ return target;
+ }
+
+ else
+ delete_insns_since (last);
+ }
+
+ /* Attempt to synthesize double word multiplies using a sequence of word
+ mode multiplications. We first attempt to generate a sequence using a
+ more efficient unsigned widening multiply, and if that fails we then
+ try using a signed widening multiply. */
+
+ if (binoptab == smul_optab
+ && mclass == MODE_INT
+ && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
+ && optab_handler (smul_optab, word_mode) != CODE_FOR_nothing
+ && optab_handler (add_optab, word_mode) != CODE_FOR_nothing)
+ {
+ rtx product = NULL_RTX;
+ if (widening_optab_handler (umul_widen_optab, mode, word_mode)
+ != CODE_FOR_nothing)
+ {
+ product = expand_doubleword_mult (mode, op0, op1, target,
+ true, methods);
+ if (!product)
+ delete_insns_since (last);
+ }
+
+ if (product == NULL_RTX
+ && widening_optab_handler (smul_widen_optab, mode, word_mode)
+ != CODE_FOR_nothing)
+ {
+ product = expand_doubleword_mult (mode, op0, op1, target,
+ false, methods);
+ if (!product)
+ delete_insns_since (last);
+ }
+
+ if (product != NULL_RTX)
+ {
+ if (optab_handler (mov_optab, mode) != CODE_FOR_nothing)
+ {
+ temp = emit_move_insn (target ? target : product, product);
+ set_dst_reg_note (temp,
+ REG_EQUAL,
+ gen_rtx_fmt_ee (MULT, mode,
+ copy_rtx (op0),
+ copy_rtx (op1)),
+ target ? target : product);
+ }
+ return product;
+ }
+ }
+
+ /* It can't be open-coded in this mode.
+ Use a library call if one is available and caller says that's ok. */
+
+ libfunc = optab_libfunc (binoptab, mode);
+ if (libfunc
+ && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
+ {
+ rtx insns;
+ rtx op1x = op1;
+ enum machine_mode op1_mode = mode;
+ rtx value;
+
+ start_sequence ();
+
+ if (shift_optab_p (binoptab))
+ {
+ op1_mode = targetm.libgcc_shift_count_mode ();
+ /* Specify unsigned here,
+ since negative shift counts are meaningless. */
+ op1x = convert_to_mode (op1_mode, op1, 1);
+ }
+
+ if (GET_MODE (op0) != VOIDmode
+ && GET_MODE (op0) != mode)
+ op0 = convert_to_mode (mode, op0, unsignedp);
+
+ /* Pass 1 for NO_QUEUE so we don't lose any increments
+ if the libcall is cse'd or moved. */
+ value = emit_library_call_value (libfunc,
+ NULL_RTX, LCT_CONST, mode, 2,
+ op0, mode, op1x, op1_mode);
+
+ insns = get_insns ();
+ end_sequence ();
+
+ target = gen_reg_rtx (mode);
+ emit_libcall_block (insns, target, value,
+ gen_rtx_fmt_ee (binoptab->code, mode, op0, op1));
+
+ return target;
+ }
+
+ delete_insns_since (last);
+
+ /* It can't be done in this mode. Can we do it in a wider mode? */
+
+ if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
+ || methods == OPTAB_MUST_WIDEN))
+ {
+ /* Caller says, don't even try. */
+ delete_insns_since (entry_last);
+ return 0;
+ }
+
+ /* Compute the value of METHODS to pass to recursive calls.
+ Don't allow widening to be tried recursively. */
+
+ methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
+
+ /* Look for a wider mode of the same class for which it appears we can do
+ the operation. */
+
+ if (CLASS_HAS_WIDER_MODES_P (mclass))
+ {
+ for (wider_mode = GET_MODE_WIDER_MODE (mode);
+ wider_mode != VOIDmode;
+ wider_mode = GET_MODE_WIDER_MODE (wider_mode))
+ {
+ if (find_widening_optab_handler (binoptab, wider_mode, mode, 1)
+ != CODE_FOR_nothing
+ || (methods == OPTAB_LIB
+ && optab_libfunc (binoptab, wider_mode)))
+ {
+ rtx xop0 = op0, xop1 = op1;
+ int no_extend = 0;
+
+ /* For certain integer operations, we need not actually extend
+ the narrow operands, as long as we will truncate
+ the results to the same narrowness. */
+
+ if ((binoptab == ior_optab || binoptab == and_optab
+ || binoptab == xor_optab
+ || binoptab == add_optab || binoptab == sub_optab
+ || binoptab == smul_optab || binoptab == ashl_optab)
+ && mclass == MODE_INT)
+ no_extend = 1;
+
+ xop0 = widen_operand (xop0, wider_mode, mode,
+ unsignedp, no_extend);
+
+ /* The second operand of a shift must always be extended. */
+ xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
+ no_extend && binoptab != ashl_optab);
+
+ temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
+ unsignedp, methods);
+ if (temp)
+ {
+ if (mclass != MODE_INT
+ || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
+ {
+ if (target == 0)
+ target = gen_reg_rtx (mode);
+ convert_move (target, temp, 0);
+ return target;
+ }
+ else
+ return gen_lowpart (mode, temp);
+ }
+ else
+ delete_insns_since (last);
+ }
+ }
+ }
+
+ delete_insns_since (entry_last);
+ return 0;
+}
+
+/* Expand a binary operator which has both signed and unsigned forms.
+ UOPTAB is the optab for unsigned operations, and SOPTAB is for
+ signed operations.
+
+ If we widen unsigned operands, we may use a signed wider operation instead
+ of an unsigned wider operation, since the result would be the same. */
+
+rtx
+sign_expand_binop (enum machine_mode mode, optab uoptab, optab soptab,
+ rtx op0, rtx op1, rtx target, int unsignedp,
+ enum optab_methods methods)
+{
+ rtx temp;
+ optab direct_optab = unsignedp ? uoptab : soptab;
+ struct optab_d wide_soptab;
+
+ /* Do it without widening, if possible. */
+ temp = expand_binop (mode, direct_optab, op0, op1, target,
+ unsignedp, OPTAB_DIRECT);
+ if (temp || methods == OPTAB_DIRECT)
+ return temp;
+
+ /* Try widening to a signed int. Make a fake signed optab that
+ hides any signed insn for direct use. */
+ wide_soptab = *soptab;
+ set_optab_handler (&wide_soptab, mode, CODE_FOR_nothing);
+ /* We don't want to generate new hash table entries from this fake
+ optab. */
+ wide_soptab.libcall_gen = NULL;
+
+ temp = expand_binop (mode, &wide_soptab, op0, op1, target,
+ unsignedp, OPTAB_WIDEN);
+
+ /* For unsigned operands, try widening to an unsigned int. */
+ if (temp == 0 && unsignedp)
+ temp = expand_binop (mode, uoptab, op0, op1, target,
+ unsignedp, OPTAB_WIDEN);
+ if (temp || methods == OPTAB_WIDEN)
+ return temp;
+
+ /* Use the right width libcall if that exists. */
+ temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
+ if (temp || methods == OPTAB_LIB)
+ return temp;
+
+ /* Must widen and use a libcall, use either signed or unsigned. */
+ temp = expand_binop (mode, &wide_soptab, op0, op1, target,
+ unsignedp, methods);
+ if (temp != 0)
+ return temp;
+ if (unsignedp)
+ return expand_binop (mode, uoptab, op0, op1, target,
+ unsignedp, methods);
+ return 0;
+}
+
+/* Generate code to perform an operation specified by UNOPPTAB
+ on operand OP0, with two results to TARG0 and TARG1.
+ We assume that the order of the operands for the instruction
+ is TARG0, TARG1, OP0.
+
+ Either TARG0 or TARG1 may be zero, but what that means is that
+ the result is not actually wanted. We will generate it into
+ a dummy pseudo-reg and discard it. They may not both be zero.
+
+ Returns 1 if this operation can be performed; 0 if not. */
+
+int
+expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
+ int unsignedp)
+{
+ enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
+ enum mode_class mclass;
+ enum machine_mode wider_mode;
+ rtx entry_last = get_last_insn ();
+ rtx last;
+
+ mclass = GET_MODE_CLASS (mode);
+
+ if (!targ0)
+ targ0 = gen_reg_rtx (mode);
+ if (!targ1)
+ targ1 = gen_reg_rtx (mode);
+
+ /* Record where to go back to if we fail. */
+ last = get_last_insn ();
+
+ if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
+ {
+ struct expand_operand ops[3];
+ enum insn_code icode = optab_handler (unoptab, mode);
+
+ create_fixed_operand (&ops[0], targ0);
+ create_fixed_operand (&ops[1], targ1);
+ create_convert_operand_from (&ops[2], op0, mode, unsignedp);
+ if (maybe_expand_insn (icode, 3, ops))
+ return 1;
+ }
+
+ /* It can't be done in this mode. Can we do it in a wider mode? */
+
+ if (CLASS_HAS_WIDER_MODES_P (mclass))
+ {
+ for (wider_mode = GET_MODE_WIDER_MODE (mode);
+ wider_mode != VOIDmode;
+ wider_mode = GET_MODE_WIDER_MODE (wider_mode))
+ {
+ if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
+ {
+ rtx t0 = gen_reg_rtx (wider_mode);
+ rtx t1 = gen_reg_rtx (wider_mode);
+ rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
+
+ if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
+ {
+ convert_move (targ0, t0, unsignedp);
+ convert_move (targ1, t1, unsignedp);
+ return 1;
+ }
+ else
+ delete_insns_since (last);
+ }
+ }
+ }
+
+ delete_insns_since (entry_last);
+ return 0;
+}
+
+/* Generate code to perform an operation specified by BINOPTAB
+ on operands OP0 and OP1, with two results to TARG1 and TARG2.
+ We assume that the order of the operands for the instruction
+ is TARG0, OP0, OP1, TARG1, which would fit a pattern like
+ [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
+
+ Either TARG0 or TARG1 may be zero, but what that means is that
+ the result is not actually wanted. We will generate it into
+ a dummy pseudo-reg and discard it. They may not both be zero.
+
+ Returns 1 if this operation can be performed; 0 if not. */
+
+int
+expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
+ int unsignedp)
+{
+ enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
+ enum mode_class mclass;
+ enum machine_mode wider_mode;
+ rtx entry_last = get_last_insn ();
+ rtx last;
+
+ mclass = GET_MODE_CLASS (mode);
+
+ if (!targ0)
+ targ0 = gen_reg_rtx (mode);
+ if (!targ1)
+ targ1 = gen_reg_rtx (mode);
+
+ /* Record where to go back to if we fail. */
+ last = get_last_insn ();
+
+ if (optab_handler (binoptab, mode) != CODE_FOR_nothing)
+ {
+ struct expand_operand ops[4];
+ enum insn_code icode = optab_handler (binoptab, mode);
+ enum machine_mode mode0 = insn_data[icode].operand[1].mode;
+ enum machine_mode mode1 = insn_data[icode].operand[2].mode;
+ rtx xop0 = op0, xop1 = op1;
+
+ /* If we are optimizing, force expensive constants into a register. */
+ xop0 = avoid_expensive_constant (mode0, binoptab, 0, xop0, unsignedp);
+ xop1 = avoid_expensive_constant (mode1, binoptab, 1, xop1, unsignedp);
+
+ create_fixed_operand (&ops[0], targ0);
+ create_convert_operand_from (&ops[1], op0, mode, unsignedp);
+ create_convert_operand_from (&ops[2], op1, mode, unsignedp);
+ create_fixed_operand (&ops[3], targ1);
+ if (maybe_expand_insn (icode, 4, ops))
+ return 1;
+ delete_insns_since (last);
+ }
+
+ /* It can't be done in this mode. Can we do it in a wider mode? */
+
+ if (CLASS_HAS_WIDER_MODES_P (mclass))
+ {
+ for (wider_mode = GET_MODE_WIDER_MODE (mode);
+ wider_mode != VOIDmode;
+ wider_mode = GET_MODE_WIDER_MODE (wider_mode))
+ {
+ if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing)
+ {
+ rtx t0 = gen_reg_rtx (wider_mode);
+ rtx t1 = gen_reg_rtx (wider_mode);
+ rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
+ rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
+
+ if (expand_twoval_binop (binoptab, cop0, cop1,
+ t0, t1, unsignedp))
+ {
+ convert_move (targ0, t0, unsignedp);
+ convert_move (targ1, t1, unsignedp);
+ return 1;
+ }
+ else
+ delete_insns_since (last);
+ }
+ }
+ }
+
+ delete_insns_since (entry_last);
+ return 0;
+}
+
+/* Expand the two-valued library call indicated by BINOPTAB, but
+ preserve only one of the values. If TARG0 is non-NULL, the first
+ value is placed into TARG0; otherwise the second value is placed
+ into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
+ value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
+ This routine assumes that the value returned by the library call is
+ as if the return value was of an integral mode twice as wide as the
+ mode of OP0. Returns 1 if the call was successful. */
+
+bool
+expand_twoval_binop_libfunc (optab binoptab, rtx op0, rtx op1,
+ rtx targ0, rtx targ1, enum rtx_code code)
+{
+ enum machine_mode mode;
+ enum machine_mode libval_mode;
+ rtx libval;
+ rtx insns;
+ rtx libfunc;
+
+ /* Exactly one of TARG0 or TARG1 should be non-NULL. */
+ gcc_assert (!targ0 != !targ1);
+
+ mode = GET_MODE (op0);
+ libfunc = optab_libfunc (binoptab, mode);
+ if (!libfunc)
+ return false;
+
+ /* The value returned by the library function will have twice as
+ many bits as the nominal MODE. */
+ libval_mode = smallest_mode_for_size (2 * GET_MODE_BITSIZE (mode),
+ MODE_INT);
+ start_sequence ();
+ libval = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
+ libval_mode, 2,
+ op0, mode,
+ op1, mode);
+ /* Get the part of VAL containing the value that we want. */
+ libval = simplify_gen_subreg (mode, libval, libval_mode,
+ targ0 ? 0 : GET_MODE_SIZE (mode));
+ insns = get_insns ();
+ end_sequence ();
+ /* Move the into the desired location. */
+ emit_libcall_block (insns, targ0 ? targ0 : targ1, libval,
+ gen_rtx_fmt_ee (code, mode, op0, op1));
+
+ return true;
+}
+
+
+/* Wrapper around expand_unop which takes an rtx code to specify
+ the operation to perform, not an optab pointer. All other
+ arguments are the same. */
+rtx
+expand_simple_unop (enum machine_mode mode, enum rtx_code code, rtx op0,
+ rtx target, int unsignedp)
+{
+ optab unop = code_to_optab[(int) code];
+ gcc_assert (unop);
+
+ return expand_unop (mode, unop, op0, target, unsignedp);
+}
+
+/* Try calculating
+ (clz:narrow x)
+ as
+ (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)).
+
+ A similar operation can be used for clrsb. UNOPTAB says which operation
+ we are trying to expand. */
+static rtx
+widen_leading (enum machine_mode mode, rtx op0, rtx target, optab unoptab)
+{
+ enum mode_class mclass = GET_MODE_CLASS (mode);
+ if (CLASS_HAS_WIDER_MODES_P (mclass))
+ {
+ enum machine_mode wider_mode;
+ for (wider_mode = GET_MODE_WIDER_MODE (mode);
+ wider_mode != VOIDmode;
+ wider_mode = GET_MODE_WIDER_MODE (wider_mode))
+ {
+ if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
+ {
+ rtx xop0, temp, last;
+
+ last = get_last_insn ();
+
+ if (target == 0)
+ target = gen_reg_rtx (mode);
+ xop0 = widen_operand (op0, wider_mode, mode,
+ unoptab != clrsb_optab, false);
+ temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
+ unoptab != clrsb_optab);
+ if (temp != 0)
+ temp = expand_binop (wider_mode, sub_optab, temp,
+ GEN_INT (GET_MODE_PRECISION (wider_mode)
+ - GET_MODE_PRECISION (mode)),
+ target, true, OPTAB_DIRECT);
+ if (temp == 0)
+ delete_insns_since (last);
+
+ return temp;
+ }
+ }
+ }
+ return 0;
+}
+
+/* Try calculating clz of a double-word quantity as two clz's of word-sized
+ quantities, choosing which based on whether the high word is nonzero. */
+static rtx
+expand_doubleword_clz (enum machine_mode mode, rtx op0, rtx target)
+{
+ rtx xop0 = force_reg (mode, op0);
+ rtx subhi = gen_highpart (word_mode, xop0);
+ rtx sublo = gen_lowpart (word_mode, xop0);
+ rtx hi0_label = gen_label_rtx ();
+ rtx after_label = gen_label_rtx ();
+ rtx seq, temp, result;
+
+ /* If we were not given a target, use a word_mode register, not a
+ 'mode' register. The result will fit, and nobody is expecting
+ anything bigger (the return type of __builtin_clz* is int). */
+ if (!target)
+ target = gen_reg_rtx (word_mode);
+
+ /* In any case, write to a word_mode scratch in both branches of the
+ conditional, so we can ensure there is a single move insn setting
+ 'target' to tag a REG_EQUAL note on. */
+ result = gen_reg_rtx (word_mode);
+
+ start_sequence ();
+
+ /* If the high word is not equal to zero,
+ then clz of the full value is clz of the high word. */
+ emit_cmp_and_jump_insns (subhi, CONST0_RTX (word_mode), EQ, 0,
+ word_mode, true, hi0_label);
+
+ temp = expand_unop_direct (word_mode, clz_optab, subhi, result, true);
+ if (!temp)
+ goto fail;
+
+ if (temp != result)
+ convert_move (result, temp, true);
+
+ emit_jump_insn (gen_jump (after_label));
+ emit_barrier ();
+
+ /* Else clz of the full value is clz of the low word plus the number
+ of bits in the high word. */
+ emit_label (hi0_label);
+
+ temp = expand_unop_direct (word_mode, clz_optab, sublo, 0, true);
+ if (!temp)
+ goto fail;
+ temp = expand_binop (word_mode, add_optab, temp,
+ GEN_INT (GET_MODE_BITSIZE (word_mode)),
+ result, true, OPTAB_DIRECT);
+ if (!temp)
+ goto fail;
+ if (temp != result)
+ convert_move (result, temp, true);
+
+ emit_label (after_label);
+ convert_move (target, result, true);
+
+ seq = get_insns ();
+ end_sequence ();
+
+ add_equal_note (seq, target, CLZ, xop0, 0);
+ emit_insn (seq);
+ return target;
+
+ fail:
+ end_sequence ();
+ return 0;
+}
+
+/* Try calculating
+ (bswap:narrow x)
+ as
+ (lshiftrt:wide (bswap:wide x) ((width wide) - (width narrow))). */
+static rtx
+widen_bswap (enum machine_mode mode, rtx op0, rtx target)
+{
+ enum mode_class mclass = GET_MODE_CLASS (mode);
+ enum machine_mode wider_mode;
+ rtx x, last;
+
+ if (!CLASS_HAS_WIDER_MODES_P (mclass))
+ return NULL_RTX;
+
+ for (wider_mode = GET_MODE_WIDER_MODE (mode);
+ wider_mode != VOIDmode;
+ wider_mode = GET_MODE_WIDER_MODE (wider_mode))
+ if (optab_handler (bswap_optab, wider_mode) != CODE_FOR_nothing)
+ goto found;
+ return NULL_RTX;
+
+ found:
+ last = get_last_insn ();
+
+ x = widen_operand (op0, wider_mode, mode, true, true);
+ x = expand_unop (wider_mode, bswap_optab, x, NULL_RTX, true);
+
+ gcc_assert (GET_MODE_PRECISION (wider_mode) == GET_MODE_BITSIZE (wider_mode)
+ && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode));
+ if (x != 0)
+ x = expand_shift (RSHIFT_EXPR, wider_mode, x,
+ GET_MODE_BITSIZE (wider_mode)
+ - GET_MODE_BITSIZE (mode),
+ NULL_RTX, true);
+
+ if (x != 0)
+ {
+ if (target == 0)
+ target = gen_reg_rtx (mode);
+ emit_move_insn (target, gen_lowpart (mode, x));
+ }
+ else
+ delete_insns_since (last);
+
+ return target;
+}
+
+/* Try calculating bswap as two bswaps of two word-sized operands. */
+
+static rtx
+expand_doubleword_bswap (enum machine_mode mode, rtx op, rtx target)
+{
+ rtx t0, t1;
+
+ t1 = expand_unop (word_mode, bswap_optab,
+ operand_subword_force (op, 0, mode), NULL_RTX, true);
+ t0 = expand_unop (word_mode, bswap_optab,
+ operand_subword_force (op, 1, mode), NULL_RTX, true);
+
+ if (target == 0 || !valid_multiword_target_p (target))
+ target = gen_reg_rtx (mode);
+ if (REG_P (target))
+ emit_clobber (target);
+ emit_move_insn (operand_subword (target, 0, 1, mode), t0);
+ emit_move_insn (operand_subword (target, 1, 1, mode), t1);
+
+ return target;
+}
+
+/* Try calculating (parity x) as (and (popcount x) 1), where
+ popcount can also be done in a wider mode. */
+static rtx
+expand_parity (enum machine_mode mode, rtx op0, rtx target)
+{
+ enum mode_class mclass = GET_MODE_CLASS (mode);
+ if (CLASS_HAS_WIDER_MODES_P (mclass))
+ {
+ enum machine_mode wider_mode;
+ for (wider_mode = mode; wider_mode != VOIDmode;
+ wider_mode = GET_MODE_WIDER_MODE (wider_mode))
+ {
+ if (optab_handler (popcount_optab, wider_mode) != CODE_FOR_nothing)
+ {
+ rtx xop0, temp, last;
+
+ last = get_last_insn ();
+
+ if (target == 0)
+ target = gen_reg_rtx (mode);
+ xop0 = widen_operand (op0, wider_mode, mode, true, false);
+ temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
+ true);
+ if (temp != 0)
+ temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
+ target, true, OPTAB_DIRECT);
+ if (temp == 0)
+ delete_insns_since (last);
+
+ return temp;
+ }
+ }
+ }
+ return 0;
+}
+
+/* Try calculating ctz(x) as K - clz(x & -x) ,
+ where K is GET_MODE_PRECISION(mode) - 1.
+
+ Both __builtin_ctz and __builtin_clz are undefined at zero, so we
+ don't have to worry about what the hardware does in that case. (If
+ the clz instruction produces the usual value at 0, which is K, the
+ result of this code sequence will be -1; expand_ffs, below, relies
+ on this. It might be nice to have it be K instead, for consistency
+ with the (very few) processors that provide a ctz with a defined
+ value, but that would take one more instruction, and it would be
+ less convenient for expand_ffs anyway. */
+
+static rtx
+expand_ctz (enum machine_mode mode, rtx op0, rtx target)
+{
+ rtx seq, temp;
+
+ if (optab_handler (clz_optab, mode) == CODE_FOR_nothing)
+ return 0;
+
+ start_sequence ();
+
+ temp = expand_unop_direct (mode, neg_optab, op0, NULL_RTX, true);
+ if (temp)
+ temp = expand_binop (mode, and_optab, op0, temp, NULL_RTX,
+ true, OPTAB_DIRECT);
+ if (temp)
+ temp = expand_unop_direct (mode, clz_optab, temp, NULL_RTX, true);
+ if (temp)
+ temp = expand_binop (mode, sub_optab, GEN_INT (GET_MODE_PRECISION (mode) - 1),
+ temp, target,
+ true, OPTAB_DIRECT);
+ if (temp == 0)
+ {
+ end_sequence ();
+ return 0;
+ }
+
+ seq = get_insns ();
+ end_sequence ();
+
+ add_equal_note (seq, temp, CTZ, op0, 0);
+ emit_insn (seq);
+ return temp;
+}
+
+
+/* Try calculating ffs(x) using ctz(x) if we have that instruction, or
+ else with the sequence used by expand_clz.
+
+ The ffs builtin promises to return zero for a zero value and ctz/clz
+ may have an undefined value in that case. If they do not give us a
+ convenient value, we have to generate a test and branch. */
+static rtx
+expand_ffs (enum machine_mode mode, rtx op0, rtx target)
+{
+ HOST_WIDE_INT val = 0;
+ bool defined_at_zero = false;
+ rtx temp, seq;
+
+ if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing)
+ {
+ start_sequence ();
+
+ temp = expand_unop_direct (mode, ctz_optab, op0, 0, true);
+ if (!temp)
+ goto fail;
+
+ defined_at_zero = (CTZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2);
+ }
+ else if (optab_handler (clz_optab, mode) != CODE_FOR_nothing)
+ {
+ start_sequence ();
+ temp = expand_ctz (mode, op0, 0);
+ if (!temp)
+ goto fail;
+
+ if (CLZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2)
+ {
+ defined_at_zero = true;
+ val = (GET_MODE_PRECISION (mode) - 1) - val;
+ }
+ }
+ else
+ return 0;
+
+ if (defined_at_zero && val == -1)
+ /* No correction needed at zero. */;
+ else
+ {
+ /* We don't try to do anything clever with the situation found
+ on some processors (eg Alpha) where ctz(0:mode) ==
+ bitsize(mode). If someone can think of a way to send N to -1
+ and leave alone all values in the range 0..N-1 (where N is a
+ power of two), cheaper than this test-and-branch, please add it.
+
+ The test-and-branch is done after the operation itself, in case
+ the operation sets condition codes that can be recycled for this.
+ (This is true on i386, for instance.) */
+
+ rtx nonzero_label = gen_label_rtx ();
+ emit_cmp_and_jump_insns (op0, CONST0_RTX (mode), NE, 0,
+ mode, true, nonzero_label);
+
+ convert_move (temp, GEN_INT (-1), false);
+ emit_label (nonzero_label);
+ }
+
+ /* temp now has a value in the range -1..bitsize-1. ffs is supposed
+ to produce a value in the range 0..bitsize. */
+ temp = expand_binop (mode, add_optab, temp, GEN_INT (1),
+ target, false, OPTAB_DIRECT);
+ if (!temp)
+ goto fail;
+
+ seq = get_insns ();
+ end_sequence ();
+
+ add_equal_note (seq, temp, FFS, op0, 0);
+ emit_insn (seq);
+ return temp;
+
+ fail:
+ end_sequence ();
+ return 0;
+}
+
+/* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
+ conditions, VAL may already be a SUBREG against which we cannot generate
+ a further SUBREG. In this case, we expect forcing the value into a
+ register will work around the situation. */
+
+static rtx
+lowpart_subreg_maybe_copy (enum machine_mode omode, rtx val,
+ enum machine_mode imode)
+{
+ rtx ret;
+ ret = lowpart_subreg (omode, val, imode);
+ if (ret == NULL)
+ {
+ val = force_reg (imode, val);
+ ret = lowpart_subreg (omode, val, imode);
+ gcc_assert (ret != NULL);
+ }
+ return ret;
+}
+
+/* Expand a floating point absolute value or negation operation via a
+ logical operation on the sign bit. */
+
+static rtx
+expand_absneg_bit (enum rtx_code code, enum machine_mode mode,
+ rtx op0, rtx target)
+{
+ const struct real_format *fmt;
+ int bitpos, word, nwords, i;
+ enum machine_mode imode;
+ double_int mask;
+ rtx temp, insns;
+
+ /* The format has to have a simple sign bit. */
+ fmt = REAL_MODE_FORMAT (mode);
+ if (fmt == NULL)
+ return NULL_RTX;
+
+ bitpos = fmt->signbit_rw;
+ if (bitpos < 0)
+ return NULL_RTX;
+
+ /* Don't create negative zeros if the format doesn't support them. */
+ if (code == NEG && !fmt->has_signed_zero)
+ return NULL_RTX;
+
+ if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
+ {
+ imode = int_mode_for_mode (mode);
+ if (imode == BLKmode)
+ return NULL_RTX;
+ word = 0;
+ nwords = 1;
+ }
+ else
+ {
+ imode = word_mode;
+
+ if (FLOAT_WORDS_BIG_ENDIAN)
+ word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
+ else
+ word = bitpos / BITS_PER_WORD;
+ bitpos = bitpos % BITS_PER_WORD;
+ nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
+ }
+
+ mask = double_int_setbit (double_int_zero, bitpos);
+ if (code == ABS)
+ mask = double_int_not (mask);
+
+ if (target == 0
+ || target == op0
+ || (nwords > 1 && !valid_multiword_target_p (target)))
+ target = gen_reg_rtx (mode);
+
+ if (nwords > 1)
+ {
+ start_sequence ();
+
+ for (i = 0; i < nwords; ++i)
+ {
+ rtx targ_piece = operand_subword (target, i, 1, mode);
+ rtx op0_piece = operand_subword_force (op0, i, mode);
+
+ if (i == word)
+ {
+ temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
+ op0_piece,
+ immed_double_int_const (mask, imode),
+ targ_piece, 1, OPTAB_LIB_WIDEN);
+ if (temp != targ_piece)
+ emit_move_insn (targ_piece, temp);
+ }
+ else
+ emit_move_insn (targ_piece, op0_piece);
+ }
+
+ insns = get_insns ();
+ end_sequence ();
+
+ emit_insn (insns);
+ }
+ else
+ {
+ temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
+ gen_lowpart (imode, op0),
+ immed_double_int_const (mask, imode),
+ gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
+ target = lowpart_subreg_maybe_copy (mode, temp, imode);
+
+ set_dst_reg_note (get_last_insn (), REG_EQUAL,
+ gen_rtx_fmt_e (code, mode, copy_rtx (op0)),
+ target);
+ }
+
+ return target;
+}
+
+/* As expand_unop, but will fail rather than attempt the operation in a
+ different mode or with a libcall. */
+static rtx
+expand_unop_direct (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
+ int unsignedp)
+{
+ if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
+ {
+ struct expand_operand ops[2];
+ enum insn_code icode = optab_handler (unoptab, mode);
+ rtx last = get_last_insn ();
+ rtx pat;
+
+ create_output_operand (&ops[0], target, mode);
+ create_convert_operand_from (&ops[1], op0, mode, unsignedp);
+ pat = maybe_gen_insn (icode, 2, ops);
+ if (pat)
+ {
+ if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
+ && ! add_equal_note (pat, ops[0].value, unoptab->code,
+ ops[1].value, NULL_RTX))
+ {
+ delete_insns_since (last);
+ return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
+ }
+
+ emit_insn (pat);
+
+ return ops[0].value;
+ }
+ }
+ return 0;
+}
+
+/* Generate code to perform an operation specified by UNOPTAB
+ on operand OP0, with result having machine-mode MODE.
+
+ UNSIGNEDP is for the case where we have to widen the operands
+ to perform the operation. It says to use zero-extension.
+
+ If TARGET is nonzero, the value
+ is generated there, if it is convenient to do so.
+ In all cases an rtx is returned for the locus of the value;
+ this may or may not be TARGET. */
+
+rtx
+expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
+ int unsignedp)
+{
+ enum mode_class mclass = GET_MODE_CLASS (mode);
+ enum machine_mode wider_mode;
+ rtx temp;
+ rtx libfunc;
+
+ temp = expand_unop_direct (mode, unoptab, op0, target, unsignedp);
+ if (temp)
+ return temp;
+
+ /* It can't be done in this mode. Can we open-code it in a wider mode? */
+
+ /* Widening (or narrowing) clz needs special treatment. */
+ if (unoptab == clz_optab)
+ {
+ temp = widen_leading (mode, op0, target, unoptab);
+ if (temp)
+ return temp;
+
+ if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
+ && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
+ {
+ temp = expand_doubleword_clz (mode, op0, target);
+ if (temp)
+ return temp;
+ }
+
+ goto try_libcall;
+ }
+
+ if (unoptab == clrsb_optab)
+ {
+ temp = widen_leading (mode, op0, target, unoptab);
+ if (temp)
+ return temp;
+ goto try_libcall;
+ }
+
+ /* Widening (or narrowing) bswap needs special treatment. */
+ if (unoptab == bswap_optab)
+ {
+ temp = widen_bswap (mode, op0, target);
+ if (temp)
+ return temp;
+
+ if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
+ && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
+ {
+ temp = expand_doubleword_bswap (mode, op0, target);
+ if (temp)
+ return temp;
+ }
+
+ goto try_libcall;
+ }
+
+ if (CLASS_HAS_WIDER_MODES_P (mclass))
+ for (wider_mode = GET_MODE_WIDER_MODE (mode);
+ wider_mode != VOIDmode;
+ wider_mode = GET_MODE_WIDER_MODE (wider_mode))
+ {
+ if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
+ {
+ rtx xop0 = op0;
+ rtx last = get_last_insn ();
+
+ /* For certain operations, we need not actually extend
+ the narrow operand, as long as we will truncate the
+ results to the same narrowness. */
+
+ xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
+ (unoptab == neg_optab
+ || unoptab == one_cmpl_optab)
+ && mclass == MODE_INT);
+
+ temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
+ unsignedp);
+
+ if (temp)
+ {
+ if (mclass != MODE_INT
+ || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
+ {
+ if (target == 0)
+ target = gen_reg_rtx (mode);
+ convert_move (target, temp, 0);
+ return target;
+ }
+ else
+ return gen_lowpart (mode, temp);
+ }
+ else
+ delete_insns_since (last);
+ }
+ }
+
+ /* These can be done a word at a time. */
+ if (unoptab == one_cmpl_optab
+ && mclass == MODE_INT
+ && GET_MODE_SIZE (mode) > UNITS_PER_WORD
+ && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
+ {
+ int i;
+ rtx insns;
+
+ if (target == 0 || target == op0 || !valid_multiword_target_p (target))
+ target = gen_reg_rtx (mode);
+
+ start_sequence ();
+
+ /* Do the actual arithmetic. */
+ for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
+ {
+ rtx target_piece = operand_subword (target, i, 1, mode);
+ rtx x = expand_unop (word_mode, unoptab,
+ operand_subword_force (op0, i, mode),
+ target_piece, unsignedp);
+
+ if (target_piece != x)
+ emit_move_insn (target_piece, x);
+ }
+
+ insns = get_insns ();
+ end_sequence ();
+
+ emit_insn (insns);
+ return target;
+ }
+
+ if (unoptab->code == NEG)
+ {
+ /* Try negating floating point values by flipping the sign bit. */
+ if (SCALAR_FLOAT_MODE_P (mode))
+ {
+ temp = expand_absneg_bit (NEG, mode, op0, target);
+ if (temp)
+ return temp;
+ }
+
+ /* If there is no negation pattern, and we have no negative zero,
+ try subtracting from zero. */
+ if (!HONOR_SIGNED_ZEROS (mode))
+ {
+ temp = expand_binop (mode, (unoptab == negv_optab
+ ? subv_optab : sub_optab),
+ CONST0_RTX (mode), op0, target,
+ unsignedp, OPTAB_DIRECT);
+ if (temp)
+ return temp;
+ }
+ }
+
+ /* Try calculating parity (x) as popcount (x) % 2. */
+ if (unoptab == parity_optab)
+ {
+ temp = expand_parity (mode, op0, target);
+ if (temp)
+ return temp;
+ }
+
+ /* Try implementing ffs (x) in terms of clz (x). */
+ if (unoptab == ffs_optab)
+ {
+ temp = expand_ffs (mode, op0, target);
+ if (temp)
+ return temp;
+ }
+
+ /* Try implementing ctz (x) in terms of clz (x). */
+ if (unoptab == ctz_optab)
+ {
+ temp = expand_ctz (mode, op0, target);
+ if (temp)
+ return temp;
+ }
+
+ try_libcall:
+ /* Now try a library call in this mode. */
+ libfunc = optab_libfunc (unoptab, mode);
+ if (libfunc)
+ {
+ rtx insns;
+ rtx value;
+ rtx eq_value;
+ enum machine_mode outmode = mode;
+
+ /* All of these functions return small values. Thus we choose to
+ have them return something that isn't a double-word. */
+ if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
+ || unoptab == clrsb_optab || unoptab == popcount_optab
+ || unoptab == parity_optab)
+ outmode
+ = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node),
+ optab_libfunc (unoptab, mode)));
+
+ start_sequence ();
+
+ /* Pass 1 for NO_QUEUE so we don't lose any increments
+ if the libcall is cse'd or moved. */
+ value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, outmode,
+ 1, op0, mode);
+ insns = get_insns ();
+ end_sequence ();
+
+ target = gen_reg_rtx (outmode);
+ eq_value = gen_rtx_fmt_e (unoptab->code, mode, op0);
+ if (GET_MODE_SIZE (outmode) < GET_MODE_SIZE (mode))
+ eq_value = simplify_gen_unary (TRUNCATE, outmode, eq_value, mode);
+ else if (GET_MODE_SIZE (outmode) > GET_MODE_SIZE (mode))
+ eq_value = simplify_gen_unary (ZERO_EXTEND, outmode, eq_value, mode);
+ emit_libcall_block (insns, target, value, eq_value);
+
+ return target;
+ }
+
+ /* It can't be done in this mode. Can we do it in a wider mode? */
+
+ if (CLASS_HAS_WIDER_MODES_P (mclass))
+ {
+ for (wider_mode = GET_MODE_WIDER_MODE (mode);
+ wider_mode != VOIDmode;
+ wider_mode = GET_MODE_WIDER_MODE (wider_mode))
+ {
+ if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing
+ || optab_libfunc (unoptab, wider_mode))
+ {
+ rtx xop0 = op0;
+ rtx last = get_last_insn ();
+
+ /* For certain operations, we need not actually extend
+ the narrow operand, as long as we will truncate the
+ results to the same narrowness. */
+
+ xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
+ (unoptab == neg_optab
+ || unoptab == one_cmpl_optab)
+ && mclass == MODE_INT);
+
+ temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
+ unsignedp);
+
+ /* If we are generating clz using wider mode, adjust the
+ result. Similarly for clrsb. */
+ if ((unoptab == clz_optab || unoptab == clrsb_optab)
+ && temp != 0)
+ temp = expand_binop (wider_mode, sub_optab, temp,
+ GEN_INT (GET_MODE_PRECISION (wider_mode)
+ - GET_MODE_PRECISION (mode)),
+ target, true, OPTAB_DIRECT);
+
+ if (temp)
+ {
+ if (mclass != MODE_INT)
+ {
+ if (target == 0)
+ target = gen_reg_rtx (mode);
+ convert_move (target, temp, 0);
+ return target;
+ }
+ else
+ return gen_lowpart (mode, temp);
+ }
+ else
+ delete_insns_since (last);
+ }
+ }
+ }
+
+ /* One final attempt at implementing negation via subtraction,
+ this time allowing widening of the operand. */
+ if (unoptab->code == NEG && !HONOR_SIGNED_ZEROS (mode))
+ {
+ rtx temp;
+ temp = expand_binop (mode,
+ unoptab == negv_optab ? subv_optab : sub_optab,
+ CONST0_RTX (mode), op0,
+ target, unsignedp, OPTAB_LIB_WIDEN);
+ if (temp)
+ return temp;
+ }
+
+ return 0;
+}
+
+/* Emit code to compute the absolute value of OP0, with result to
+ TARGET if convenient. (TARGET may be 0.) The return value says
+ where the result actually is to be found.
+
+ MODE is the mode of the operand; the mode of the result is
+ different but can be deduced from MODE.
+
+ */
+
+rtx
+expand_abs_nojump (enum machine_mode mode, rtx op0, rtx target,
+ int result_unsignedp)
+{
+ rtx temp;
+
+ if (! flag_trapv)
+ result_unsignedp = 1;
+
+ /* First try to do it with a special abs instruction. */
+ temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
+ op0, target, 0);
+ if (temp != 0)
+ return temp;
+
+ /* For floating point modes, try clearing the sign bit. */
+ if (SCALAR_FLOAT_MODE_P (mode))
+ {
+ temp = expand_absneg_bit (ABS, mode, op0, target);
+ if (temp)
+ return temp;
+ }
+
+ /* If we have a MAX insn, we can do this as MAX (x, -x). */
+ if (optab_handler (smax_optab, mode) != CODE_FOR_nothing
+ && !HONOR_SIGNED_ZEROS (mode))
+ {
+ rtx last = get_last_insn ();
+
+ temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
+ if (temp != 0)
+ temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
+ OPTAB_WIDEN);
+
+ if (temp != 0)
+ return temp;
+
+ delete_insns_since (last);
+ }
+
+ /* If this machine has expensive jumps, we can do integer absolute
+ value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
+ where W is the width of MODE. */
+
+ if (GET_MODE_CLASS (mode) == MODE_INT
+ && BRANCH_COST (optimize_insn_for_speed_p (),
+ false) >= 2)
+ {
+ rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
+ GET_MODE_PRECISION (mode) - 1,
+ NULL_RTX, 0);
+
+ temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
+ OPTAB_LIB_WIDEN);
+ if (temp != 0)
+ temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
+ temp, extended, target, 0, OPTAB_LIB_WIDEN);
+
+ if (temp != 0)
+ return temp;
+ }
+
+ return NULL_RTX;
+}
+
+rtx
+expand_abs (enum machine_mode mode, rtx op0, rtx target,
+ int result_unsignedp, int safe)
+{
+ rtx temp, op1;
+
+ if (! flag_trapv)
+ result_unsignedp = 1;
+
+ temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
+ if (temp != 0)
+ return temp;
+
+ /* If that does not win, use conditional jump and negate. */
+
+ /* It is safe to use the target if it is the same
+ as the source if this is also a pseudo register */
+ if (op0 == target && REG_P (op0)
+ && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
+ safe = 1;
+
+ op1 = gen_label_rtx ();
+ if (target == 0 || ! safe
+ || GET_MODE (target) != mode
+ || (MEM_P (target) && MEM_VOLATILE_P (target))
+ || (REG_P (target)
+ && REGNO (target) < FIRST_PSEUDO_REGISTER))
+ target = gen_reg_rtx (mode);
+
+ emit_move_insn (target, op0);
+ NO_DEFER_POP;
+
+ do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
+ NULL_RTX, NULL_RTX, op1, -1);
+
+ op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
+ target, target, 0);
+ if (op0 != target)
+ emit_move_insn (target, op0);
+ emit_label (op1);
+ OK_DEFER_POP;
+ return target;
+}
+
+/* Emit code to compute the one's complement absolute value of OP0
+ (if (OP0 < 0) OP0 = ~OP0), with result to TARGET if convenient.
+ (TARGET may be NULL_RTX.) The return value says where the result
+ actually is to be found.
+
+ MODE is the mode of the operand; the mode of the result is
+ different but can be deduced from MODE. */
+
+rtx
+expand_one_cmpl_abs_nojump (enum machine_mode mode, rtx op0, rtx target)
+{
+ rtx temp;
+
+ /* Not applicable for floating point modes. */
+ if (FLOAT_MODE_P (mode))
+ return NULL_RTX;
+
+ /* If we have a MAX insn, we can do this as MAX (x, ~x). */
+ if (optab_handler (smax_optab, mode) != CODE_FOR_nothing)
+ {
+ rtx last = get_last_insn ();
+
+ temp = expand_unop (mode, one_cmpl_optab, op0, NULL_RTX, 0);
+ if (temp != 0)
+ temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
+ OPTAB_WIDEN);
+
+ if (temp != 0)
+ return temp;
+
+ delete_insns_since (last);
+ }
+
+ /* If this machine has expensive jumps, we can do one's complement
+ absolute value of X as (((signed) x >> (W-1)) ^ x). */
+
+ if (GET_MODE_CLASS (mode) == MODE_INT
+ && BRANCH_COST (optimize_insn_for_speed_p (),
+ false) >= 2)
+ {
+ rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
+ GET_MODE_PRECISION (mode) - 1,
+ NULL_RTX, 0);
+
+ temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
+ OPTAB_LIB_WIDEN);
+
+ if (temp != 0)
+ return temp;
+ }
+
+ return NULL_RTX;
+}
+
+/* A subroutine of expand_copysign, perform the copysign operation using the
+ abs and neg primitives advertised to exist on the target. The assumption
+ is that we have a split register file, and leaving op0 in fp registers,
+ and not playing with subregs so much, will help the register allocator. */
+
+static rtx
+expand_copysign_absneg (enum machine_mode mode, rtx op0, rtx op1, rtx target,
+ int bitpos, bool op0_is_abs)
+{
+ enum machine_mode imode;
+ enum insn_code icode;
+ rtx sign, label;
+
+ if (target == op1)
+ target = NULL_RTX;
+
+ /* Check if the back end provides an insn that handles signbit for the
+ argument's mode. */
+ icode = optab_handler (signbit_optab, mode);
+ if (icode != CODE_FOR_nothing)
+ {
+ imode = insn_data[(int) icode].operand[0].mode;
+ sign = gen_reg_rtx (imode);
+ emit_unop_insn (icode, sign, op1, UNKNOWN);
+ }
+ else
+ {
+ double_int mask;
+
+ if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
+ {
+ imode = int_mode_for_mode (mode);
+ if (imode == BLKmode)
+ return NULL_RTX;
+ op1 = gen_lowpart (imode, op1);
+ }
+ else
+ {
+ int word;
+
+ imode = word_mode;
+ if (FLOAT_WORDS_BIG_ENDIAN)
+ word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
+ else
+ word = bitpos / BITS_PER_WORD;
+ bitpos = bitpos % BITS_PER_WORD;
+ op1 = operand_subword_force (op1, word, mode);
+ }
+
+ mask = double_int_setbit (double_int_zero, bitpos);
+
+ sign = expand_binop (imode, and_optab, op1,
+ immed_double_int_const (mask, imode),
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+ }
+
+ if (!op0_is_abs)
+ {
+ op0 = expand_unop (mode, abs_optab, op0, target, 0);
+ if (op0 == NULL)
+ return NULL_RTX;
+ target = op0;
+ }
+ else
+ {
+ if (target == NULL_RTX)
+ target = copy_to_reg (op0);
+ else
+ emit_move_insn (target, op0);
+ }
+
+ label = gen_label_rtx ();
+ emit_cmp_and_jump_insns (sign, const0_rtx, EQ, NULL_RTX, imode, 1, label);
+
+ if (GET_CODE (op0) == CONST_DOUBLE)
+ op0 = simplify_unary_operation (NEG, mode, op0, mode);
+ else
+ op0 = expand_unop (mode, neg_optab, op0, target, 0);
+ if (op0 != target)
+ emit_move_insn (target, op0);
+
+ emit_label (label);
+
+ return target;
+}
+
+
+/* A subroutine of expand_copysign, perform the entire copysign operation
+ with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
+ is true if op0 is known to have its sign bit clear. */
+
+static rtx
+expand_copysign_bit (enum machine_mode mode, rtx op0, rtx op1, rtx target,
+ int bitpos, bool op0_is_abs)
+{
+ enum machine_mode imode;
+ double_int mask;
+ int word, nwords, i;
+ rtx temp, insns;
+
+ if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
+ {
+ imode = int_mode_for_mode (mode);
+ if (imode == BLKmode)
+ return NULL_RTX;
+ word = 0;
+ nwords = 1;
+ }
+ else
+ {
+ imode = word_mode;
+
+ if (FLOAT_WORDS_BIG_ENDIAN)
+ word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
+ else
+ word = bitpos / BITS_PER_WORD;
+ bitpos = bitpos % BITS_PER_WORD;
+ nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
+ }
+
+ mask = double_int_setbit (double_int_zero, bitpos);
+
+ if (target == 0
+ || target == op0
+ || target == op1
+ || (nwords > 1 && !valid_multiword_target_p (target)))
+ target = gen_reg_rtx (mode);
+
+ if (nwords > 1)
+ {
+ start_sequence ();
+
+ for (i = 0; i < nwords; ++i)
+ {
+ rtx targ_piece = operand_subword (target, i, 1, mode);
+ rtx op0_piece = operand_subword_force (op0, i, mode);
+
+ if (i == word)
+ {
+ if (!op0_is_abs)
+ op0_piece
+ = expand_binop (imode, and_optab, op0_piece,
+ immed_double_int_const (double_int_not (mask),
+ imode),
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+
+ op1 = expand_binop (imode, and_optab,
+ operand_subword_force (op1, i, mode),
+ immed_double_int_const (mask, imode),
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+
+ temp = expand_binop (imode, ior_optab, op0_piece, op1,
+ targ_piece, 1, OPTAB_LIB_WIDEN);
+ if (temp != targ_piece)
+ emit_move_insn (targ_piece, temp);
+ }
+ else
+ emit_move_insn (targ_piece, op0_piece);
+ }
+
+ insns = get_insns ();
+ end_sequence ();
+
+ emit_insn (insns);
+ }
+ else
+ {
+ op1 = expand_binop (imode, and_optab, gen_lowpart (imode, op1),
+ immed_double_int_const (mask, imode),
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+
+ op0 = gen_lowpart (imode, op0);
+ if (!op0_is_abs)
+ op0 = expand_binop (imode, and_optab, op0,
+ immed_double_int_const (double_int_not (mask),
+ imode),
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+
+ temp = expand_binop (imode, ior_optab, op0, op1,
+ gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
+ target = lowpart_subreg_maybe_copy (mode, temp, imode);
+ }
+
+ return target;
+}
+
+/* Expand the C99 copysign operation. OP0 and OP1 must be the same
+ scalar floating point mode. Return NULL if we do not know how to
+ expand the operation inline. */
+
+rtx
+expand_copysign (rtx op0, rtx op1, rtx target)
+{
+ enum machine_mode mode = GET_MODE (op0);
+ const struct real_format *fmt;
+ bool op0_is_abs;
+ rtx temp;
+
+ gcc_assert (SCALAR_FLOAT_MODE_P (mode));
+ gcc_assert (GET_MODE (op1) == mode);
+
+ /* First try to do it with a special instruction. */
+ temp = expand_binop (mode, copysign_optab, op0, op1,
+ target, 0, OPTAB_DIRECT);
+ if (temp)
+ return temp;
+
+ fmt = REAL_MODE_FORMAT (mode);
+ if (fmt == NULL || !fmt->has_signed_zero)
+ return NULL_RTX;
+
+ op0_is_abs = false;
+ if (GET_CODE (op0) == CONST_DOUBLE)
+ {
+ if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0)))
+ op0 = simplify_unary_operation (ABS, mode, op0, mode);
+ op0_is_abs = true;
+ }
+
+ if (fmt->signbit_ro >= 0
+ && (GET_CODE (op0) == CONST_DOUBLE
+ || (optab_handler (neg_optab, mode) != CODE_FOR_nothing
+ && optab_handler (abs_optab, mode) != CODE_FOR_nothing)))
+ {
+ temp = expand_copysign_absneg (mode, op0, op1, target,
+ fmt->signbit_ro, op0_is_abs);
+ if (temp)
+ return temp;
+ }
+
+ if (fmt->signbit_rw < 0)
+ return NULL_RTX;
+ return expand_copysign_bit (mode, op0, op1, target,
+ fmt->signbit_rw, op0_is_abs);
+}
+
+/* Generate an instruction whose insn-code is INSN_CODE,
+ with two operands: an output TARGET and an input OP0.
+ TARGET *must* be nonzero, and the output is always stored there.
+ CODE is an rtx code such that (CODE OP0) is an rtx that describes
+ the value that is stored into TARGET.
+
+ Return false if expansion failed. */
+
+bool
+maybe_emit_unop_insn (enum insn_code icode, rtx target, rtx op0,
+ enum rtx_code code)
+{
+ struct expand_operand ops[2];
+ rtx pat;
+
+ create_output_operand (&ops[0], target, GET_MODE (target));
+ create_input_operand (&ops[1], op0, GET_MODE (op0));
+ pat = maybe_gen_insn (icode, 2, ops);
+ if (!pat)
+ return false;
+
+ if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && code != UNKNOWN)
+ add_equal_note (pat, ops[0].value, code, ops[1].value, NULL_RTX);
+
+ emit_insn (pat);
+
+ if (ops[0].value != target)
+ emit_move_insn (target, ops[0].value);
+ return true;
+}
+/* Generate an instruction whose insn-code is INSN_CODE,
+ with two operands: an output TARGET and an input OP0.
+ TARGET *must* be nonzero, and the output is always stored there.
+ CODE is an rtx code such that (CODE OP0) is an rtx that describes
+ the value that is stored into TARGET. */
+
+void
+emit_unop_insn (enum insn_code icode, rtx target, rtx op0, enum rtx_code code)
+{
+ bool ok = maybe_emit_unop_insn (icode, target, op0, code);
+ gcc_assert (ok);
+}
+
+struct no_conflict_data
+{
+ rtx target, first, insn;
+ bool must_stay;
+};
+
+/* Called via note_stores by emit_libcall_block. Set P->must_stay if
+ the currently examined clobber / store has to stay in the list of
+ insns that constitute the actual libcall block. */
+static void
+no_conflict_move_test (rtx dest, const_rtx set, void *p0)
+{
+ struct no_conflict_data *p= (struct no_conflict_data *) p0;
+
+ /* If this inns directly contributes to setting the target, it must stay. */
+ if (reg_overlap_mentioned_p (p->target, dest))
+ p->must_stay = true;
+ /* If we haven't committed to keeping any other insns in the list yet,
+ there is nothing more to check. */
+ else if (p->insn == p->first)
+ return;
+ /* If this insn sets / clobbers a register that feeds one of the insns
+ already in the list, this insn has to stay too. */
+ else if (reg_overlap_mentioned_p (dest, PATTERN (p->first))
+ || (CALL_P (p->first) && (find_reg_fusage (p->first, USE, dest)))
+ || reg_used_between_p (dest, p->first, p->insn)
+ /* Likewise if this insn depends on a register set by a previous
+ insn in the list, or if it sets a result (presumably a hard
+ register) that is set or clobbered by a previous insn.
+ N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
+ SET_DEST perform the former check on the address, and the latter
+ check on the MEM. */
+ || (GET_CODE (set) == SET
+ && (modified_in_p (SET_SRC (set), p->first)
+ || modified_in_p (SET_DEST (set), p->first)
+ || modified_between_p (SET_SRC (set), p->first, p->insn)
+ || modified_between_p (SET_DEST (set), p->first, p->insn))))
+ p->must_stay = true;
+}
+
+
+/* Emit code to make a call to a constant function or a library call.
+
+ INSNS is a list containing all insns emitted in the call.
+ These insns leave the result in RESULT. Our block is to copy RESULT
+ to TARGET, which is logically equivalent to EQUIV.
+
+ We first emit any insns that set a pseudo on the assumption that these are
+ loading constants into registers; doing so allows them to be safely cse'ed
+ between blocks. Then we emit all the other insns in the block, followed by
+ an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
+ note with an operand of EQUIV. */
+
+void
+emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv)
+{
+ rtx final_dest = target;
+ rtx next, last, insn;
+
+ /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
+ into a MEM later. Protect the libcall block from this change. */
+ if (! REG_P (target) || REG_USERVAR_P (target))
+ target = gen_reg_rtx (GET_MODE (target));
+
+ /* If we're using non-call exceptions, a libcall corresponding to an
+ operation that may trap may also trap. */
+ /* ??? See the comment in front of make_reg_eh_region_note. */
+ if (cfun->can_throw_non_call_exceptions && may_trap_p (equiv))
+ {
+ for (insn = insns; insn; insn = NEXT_INSN (insn))
+ if (CALL_P (insn))
+ {
+ rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
+ if (note)
+ {
+ int lp_nr = INTVAL (XEXP (note, 0));
+ if (lp_nr == 0 || lp_nr == INT_MIN)
+ remove_note (insn, note);
+ }
+ }
+ }
+ else
+ {
+ /* Look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
+ reg note to indicate that this call cannot throw or execute a nonlocal
+ goto (unless there is already a REG_EH_REGION note, in which case
+ we update it). */
+ for (insn = insns; insn; insn = NEXT_INSN (insn))
+ if (CALL_P (insn))
+ make_reg_eh_region_note_nothrow_nononlocal (insn);
+ }
+
+ /* First emit all insns that set pseudos. Remove them from the list as
+ we go. Avoid insns that set pseudos which were referenced in previous
+ insns. These can be generated by move_by_pieces, for example,
+ to update an address. Similarly, avoid insns that reference things
+ set in previous insns. */
+
+ for (insn = insns; insn; insn = next)
+ {
+ rtx set = single_set (insn);
+
+ next = NEXT_INSN (insn);
+
+ if (set != 0 && REG_P (SET_DEST (set))
+ && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
+ {
+ struct no_conflict_data data;
+
+ data.target = const0_rtx;
+ data.first = insns;
+ data.insn = insn;
+ data.must_stay = 0;
+ note_stores (PATTERN (insn), no_conflict_move_test, &data);
+ if (! data.must_stay)
+ {
+ if (PREV_INSN (insn))
+ NEXT_INSN (PREV_INSN (insn)) = next;
+ else
+ insns = next;
+
+ if (next)
+ PREV_INSN (next) = PREV_INSN (insn);
+
+ add_insn (insn);
+ }
+ }
+
+ /* Some ports use a loop to copy large arguments onto the stack.
+ Don't move anything outside such a loop. */
+ if (LABEL_P (insn))
+ break;
+ }
+
+ /* Write the remaining insns followed by the final copy. */
+ for (insn = insns; insn; insn = next)
+ {
+ next = NEXT_INSN (insn);
+
+ add_insn (insn);
+ }
+
+ last = emit_move_insn (target, result);
+ set_dst_reg_note (last, REG_EQUAL, copy_rtx (equiv), target);
+
+ if (final_dest != target)
+ emit_move_insn (final_dest, target);
+}
+
+/* Nonzero if we can perform a comparison of mode MODE straightforwardly.
+ PURPOSE describes how this comparison will be used. CODE is the rtx
+ comparison code we will be using.
+
+ ??? Actually, CODE is slightly weaker than that. A target is still
+ required to implement all of the normal bcc operations, but not
+ required to implement all (or any) of the unordered bcc operations. */
+
+int
+can_compare_p (enum rtx_code code, enum machine_mode mode,
+ enum can_compare_purpose purpose)
+{
+ rtx test;
+ test = gen_rtx_fmt_ee (code, mode, const0_rtx, const0_rtx);
+ do
+ {
+ enum insn_code icode;
+
+ if (purpose == ccp_jump
+ && (icode = optab_handler (cbranch_optab, mode)) != CODE_FOR_nothing
+ && insn_operand_matches (icode, 0, test))
+ return 1;
+ if (purpose == ccp_store_flag
+ && (icode = optab_handler (cstore_optab, mode)) != CODE_FOR_nothing
+ && insn_operand_matches (icode, 1, test))
+ return 1;
+ if (purpose == ccp_cmov
+ && optab_handler (cmov_optab, mode) != CODE_FOR_nothing)
+ return 1;
+
+ mode = GET_MODE_WIDER_MODE (mode);
+ PUT_MODE (test, mode);
+ }
+ while (mode != VOIDmode);
+
+ return 0;
+}
+
+/* This function is called when we are going to emit a compare instruction that
+ compares the values found in *PX and *PY, using the rtl operator COMPARISON.
+
+ *PMODE is the mode of the inputs (in case they are const_int).
+ *PUNSIGNEDP nonzero says that the operands are unsigned;
+ this matters if they need to be widened (as given by METHODS).
+
+ If they have mode BLKmode, then SIZE specifies the size of both operands.
+
+ This function performs all the setup necessary so that the caller only has
+ to emit a single comparison insn. This setup can involve doing a BLKmode
+ comparison or emitting a library call to perform the comparison if no insn
+ is available to handle it.
+ The values which are passed in through pointers can be modified; the caller
+ should perform the comparison on the modified values. Constant
+ comparisons must have already been folded. */
+
+static void
+prepare_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
+ int unsignedp, enum optab_methods methods,
+ rtx *ptest, enum machine_mode *pmode)
+{
+ enum machine_mode mode = *pmode;
+ rtx libfunc, test;
+ enum machine_mode cmp_mode;
+ enum mode_class mclass;
+
+ /* The other methods are not needed. */
+ gcc_assert (methods == OPTAB_DIRECT || methods == OPTAB_WIDEN
+ || methods == OPTAB_LIB_WIDEN);
+
+ /* If we are optimizing, force expensive constants into a register. */
+ if (CONSTANT_P (x) && optimize
+ && (rtx_cost (x, COMPARE, 0, optimize_insn_for_speed_p ())
+ > COSTS_N_INSNS (1)))
+ x = force_reg (mode, x);
+
+ if (CONSTANT_P (y) && optimize
+ && (rtx_cost (y, COMPARE, 1, optimize_insn_for_speed_p ())
+ > COSTS_N_INSNS (1)))
+ y = force_reg (mode, y);
+
+#ifdef HAVE_cc0
+ /* Make sure if we have a canonical comparison. The RTL
+ documentation states that canonical comparisons are required only
+ for targets which have cc0. */
+ gcc_assert (!CONSTANT_P (x) || CONSTANT_P (y));
+#endif
+
+ /* Don't let both operands fail to indicate the mode. */
+ if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
+ x = force_reg (mode, x);
+ if (mode == VOIDmode)
+ mode = GET_MODE (x) != VOIDmode ? GET_MODE (x) : GET_MODE (y);
+
+ /* Handle all BLKmode compares. */
+
+ if (mode == BLKmode)
+ {
+ enum machine_mode result_mode;
+ enum insn_code cmp_code;
+ tree length_type;
+ rtx libfunc;
+ rtx result;
+ rtx opalign
+ = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
+
+ gcc_assert (size);
+
+ /* Try to use a memory block compare insn - either cmpstr
+ or cmpmem will do. */
+ for (cmp_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
+ cmp_mode != VOIDmode;
+ cmp_mode = GET_MODE_WIDER_MODE (cmp_mode))
+ {
+ cmp_code = direct_optab_handler (cmpmem_optab, cmp_mode);
+ if (cmp_code == CODE_FOR_nothing)
+ cmp_code = direct_optab_handler (cmpstr_optab, cmp_mode);
+ if (cmp_code == CODE_FOR_nothing)
+ cmp_code = direct_optab_handler (cmpstrn_optab, cmp_mode);
+ if (cmp_code == CODE_FOR_nothing)
+ continue;
+
+ /* Must make sure the size fits the insn's mode. */
+ if ((CONST_INT_P (size)
+ && INTVAL (size) >= (1 << GET_MODE_BITSIZE (cmp_mode)))
+ || (GET_MODE_BITSIZE (GET_MODE (size))
+ > GET_MODE_BITSIZE (cmp_mode)))
+ continue;
+
+ result_mode = insn_data[cmp_code].operand[0].mode;
+ result = gen_reg_rtx (result_mode);
+ size = convert_to_mode (cmp_mode, size, 1);
+ emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
+
+ *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, result, const0_rtx);
+ *pmode = result_mode;
+ return;
+ }
+
+ if (methods != OPTAB_LIB && methods != OPTAB_LIB_WIDEN)
+ goto fail;
+
+ /* Otherwise call a library function, memcmp. */
+ libfunc = memcmp_libfunc;
+ length_type = sizetype;
+ result_mode = TYPE_MODE (integer_type_node);
+ cmp_mode = TYPE_MODE (length_type);
+ size = convert_to_mode (TYPE_MODE (length_type), size,
+ TYPE_UNSIGNED (length_type));
+
+ result = emit_library_call_value (libfunc, 0, LCT_PURE,
+ result_mode, 3,
+ XEXP (x, 0), Pmode,
+ XEXP (y, 0), Pmode,
+ size, cmp_mode);
+
+ *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, result, const0_rtx);
+ *pmode = result_mode;
+ return;
+ }
+
+ /* Don't allow operands to the compare to trap, as that can put the
+ compare and branch in different basic blocks. */
+ if (cfun->can_throw_non_call_exceptions)
+ {
+ if (may_trap_p (x))
+ x = force_reg (mode, x);
+ if (may_trap_p (y))
+ y = force_reg (mode, y);
+ }
+
+ if (GET_MODE_CLASS (mode) == MODE_CC)
+ {
+ gcc_assert (can_compare_p (comparison, CCmode, ccp_jump));
+ *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
+ return;
+ }
+
+ mclass = GET_MODE_CLASS (mode);
+ test = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
+ cmp_mode = mode;
+ do
+ {
+ enum insn_code icode;
+ icode = optab_handler (cbranch_optab, cmp_mode);
+ if (icode != CODE_FOR_nothing
+ && insn_operand_matches (icode, 0, test))
+ {
+ rtx last = get_last_insn ();
+ rtx op0 = prepare_operand (icode, x, 1, mode, cmp_mode, unsignedp);
+ rtx op1 = prepare_operand (icode, y, 2, mode, cmp_mode, unsignedp);
+ if (op0 && op1
+ && insn_operand_matches (icode, 1, op0)
+ && insn_operand_matches (icode, 2, op1))
+ {
+ XEXP (test, 0) = op0;
+ XEXP (test, 1) = op1;
+ *ptest = test;
+ *pmode = cmp_mode;
+ return;
+ }
+ delete_insns_since (last);
+ }
+
+ if (methods == OPTAB_DIRECT || !CLASS_HAS_WIDER_MODES_P (mclass))
+ break;
+ cmp_mode = GET_MODE_WIDER_MODE (cmp_mode);
+ }
+ while (cmp_mode != VOIDmode);
+
+ if (methods != OPTAB_LIB_WIDEN)
+ goto fail;
+
+ if (!SCALAR_FLOAT_MODE_P (mode))
+ {
+ rtx result;
+
+ /* Handle a libcall just for the mode we are using. */
+ libfunc = optab_libfunc (cmp_optab, mode);
+ gcc_assert (libfunc);
+
+ /* If we want unsigned, and this mode has a distinct unsigned
+ comparison routine, use that. */
+ if (unsignedp)
+ {
+ rtx ulibfunc = optab_libfunc (ucmp_optab, mode);
+ if (ulibfunc)
+ libfunc = ulibfunc;
+ }
+
+ result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
+ targetm.libgcc_cmp_return_mode (),
+ 2, x, mode, y, mode);
+
+ /* There are two kinds of comparison routines. Biased routines
+ return 0/1/2, and unbiased routines return -1/0/1. Other parts
+ of gcc expect that the comparison operation is equivalent
+ to the modified comparison. For signed comparisons compare the
+ result against 1 in the biased case, and zero in the unbiased
+ case. For unsigned comparisons always compare against 1 after
+ biasing the unbiased result by adding 1. This gives us a way to
+ represent LTU.
+ The comparisons in the fixed-point helper library are always
+ biased. */
+ x = result;
+ y = const1_rtx;
+
+ if (!TARGET_LIB_INT_CMP_BIASED && !ALL_FIXED_POINT_MODE_P (mode))
+ {
+ if (unsignedp)
+ x = plus_constant (result, 1);
+ else
+ y = const0_rtx;
+ }
+
+ *pmode = word_mode;
+ prepare_cmp_insn (x, y, comparison, NULL_RTX, unsignedp, methods,
+ ptest, pmode);
+ }
+ else
+ prepare_float_lib_cmp (x, y, comparison, ptest, pmode);
+
+ return;
+
+ fail:
+ *ptest = NULL_RTX;
+}
+
+/* Before emitting an insn with code ICODE, make sure that X, which is going
+ to be used for operand OPNUM of the insn, is converted from mode MODE to
+ WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
+ that it is accepted by the operand predicate. Return the new value. */
+
+rtx
+prepare_operand (enum insn_code icode, rtx x, int opnum, enum machine_mode mode,
+ enum machine_mode wider_mode, int unsignedp)
+{
+ if (mode != wider_mode)
+ x = convert_modes (wider_mode, mode, x, unsignedp);
+
+ if (!insn_operand_matches (icode, opnum, x))
+ {
+ if (reload_completed)
+ return NULL_RTX;
+ x = copy_to_mode_reg (insn_data[(int) icode].operand[opnum].mode, x);
+ }
+
+ return x;
+}
+
+/* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
+ we can do the branch. */
+
+static void
+emit_cmp_and_jump_insn_1 (rtx test, enum machine_mode mode, rtx label)
+{
+ enum machine_mode optab_mode;
+ enum mode_class mclass;
+ enum insn_code icode;
+
+ mclass = GET_MODE_CLASS (mode);
+ optab_mode = (mclass == MODE_CC) ? CCmode : mode;
+ icode = optab_handler (cbranch_optab, optab_mode);
+
+ gcc_assert (icode != CODE_FOR_nothing);
+ gcc_assert (insn_operand_matches (icode, 0, test));
+ emit_jump_insn (GEN_FCN (icode) (test, XEXP (test, 0), XEXP (test, 1), label));
+}
+
+/* Generate code to compare X with Y so that the condition codes are
+ set and to jump to LABEL if the condition is true. If X is a
+ constant and Y is not a constant, then the comparison is swapped to
+ ensure that the comparison RTL has the canonical form.
+
+ UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
+ need to be widened. UNSIGNEDP is also used to select the proper
+ branch condition code.
+
+ If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
+
+ MODE is the mode of the inputs (in case they are const_int).
+
+ COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
+ It will be potentially converted into an unsigned variant based on
+ UNSIGNEDP to select a proper jump instruction. */
+
+void
+emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
+ enum machine_mode mode, int unsignedp, rtx label)
+{
+ rtx op0 = x, op1 = y;
+ rtx test;
+
+ /* Swap operands and condition to ensure canonical RTL. */
+ if (swap_commutative_operands_p (x, y)
+ && can_compare_p (swap_condition (comparison), mode, ccp_jump))
+ {
+ op0 = y, op1 = x;
+ comparison = swap_condition (comparison);
+ }
+
+ /* If OP0 is still a constant, then both X and Y must be constants
+ or the opposite comparison is not supported. Force X into a register
+ to create canonical RTL. */
+ if (CONSTANT_P (op0))
+ op0 = force_reg (mode, op0);
+
+ if (unsignedp)
+ comparison = unsigned_condition (comparison);
+
+ prepare_cmp_insn (op0, op1, comparison, size, unsignedp, OPTAB_LIB_WIDEN,
+ &test, &mode);
+ emit_cmp_and_jump_insn_1 (test, mode, label);
+}
+
+
+/* Emit a library call comparison between floating point X and Y.
+ COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
+
+static void
+prepare_float_lib_cmp (rtx x, rtx y, enum rtx_code comparison,
+ rtx *ptest, enum machine_mode *pmode)
+{
+ enum rtx_code swapped = swap_condition (comparison);
+ enum rtx_code reversed = reverse_condition_maybe_unordered (comparison);
+ enum machine_mode orig_mode = GET_MODE (x);
+ enum machine_mode mode, cmp_mode;
+ rtx true_rtx, false_rtx;
+ rtx value, target, insns, equiv;
+ rtx libfunc = 0;
+ bool reversed_p = false;
+ cmp_mode = targetm.libgcc_cmp_return_mode ();
+
+ for (mode = orig_mode;
+ mode != VOIDmode;
+ mode = GET_MODE_WIDER_MODE (mode))
+ {
+ if (code_to_optab[comparison]
+ && (libfunc = optab_libfunc (code_to_optab[comparison], mode)))
+ break;
+
+ if (code_to_optab[swapped]
+ && (libfunc = optab_libfunc (code_to_optab[swapped], mode)))
+ {
+ rtx tmp;
+ tmp = x; x = y; y = tmp;
+ comparison = swapped;
+ break;
+ }
+
+ if (code_to_optab[reversed]
+ && (libfunc = optab_libfunc (code_to_optab[reversed], mode)))
+ {
+ comparison = reversed;
+ reversed_p = true;
+ break;
+ }
+ }
+
+ gcc_assert (mode != VOIDmode);
+
+ if (mode != orig_mode)
+ {
+ x = convert_to_mode (mode, x, 0);
+ y = convert_to_mode (mode, y, 0);
+ }
+
+ /* Attach a REG_EQUAL note describing the semantics of the libcall to
+ the RTL. The allows the RTL optimizers to delete the libcall if the
+ condition can be determined at compile-time. */
+ if (comparison == UNORDERED
+ || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
+ {
+ true_rtx = const_true_rtx;
+ false_rtx = const0_rtx;
+ }
+ else
+ {
+ switch (comparison)
+ {
+ case EQ:
+ true_rtx = const0_rtx;
+ false_rtx = const_true_rtx;
+ break;
+
+ case NE:
+ true_rtx = const_true_rtx;
+ false_rtx = const0_rtx;
+ break;
+
+ case GT:
+ true_rtx = const1_rtx;
+ false_rtx = const0_rtx;
+ break;
+
+ case GE:
+ true_rtx = const0_rtx;
+ false_rtx = constm1_rtx;
+ break;
+
+ case LT:
+ true_rtx = constm1_rtx;
+ false_rtx = const0_rtx;
+ break;
+
+ case LE:
+ true_rtx = const0_rtx;
+ false_rtx = const1_rtx;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ }
+
+ if (comparison == UNORDERED)
+ {
+ rtx temp = simplify_gen_relational (NE, cmp_mode, mode, x, x);
+ equiv = simplify_gen_relational (NE, cmp_mode, mode, y, y);
+ equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
+ temp, const_true_rtx, equiv);
+ }
+ else
+ {
+ equiv = simplify_gen_relational (comparison, cmp_mode, mode, x, y);
+ if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
+ equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
+ equiv, true_rtx, false_rtx);
+ }
+
+ start_sequence ();
+ value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
+ cmp_mode, 2, x, mode, y, mode);
+ insns = get_insns ();
+ end_sequence ();
+
+ target = gen_reg_rtx (cmp_mode);
+ emit_libcall_block (insns, target, value, equiv);
+
+ if (comparison == UNORDERED
+ || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison)
+ || reversed_p)
+ *ptest = gen_rtx_fmt_ee (reversed_p ? EQ : NE, VOIDmode, target, false_rtx);
+ else
+ *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, target, const0_rtx);
+
+ *pmode = cmp_mode;
+}
+
+/* Generate code to indirectly jump to a location given in the rtx LOC. */
+
+void
+emit_indirect_jump (rtx loc)
+{
+ struct expand_operand ops[1];
+
+ create_address_operand (&ops[0], loc);
+ expand_jump_insn (CODE_FOR_indirect_jump, 1, ops);
+ emit_barrier ();
+}
+
+#ifdef HAVE_conditional_move
+
+/* Emit a conditional move instruction if the machine supports one for that
+ condition and machine mode.
+
+ OP0 and OP1 are the operands that should be compared using CODE. CMODE is
+ the mode to use should they be constants. If it is VOIDmode, they cannot
+ both be constants.
+
+ OP2 should be stored in TARGET if the comparison is true, otherwise OP3
+ should be stored there. MODE is the mode to use should they be constants.
+ If it is VOIDmode, they cannot both be constants.
+
+ The result is either TARGET (perhaps modified) or NULL_RTX if the operation
+ is not supported. */
+
+rtx
+emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
+ enum machine_mode cmode, rtx op2, rtx op3,
+ enum machine_mode mode, int unsignedp)
+{
+ rtx tem, comparison, last;
+ enum insn_code icode;
+ enum rtx_code reversed;
+
+ /* If one operand is constant, make it the second one. Only do this
+ if the other operand is not constant as well. */
+
+ if (swap_commutative_operands_p (op0, op1))
+ {
+ tem = op0;
+ op0 = op1;
+ op1 = tem;
+ code = swap_condition (code);
+ }
+
+ /* get_condition will prefer to generate LT and GT even if the old
+ comparison was against zero, so undo that canonicalization here since
+ comparisons against zero are cheaper. */
+ if (code == LT && op1 == const1_rtx)
+ code = LE, op1 = const0_rtx;
+ else if (code == GT && op1 == constm1_rtx)
+ code = GE, op1 = const0_rtx;
+
+ if (cmode == VOIDmode)
+ cmode = GET_MODE (op0);
+
+ if (swap_commutative_operands_p (op2, op3)
+ && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
+ != UNKNOWN))
+ {
+ tem = op2;
+ op2 = op3;
+ op3 = tem;
+ code = reversed;
+ }
+
+ if (mode == VOIDmode)
+ mode = GET_MODE (op2);
+
+ icode = direct_optab_handler (movcc_optab, mode);
+
+ if (icode == CODE_FOR_nothing)
+ return 0;
+
+ if (!target)
+ target = gen_reg_rtx (mode);
+
+ code = unsignedp ? unsigned_condition (code) : code;
+ comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
+
+ /* We can get const0_rtx or const_true_rtx in some circumstances. Just
+ return NULL and let the caller figure out how best to deal with this
+ situation. */
+ if (!COMPARISON_P (comparison))
+ return NULL_RTX;
+
+ do_pending_stack_adjust ();
+ last = get_last_insn ();
+ prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
+ GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
+ &comparison, &cmode);
+ if (comparison)
+ {
+ struct expand_operand ops[4];
+
+ create_output_operand (&ops[0], target, mode);
+ create_fixed_operand (&ops[1], comparison);
+ create_input_operand (&ops[2], op2, mode);
+ create_input_operand (&ops[3], op3, mode);
+ if (maybe_expand_insn (icode, 4, ops))
+ {
+ if (ops[0].value != target)
+ convert_move (target, ops[0].value, false);
+ return target;
+ }
+ }
+ delete_insns_since (last);
+ return NULL_RTX;
+}
+
+/* Return nonzero if a conditional move of mode MODE is supported.
+
+ This function is for combine so it can tell whether an insn that looks
+ like a conditional move is actually supported by the hardware. If we
+ guess wrong we lose a bit on optimization, but that's it. */
+/* ??? sparc64 supports conditionally moving integers values based on fp
+ comparisons, and vice versa. How do we handle them? */
+
+int
+can_conditionally_move_p (enum machine_mode mode)
+{
+ if (direct_optab_handler (movcc_optab, mode) != CODE_FOR_nothing)
+ return 1;
+
+ return 0;
+}
+
+#endif /* HAVE_conditional_move */
+
+/* Emit a conditional addition instruction if the machine supports one for that
+ condition and machine mode.
+
+ OP0 and OP1 are the operands that should be compared using CODE. CMODE is
+ the mode to use should they be constants. If it is VOIDmode, they cannot
+ both be constants.
+
+ OP2 should be stored in TARGET if the comparison is true, otherwise OP2+OP3
+ should be stored there. MODE is the mode to use should they be constants.
+ If it is VOIDmode, they cannot both be constants.
+
+ The result is either TARGET (perhaps modified) or NULL_RTX if the operation
+ is not supported. */
+
+rtx
+emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
+ enum machine_mode cmode, rtx op2, rtx op3,
+ enum machine_mode mode, int unsignedp)
+{
+ rtx tem, comparison, last;
+ enum insn_code icode;
+ enum rtx_code reversed;
+
+ /* If one operand is constant, make it the second one. Only do this
+ if the other operand is not constant as well. */
+
+ if (swap_commutative_operands_p (op0, op1))
+ {
+ tem = op0;
+ op0 = op1;
+ op1 = tem;
+ code = swap_condition (code);
+ }
+
+ /* get_condition will prefer to generate LT and GT even if the old
+ comparison was against zero, so undo that canonicalization here since
+ comparisons against zero are cheaper. */
+ if (code == LT && op1 == const1_rtx)
+ code = LE, op1 = const0_rtx;
+ else if (code == GT && op1 == constm1_rtx)
+ code = GE, op1 = const0_rtx;
+
+ if (cmode == VOIDmode)
+ cmode = GET_MODE (op0);
+
+ if (swap_commutative_operands_p (op2, op3)
+ && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
+ != UNKNOWN))
+ {
+ tem = op2;
+ op2 = op3;
+ op3 = tem;
+ code = reversed;
+ }
+
+ if (mode == VOIDmode)
+ mode = GET_MODE (op2);
+
+ icode = optab_handler (addcc_optab, mode);
+
+ if (icode == CODE_FOR_nothing)
+ return 0;
+
+ if (!target)
+ target = gen_reg_rtx (mode);
+
+ code = unsignedp ? unsigned_condition (code) : code;
+ comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
+
+ /* We can get const0_rtx or const_true_rtx in some circumstances. Just
+ return NULL and let the caller figure out how best to deal with this
+ situation. */
+ if (!COMPARISON_P (comparison))
+ return NULL_RTX;
+
+ do_pending_stack_adjust ();
+ last = get_last_insn ();
+ prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
+ GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
+ &comparison, &cmode);
+ if (comparison)
+ {
+ struct expand_operand ops[4];
+
+ create_output_operand (&ops[0], target, mode);
+ create_fixed_operand (&ops[1], comparison);
+ create_input_operand (&ops[2], op2, mode);
+ create_input_operand (&ops[3], op3, mode);
+ if (maybe_expand_insn (icode, 4, ops))
+ {
+ if (ops[0].value != target)
+ convert_move (target, ops[0].value, false);
+ return target;
+ }
+ }
+ delete_insns_since (last);
+ return NULL_RTX;
+}
+
+/* These functions attempt to generate an insn body, rather than
+ emitting the insn, but if the gen function already emits them, we
+ make no attempt to turn them back into naked patterns. */
+
+/* Generate and return an insn body to add Y to X. */
+
+rtx
+gen_add2_insn (rtx x, rtx y)
+{
+ enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
+
+ gcc_assert (insn_operand_matches (icode, 0, x));
+ gcc_assert (insn_operand_matches (icode, 1, x));
+ gcc_assert (insn_operand_matches (icode, 2, y));
+
+ return GEN_FCN (icode) (x, x, y);
+}
+
+/* Generate and return an insn body to add r1 and c,
+ storing the result in r0. */
+
+rtx
+gen_add3_insn (rtx r0, rtx r1, rtx c)
+{
+ enum insn_code icode = optab_handler (add_optab, GET_MODE (r0));
+
+ if (icode == CODE_FOR_nothing
+ || !insn_operand_matches (icode, 0, r0)
+ || !insn_operand_matches (icode, 1, r1)
+ || !insn_operand_matches (icode, 2, c))
+ return NULL_RTX;
+
+ return GEN_FCN (icode) (r0, r1, c);
+}
+
+int
+have_add2_insn (rtx x, rtx y)
+{
+ enum insn_code icode;
+
+ gcc_assert (GET_MODE (x) != VOIDmode);
+
+ icode = optab_handler (add_optab, GET_MODE (x));
+
+ if (icode == CODE_FOR_nothing)
+ return 0;
+
+ if (!insn_operand_matches (icode, 0, x)
+ || !insn_operand_matches (icode, 1, x)
+ || !insn_operand_matches (icode, 2, y))
+ return 0;
+
+ return 1;
+}
+
+/* Generate and return an insn body to subtract Y from X. */
+
+rtx
+gen_sub2_insn (rtx x, rtx y)
+{
+ enum insn_code icode = optab_handler (sub_optab, GET_MODE (x));
+
+ gcc_assert (insn_operand_matches (icode, 0, x));
+ gcc_assert (insn_operand_matches (icode, 1, x));
+ gcc_assert (insn_operand_matches (icode, 2, y));
+
+ return GEN_FCN (icode) (x, x, y);
+}
+
+/* Generate and return an insn body to subtract r1 and c,
+ storing the result in r0. */
+
+rtx
+gen_sub3_insn (rtx r0, rtx r1, rtx c)
+{
+ enum insn_code icode = optab_handler (sub_optab, GET_MODE (r0));
+
+ if (icode == CODE_FOR_nothing
+ || !insn_operand_matches (icode, 0, r0)
+ || !insn_operand_matches (icode, 1, r1)
+ || !insn_operand_matches (icode, 2, c))
+ return NULL_RTX;
+
+ return GEN_FCN (icode) (r0, r1, c);
+}
+
+int
+have_sub2_insn (rtx x, rtx y)
+{
+ enum insn_code icode;
+
+ gcc_assert (GET_MODE (x) != VOIDmode);
+
+ icode = optab_handler (sub_optab, GET_MODE (x));
+
+ if (icode == CODE_FOR_nothing)
+ return 0;
+
+ if (!insn_operand_matches (icode, 0, x)
+ || !insn_operand_matches (icode, 1, x)
+ || !insn_operand_matches (icode, 2, y))
+ return 0;
+
+ return 1;
+}
+
+/* Generate the body of an instruction to copy Y into X.
+ It may be a list of insns, if one insn isn't enough. */
+
+rtx
+gen_move_insn (rtx x, rtx y)
+{
+ rtx seq;
+
+ start_sequence ();
+ emit_move_insn_1 (x, y);
+ seq = get_insns ();
+ end_sequence ();
+ return seq;
+}
+
+/* Return the insn code used to extend FROM_MODE to TO_MODE.
+ UNSIGNEDP specifies zero-extension instead of sign-extension. If
+ no such operation exists, CODE_FOR_nothing will be returned. */
+
+enum insn_code
+can_extend_p (enum machine_mode to_mode, enum machine_mode from_mode,
+ int unsignedp)
+{
+ convert_optab tab;
+#ifdef HAVE_ptr_extend
+ if (unsignedp < 0)
+ return CODE_FOR_ptr_extend;
+#endif
+
+ tab = unsignedp ? zext_optab : sext_optab;
+ return convert_optab_handler (tab, to_mode, from_mode);
+}
+
+/* Generate the body of an insn to extend Y (with mode MFROM)
+ into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
+
+rtx
+gen_extend_insn (rtx x, rtx y, enum machine_mode mto,
+ enum machine_mode mfrom, int unsignedp)
+{
+ enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
+ return GEN_FCN (icode) (x, y);
+}
+
+/* can_fix_p and can_float_p say whether the target machine
+ can directly convert a given fixed point type to
+ a given floating point type, or vice versa.
+ The returned value is the CODE_FOR_... value to use,
+ or CODE_FOR_nothing if these modes cannot be directly converted.
+
+ *TRUNCP_PTR is set to 1 if it is necessary to output
+ an explicit FTRUNC insn before the fix insn; otherwise 0. */
+
+static enum insn_code
+can_fix_p (enum machine_mode fixmode, enum machine_mode fltmode,
+ int unsignedp, int *truncp_ptr)
+{
+ convert_optab tab;
+ enum insn_code icode;
+
+ tab = unsignedp ? ufixtrunc_optab : sfixtrunc_optab;
+ icode = convert_optab_handler (tab, fixmode, fltmode);
+ if (icode != CODE_FOR_nothing)
+ {
+ *truncp_ptr = 0;
+ return icode;
+ }
+
+ /* FIXME: This requires a port to define both FIX and FTRUNC pattern
+ for this to work. We need to rework the fix* and ftrunc* patterns
+ and documentation. */
+ tab = unsignedp ? ufix_optab : sfix_optab;
+ icode = convert_optab_handler (tab, fixmode, fltmode);
+ if (icode != CODE_FOR_nothing
+ && optab_handler (ftrunc_optab, fltmode) != CODE_FOR_nothing)
+ {
+ *truncp_ptr = 1;
+ return icode;
+ }
+
+ *truncp_ptr = 0;
+ return CODE_FOR_nothing;
+}
+
+enum insn_code
+can_float_p (enum machine_mode fltmode, enum machine_mode fixmode,
+ int unsignedp)
+{
+ convert_optab tab;
+
+ tab = unsignedp ? ufloat_optab : sfloat_optab;
+ return convert_optab_handler (tab, fltmode, fixmode);
+}
+
+/* Function supportable_convert_operation
+
+ Check whether an operation represented by the code CODE is a
+ convert operation that is supported by the target platform in
+ vector form (i.e., when operating on arguments of type VECTYPE_IN
+ producing a result of type VECTYPE_OUT).
+
+ Convert operations we currently support directly are FIX_TRUNC and FLOAT.
+ This function checks if these operations are supported
+ by the target platform either directly (via vector tree-codes), or via
+ target builtins.
+
+ Output:
+ - CODE1 is code of vector operation to be used when
+ vectorizing the operation, if available.
+ - DECL is decl of target builtin functions to be used
+ when vectorizing the operation, if available. In this case,
+ CODE1 is CALL_EXPR. */
+
+bool
+supportable_convert_operation (enum tree_code code,
+ tree vectype_out, tree vectype_in,
+ tree *decl, enum tree_code *code1)
+{
+ enum machine_mode m1,m2;
+ int truncp;
+
+ m1 = TYPE_MODE (vectype_out);
+ m2 = TYPE_MODE (vectype_in);
+
+ /* First check if we can done conversion directly. */
+ if ((code == FIX_TRUNC_EXPR
+ && can_fix_p (m1,m2,TYPE_UNSIGNED (vectype_out), &truncp)
+ != CODE_FOR_nothing)
+ || (code == FLOAT_EXPR
+ && can_float_p (m1,m2,TYPE_UNSIGNED (vectype_in))
+ != CODE_FOR_nothing))
+ {
+ *code1 = code;
+ return true;
+ }
+
+ /* Now check for builtin. */
+ if (targetm.vectorize.builtin_conversion
+ && targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in))
+ {
+ *code1 = CALL_EXPR;
+ *decl = targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in);
+ return true;
+ }
+ return false;
+}
+
+
+/* Generate code to convert FROM to floating point
+ and store in TO. FROM must be fixed point and not VOIDmode.
+ UNSIGNEDP nonzero means regard FROM as unsigned.
+ Normally this is done by correcting the final value
+ if it is negative. */
+
+void
+expand_float (rtx to, rtx from, int unsignedp)
+{
+ enum insn_code icode;
+ rtx target = to;
+ enum machine_mode fmode, imode;
+ bool can_do_signed = false;
+
+ /* Crash now, because we won't be able to decide which mode to use. */
+ gcc_assert (GET_MODE (from) != VOIDmode);
+
+ /* Look for an insn to do the conversion. Do it in the specified
+ modes if possible; otherwise convert either input, output or both to
+ wider mode. If the integer mode is wider than the mode of FROM,
+ we can do the conversion signed even if the input is unsigned. */
+
+ for (fmode = GET_MODE (to); fmode != VOIDmode;
+ fmode = GET_MODE_WIDER_MODE (fmode))
+ for (imode = GET_MODE (from); imode != VOIDmode;
+ imode = GET_MODE_WIDER_MODE (imode))
+ {
+ int doing_unsigned = unsignedp;
+
+ if (fmode != GET_MODE (to)
+ && significand_size (fmode) < GET_MODE_PRECISION (GET_MODE (from)))
+ continue;
+
+ icode = can_float_p (fmode, imode, unsignedp);
+ if (icode == CODE_FOR_nothing && unsignedp)
+ {
+ enum insn_code scode = can_float_p (fmode, imode, 0);
+ if (scode != CODE_FOR_nothing)
+ can_do_signed = true;
+ if (imode != GET_MODE (from))
+ icode = scode, doing_unsigned = 0;
+ }
+
+ if (icode != CODE_FOR_nothing)
+ {
+ if (imode != GET_MODE (from))
+ from = convert_to_mode (imode, from, unsignedp);
+
+ if (fmode != GET_MODE (to))
+ target = gen_reg_rtx (fmode);
+
+ emit_unop_insn (icode, target, from,
+ doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
+
+ if (target != to)
+ convert_move (to, target, 0);
+ return;
+ }
+ }
+
+ /* Unsigned integer, and no way to convert directly. Convert as signed,
+ then unconditionally adjust the result. */
+ if (unsignedp && can_do_signed)
+ {
+ rtx label = gen_label_rtx ();
+ rtx temp;
+ REAL_VALUE_TYPE offset;
+
+ /* Look for a usable floating mode FMODE wider than the source and at
+ least as wide as the target. Using FMODE will avoid rounding woes
+ with unsigned values greater than the signed maximum value. */
+
+ for (fmode = GET_MODE (to); fmode != VOIDmode;
+ fmode = GET_MODE_WIDER_MODE (fmode))
+ if (GET_MODE_PRECISION (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
+ && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
+ break;
+
+ if (fmode == VOIDmode)
+ {
+ /* There is no such mode. Pretend the target is wide enough. */
+ fmode = GET_MODE (to);
+
+ /* Avoid double-rounding when TO is narrower than FROM. */
+ if ((significand_size (fmode) + 1)
+ < GET_MODE_PRECISION (GET_MODE (from)))
+ {
+ rtx temp1;
+ rtx neglabel = gen_label_rtx ();
+
+ /* Don't use TARGET if it isn't a register, is a hard register,
+ or is the wrong mode. */
+ if (!REG_P (target)
+ || REGNO (target) < FIRST_PSEUDO_REGISTER
+ || GET_MODE (target) != fmode)
+ target = gen_reg_rtx (fmode);
+
+ imode = GET_MODE (from);
+ do_pending_stack_adjust ();
+
+ /* Test whether the sign bit is set. */
+ emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
+ 0, neglabel);
+
+ /* The sign bit is not set. Convert as signed. */
+ expand_float (target, from, 0);
+ emit_jump_insn (gen_jump (label));
+ emit_barrier ();
+
+ /* The sign bit is set.
+ Convert to a usable (positive signed) value by shifting right
+ one bit, while remembering if a nonzero bit was shifted
+ out; i.e., compute (from & 1) | (from >> 1). */
+
+ emit_label (neglabel);
+ temp = expand_binop (imode, and_optab, from, const1_rtx,
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+ temp1 = expand_shift (RSHIFT_EXPR, imode, from, 1, NULL_RTX, 1);
+ temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
+ OPTAB_LIB_WIDEN);
+ expand_float (target, temp, 0);
+
+ /* Multiply by 2 to undo the shift above. */
+ temp = expand_binop (fmode, add_optab, target, target,
+ target, 0, OPTAB_LIB_WIDEN);
+ if (temp != target)
+ emit_move_insn (target, temp);
+
+ do_pending_stack_adjust ();
+ emit_label (label);
+ goto done;
+ }
+ }
+
+ /* If we are about to do some arithmetic to correct for an
+ unsigned operand, do it in a pseudo-register. */
+
+ if (GET_MODE (to) != fmode
+ || !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER)
+ target = gen_reg_rtx (fmode);
+
+ /* Convert as signed integer to floating. */
+ expand_float (target, from, 0);
+
+ /* If FROM is negative (and therefore TO is negative),
+ correct its value by 2**bitwidth. */
+
+ do_pending_stack_adjust ();
+ emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
+ 0, label);
+
+
+ real_2expN (&offset, GET_MODE_PRECISION (GET_MODE (from)), fmode);
+ temp = expand_binop (fmode, add_optab, target,
+ CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
+ target, 0, OPTAB_LIB_WIDEN);
+ if (temp != target)
+ emit_move_insn (target, temp);
+
+ do_pending_stack_adjust ();
+ emit_label (label);
+ goto done;
+ }
+
+ /* No hardware instruction available; call a library routine. */
+ {
+ rtx libfunc;
+ rtx insns;
+ rtx value;
+ convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
+
+ if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
+ from = convert_to_mode (SImode, from, unsignedp);
+
+ libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
+ gcc_assert (libfunc);
+
+ start_sequence ();
+
+ value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
+ GET_MODE (to), 1, from,
+ GET_MODE (from));
+ insns = get_insns ();
+ end_sequence ();
+
+ emit_libcall_block (insns, target, value,
+ gen_rtx_fmt_e (unsignedp ? UNSIGNED_FLOAT : FLOAT,
+ GET_MODE (to), from));
+ }
+
+ done:
+
+ /* Copy result to requested destination
+ if we have been computing in a temp location. */
+
+ if (target != to)
+ {
+ if (GET_MODE (target) == GET_MODE (to))
+ emit_move_insn (to, target);
+ else
+ convert_move (to, target, 0);
+ }
+}
+
+/* Generate code to convert FROM to fixed point and store in TO. FROM
+ must be floating point. */
+
+void
+expand_fix (rtx to, rtx from, int unsignedp)
+{
+ enum insn_code icode;
+ rtx target = to;
+ enum machine_mode fmode, imode;
+ int must_trunc = 0;
+
+ /* We first try to find a pair of modes, one real and one integer, at
+ least as wide as FROM and TO, respectively, in which we can open-code
+ this conversion. If the integer mode is wider than the mode of TO,
+ we can do the conversion either signed or unsigned. */
+
+ for (fmode = GET_MODE (from); fmode != VOIDmode;
+ fmode = GET_MODE_WIDER_MODE (fmode))
+ for (imode = GET_MODE (to); imode != VOIDmode;
+ imode = GET_MODE_WIDER_MODE (imode))
+ {
+ int doing_unsigned = unsignedp;
+
+ icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
+ if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
+ icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
+
+ if (icode != CODE_FOR_nothing)
+ {
+ rtx last = get_last_insn ();
+ if (fmode != GET_MODE (from))
+ from = convert_to_mode (fmode, from, 0);
+
+ if (must_trunc)
+ {
+ rtx temp = gen_reg_rtx (GET_MODE (from));
+ from = expand_unop (GET_MODE (from), ftrunc_optab, from,
+ temp, 0);
+ }
+
+ if (imode != GET_MODE (to))
+ target = gen_reg_rtx (imode);
+
+ if (maybe_emit_unop_insn (icode, target, from,
+ doing_unsigned ? UNSIGNED_FIX : FIX))
+ {
+ if (target != to)
+ convert_move (to, target, unsignedp);
+ return;
+ }
+ delete_insns_since (last);
+ }
+ }
+
+ /* For an unsigned conversion, there is one more way to do it.
+ If we have a signed conversion, we generate code that compares
+ the real value to the largest representable positive number. If if
+ is smaller, the conversion is done normally. Otherwise, subtract
+ one plus the highest signed number, convert, and add it back.
+
+ We only need to check all real modes, since we know we didn't find
+ anything with a wider integer mode.
+
+ This code used to extend FP value into mode wider than the destination.
+ This is needed for decimal float modes which cannot accurately
+ represent one plus the highest signed number of the same size, but
+ not for binary modes. Consider, for instance conversion from SFmode
+ into DImode.
+
+ The hot path through the code is dealing with inputs smaller than 2^63
+ and doing just the conversion, so there is no bits to lose.
+
+ In the other path we know the value is positive in the range 2^63..2^64-1
+ inclusive. (as for other input overflow happens and result is undefined)
+ So we know that the most important bit set in mantissa corresponds to
+ 2^63. The subtraction of 2^63 should not generate any rounding as it
+ simply clears out that bit. The rest is trivial. */
+
+ if (unsignedp && GET_MODE_PRECISION (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
+ for (fmode = GET_MODE (from); fmode != VOIDmode;
+ fmode = GET_MODE_WIDER_MODE (fmode))
+ if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0, &must_trunc)
+ && (!DECIMAL_FLOAT_MODE_P (fmode)
+ || GET_MODE_BITSIZE (fmode) > GET_MODE_PRECISION (GET_MODE (to))))
+ {
+ int bitsize;
+ REAL_VALUE_TYPE offset;
+ rtx limit, lab1, lab2, insn;
+
+ bitsize = GET_MODE_PRECISION (GET_MODE (to));
+ real_2expN (&offset, bitsize - 1, fmode);
+ limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
+ lab1 = gen_label_rtx ();
+ lab2 = gen_label_rtx ();
+
+ if (fmode != GET_MODE (from))
+ from = convert_to_mode (fmode, from, 0);
+
+ /* See if we need to do the subtraction. */
+ do_pending_stack_adjust ();
+ emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
+ 0, lab1);
+
+ /* If not, do the signed "fix" and branch around fixup code. */
+ expand_fix (to, from, 0);
+ emit_jump_insn (gen_jump (lab2));
+ emit_barrier ();
+
+ /* Otherwise, subtract 2**(N-1), convert to signed number,
+ then add 2**(N-1). Do the addition using XOR since this
+ will often generate better code. */
+ emit_label (lab1);
+ target = expand_binop (GET_MODE (from), sub_optab, from, limit,
+ NULL_RTX, 0, OPTAB_LIB_WIDEN);
+ expand_fix (to, target, 0);
+ target = expand_binop (GET_MODE (to), xor_optab, to,
+ gen_int_mode
+ ((HOST_WIDE_INT) 1 << (bitsize - 1),
+ GET_MODE (to)),
+ to, 1, OPTAB_LIB_WIDEN);
+
+ if (target != to)
+ emit_move_insn (to, target);
+
+ emit_label (lab2);
+
+ if (optab_handler (mov_optab, GET_MODE (to)) != CODE_FOR_nothing)
+ {
+ /* Make a place for a REG_NOTE and add it. */
+ insn = emit_move_insn (to, to);
+ set_dst_reg_note (insn, REG_EQUAL,
+ gen_rtx_fmt_e (UNSIGNED_FIX, GET_MODE (to),
+ copy_rtx (from)),
+ to);
+ }
+
+ return;
+ }
+
+ /* We can't do it with an insn, so use a library call. But first ensure
+ that the mode of TO is at least as wide as SImode, since those are the
+ only library calls we know about. */
+
+ if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
+ {
+ target = gen_reg_rtx (SImode);
+
+ expand_fix (target, from, unsignedp);
+ }
+ else
+ {
+ rtx insns;
+ rtx value;
+ rtx libfunc;
+
+ convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
+ libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
+ gcc_assert (libfunc);
+
+ start_sequence ();
+
+ value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
+ GET_MODE (to), 1, from,
+ GET_MODE (from));
+ insns = get_insns ();
+ end_sequence ();
+
+ emit_libcall_block (insns, target, value,
+ gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
+ GET_MODE (to), from));
+ }
+
+ if (target != to)
+ {
+ if (GET_MODE (to) == GET_MODE (target))
+ emit_move_insn (to, target);
+ else
+ convert_move (to, target, 0);
+ }
+}
+
+/* Generate code to convert FROM or TO a fixed-point.
+ If UINTP is true, either TO or FROM is an unsigned integer.
+ If SATP is true, we need to saturate the result. */
+
+void
+expand_fixed_convert (rtx to, rtx from, int uintp, int satp)
+{
+ enum machine_mode to_mode = GET_MODE (to);
+ enum machine_mode from_mode = GET_MODE (from);
+ convert_optab tab;
+ enum rtx_code this_code;
+ enum insn_code code;
+ rtx insns, value;
+ rtx libfunc;
+
+ if (to_mode == from_mode)
+ {
+ emit_move_insn (to, from);
+ return;
+ }
+
+ if (uintp)
+ {
+ tab = satp ? satfractuns_optab : fractuns_optab;
+ this_code = satp ? UNSIGNED_SAT_FRACT : UNSIGNED_FRACT_CONVERT;
+ }
+ else
+ {
+ tab = satp ? satfract_optab : fract_optab;
+ this_code = satp ? SAT_FRACT : FRACT_CONVERT;
+ }
+ code = convert_optab_handler (tab, to_mode, from_mode);
+ if (code != CODE_FOR_nothing)
+ {
+ emit_unop_insn (code, to, from, this_code);
+ return;
+ }
+
+ libfunc = convert_optab_libfunc (tab, to_mode, from_mode);
+ gcc_assert (libfunc);
+
+ start_sequence ();
+ value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, to_mode,
+ 1, from, from_mode);
+ insns = get_insns ();
+ end_sequence ();
+
+ emit_libcall_block (insns, to, value,
+ gen_rtx_fmt_e (tab->code, to_mode, from));
+}
+
+/* Generate code to convert FROM to fixed point and store in TO. FROM
+ must be floating point, TO must be signed. Use the conversion optab
+ TAB to do the conversion. */
+
+bool
+expand_sfix_optab (rtx to, rtx from, convert_optab tab)
+{
+ enum insn_code icode;
+ rtx target = to;
+ enum machine_mode fmode, imode;
+
+ /* We first try to find a pair of modes, one real and one integer, at
+ least as wide as FROM and TO, respectively, in which we can open-code
+ this conversion. If the integer mode is wider than the mode of TO,
+ we can do the conversion either signed or unsigned. */
+
+ for (fmode = GET_MODE (from); fmode != VOIDmode;
+ fmode = GET_MODE_WIDER_MODE (fmode))
+ for (imode = GET_MODE (to); imode != VOIDmode;
+ imode = GET_MODE_WIDER_MODE (imode))
+ {
+ icode = convert_optab_handler (tab, imode, fmode);
+ if (icode != CODE_FOR_nothing)
+ {
+ rtx last = get_last_insn ();
+ if (fmode != GET_MODE (from))
+ from = convert_to_mode (fmode, from, 0);
+
+ if (imode != GET_MODE (to))
+ target = gen_reg_rtx (imode);
+
+ if (!maybe_emit_unop_insn (icode, target, from, UNKNOWN))
+ {
+ delete_insns_since (last);
+ continue;
+ }
+ if (target != to)
+ convert_move (to, target, 0);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/* Report whether we have an instruction to perform the operation
+ specified by CODE on operands of mode MODE. */
+int
+have_insn_for (enum rtx_code code, enum machine_mode mode)
+{
+ return (code_to_optab[(int) code] != 0
+ && (optab_handler (code_to_optab[(int) code], mode)
+ != CODE_FOR_nothing));
+}
+
+/* Set all insn_code fields to CODE_FOR_nothing. */
+
+static void
+init_insn_codes (void)
+{
+ memset (optab_table, 0, sizeof (optab_table));
+ memset (convert_optab_table, 0, sizeof (convert_optab_table));
+ memset (direct_optab_table, 0, sizeof (direct_optab_table));
+}
+
+/* Initialize OP's code to CODE, and write it into the code_to_optab table. */
+static inline void
+init_optab (optab op, enum rtx_code code)
+{
+ op->code = code;
+ code_to_optab[(int) code] = op;
+}
+
+/* Same, but fill in its code as CODE, and do _not_ write it into
+ the code_to_optab table. */
+static inline void
+init_optabv (optab op, enum rtx_code code)
+{
+ op->code = code;
+}
+
+/* Conversion optabs never go in the code_to_optab table. */
+static void
+init_convert_optab (convert_optab op, enum rtx_code code)
+{
+ op->code = code;
+}
+
+/* Initialize the libfunc fields of an entire group of entries in some
+ optab. Each entry is set equal to a string consisting of a leading
+ pair of underscores followed by a generic operation name followed by
+ a mode name (downshifted to lowercase) followed by a single character
+ representing the number of operands for the given operation (which is
+ usually one of the characters '2', '3', or '4').
+
+ OPTABLE is the table in which libfunc fields are to be initialized.
+ OPNAME is the generic (string) name of the operation.
+ SUFFIX is the character which specifies the number of operands for
+ the given generic operation.
+ MODE is the mode to generate for.
+*/
+
+static void
+gen_libfunc (optab optable, const char *opname, int suffix, enum machine_mode mode)
+{
+ unsigned opname_len = strlen (opname);
+ const char *mname = GET_MODE_NAME (mode);
+ unsigned mname_len = strlen (mname);
+ int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
+ int len = prefix_len + opname_len + mname_len + 1 + 1;
+ char *libfunc_name = XALLOCAVEC (char, len);
+ char *p;
+ const char *q;
+
+ p = libfunc_name;
+ *p++ = '_';
+ *p++ = '_';
+ if (targetm.libfunc_gnu_prefix)
+ {
+ *p++ = 'g';
+ *p++ = 'n';
+ *p++ = 'u';
+ *p++ = '_';
+ }
+ for (q = opname; *q; )
+ *p++ = *q++;
+ for (q = mname; *q; q++)
+ *p++ = TOLOWER (*q);
+ *p++ = suffix;
+ *p = '\0';
+
+ set_optab_libfunc (optable, mode,
+ ggc_alloc_string (libfunc_name, p - libfunc_name));
+}
+
+/* Like gen_libfunc, but verify that integer operation is involved. */
+
+static void
+gen_int_libfunc (optab optable, const char *opname, char suffix,
+ enum machine_mode mode)
+{
+ int maxsize = 2 * BITS_PER_WORD;
+
+ if (GET_MODE_CLASS (mode) != MODE_INT)
+ return;
+ if (maxsize < LONG_LONG_TYPE_SIZE)
+ maxsize = LONG_LONG_TYPE_SIZE;
+ if (GET_MODE_CLASS (mode) != MODE_INT
+ || mode < word_mode || GET_MODE_BITSIZE (mode) > maxsize)
+ return;
+ gen_libfunc (optable, opname, suffix, mode);
+}
+
+/* Like gen_libfunc, but verify that FP and set decimal prefix if needed. */
+
+static void
+gen_fp_libfunc (optab optable, const char *opname, char suffix,
+ enum machine_mode mode)
+{
+ char *dec_opname;
+
+ if (GET_MODE_CLASS (mode) == MODE_FLOAT)
+ gen_libfunc (optable, opname, suffix, mode);
+ if (DECIMAL_FLOAT_MODE_P (mode))
+ {
+ dec_opname = XALLOCAVEC (char, sizeof (DECIMAL_PREFIX) + strlen (opname));
+ /* For BID support, change the name to have either a bid_ or dpd_ prefix
+ depending on the low level floating format used. */
+ memcpy (dec_opname, DECIMAL_PREFIX, sizeof (DECIMAL_PREFIX) - 1);
+ strcpy (dec_opname + sizeof (DECIMAL_PREFIX) - 1, opname);
+ gen_libfunc (optable, dec_opname, suffix, mode);
+ }
+}
+
+/* Like gen_libfunc, but verify that fixed-point operation is involved. */
+
+static void
+gen_fixed_libfunc (optab optable, const char *opname, char suffix,
+ enum machine_mode mode)
+{
+ if (!ALL_FIXED_POINT_MODE_P (mode))
+ return;
+ gen_libfunc (optable, opname, suffix, mode);
+}
+
+/* Like gen_libfunc, but verify that signed fixed-point operation is
+ involved. */
+
+static void
+gen_signed_fixed_libfunc (optab optable, const char *opname, char suffix,
+ enum machine_mode mode)
+{
+ if (!SIGNED_FIXED_POINT_MODE_P (mode))
+ return;
+ gen_libfunc (optable, opname, suffix, mode);
+}
+
+/* Like gen_libfunc, but verify that unsigned fixed-point operation is
+ involved. */
+
+static void
+gen_unsigned_fixed_libfunc (optab optable, const char *opname, char suffix,
+ enum machine_mode mode)
+{
+ if (!UNSIGNED_FIXED_POINT_MODE_P (mode))
+ return;
+ gen_libfunc (optable, opname, suffix, mode);
+}
+
+/* Like gen_libfunc, but verify that FP or INT operation is involved. */
+
+static void
+gen_int_fp_libfunc (optab optable, const char *name, char suffix,
+ enum machine_mode mode)
+{
+ if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
+ gen_fp_libfunc (optable, name, suffix, mode);
+ if (INTEGRAL_MODE_P (mode))
+ gen_int_libfunc (optable, name, suffix, mode);
+}
+
+/* Like gen_libfunc, but verify that FP or INT operation is involved
+ and add 'v' suffix for integer operation. */
+
+static void
+gen_intv_fp_libfunc (optab optable, const char *name, char suffix,
+ enum machine_mode mode)
+{
+ if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
+ gen_fp_libfunc (optable, name, suffix, mode);
+ if (GET_MODE_CLASS (mode) == MODE_INT)
+ {
+ int len = strlen (name);
+ char *v_name = XALLOCAVEC (char, len + 2);
+ strcpy (v_name, name);
+ v_name[len] = 'v';
+ v_name[len + 1] = 0;
+ gen_int_libfunc (optable, v_name, suffix, mode);
+ }
+}
+
+/* Like gen_libfunc, but verify that FP or INT or FIXED operation is
+ involved. */
+
+static void
+gen_int_fp_fixed_libfunc (optab optable, const char *name, char suffix,
+ enum machine_mode mode)
+{
+ if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
+ gen_fp_libfunc (optable, name, suffix, mode);
+ if (INTEGRAL_MODE_P (mode))
+ gen_int_libfunc (optable, name, suffix, mode);
+ if (ALL_FIXED_POINT_MODE_P (mode))
+ gen_fixed_libfunc (optable, name, suffix, mode);
+}
+
+/* Like gen_libfunc, but verify that FP or INT or signed FIXED operation is
+ involved. */
+
+static void
+gen_int_fp_signed_fixed_libfunc (optab optable, const char *name, char suffix,
+ enum machine_mode mode)
+{
+ if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
+ gen_fp_libfunc (optable, name, suffix, mode);
+ if (INTEGRAL_MODE_P (mode))
+ gen_int_libfunc (optable, name, suffix, mode);
+ if (SIGNED_FIXED_POINT_MODE_P (mode))
+ gen_signed_fixed_libfunc (optable, name, suffix, mode);
+}
+
+/* Like gen_libfunc, but verify that INT or FIXED operation is
+ involved. */
+
+static void
+gen_int_fixed_libfunc (optab optable, const char *name, char suffix,
+ enum machine_mode mode)
+{
+ if (INTEGRAL_MODE_P (mode))
+ gen_int_libfunc (optable, name, suffix, mode);
+ if (ALL_FIXED_POINT_MODE_P (mode))
+ gen_fixed_libfunc (optable, name, suffix, mode);
+}
+
+/* Like gen_libfunc, but verify that INT or signed FIXED operation is
+ involved. */
+
+static void
+gen_int_signed_fixed_libfunc (optab optable, const char *name, char suffix,
+ enum machine_mode mode)
+{
+ if (INTEGRAL_MODE_P (mode))
+ gen_int_libfunc (optable, name, suffix, mode);
+ if (SIGNED_FIXED_POINT_MODE_P (mode))
+ gen_signed_fixed_libfunc (optable, name, suffix, mode);
+}
+
+/* Like gen_libfunc, but verify that INT or unsigned FIXED operation is
+ involved. */
+
+static void
+gen_int_unsigned_fixed_libfunc (optab optable, const char *name, char suffix,
+ enum machine_mode mode)
+{
+ if (INTEGRAL_MODE_P (mode))
+ gen_int_libfunc (optable, name, suffix, mode);
+ if (UNSIGNED_FIXED_POINT_MODE_P (mode))
+ gen_unsigned_fixed_libfunc (optable, name, suffix, mode);
+}
+
+/* Initialize the libfunc fields of an entire group of entries of an
+ inter-mode-class conversion optab. The string formation rules are
+ similar to the ones for init_libfuncs, above, but instead of having
+ a mode name and an operand count these functions have two mode names
+ and no operand count. */
+
+static void
+gen_interclass_conv_libfunc (convert_optab tab,
+ const char *opname,
+ enum machine_mode tmode,
+ enum machine_mode fmode)
+{
+ size_t opname_len = strlen (opname);
+ size_t mname_len = 0;
+
+ const char *fname, *tname;
+ const char *q;
+ int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
+ char *libfunc_name, *suffix;
+ char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
+ char *p;
+
+ /* If this is a decimal conversion, add the current BID vs. DPD prefix that
+ depends on which underlying decimal floating point format is used. */
+ const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
+
+ mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
+
+ nondec_name = XALLOCAVEC (char, prefix_len + opname_len + mname_len + 1 + 1);
+ nondec_name[0] = '_';
+ nondec_name[1] = '_';
+ if (targetm.libfunc_gnu_prefix)
+ {
+ nondec_name[2] = 'g';
+ nondec_name[3] = 'n';
+ nondec_name[4] = 'u';
+ nondec_name[5] = '_';
+ }
+
+ memcpy (&nondec_name[prefix_len], opname, opname_len);
+ nondec_suffix = nondec_name + opname_len + prefix_len;
+
+ dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
+ dec_name[0] = '_';
+ dec_name[1] = '_';
+ memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
+ memcpy (&dec_name[2+dec_len], opname, opname_len);
+ dec_suffix = dec_name + dec_len + opname_len + 2;
+
+ fname = GET_MODE_NAME (fmode);
+ tname = GET_MODE_NAME (tmode);
+
+ if (DECIMAL_FLOAT_MODE_P(fmode) || DECIMAL_FLOAT_MODE_P(tmode))
+ {
+ libfunc_name = dec_name;
+ suffix = dec_suffix;
+ }
+ else
+ {
+ libfunc_name = nondec_name;
+ suffix = nondec_suffix;
+ }
+
+ p = suffix;
+ for (q = fname; *q; p++, q++)
+ *p = TOLOWER (*q);
+ for (q = tname; *q; p++, q++)
+ *p = TOLOWER (*q);
+
+ *p = '\0';
+
+ set_conv_libfunc (tab, tmode, fmode,
+ ggc_alloc_string (libfunc_name, p - libfunc_name));
+}
+
+/* Same as gen_interclass_conv_libfunc but verify that we are producing
+ int->fp conversion. */
+
+static void
+gen_int_to_fp_conv_libfunc (convert_optab tab,
+ const char *opname,
+ enum machine_mode tmode,
+ enum machine_mode fmode)
+{
+ if (GET_MODE_CLASS (fmode) != MODE_INT)
+ return;
+ if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
+ return;
+ gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
+}
+
+/* ufloat_optab is special by using floatun for FP and floatuns decimal fp
+ naming scheme. */
+
+static void
+gen_ufloat_conv_libfunc (convert_optab tab,
+ const char *opname ATTRIBUTE_UNUSED,
+ enum machine_mode tmode,
+ enum machine_mode fmode)
+{
+ if (DECIMAL_FLOAT_MODE_P (tmode))
+ gen_int_to_fp_conv_libfunc (tab, "floatuns", tmode, fmode);
+ else
+ gen_int_to_fp_conv_libfunc (tab, "floatun", tmode, fmode);
+}
+
+/* Same as gen_interclass_conv_libfunc but verify that we are producing
+ fp->int conversion. */
+
+static void
+gen_int_to_fp_nondecimal_conv_libfunc (convert_optab tab,
+ const char *opname,
+ enum machine_mode tmode,
+ enum machine_mode fmode)
+{
+ if (GET_MODE_CLASS (fmode) != MODE_INT)
+ return;
+ if (GET_MODE_CLASS (tmode) != MODE_FLOAT)
+ return;
+ gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
+}
+
+/* Same as gen_interclass_conv_libfunc but verify that we are producing
+ fp->int conversion with no decimal floating point involved. */
+
+static void
+gen_fp_to_int_conv_libfunc (convert_optab tab,
+ const char *opname,
+ enum machine_mode tmode,
+ enum machine_mode fmode)
+{
+ if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
+ return;
+ if (GET_MODE_CLASS (tmode) != MODE_INT)
+ return;
+ gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
+}
+
+/* Initialize the libfunc fields of an of an intra-mode-class conversion optab.
+ The string formation rules are
+ similar to the ones for init_libfunc, above. */
+
+static void
+gen_intraclass_conv_libfunc (convert_optab tab, const char *opname,
+ enum machine_mode tmode, enum machine_mode fmode)
+{
+ size_t opname_len = strlen (opname);
+ size_t mname_len = 0;
+
+ const char *fname, *tname;
+ const char *q;
+ int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
+ char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
+ char *libfunc_name, *suffix;
+ char *p;
+
+ /* If this is a decimal conversion, add the current BID vs. DPD prefix that
+ depends on which underlying decimal floating point format is used. */
+ const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
+
+ mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
+
+ nondec_name = XALLOCAVEC (char, 2 + opname_len + mname_len + 1 + 1);
+ nondec_name[0] = '_';
+ nondec_name[1] = '_';
+ if (targetm.libfunc_gnu_prefix)
+ {
+ nondec_name[2] = 'g';
+ nondec_name[3] = 'n';
+ nondec_name[4] = 'u';
+ nondec_name[5] = '_';
+ }
+ memcpy (&nondec_name[prefix_len], opname, opname_len);
+ nondec_suffix = nondec_name + opname_len + prefix_len;
+
+ dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
+ dec_name[0] = '_';
+ dec_name[1] = '_';
+ memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
+ memcpy (&dec_name[2 + dec_len], opname, opname_len);
+ dec_suffix = dec_name + dec_len + opname_len + 2;
+
+ fname = GET_MODE_NAME (fmode);
+ tname = GET_MODE_NAME (tmode);
+
+ if (DECIMAL_FLOAT_MODE_P(fmode) || DECIMAL_FLOAT_MODE_P(tmode))
+ {
+ libfunc_name = dec_name;
+ suffix = dec_suffix;
+ }
+ else
+ {
+ libfunc_name = nondec_name;
+ suffix = nondec_suffix;
+ }
+
+ p = suffix;
+ for (q = fname; *q; p++, q++)
+ *p = TOLOWER (*q);
+ for (q = tname; *q; p++, q++)
+ *p = TOLOWER (*q);
+
+ *p++ = '2';
+ *p = '\0';
+
+ set_conv_libfunc (tab, tmode, fmode,
+ ggc_alloc_string (libfunc_name, p - libfunc_name));
+}
+
+/* Pick proper libcall for trunc_optab. We need to chose if we do
+ truncation or extension and interclass or intraclass. */
+
+static void
+gen_trunc_conv_libfunc (convert_optab tab,
+ const char *opname,
+ enum machine_mode tmode,
+ enum machine_mode fmode)
+{
+ if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
+ return;
+ if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
+ return;
+ if (tmode == fmode)
+ return;
+
+ if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
+ || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
+ gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
+
+ if (GET_MODE_PRECISION (fmode) <= GET_MODE_PRECISION (tmode))
+ return;
+
+ if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
+ && GET_MODE_CLASS (fmode) == MODE_FLOAT)
+ || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
+ gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
+}
+
+/* Pick proper libcall for extend_optab. We need to chose if we do
+ truncation or extension and interclass or intraclass. */
+
+static void
+gen_extend_conv_libfunc (convert_optab tab,
+ const char *opname ATTRIBUTE_UNUSED,
+ enum machine_mode tmode,
+ enum machine_mode fmode)
+{
+ if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
+ return;
+ if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
+ return;
+ if (tmode == fmode)
+ return;
+
+ if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
+ || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
+ gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
+
+ if (GET_MODE_PRECISION (fmode) > GET_MODE_PRECISION (tmode))
+ return;
+
+ if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
+ && GET_MODE_CLASS (fmode) == MODE_FLOAT)
+ || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
+ gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
+}
+
+/* Pick proper libcall for fract_optab. We need to chose if we do
+ interclass or intraclass. */
+
+static void
+gen_fract_conv_libfunc (convert_optab tab,
+ const char *opname,
+ enum machine_mode tmode,
+ enum machine_mode fmode)
+{
+ if (tmode == fmode)
+ return;
+ if (!(ALL_FIXED_POINT_MODE_P (tmode) || ALL_FIXED_POINT_MODE_P (fmode)))
+ return;
+
+ if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
+ gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
+ else
+ gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
+}
+
+/* Pick proper libcall for fractuns_optab. */
+
+static void
+gen_fractuns_conv_libfunc (convert_optab tab,
+ const char *opname,
+ enum machine_mode tmode,
+ enum machine_mode fmode)
+{
+ if (tmode == fmode)
+ return;
+ /* One mode must be a fixed-point mode, and the other must be an integer
+ mode. */
+ if (!((ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT)
+ || (ALL_FIXED_POINT_MODE_P (fmode)
+ && GET_MODE_CLASS (tmode) == MODE_INT)))
+ return;
+
+ gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
+}
+
+/* Pick proper libcall for satfract_optab. We need to chose if we do
+ interclass or intraclass. */
+
+static void
+gen_satfract_conv_libfunc (convert_optab tab,
+ const char *opname,
+ enum machine_mode tmode,
+ enum machine_mode fmode)
+{
+ if (tmode == fmode)
+ return;
+ /* TMODE must be a fixed-point mode. */
+ if (!ALL_FIXED_POINT_MODE_P (tmode))
+ return;
+
+ if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
+ gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
+ else
+ gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
+}
+
+/* Pick proper libcall for satfractuns_optab. */
+
+static void
+gen_satfractuns_conv_libfunc (convert_optab tab,
+ const char *opname,
+ enum machine_mode tmode,
+ enum machine_mode fmode)
+{
+ if (tmode == fmode)
+ return;
+ /* TMODE must be a fixed-point mode, and FMODE must be an integer mode. */
+ if (!(ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT))
+ return;
+
+ gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
+}
+
+/* A table of previously-created libfuncs, hashed by name. */
+static GTY ((param_is (union tree_node))) htab_t libfunc_decls;
+
+/* Hashtable callbacks for libfunc_decls. */
+
+static hashval_t
+libfunc_decl_hash (const void *entry)
+{
+ return IDENTIFIER_HASH_VALUE (DECL_NAME ((const_tree) entry));
+}
+
+static int
+libfunc_decl_eq (const void *entry1, const void *entry2)
+{
+ return DECL_NAME ((const_tree) entry1) == (const_tree) entry2;
+}
+
+/* Build a decl for a libfunc named NAME. */
+
+tree
+build_libfunc_function (const char *name)
+{
+ tree decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
+ get_identifier (name),
+ build_function_type (integer_type_node, NULL_TREE));
+ /* ??? We don't have any type information except for this is
+ a function. Pretend this is "int foo()". */
+ DECL_ARTIFICIAL (decl) = 1;
+ DECL_EXTERNAL (decl) = 1;
+ TREE_PUBLIC (decl) = 1;
+ gcc_assert (DECL_ASSEMBLER_NAME (decl));
+
+ /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
+ are the flags assigned by targetm.encode_section_info. */
+ SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
+
+ return decl;
+}
+
+rtx
+init_one_libfunc (const char *name)
+{
+ tree id, decl;
+ void **slot;
+ hashval_t hash;
+
+ if (libfunc_decls == NULL)
+ libfunc_decls = htab_create_ggc (37, libfunc_decl_hash,
+ libfunc_decl_eq, NULL);
+
+ /* See if we have already created a libfunc decl for this function. */
+ id = get_identifier (name);
+ hash = IDENTIFIER_HASH_VALUE (id);
+ slot = htab_find_slot_with_hash (libfunc_decls, id, hash, INSERT);
+ decl = (tree) *slot;
+ if (decl == NULL)
+ {
+ /* Create a new decl, so that it can be passed to
+ targetm.encode_section_info. */
+ decl = build_libfunc_function (name);
+ *slot = decl;
+ }
+ return XEXP (DECL_RTL (decl), 0);
+}
+
+/* Adjust the assembler name of libfunc NAME to ASMSPEC. */
+
+rtx
+set_user_assembler_libfunc (const char *name, const char *asmspec)
+{
+ tree id, decl;
+ void **slot;
+ hashval_t hash;
+
+ id = get_identifier (name);
+ hash = IDENTIFIER_HASH_VALUE (id);
+ slot = htab_find_slot_with_hash (libfunc_decls, id, hash, NO_INSERT);
+ gcc_assert (slot);
+ decl = (tree) *slot;
+ set_user_assembler_name (decl, asmspec);
+ return XEXP (DECL_RTL (decl), 0);
+}
+
+/* Call this to reset the function entry for one optab (OPTABLE) in mode
+ MODE to NAME, which should be either 0 or a string constant. */
+void
+set_optab_libfunc (optab optable, enum machine_mode mode, const char *name)
+{
+ rtx val;
+ struct libfunc_entry e;
+ struct libfunc_entry **slot;
+ e.optab = (size_t) (optable - &optab_table[0]);
+ e.mode1 = mode;
+ e.mode2 = VOIDmode;
+
+ if (name)
+ val = init_one_libfunc (name);
+ else
+ val = 0;
+ slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
+ if (*slot == NULL)
+ *slot = ggc_alloc_libfunc_entry ();
+ (*slot)->optab = (size_t) (optable - &optab_table[0]);
+ (*slot)->mode1 = mode;
+ (*slot)->mode2 = VOIDmode;
+ (*slot)->libfunc = val;
+}
+
+/* Call this to reset the function entry for one conversion optab
+ (OPTABLE) from mode FMODE to mode TMODE to NAME, which should be
+ either 0 or a string constant. */
+void
+set_conv_libfunc (convert_optab optable, enum machine_mode tmode,
+ enum machine_mode fmode, const char *name)
+{
+ rtx val;
+ struct libfunc_entry e;
+ struct libfunc_entry **slot;
+ e.optab = (size_t) (optable - &convert_optab_table[0]);
+ e.mode1 = tmode;
+ e.mode2 = fmode;
+
+ if (name)
+ val = init_one_libfunc (name);
+ else
+ val = 0;
+ slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
+ if (*slot == NULL)
+ *slot = ggc_alloc_libfunc_entry ();
+ (*slot)->optab = (size_t) (optable - &convert_optab_table[0]);
+ (*slot)->mode1 = tmode;
+ (*slot)->mode2 = fmode;
+ (*slot)->libfunc = val;
+}
+
+/* Call this to initialize the contents of the optabs
+ appropriately for the current target machine. */
+
+void
+init_optabs (void)
+{
+ if (libfunc_hash)
+ {
+ htab_empty (libfunc_hash);
+ /* We statically initialize the insn_codes with the equivalent of
+ CODE_FOR_nothing. Repeat the process if reinitialising. */
+ init_insn_codes ();
+ }
+ else
+ libfunc_hash = htab_create_ggc (10, hash_libfunc, eq_libfunc, NULL);
+
+ init_optab (add_optab, PLUS);
+ init_optabv (addv_optab, PLUS);
+ init_optab (sub_optab, MINUS);
+ init_optabv (subv_optab, MINUS);
+ init_optab (ssadd_optab, SS_PLUS);
+ init_optab (usadd_optab, US_PLUS);
+ init_optab (sssub_optab, SS_MINUS);
+ init_optab (ussub_optab, US_MINUS);
+ init_optab (smul_optab, MULT);
+ init_optab (ssmul_optab, SS_MULT);
+ init_optab (usmul_optab, US_MULT);
+ init_optabv (smulv_optab, MULT);
+ init_optab (smul_highpart_optab, UNKNOWN);
+ init_optab (umul_highpart_optab, UNKNOWN);
+ init_optab (smul_widen_optab, UNKNOWN);
+ init_optab (umul_widen_optab, UNKNOWN);
+ init_optab (usmul_widen_optab, UNKNOWN);
+ init_optab (smadd_widen_optab, UNKNOWN);
+ init_optab (umadd_widen_optab, UNKNOWN);
+ init_optab (ssmadd_widen_optab, UNKNOWN);
+ init_optab (usmadd_widen_optab, UNKNOWN);
+ init_optab (smsub_widen_optab, UNKNOWN);
+ init_optab (umsub_widen_optab, UNKNOWN);
+ init_optab (ssmsub_widen_optab, UNKNOWN);
+ init_optab (usmsub_widen_optab, UNKNOWN);
+ init_optab (sdiv_optab, DIV);
+ init_optab (ssdiv_optab, SS_DIV);
+ init_optab (usdiv_optab, US_DIV);
+ init_optabv (sdivv_optab, DIV);
+ init_optab (sdivmod_optab, UNKNOWN);
+ init_optab (udiv_optab, UDIV);
+ init_optab (udivmod_optab, UNKNOWN);
+ init_optab (smod_optab, MOD);
+ init_optab (umod_optab, UMOD);
+ init_optab (fmod_optab, UNKNOWN);
+ init_optab (remainder_optab, UNKNOWN);
+ init_optab (ftrunc_optab, UNKNOWN);
+ init_optab (and_optab, AND);
+ init_optab (ior_optab, IOR);
+ init_optab (xor_optab, XOR);
+ init_optab (ashl_optab, ASHIFT);
+ init_optab (ssashl_optab, SS_ASHIFT);
+ init_optab (usashl_optab, US_ASHIFT);
+ init_optab (ashr_optab, ASHIFTRT);
+ init_optab (lshr_optab, LSHIFTRT);
+ init_optabv (vashl_optab, ASHIFT);
+ init_optabv (vashr_optab, ASHIFTRT);
+ init_optabv (vlshr_optab, LSHIFTRT);
+ init_optab (rotl_optab, ROTATE);
+ init_optab (rotr_optab, ROTATERT);
+ init_optab (smin_optab, SMIN);
+ init_optab (smax_optab, SMAX);
+ init_optab (umin_optab, UMIN);
+ init_optab (umax_optab, UMAX);
+ init_optab (pow_optab, UNKNOWN);
+ init_optab (atan2_optab, UNKNOWN);
+ init_optab (fma_optab, FMA);
+ init_optab (fms_optab, UNKNOWN);
+ init_optab (fnma_optab, UNKNOWN);
+ init_optab (fnms_optab, UNKNOWN);
+
+ /* These three have codes assigned exclusively for the sake of
+ have_insn_for. */
+ init_optab (mov_optab, SET);
+ init_optab (movstrict_optab, STRICT_LOW_PART);
+ init_optab (cbranch_optab, COMPARE);
+
+ init_optab (cmov_optab, UNKNOWN);
+ init_optab (cstore_optab, UNKNOWN);
+ init_optab (ctrap_optab, UNKNOWN);
+
+ init_optab (storent_optab, UNKNOWN);
+
+ init_optab (cmp_optab, UNKNOWN);
+ init_optab (ucmp_optab, UNKNOWN);
+
+ init_optab (eq_optab, EQ);
+ init_optab (ne_optab, NE);
+ init_optab (gt_optab, GT);
+ init_optab (ge_optab, GE);
+ init_optab (lt_optab, LT);
+ init_optab (le_optab, LE);
+ init_optab (unord_optab, UNORDERED);
+
+ init_optab (neg_optab, NEG);
+ init_optab (ssneg_optab, SS_NEG);
+ init_optab (usneg_optab, US_NEG);
+ init_optabv (negv_optab, NEG);
+ init_optab (abs_optab, ABS);
+ init_optabv (absv_optab, ABS);
+ init_optab (addcc_optab, UNKNOWN);
+ init_optab (one_cmpl_optab, NOT);
+ init_optab (bswap_optab, BSWAP);
+ init_optab (ffs_optab, FFS);
+ init_optab (clz_optab, CLZ);
+ init_optab (ctz_optab, CTZ);
+ init_optab (clrsb_optab, CLRSB);
+ init_optab (popcount_optab, POPCOUNT);
+ init_optab (parity_optab, PARITY);
+ init_optab (sqrt_optab, SQRT);
+ init_optab (floor_optab, UNKNOWN);
+ init_optab (ceil_optab, UNKNOWN);
+ init_optab (round_optab, UNKNOWN);
+ init_optab (btrunc_optab, UNKNOWN);
+ init_optab (nearbyint_optab, UNKNOWN);
+ init_optab (rint_optab, UNKNOWN);
+ init_optab (sincos_optab, UNKNOWN);
+ init_optab (sin_optab, UNKNOWN);
+ init_optab (asin_optab, UNKNOWN);
+ init_optab (cos_optab, UNKNOWN);
+ init_optab (acos_optab, UNKNOWN);
+ init_optab (exp_optab, UNKNOWN);
+ init_optab (exp10_optab, UNKNOWN);
+ init_optab (exp2_optab, UNKNOWN);
+ init_optab (expm1_optab, UNKNOWN);
+ init_optab (ldexp_optab, UNKNOWN);
+ init_optab (scalb_optab, UNKNOWN);
+ init_optab (significand_optab, UNKNOWN);
+ init_optab (logb_optab, UNKNOWN);
+ init_optab (ilogb_optab, UNKNOWN);
+ init_optab (log_optab, UNKNOWN);
+ init_optab (log10_optab, UNKNOWN);
+ init_optab (log2_optab, UNKNOWN);
+ init_optab (log1p_optab, UNKNOWN);
+ init_optab (tan_optab, UNKNOWN);
+ init_optab (atan_optab, UNKNOWN);
+ init_optab (copysign_optab, UNKNOWN);
+ init_optab (signbit_optab, UNKNOWN);
+
+ init_optab (isinf_optab, UNKNOWN);
+
+ init_optab (strlen_optab, UNKNOWN);
+ init_optab (push_optab, UNKNOWN);
+
+ init_optab (reduc_smax_optab, UNKNOWN);
+ init_optab (reduc_umax_optab, UNKNOWN);
+ init_optab (reduc_smin_optab, UNKNOWN);
+ init_optab (reduc_umin_optab, UNKNOWN);
+ init_optab (reduc_splus_optab, UNKNOWN);
+ init_optab (reduc_uplus_optab, UNKNOWN);
+
+ init_optab (ssum_widen_optab, UNKNOWN);
+ init_optab (usum_widen_optab, UNKNOWN);
+ init_optab (sdot_prod_optab, UNKNOWN);
+ init_optab (udot_prod_optab, UNKNOWN);
+
+ init_optab (vec_extract_optab, UNKNOWN);
+ init_optab (vec_set_optab, UNKNOWN);
+ init_optab (vec_init_optab, UNKNOWN);
+ init_optab (vec_shl_optab, UNKNOWN);
+ init_optab (vec_shr_optab, UNKNOWN);
+ init_optab (vec_realign_load_optab, UNKNOWN);
+ init_optab (movmisalign_optab, UNKNOWN);
+ init_optab (vec_widen_umult_hi_optab, UNKNOWN);
+ init_optab (vec_widen_umult_lo_optab, UNKNOWN);
+ init_optab (vec_widen_smult_hi_optab, UNKNOWN);
+ init_optab (vec_widen_smult_lo_optab, UNKNOWN);
+ init_optab (vec_widen_ushiftl_hi_optab, UNKNOWN);
+ init_optab (vec_widen_ushiftl_lo_optab, UNKNOWN);
+ init_optab (vec_widen_sshiftl_hi_optab, UNKNOWN);
+ init_optab (vec_widen_sshiftl_lo_optab, UNKNOWN);
+ init_optab (vec_unpacks_hi_optab, UNKNOWN);
+ init_optab (vec_unpacks_lo_optab, UNKNOWN);
+ init_optab (vec_unpacku_hi_optab, UNKNOWN);
+ init_optab (vec_unpacku_lo_optab, UNKNOWN);
+ init_optab (vec_unpacks_float_hi_optab, UNKNOWN);
+ init_optab (vec_unpacks_float_lo_optab, UNKNOWN);
+ init_optab (vec_unpacku_float_hi_optab, UNKNOWN);
+ init_optab (vec_unpacku_float_lo_optab, UNKNOWN);
+ init_optab (vec_pack_trunc_optab, UNKNOWN);
+ init_optab (vec_pack_usat_optab, UNKNOWN);
+ init_optab (vec_pack_ssat_optab, UNKNOWN);
+ init_optab (vec_pack_ufix_trunc_optab, UNKNOWN);
+ init_optab (vec_pack_sfix_trunc_optab, UNKNOWN);
+
+ init_optab (powi_optab, UNKNOWN);
+
+ /* Conversions. */
+ init_convert_optab (sext_optab, SIGN_EXTEND);
+ init_convert_optab (zext_optab, ZERO_EXTEND);
+ init_convert_optab (trunc_optab, TRUNCATE);
+ init_convert_optab (sfix_optab, FIX);
+ init_convert_optab (ufix_optab, UNSIGNED_FIX);
+ init_convert_optab (sfixtrunc_optab, UNKNOWN);
+ init_convert_optab (ufixtrunc_optab, UNKNOWN);
+ init_convert_optab (sfloat_optab, FLOAT);
+ init_convert_optab (ufloat_optab, UNSIGNED_FLOAT);
+ init_convert_optab (lrint_optab, UNKNOWN);
+ init_convert_optab (lround_optab, UNKNOWN);
+ init_convert_optab (lfloor_optab, UNKNOWN);
+ init_convert_optab (lceil_optab, UNKNOWN);
+
+ init_convert_optab (fract_optab, FRACT_CONVERT);
+ init_convert_optab (fractuns_optab, UNSIGNED_FRACT_CONVERT);
+ init_convert_optab (satfract_optab, SAT_FRACT);
+ init_convert_optab (satfractuns_optab, UNSIGNED_SAT_FRACT);
+
+ /* Fill in the optabs with the insns we support. */
+ init_all_optabs ();
+
+ /* Initialize the optabs with the names of the library functions. */
+ add_optab->libcall_basename = "add";
+ add_optab->libcall_suffix = '3';
+ add_optab->libcall_gen = gen_int_fp_fixed_libfunc;
+ addv_optab->libcall_basename = "add";
+ addv_optab->libcall_suffix = '3';
+ addv_optab->libcall_gen = gen_intv_fp_libfunc;
+ ssadd_optab->libcall_basename = "ssadd";
+ ssadd_optab->libcall_suffix = '3';
+ ssadd_optab->libcall_gen = gen_signed_fixed_libfunc;
+ usadd_optab->libcall_basename = "usadd";
+ usadd_optab->libcall_suffix = '3';
+ usadd_optab->libcall_gen = gen_unsigned_fixed_libfunc;
+ sub_optab->libcall_basename = "sub";
+ sub_optab->libcall_suffix = '3';
+ sub_optab->libcall_gen = gen_int_fp_fixed_libfunc;
+ subv_optab->libcall_basename = "sub";
+ subv_optab->libcall_suffix = '3';
+ subv_optab->libcall_gen = gen_intv_fp_libfunc;
+ sssub_optab->libcall_basename = "sssub";
+ sssub_optab->libcall_suffix = '3';
+ sssub_optab->libcall_gen = gen_signed_fixed_libfunc;
+ ussub_optab->libcall_basename = "ussub";
+ ussub_optab->libcall_suffix = '3';
+ ussub_optab->libcall_gen = gen_unsigned_fixed_libfunc;
+ smul_optab->libcall_basename = "mul";
+ smul_optab->libcall_suffix = '3';
+ smul_optab->libcall_gen = gen_int_fp_fixed_libfunc;
+ smulv_optab->libcall_basename = "mul";
+ smulv_optab->libcall_suffix = '3';
+ smulv_optab->libcall_gen = gen_intv_fp_libfunc;
+ ssmul_optab->libcall_basename = "ssmul";
+ ssmul_optab->libcall_suffix = '3';
+ ssmul_optab->libcall_gen = gen_signed_fixed_libfunc;
+ usmul_optab->libcall_basename = "usmul";
+ usmul_optab->libcall_suffix = '3';
+ usmul_optab->libcall_gen = gen_unsigned_fixed_libfunc;
+ sdiv_optab->libcall_basename = "div";
+ sdiv_optab->libcall_suffix = '3';
+ sdiv_optab->libcall_gen = gen_int_fp_signed_fixed_libfunc;
+ sdivv_optab->libcall_basename = "divv";
+ sdivv_optab->libcall_suffix = '3';
+ sdivv_optab->libcall_gen = gen_int_libfunc;
+ ssdiv_optab->libcall_basename = "ssdiv";
+ ssdiv_optab->libcall_suffix = '3';
+ ssdiv_optab->libcall_gen = gen_signed_fixed_libfunc;
+ udiv_optab->libcall_basename = "udiv";
+ udiv_optab->libcall_suffix = '3';
+ udiv_optab->libcall_gen = gen_int_unsigned_fixed_libfunc;
+ usdiv_optab->libcall_basename = "usdiv";
+ usdiv_optab->libcall_suffix = '3';
+ usdiv_optab->libcall_gen = gen_unsigned_fixed_libfunc;
+ sdivmod_optab->libcall_basename = "divmod";
+ sdivmod_optab->libcall_suffix = '4';
+ sdivmod_optab->libcall_gen = gen_int_libfunc;
+ udivmod_optab->libcall_basename = "udivmod";
+ udivmod_optab->libcall_suffix = '4';
+ udivmod_optab->libcall_gen = gen_int_libfunc;
+ smod_optab->libcall_basename = "mod";
+ smod_optab->libcall_suffix = '3';
+ smod_optab->libcall_gen = gen_int_libfunc;
+ umod_optab->libcall_basename = "umod";
+ umod_optab->libcall_suffix = '3';
+ umod_optab->libcall_gen = gen_int_libfunc;
+ ftrunc_optab->libcall_basename = "ftrunc";
+ ftrunc_optab->libcall_suffix = '2';
+ ftrunc_optab->libcall_gen = gen_fp_libfunc;
+ and_optab->libcall_basename = "and";
+ and_optab->libcall_suffix = '3';
+ and_optab->libcall_gen = gen_int_libfunc;
+ ior_optab->libcall_basename = "ior";
+ ior_optab->libcall_suffix = '3';
+ ior_optab->libcall_gen = gen_int_libfunc;
+ xor_optab->libcall_basename = "xor";
+ xor_optab->libcall_suffix = '3';
+ xor_optab->libcall_gen = gen_int_libfunc;
+ ashl_optab->libcall_basename = "ashl";
+ ashl_optab->libcall_suffix = '3';
+ ashl_optab->libcall_gen = gen_int_fixed_libfunc;
+ ssashl_optab->libcall_basename = "ssashl";
+ ssashl_optab->libcall_suffix = '3';
+ ssashl_optab->libcall_gen = gen_signed_fixed_libfunc;
+ usashl_optab->libcall_basename = "usashl";
+ usashl_optab->libcall_suffix = '3';
+ usashl_optab->libcall_gen = gen_unsigned_fixed_libfunc;
+ ashr_optab->libcall_basename = "ashr";
+ ashr_optab->libcall_suffix = '3';
+ ashr_optab->libcall_gen = gen_int_signed_fixed_libfunc;
+ lshr_optab->libcall_basename = "lshr";
+ lshr_optab->libcall_suffix = '3';
+ lshr_optab->libcall_gen = gen_int_unsigned_fixed_libfunc;
+ smin_optab->libcall_basename = "min";
+ smin_optab->libcall_suffix = '3';
+ smin_optab->libcall_gen = gen_int_fp_libfunc;
+ smax_optab->libcall_basename = "max";
+ smax_optab->libcall_suffix = '3';
+ smax_optab->libcall_gen = gen_int_fp_libfunc;
+ umin_optab->libcall_basename = "umin";
+ umin_optab->libcall_suffix = '3';
+ umin_optab->libcall_gen = gen_int_libfunc;
+ umax_optab->libcall_basename = "umax";
+ umax_optab->libcall_suffix = '3';
+ umax_optab->libcall_gen = gen_int_libfunc;
+ neg_optab->libcall_basename = "neg";
+ neg_optab->libcall_suffix = '2';
+ neg_optab->libcall_gen = gen_int_fp_fixed_libfunc;
+ ssneg_optab->libcall_basename = "ssneg";
+ ssneg_optab->libcall_suffix = '2';
+ ssneg_optab->libcall_gen = gen_signed_fixed_libfunc;
+ usneg_optab->libcall_basename = "usneg";
+ usneg_optab->libcall_suffix = '2';
+ usneg_optab->libcall_gen = gen_unsigned_fixed_libfunc;
+ negv_optab->libcall_basename = "neg";
+ negv_optab->libcall_suffix = '2';
+ negv_optab->libcall_gen = gen_intv_fp_libfunc;
+ one_cmpl_optab->libcall_basename = "one_cmpl";
+ one_cmpl_optab->libcall_suffix = '2';
+ one_cmpl_optab->libcall_gen = gen_int_libfunc;
+ ffs_optab->libcall_basename = "ffs";
+ ffs_optab->libcall_suffix = '2';
+ ffs_optab->libcall_gen = gen_int_libfunc;
+ clz_optab->libcall_basename = "clz";
+ clz_optab->libcall_suffix = '2';
+ clz_optab->libcall_gen = gen_int_libfunc;
+ ctz_optab->libcall_basename = "ctz";
+ ctz_optab->libcall_suffix = '2';
+ ctz_optab->libcall_gen = gen_int_libfunc;
+ clrsb_optab->libcall_basename = "clrsb";
+ clrsb_optab->libcall_suffix = '2';
+ clrsb_optab->libcall_gen = gen_int_libfunc;
+ popcount_optab->libcall_basename = "popcount";
+ popcount_optab->libcall_suffix = '2';
+ popcount_optab->libcall_gen = gen_int_libfunc;
+ parity_optab->libcall_basename = "parity";
+ parity_optab->libcall_suffix = '2';
+ parity_optab->libcall_gen = gen_int_libfunc;
+
+ /* Comparison libcalls for integers MUST come in pairs,
+ signed/unsigned. */
+ cmp_optab->libcall_basename = "cmp";
+ cmp_optab->libcall_suffix = '2';
+ cmp_optab->libcall_gen = gen_int_fp_fixed_libfunc;
+ ucmp_optab->libcall_basename = "ucmp";
+ ucmp_optab->libcall_suffix = '2';
+ ucmp_optab->libcall_gen = gen_int_libfunc;
+
+ /* EQ etc are floating point only. */
+ eq_optab->libcall_basename = "eq";
+ eq_optab->libcall_suffix = '2';
+ eq_optab->libcall_gen = gen_fp_libfunc;
+ ne_optab->libcall_basename = "ne";
+ ne_optab->libcall_suffix = '2';
+ ne_optab->libcall_gen = gen_fp_libfunc;
+ gt_optab->libcall_basename = "gt";
+ gt_optab->libcall_suffix = '2';
+ gt_optab->libcall_gen = gen_fp_libfunc;
+ ge_optab->libcall_basename = "ge";
+ ge_optab->libcall_suffix = '2';
+ ge_optab->libcall_gen = gen_fp_libfunc;
+ lt_optab->libcall_basename = "lt";
+ lt_optab->libcall_suffix = '2';
+ lt_optab->libcall_gen = gen_fp_libfunc;
+ le_optab->libcall_basename = "le";
+ le_optab->libcall_suffix = '2';
+ le_optab->libcall_gen = gen_fp_libfunc;
+ unord_optab->libcall_basename = "unord";
+ unord_optab->libcall_suffix = '2';
+ unord_optab->libcall_gen = gen_fp_libfunc;
+
+ powi_optab->libcall_basename = "powi";
+ powi_optab->libcall_suffix = '2';
+ powi_optab->libcall_gen = gen_fp_libfunc;
+
+ /* Conversions. */
+ sfloat_optab->libcall_basename = "float";
+ sfloat_optab->libcall_gen = gen_int_to_fp_conv_libfunc;
+ ufloat_optab->libcall_gen = gen_ufloat_conv_libfunc;
+ sfix_optab->libcall_basename = "fix";
+ sfix_optab->libcall_gen = gen_fp_to_int_conv_libfunc;
+ ufix_optab->libcall_basename = "fixuns";
+ ufix_optab->libcall_gen = gen_fp_to_int_conv_libfunc;
+ lrint_optab->libcall_basename = "lrint";
+ lrint_optab->libcall_gen = gen_int_to_fp_nondecimal_conv_libfunc;
+ lround_optab->libcall_basename = "lround";
+ lround_optab->libcall_gen = gen_int_to_fp_nondecimal_conv_libfunc;
+ lfloor_optab->libcall_basename = "lfloor";
+ lfloor_optab->libcall_gen = gen_int_to_fp_nondecimal_conv_libfunc;
+ lceil_optab->libcall_basename = "lceil";
+ lceil_optab->libcall_gen = gen_int_to_fp_nondecimal_conv_libfunc;
+
+ /* trunc_optab is also used for FLOAT_EXTEND. */
+ sext_optab->libcall_basename = "extend";
+ sext_optab->libcall_gen = gen_extend_conv_libfunc;
+ trunc_optab->libcall_basename = "trunc";
+ trunc_optab->libcall_gen = gen_trunc_conv_libfunc;
+
+ /* Conversions for fixed-point modes and other modes. */
+ fract_optab->libcall_basename = "fract";
+ fract_optab->libcall_gen = gen_fract_conv_libfunc;
+ satfract_optab->libcall_basename = "satfract";
+ satfract_optab->libcall_gen = gen_satfract_conv_libfunc;
+ fractuns_optab->libcall_basename = "fractuns";
+ fractuns_optab->libcall_gen = gen_fractuns_conv_libfunc;
+ satfractuns_optab->libcall_basename = "satfractuns";
+ satfractuns_optab->libcall_gen = gen_satfractuns_conv_libfunc;
+
+ /* The ffs function operates on `int'. Fall back on it if we do not
+ have a libgcc2 function for that width. */
+ if (INT_TYPE_SIZE < BITS_PER_WORD)
+ set_optab_libfunc (ffs_optab, mode_for_size (INT_TYPE_SIZE, MODE_INT, 0),
+ "ffs");
+
+ /* Explicitly initialize the bswap libfuncs since we need them to be
+ valid for things other than word_mode. */
+ if (targetm.libfunc_gnu_prefix)
+ {
+ set_optab_libfunc (bswap_optab, SImode, "__gnu_bswapsi2");
+ set_optab_libfunc (bswap_optab, DImode, "__gnu_bswapdi2");
+ }
+ else
+ {
+ set_optab_libfunc (bswap_optab, SImode, "__bswapsi2");
+ set_optab_libfunc (bswap_optab, DImode, "__bswapdi2");
+ }
+
+ /* Use cabs for double complex abs, since systems generally have cabs.
+ Don't define any libcall for float complex, so that cabs will be used. */
+ if (complex_double_type_node)
+ set_optab_libfunc (abs_optab, TYPE_MODE (complex_double_type_node), "cabs");
+
+ abort_libfunc = init_one_libfunc ("abort");
+ memcpy_libfunc = init_one_libfunc ("memcpy");
+ memmove_libfunc = init_one_libfunc ("memmove");
+ memcmp_libfunc = init_one_libfunc ("memcmp");
+ memset_libfunc = init_one_libfunc ("memset");
+ setbits_libfunc = init_one_libfunc ("__setbits");
+
+#ifndef DONT_USE_BUILTIN_SETJMP
+ setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
+ longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
+#else
+ setjmp_libfunc = init_one_libfunc ("setjmp");
+ longjmp_libfunc = init_one_libfunc ("longjmp");
+#endif
+ unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
+ unwind_sjlj_unregister_libfunc
+ = init_one_libfunc ("_Unwind_SjLj_Unregister");
+
+ /* For function entry/exit instrumentation. */
+ profile_function_entry_libfunc
+ = init_one_libfunc ("__cyg_profile_func_enter");
+ profile_function_exit_libfunc
+ = init_one_libfunc ("__cyg_profile_func_exit");
+
+ gcov_flush_libfunc = init_one_libfunc ("__gcov_flush");
+
+ /* Allow the target to add more libcalls or rename some, etc. */
+ targetm.init_libfuncs ();
+}
+
+/* A helper function for init_sync_libfuncs. Using the basename BASE,
+ install libfuncs into TAB for BASE_N for 1 <= N <= MAX. */
+
+static void
+init_sync_libfuncs_1 (optab tab, const char *base, int max)
+{
+ enum machine_mode mode;
+ char buf[64];
+ size_t len = strlen (base);
+ int i;
+
+ gcc_assert (max <= 8);
+ gcc_assert (len + 3 < sizeof (buf));
+
+ memcpy (buf, base, len);
+ buf[len] = '_';
+ buf[len + 1] = '0';
+ buf[len + 2] = '\0';
+
+ mode = QImode;
+ for (i = 1; i <= max; i *= 2)
+ {
+ buf[len + 1] = '0' + i;
+ set_optab_libfunc (tab, mode, buf);
+ mode = GET_MODE_2XWIDER_MODE (mode);
+ }
+}
+
+void
+init_sync_libfuncs (int max)
+{
+ init_sync_libfuncs_1 (sync_compare_and_swap_optab,
+ "__sync_val_compare_and_swap", max);
+ init_sync_libfuncs_1 (sync_lock_test_and_set_optab,
+ "__sync_lock_test_and_set", max);
+
+ init_sync_libfuncs_1 (sync_old_add_optab, "__sync_fetch_and_add", max);
+ init_sync_libfuncs_1 (sync_old_sub_optab, "__sync_fetch_and_sub", max);
+ init_sync_libfuncs_1 (sync_old_ior_optab, "__sync_fetch_and_or", max);
+ init_sync_libfuncs_1 (sync_old_and_optab, "__sync_fetch_and_and", max);
+ init_sync_libfuncs_1 (sync_old_xor_optab, "__sync_fetch_and_xor", max);
+ init_sync_libfuncs_1 (sync_old_nand_optab, "__sync_fetch_and_nand", max);
+
+ init_sync_libfuncs_1 (sync_new_add_optab, "__sync_add_and_fetch", max);
+ init_sync_libfuncs_1 (sync_new_sub_optab, "__sync_sub_and_fetch", max);
+ init_sync_libfuncs_1 (sync_new_ior_optab, "__sync_or_and_fetch", max);
+ init_sync_libfuncs_1 (sync_new_and_optab, "__sync_and_and_fetch", max);
+ init_sync_libfuncs_1 (sync_new_xor_optab, "__sync_xor_and_fetch", max);
+ init_sync_libfuncs_1 (sync_new_nand_optab, "__sync_nand_and_fetch", max);
+}
+
+/* Print information about the current contents of the optabs on
+ STDERR. */
+
+DEBUG_FUNCTION void
+debug_optab_libfuncs (void)
+{
+ int i;
+ int j;
+ int k;
+
+ /* Dump the arithmetic optabs. */
+ for (i = 0; i != (int) OTI_MAX; i++)
+ for (j = 0; j < NUM_MACHINE_MODES; ++j)
+ {
+ optab o;
+ rtx l;
+
+ o = &optab_table[i];
+ l = optab_libfunc (o, (enum machine_mode) j);
+ if (l)
+ {
+ gcc_assert (GET_CODE (l) == SYMBOL_REF);
+ fprintf (stderr, "%s\t%s:\t%s\n",
+ GET_RTX_NAME (o->code),
+ GET_MODE_NAME (j),
+ XSTR (l, 0));
+ }
+ }
+
+ /* Dump the conversion optabs. */
+ for (i = 0; i < (int) COI_MAX; ++i)
+ for (j = 0; j < NUM_MACHINE_MODES; ++j)
+ for (k = 0; k < NUM_MACHINE_MODES; ++k)
+ {
+ convert_optab o;
+ rtx l;
+
+ o = &convert_optab_table[i];
+ l = convert_optab_libfunc (o, (enum machine_mode) j,
+ (enum machine_mode) k);
+ if (l)
+ {
+ gcc_assert (GET_CODE (l) == SYMBOL_REF);
+ fprintf (stderr, "%s\t%s\t%s:\t%s\n",
+ GET_RTX_NAME (o->code),
+ GET_MODE_NAME (j),
+ GET_MODE_NAME (k),
+ XSTR (l, 0));
+ }
+ }
+}
+
+
+/* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
+ CODE. Return 0 on failure. */
+
+rtx
+gen_cond_trap (enum rtx_code code, rtx op1, rtx op2, rtx tcode)
+{
+ enum machine_mode mode = GET_MODE (op1);
+ enum insn_code icode;
+ rtx insn;
+ rtx trap_rtx;
+
+ if (mode == VOIDmode)
+ return 0;
+
+ icode = optab_handler (ctrap_optab, mode);
+ if (icode == CODE_FOR_nothing)
+ return 0;
+
+ /* Some targets only accept a zero trap code. */
+ if (!insn_operand_matches (icode, 3, tcode))
+ return 0;
+
+ do_pending_stack_adjust ();
+ start_sequence ();
+ prepare_cmp_insn (op1, op2, code, NULL_RTX, false, OPTAB_DIRECT,
+ &trap_rtx, &mode);
+ if (!trap_rtx)
+ insn = NULL_RTX;
+ else
+ insn = GEN_FCN (icode) (trap_rtx, XEXP (trap_rtx, 0), XEXP (trap_rtx, 1),
+ tcode);
+
+ /* If that failed, then give up. */
+ if (insn == 0)
+ {
+ end_sequence ();
+ return 0;
+ }
+
+ emit_insn (insn);
+ insn = get_insns ();
+ end_sequence ();
+ return insn;
+}
+
+/* Return rtx code for TCODE. Use UNSIGNEDP to select signed
+ or unsigned operation code. */
+
+static enum rtx_code
+get_rtx_code (enum tree_code tcode, bool unsignedp)
+{
+ enum rtx_code code;
+ switch (tcode)
+ {
+ case EQ_EXPR:
+ code = EQ;
+ break;
+ case NE_EXPR:
+ code = NE;
+ break;
+ case LT_EXPR:
+ code = unsignedp ? LTU : LT;
+ break;
+ case LE_EXPR:
+ code = unsignedp ? LEU : LE;
+ break;
+ case GT_EXPR:
+ code = unsignedp ? GTU : GT;
+ break;
+ case GE_EXPR:
+ code = unsignedp ? GEU : GE;
+ break;
+
+ case UNORDERED_EXPR:
+ code = UNORDERED;
+ break;
+ case ORDERED_EXPR:
+ code = ORDERED;
+ break;
+ case UNLT_EXPR:
+ code = UNLT;
+ break;
+ case UNLE_EXPR:
+ code = UNLE;
+ break;
+ case UNGT_EXPR:
+ code = UNGT;
+ break;
+ case UNGE_EXPR:
+ code = UNGE;
+ break;
+ case UNEQ_EXPR:
+ code = UNEQ;
+ break;
+ case LTGT_EXPR:
+ code = LTGT;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ return code;
+}
+
+/* Return comparison rtx for COND. Use UNSIGNEDP to select signed or
+ unsigned operators. Do not generate compare instruction. */
+
+static rtx
+vector_compare_rtx (tree cond, bool unsignedp, enum insn_code icode)
+{
+ struct expand_operand ops[2];
+ enum rtx_code rcode;
+ tree t_op0, t_op1;
+ rtx rtx_op0, rtx_op1;
+
+ /* This is unlikely. While generating VEC_COND_EXPR, auto vectorizer
+ ensures that condition is a relational operation. */
+ gcc_assert (COMPARISON_CLASS_P (cond));
+
+ rcode = get_rtx_code (TREE_CODE (cond), unsignedp);
+ t_op0 = TREE_OPERAND (cond, 0);
+ t_op1 = TREE_OPERAND (cond, 1);
+
+ /* Expand operands. */
+ rtx_op0 = expand_expr (t_op0, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op0)),
+ EXPAND_STACK_PARM);
+ rtx_op1 = expand_expr (t_op1, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op1)),
+ EXPAND_STACK_PARM);
+
+ create_input_operand (&ops[0], rtx_op0, GET_MODE (rtx_op0));
+ create_input_operand (&ops[1], rtx_op1, GET_MODE (rtx_op1));
+ if (!maybe_legitimize_operands (icode, 4, 2, ops))
+ gcc_unreachable ();
+ return gen_rtx_fmt_ee (rcode, VOIDmode, ops[0].value, ops[1].value);
+}
+
+/* Return true if VEC_PERM_EXPR can be expanded using SIMD extensions
+ of the CPU. SEL may be NULL, which stands for an unknown constant. */
+
+bool
+can_vec_perm_p (enum machine_mode mode, bool variable,
+ const unsigned char *sel)
+{
+ enum machine_mode qimode;
+
+ /* If the target doesn't implement a vector mode for the vector type,
+ then no operations are supported. */
+ if (!VECTOR_MODE_P (mode))
+ return false;
+
+ if (!variable)
+ {
+ if (direct_optab_handler (vec_perm_const_optab, mode) != CODE_FOR_nothing
+ && (sel == NULL
+ || targetm.vectorize.vec_perm_const_ok == NULL
+ || targetm.vectorize.vec_perm_const_ok (mode, sel)))
+ return true;
+ }
+
+ if (direct_optab_handler (vec_perm_optab, mode) != CODE_FOR_nothing)
+ return true;
+
+ /* We allow fallback to a QI vector mode, and adjust the mask. */
+ if (GET_MODE_INNER (mode) == QImode)
+ return false;
+ qimode = mode_for_vector (QImode, GET_MODE_SIZE (mode));
+ if (!VECTOR_MODE_P (qimode))
+ return false;
+
+ /* ??? For completeness, we ought to check the QImode version of
+ vec_perm_const_optab. But all users of this implicit lowering
+ feature implement the variable vec_perm_optab. */
+ if (direct_optab_handler (vec_perm_optab, qimode) == CODE_FOR_nothing)
+ return false;
+
+ /* In order to support the lowering of variable permutations,
+ we need to support shifts and adds. */
+ if (variable)
+ {
+ if (GET_MODE_UNIT_SIZE (mode) > 2
+ && optab_handler (ashl_optab, mode) == CODE_FOR_nothing
+ && optab_handler (vashl_optab, mode) == CODE_FOR_nothing)
+ return false;
+ if (optab_handler (add_optab, qimode) == CODE_FOR_nothing)
+ return false;
+ }
+
+ return true;
+}
+
+/* A subroutine of expand_vec_perm for expanding one vec_perm insn. */
+
+static rtx
+expand_vec_perm_1 (enum insn_code icode, rtx target,
+ rtx v0, rtx v1, rtx sel)
+{
+ enum machine_mode tmode = GET_MODE (target);
+ enum machine_mode smode = GET_MODE (sel);
+ struct expand_operand ops[4];
+
+ create_output_operand (&ops[0], target, tmode);
+ create_input_operand (&ops[3], sel, smode);
+
+ /* Make an effort to preserve v0 == v1. The target expander is able to
+ rely on this to determine if we're permuting a single input operand. */
+ if (rtx_equal_p (v0, v1))
+ {
+ if (!insn_operand_matches (icode, 1, v0))
+ v0 = force_reg (tmode, v0);
+ gcc_checking_assert (insn_operand_matches (icode, 1, v0));
+ gcc_checking_assert (insn_operand_matches (icode, 2, v0));
+
+ create_fixed_operand (&ops[1], v0);
+ create_fixed_operand (&ops[2], v0);
+ }
+ else
+ {
+ create_input_operand (&ops[1], v0, tmode);
+ create_input_operand (&ops[2], v1, tmode);
+ }
+
+ if (maybe_expand_insn (icode, 4, ops))
+ return ops[0].value;
+ return NULL_RTX;
+}
+
+/* Generate instructions for vec_perm optab given its mode
+ and three operands. */
+
+rtx
+expand_vec_perm (enum machine_mode mode, rtx v0, rtx v1, rtx sel, rtx target)
+{
+ enum insn_code icode;
+ enum machine_mode qimode;
+ unsigned int i, w, e, u;
+ rtx tmp, sel_qi = NULL;
+ rtvec vec;
+
+ if (!target || GET_MODE (target) != mode)
+ target = gen_reg_rtx (mode);
+
+ w = GET_MODE_SIZE (mode);
+ e = GET_MODE_NUNITS (mode);
+ u = GET_MODE_UNIT_SIZE (mode);
+
+ /* Set QIMODE to a different vector mode with byte elements.
+ If no such mode, or if MODE already has byte elements, use VOIDmode. */
+ qimode = VOIDmode;
+ if (GET_MODE_INNER (mode) != QImode)
+ {
+ qimode = mode_for_vector (QImode, w);
+ if (!VECTOR_MODE_P (qimode))
+ qimode = VOIDmode;
+ }
+
+ /* If the input is a constant, expand it specially. */
+ gcc_assert (GET_MODE_CLASS (GET_MODE (sel)) == MODE_VECTOR_INT);
+ if (GET_CODE (sel) == CONST_VECTOR)
+ {
+ icode = direct_optab_handler (vec_perm_const_optab, mode);
+ if (icode != CODE_FOR_nothing)
+ {
+ tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
+ if (tmp)
+ return tmp;
+ }
+
+ /* Fall back to a constant byte-based permutation. */
+ if (qimode != VOIDmode)
+ {
+ vec = rtvec_alloc (w);
+ for (i = 0; i < e; ++i)
+ {
+ unsigned int j, this_e;
+
+ this_e = INTVAL (CONST_VECTOR_ELT (sel, i));
+ this_e &= 2 * e - 1;
+ this_e *= u;
+
+ for (j = 0; j < u; ++j)
+ RTVEC_ELT (vec, i * u + j) = GEN_INT (this_e + j);
+ }
+ sel_qi = gen_rtx_CONST_VECTOR (qimode, vec);
+
+ icode = direct_optab_handler (vec_perm_const_optab, qimode);
+ if (icode != CODE_FOR_nothing)
+ {
+ tmp = expand_vec_perm_1 (icode, gen_lowpart (qimode, target),
+ gen_lowpart (qimode, v0),
+ gen_lowpart (qimode, v1), sel_qi);
+ if (tmp)
+ return gen_lowpart (mode, tmp);
+ }
+ }
+ }
+
+ /* Otherwise expand as a fully variable permuation. */
+ icode = direct_optab_handler (vec_perm_optab, mode);
+ if (icode != CODE_FOR_nothing)
+ {
+ tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
+ if (tmp)
+ return tmp;
+ }
+
+ /* As a special case to aid several targets, lower the element-based
+ permutation to a byte-based permutation and try again. */
+ if (qimode == VOIDmode)
+ return NULL_RTX;
+ icode = direct_optab_handler (vec_perm_optab, qimode);
+ if (icode == CODE_FOR_nothing)
+ return NULL_RTX;
+
+ if (sel_qi == NULL)
+ {
+ /* Multiply each element by its byte size. */
+ enum machine_mode selmode = GET_MODE (sel);
+ if (u == 2)
+ sel = expand_simple_binop (selmode, PLUS, sel, sel,
+ sel, 0, OPTAB_DIRECT);
+ else
+ sel = expand_simple_binop (selmode, ASHIFT, sel,
+ GEN_INT (exact_log2 (u)),
+ sel, 0, OPTAB_DIRECT);
+ gcc_assert (sel != NULL);
+
+ /* Broadcast the low byte each element into each of its bytes. */
+ vec = rtvec_alloc (w);
+ for (i = 0; i < w; ++i)
+ {
+ int this_e = i / u * u;
+ if (BYTES_BIG_ENDIAN)
+ this_e += u - 1;
+ RTVEC_ELT (vec, i) = GEN_INT (this_e);
+ }
+ tmp = gen_rtx_CONST_VECTOR (qimode, vec);
+ sel = gen_lowpart (qimode, sel);
+ sel = expand_vec_perm (qimode, sel, sel, tmp, NULL);
+ gcc_assert (sel != NULL);
+
+ /* Add the byte offset to each byte element. */
+ /* Note that the definition of the indicies here is memory ordering,
+ so there should be no difference between big and little endian. */
+ vec = rtvec_alloc (w);
+ for (i = 0; i < w; ++i)
+ RTVEC_ELT (vec, i) = GEN_INT (i % u);
+ tmp = gen_rtx_CONST_VECTOR (qimode, vec);
+ sel_qi = expand_simple_binop (qimode, PLUS, sel, tmp,
+ sel, 0, OPTAB_DIRECT);
+ gcc_assert (sel_qi != NULL);
+ }
+
+ tmp = expand_vec_perm_1 (icode, gen_lowpart (qimode, target),
+ gen_lowpart (qimode, v0),
+ gen_lowpart (qimode, v1), sel_qi);
+ if (tmp)
+ tmp = gen_lowpart (mode, tmp);
+ return tmp;
+}
+
+/* Return insn code for a conditional operator with a comparison in
+ mode CMODE, unsigned if UNS is true, resulting in a value of mode VMODE. */
+
+static inline enum insn_code
+get_vcond_icode (enum machine_mode vmode, enum machine_mode cmode, bool uns)
+{
+ enum insn_code icode = CODE_FOR_nothing;
+ if (uns)
+ icode = convert_optab_handler (vcondu_optab, vmode, cmode);
+ else
+ icode = convert_optab_handler (vcond_optab, vmode, cmode);
+ return icode;
+}
+
+/* Return TRUE iff, appropriate vector insns are available
+ for vector cond expr with vector type VALUE_TYPE and a comparison
+ with operand vector types in CMP_OP_TYPE. */
+
+bool
+expand_vec_cond_expr_p (tree value_type, tree cmp_op_type)
+{
+ enum machine_mode value_mode = TYPE_MODE (value_type);
+ enum machine_mode cmp_op_mode = TYPE_MODE (cmp_op_type);
+ if (GET_MODE_SIZE (value_mode) != GET_MODE_SIZE (cmp_op_mode)
+ || GET_MODE_NUNITS (value_mode) != GET_MODE_NUNITS (cmp_op_mode)
+ || get_vcond_icode (TYPE_MODE (value_type), TYPE_MODE (cmp_op_type),
+ TYPE_UNSIGNED (cmp_op_type)) == CODE_FOR_nothing)
+ return false;
+ return true;
+}
+
+/* Generate insns for a VEC_COND_EXPR, given its TYPE and its
+ three operands. */
+
+rtx
+expand_vec_cond_expr (tree vec_cond_type, tree op0, tree op1, tree op2,
+ rtx target)
+{
+ struct expand_operand ops[6];
+ enum insn_code icode;
+ rtx comparison, rtx_op1, rtx_op2;
+ enum machine_mode mode = TYPE_MODE (vec_cond_type);
+ enum machine_mode cmp_op_mode;
+ bool unsignedp;
+
+ gcc_assert (COMPARISON_CLASS_P (op0));
+
+ unsignedp = TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op0, 0)));
+ cmp_op_mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (op0, 0)));
+
+ gcc_assert (GET_MODE_SIZE (mode) == GET_MODE_SIZE (cmp_op_mode)
+ && GET_MODE_NUNITS (mode) == GET_MODE_NUNITS (cmp_op_mode));
+
+ icode = get_vcond_icode (mode, cmp_op_mode, unsignedp);
+ if (icode == CODE_FOR_nothing)
+ return 0;
+
+ comparison = vector_compare_rtx (op0, unsignedp, icode);
+ rtx_op1 = expand_normal (op1);
+ rtx_op2 = expand_normal (op2);
+
+ create_output_operand (&ops[0], target, mode);
+ create_input_operand (&ops[1], rtx_op1, mode);
+ create_input_operand (&ops[2], rtx_op2, mode);
+ create_fixed_operand (&ops[3], comparison);
+ create_fixed_operand (&ops[4], XEXP (comparison, 0));
+ create_fixed_operand (&ops[5], XEXP (comparison, 1));
+ expand_insn (icode, 6, ops);
+ return ops[0].value;
+}
+
+
+/* Return true if there is a compare_and_swap pattern. */
+
+bool
+can_compare_and_swap_p (enum machine_mode mode, bool allow_libcall)
+{
+ enum insn_code icode;
+
+ /* Check for __atomic_compare_and_swap. */
+ icode = direct_optab_handler (atomic_compare_and_swap_optab, mode);
+ if (icode != CODE_FOR_nothing)
+ return true;
+
+ /* Check for __sync_compare_and_swap. */
+ icode = optab_handler (sync_compare_and_swap_optab, mode);
+ if (icode != CODE_FOR_nothing)
+ return true;
+ if (allow_libcall && optab_libfunc (sync_compare_and_swap_optab, mode))
+ return true;
+
+ /* No inline compare and swap. */
+ return false;
+}
+
+/* Return true if an atomic exchange can be performed. */
+
+bool
+can_atomic_exchange_p (enum machine_mode mode, bool allow_libcall)
+{
+ enum insn_code icode;
+
+ /* Check for __atomic_exchange. */
+ icode = direct_optab_handler (atomic_exchange_optab, mode);
+ if (icode != CODE_FOR_nothing)
+ return true;
+
+ /* Don't check __sync_test_and_set, as on some platforms that
+ has reduced functionality. Targets that really do support
+ a proper exchange should simply be updated to the __atomics. */
+
+ return can_compare_and_swap_p (mode, allow_libcall);
+}
+
+
+/* Helper function to find the MODE_CC set in a sync_compare_and_swap
+ pattern. */
+
+static void
+find_cc_set (rtx x, const_rtx pat, void *data)
+{
+ if (REG_P (x) && GET_MODE_CLASS (GET_MODE (x)) == MODE_CC
+ && GET_CODE (pat) == SET)
+ {
+ rtx *p_cc_reg = (rtx *) data;
+ gcc_assert (!*p_cc_reg);
+ *p_cc_reg = x;
+ }
+}
+
+/* This is a helper function for the other atomic operations. This function
+ emits a loop that contains SEQ that iterates until a compare-and-swap
+ operation at the end succeeds. MEM is the memory to be modified. SEQ is
+ a set of instructions that takes a value from OLD_REG as an input and
+ produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
+ set to the current contents of MEM. After SEQ, a compare-and-swap will
+ attempt to update MEM with NEW_REG. The function returns true when the
+ loop was generated successfully. */
+
+static bool
+expand_compare_and_swap_loop (rtx mem, rtx old_reg, rtx new_reg, rtx seq)
+{
+ enum machine_mode mode = GET_MODE (mem);
+ rtx label, cmp_reg, success, oldval;
+
+ /* The loop we want to generate looks like
+
+ cmp_reg = mem;
+ label:
+ old_reg = cmp_reg;
+ seq;
+ (success, cmp_reg) = compare-and-swap(mem, old_reg, new_reg)
+ if (success)
+ goto label;
+
+ Note that we only do the plain load from memory once. Subsequent
+ iterations use the value loaded by the compare-and-swap pattern. */
+
+ label = gen_label_rtx ();
+ cmp_reg = gen_reg_rtx (mode);
+
+ emit_move_insn (cmp_reg, mem);
+ emit_label (label);
+ emit_move_insn (old_reg, cmp_reg);
+ if (seq)
+ emit_insn (seq);
+
+ success = NULL_RTX;
+ oldval = cmp_reg;
+ if (!expand_atomic_compare_and_swap (&success, &oldval, mem, old_reg,
+ new_reg, false, MEMMODEL_SEQ_CST,
+ MEMMODEL_RELAXED))
+ return false;
+
+ if (oldval != cmp_reg)
+ emit_move_insn (cmp_reg, oldval);
+
+ /* ??? Mark this jump predicted not taken? */
+ emit_cmp_and_jump_insns (success, const0_rtx, EQ, const0_rtx,
+ GET_MODE (success), 1, label);
+ return true;
+}
+
+
+/* This function tries to emit an atomic_exchange intruction. VAL is written
+ to *MEM using memory model MODEL. The previous contents of *MEM are returned,
+ using TARGET if possible. */
+
+static rtx
+maybe_emit_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
+{
+ enum machine_mode mode = GET_MODE (mem);
+ enum insn_code icode;
+
+ /* If the target supports the exchange directly, great. */
+ icode = direct_optab_handler (atomic_exchange_optab, mode);
+ if (icode != CODE_FOR_nothing)
+ {
+ struct expand_operand ops[4];
+
+ create_output_operand (&ops[0], target, mode);
+ create_fixed_operand (&ops[1], mem);
+ /* VAL may have been promoted to a wider mode. Shrink it if so. */
+ create_convert_operand_to (&ops[2], val, mode, true);
+ create_integer_operand (&ops[3], model);
+ if (maybe_expand_insn (icode, 4, ops))
+ return ops[0].value;
+ }
+
+ return NULL_RTX;
+}
+
+/* This function tries to implement an atomic exchange operation using
+ __sync_lock_test_and_set. VAL is written to *MEM using memory model MODEL.
+ The previous contents of *MEM are returned, using TARGET if possible.
+ Since this instructionn is an acquire barrier only, stronger memory
+ models may require additional barriers to be emitted. */
+
+static rtx
+maybe_emit_sync_lock_test_and_set (rtx target, rtx mem, rtx val,
+ enum memmodel model)
+{
+ enum machine_mode mode = GET_MODE (mem);
+ enum insn_code icode;
+ rtx last_insn = get_last_insn ();
+
+ icode = optab_handler (sync_lock_test_and_set_optab, mode);
+
+ /* Legacy sync_lock_test_and_set is an acquire barrier. If the pattern
+ exists, and the memory model is stronger than acquire, add a release
+ barrier before the instruction. */
+
+ if (model == MEMMODEL_SEQ_CST
+ || model == MEMMODEL_RELEASE
+ || model == MEMMODEL_ACQ_REL)
+ expand_mem_thread_fence (model);
+
+ if (icode != CODE_FOR_nothing)
+ {
+ struct expand_operand ops[3];
+ create_output_operand (&ops[0], target, mode);
+ create_fixed_operand (&ops[1], mem);
+ /* VAL may have been promoted to a wider mode. Shrink it if so. */
+ create_convert_operand_to (&ops[2], val, mode, true);
+ if (maybe_expand_insn (icode, 3, ops))
+ return ops[0].value;
+ }
+
+ /* If an external test-and-set libcall is provided, use that instead of
+ any external compare-and-swap that we might get from the compare-and-
+ swap-loop expansion later. */
+ if (!can_compare_and_swap_p (mode, false))
+ {
+ rtx libfunc = optab_libfunc (sync_lock_test_and_set_optab, mode);
+ if (libfunc != NULL)
+ {
+ rtx addr;
+
+ addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
+ return emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
+ mode, 2, addr, ptr_mode,
+ val, mode);
+ }
+ }
+
+ /* If the test_and_set can't be emitted, eliminate any barrier that might
+ have been emitted. */
+ delete_insns_since (last_insn);
+ return NULL_RTX;
+}
+
+/* This function tries to implement an atomic exchange operation using a
+ compare_and_swap loop. VAL is written to *MEM. The previous contents of
+ *MEM are returned, using TARGET if possible. No memory model is required
+ since a compare_and_swap loop is seq-cst. */
+
+static rtx
+maybe_emit_compare_and_swap_exchange_loop (rtx target, rtx mem, rtx val)
+{
+ enum machine_mode mode = GET_MODE (mem);
+
+ if (can_compare_and_swap_p (mode, true))
+ {
+ if (!target || !register_operand (target, mode))
+ target = gen_reg_rtx (mode);
+ if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
+ val = convert_modes (mode, GET_MODE (val), val, 1);
+ if (expand_compare_and_swap_loop (mem, target, val, NULL_RTX))
+ return target;
+ }
+
+ return NULL_RTX;
+}
+
+/* This function tries to implement an atomic test-and-set operation
+ using the atomic_test_and_set instruction pattern. A boolean value
+ is returned from the operation, using TARGET if possible. */
+
+#ifndef HAVE_atomic_test_and_set
+#define HAVE_atomic_test_and_set 0
+#define CODE_FOR_atomic_test_and_set CODE_FOR_nothing
+#endif
+
+static rtx
+maybe_emit_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
+{
+ enum machine_mode pat_bool_mode;
+ struct expand_operand ops[3];
+
+ if (!HAVE_atomic_test_and_set)
+ return NULL_RTX;
+
+ /* While we always get QImode from __atomic_test_and_set, we get
+ other memory modes from __sync_lock_test_and_set. Note that we
+ use no endian adjustment here. This matches the 4.6 behavior
+ in the Sparc backend. */
+ gcc_checking_assert
+ (insn_data[CODE_FOR_atomic_test_and_set].operand[1].mode == QImode);
+ if (GET_MODE (mem) != QImode)
+ mem = adjust_address_nv (mem, QImode, 0);
+
+ pat_bool_mode = insn_data[CODE_FOR_atomic_test_and_set].operand[0].mode;
+ create_output_operand (&ops[0], target, pat_bool_mode);
+ create_fixed_operand (&ops[1], mem);
+ create_integer_operand (&ops[2], model);
+
+ if (maybe_expand_insn (CODE_FOR_atomic_test_and_set, 3, ops))
+ return ops[0].value;
+ return NULL_RTX;
+}
+
+/* This function expands the legacy _sync_lock test_and_set operation which is
+ generally an atomic exchange. Some limited targets only allow the
+ constant 1 to be stored. This is an ACQUIRE operation.
+
+ TARGET is an optional place to stick the return value.
+ MEM is where VAL is stored. */
+
+rtx
+expand_sync_lock_test_and_set (rtx target, rtx mem, rtx val)
+{
+ rtx ret;
+
+ /* Try an atomic_exchange first. */
+ ret = maybe_emit_atomic_exchange (target, mem, val, MEMMODEL_ACQUIRE);
+ if (ret)
+ return ret;
+
+ ret = maybe_emit_sync_lock_test_and_set (target, mem, val, MEMMODEL_ACQUIRE);
+ if (ret)
+ return ret;
+
+ ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
+ if (ret)
+ return ret;
+
+ /* If there are no other options, try atomic_test_and_set if the value
+ being stored is 1. */
+ if (val == const1_rtx)
+ ret = maybe_emit_atomic_test_and_set (target, mem, MEMMODEL_ACQUIRE);
+
+ return ret;
+}
+
+/* This function expands the atomic test_and_set operation:
+ atomically store a boolean TRUE into MEM and return the previous value.
+
+ MEMMODEL is the memory model variant to use.
+ TARGET is an optional place to stick the return value. */
+
+rtx
+expand_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
+{
+ enum machine_mode mode = GET_MODE (mem);
+ rtx ret, trueval, subtarget;
+
+ ret = maybe_emit_atomic_test_and_set (target, mem, model);
+ if (ret)
+ return ret;
+
+ /* Be binary compatible with non-default settings of trueval, and different
+ cpu revisions. E.g. one revision may have atomic-test-and-set, but
+ another only has atomic-exchange. */
+ if (targetm.atomic_test_and_set_trueval == 1)
+ {
+ trueval = const1_rtx;
+ subtarget = target ? target : gen_reg_rtx (mode);
+ }
+ else
+ {
+ trueval = gen_int_mode (targetm.atomic_test_and_set_trueval, mode);
+ subtarget = gen_reg_rtx (mode);
+ }
+
+ /* Try the atomic-exchange optab... */
+ ret = maybe_emit_atomic_exchange (subtarget, mem, trueval, model);
+
+ /* ... then an atomic-compare-and-swap loop ... */
+ if (!ret)
+ ret = maybe_emit_compare_and_swap_exchange_loop (subtarget, mem, trueval);
+
+ /* ... before trying the vaguely defined legacy lock_test_and_set. */
+ if (!ret)
+ ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, trueval, model);
+
+ /* Recall that the legacy lock_test_and_set optab was allowed to do magic
+ things with the value 1. Thus we try again without trueval. */
+ if (!ret && targetm.atomic_test_and_set_trueval != 1)
+ ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, const1_rtx, model);
+
+ /* Failing all else, assume a single threaded environment and simply
+ perform the operation. */
+ if (!ret)
+ {
+ emit_move_insn (subtarget, mem);
+ emit_move_insn (mem, trueval);
+ ret = subtarget;
+ }
+
+ /* Recall that have to return a boolean value; rectify if trueval
+ is not exactly one. */
+ if (targetm.atomic_test_and_set_trueval != 1)
+ ret = emit_store_flag_force (target, NE, ret, const0_rtx, mode, 0, 1);
+
+ return ret;
+}
+
+/* This function expands the atomic exchange operation:
+ atomically store VAL in MEM and return the previous value in MEM.
+
+ MEMMODEL is the memory model variant to use.
+ TARGET is an optional place to stick the return value. */
+
+rtx
+expand_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
+{
+ rtx ret;
+
+ ret = maybe_emit_atomic_exchange (target, mem, val, model);
+
+ /* Next try a compare-and-swap loop for the exchange. */
+ if (!ret)
+ ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
+
+ return ret;
+}
+
+/* This function expands the atomic compare exchange operation:
+
+ *PTARGET_BOOL is an optional place to store the boolean success/failure.
+ *PTARGET_OVAL is an optional place to store the old value from memory.
+ Both target parameters may be NULL to indicate that we do not care about
+ that return value. Both target parameters are updated on success to
+ the actual location of the corresponding result.
+
+ MEMMODEL is the memory model variant to use.
+
+ The return value of the function is true for success. */
+
+bool
+expand_atomic_compare_and_swap (rtx *ptarget_bool, rtx *ptarget_oval,
+ rtx mem, rtx expected, rtx desired,
+ bool is_weak, enum memmodel succ_model,
+ enum memmodel fail_model)
+{
+ enum machine_mode mode = GET_MODE (mem);
+ struct expand_operand ops[8];
+ enum insn_code icode;
+ rtx target_oval, target_bool = NULL_RTX;
+ rtx libfunc;
+
+ /* Load expected into a register for the compare and swap. */
+ if (MEM_P (expected))
+ expected = copy_to_reg (expected);
+
+ /* Make sure we always have some place to put the return oldval.
+ Further, make sure that place is distinct from the input expected,
+ just in case we need that path down below. */
+ if (ptarget_oval == NULL
+ || (target_oval = *ptarget_oval) == NULL
+ || reg_overlap_mentioned_p (expected, target_oval))
+ target_oval = gen_reg_rtx (mode);
+
+ icode = direct_optab_handler (atomic_compare_and_swap_optab, mode);
+ if (icode != CODE_FOR_nothing)
+ {
+ enum machine_mode bool_mode = insn_data[icode].operand[0].mode;
+
+ /* Make sure we always have a place for the bool operand. */
+ if (ptarget_bool == NULL
+ || (target_bool = *ptarget_bool) == NULL
+ || GET_MODE (target_bool) != bool_mode)
+ target_bool = gen_reg_rtx (bool_mode);
+
+ /* Emit the compare_and_swap. */
+ create_output_operand (&ops[0], target_bool, bool_mode);
+ create_output_operand (&ops[1], target_oval, mode);
+ create_fixed_operand (&ops[2], mem);
+ create_convert_operand_to (&ops[3], expected, mode, true);
+ create_convert_operand_to (&ops[4], desired, mode, true);
+ create_integer_operand (&ops[5], is_weak);
+ create_integer_operand (&ops[6], succ_model);
+ create_integer_operand (&ops[7], fail_model);
+ expand_insn (icode, 8, ops);
+
+ /* Return success/failure. */
+ target_bool = ops[0].value;
+ target_oval = ops[1].value;
+ goto success;
+ }
+
+ /* Otherwise fall back to the original __sync_val_compare_and_swap
+ which is always seq-cst. */
+ icode = optab_handler (sync_compare_and_swap_optab, mode);
+ if (icode != CODE_FOR_nothing)
+ {
+ rtx cc_reg;
+
+ create_output_operand (&ops[0], target_oval, mode);
+ create_fixed_operand (&ops[1], mem);
+ create_convert_operand_to (&ops[2], expected, mode, true);
+ create_convert_operand_to (&ops[3], desired, mode, true);
+ if (!maybe_expand_insn (icode, 4, ops))
+ return false;
+
+ target_oval = ops[0].value;
+
+ /* If the caller isn't interested in the boolean return value,
+ skip the computation of it. */
+ if (ptarget_bool == NULL)
+ goto success;
+
+ /* Otherwise, work out if the compare-and-swap succeeded. */
+ cc_reg = NULL_RTX;
+ if (have_insn_for (COMPARE, CCmode))
+ note_stores (PATTERN (get_last_insn ()), find_cc_set, &cc_reg);
+ if (cc_reg)
+ {
+ target_bool = emit_store_flag_force (target_bool, EQ, cc_reg,
+ const0_rtx, VOIDmode, 0, 1);
+ goto success;
+ }
+ goto success_bool_from_val;
+ }
+
+ /* Also check for library support for __sync_val_compare_and_swap. */
+ libfunc = optab_libfunc (sync_compare_and_swap_optab, mode);
+ if (libfunc != NULL)
+ {
+ rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
+ target_oval = emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
+ mode, 3, addr, ptr_mode,
+ expected, mode, desired, mode);
+
+ /* Compute the boolean return value only if requested. */
+ if (ptarget_bool)
+ goto success_bool_from_val;
+ else
+ goto success;
+ }
+
+ /* Failure. */
+ return false;
+
+ success_bool_from_val:
+ target_bool = emit_store_flag_force (target_bool, EQ, target_oval,
+ expected, VOIDmode, 1, 1);
+ success:
+ /* Make sure that the oval output winds up where the caller asked. */
+ if (ptarget_oval)
+ *ptarget_oval = target_oval;
+ if (ptarget_bool)
+ *ptarget_bool = target_bool;
+ return true;
+}
+
+/* Generate asm volatile("" : : : "memory") as the memory barrier. */
+
+static void
+expand_asm_memory_barrier (void)
+{
+ rtx asm_op, clob;
+
+ asm_op = gen_rtx_ASM_OPERANDS (VOIDmode, empty_string, empty_string, 0,
+ rtvec_alloc (0), rtvec_alloc (0),
+ rtvec_alloc (0), UNKNOWN_LOCATION);
+ MEM_VOLATILE_P (asm_op) = 1;
+
+ clob = gen_rtx_SCRATCH (VOIDmode);
+ clob = gen_rtx_MEM (BLKmode, clob);
+ clob = gen_rtx_CLOBBER (VOIDmode, clob);
+
+ emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, asm_op, clob)));
+}
+
+/* This routine will either emit the mem_thread_fence pattern or issue a
+ sync_synchronize to generate a fence for memory model MEMMODEL. */
+
+#ifndef HAVE_mem_thread_fence
+# define HAVE_mem_thread_fence 0
+# define gen_mem_thread_fence(x) (gcc_unreachable (), NULL_RTX)
+#endif
+#ifndef HAVE_memory_barrier
+# define HAVE_memory_barrier 0
+# define gen_memory_barrier() (gcc_unreachable (), NULL_RTX)
+#endif
+
+void
+expand_mem_thread_fence (enum memmodel model)
+{
+ if (HAVE_mem_thread_fence)
+ emit_insn (gen_mem_thread_fence (GEN_INT (model)));
+ else if (model != MEMMODEL_RELAXED)
+ {
+ if (HAVE_memory_barrier)
+ emit_insn (gen_memory_barrier ());
+ else if (synchronize_libfunc != NULL_RTX)
+ emit_library_call (synchronize_libfunc, LCT_NORMAL, VOIDmode, 0);
+ else
+ expand_asm_memory_barrier ();
+ }
+}
+
+/* This routine will either emit the mem_signal_fence pattern or issue a
+ sync_synchronize to generate a fence for memory model MEMMODEL. */
+
+#ifndef HAVE_mem_signal_fence
+# define HAVE_mem_signal_fence 0
+# define gen_mem_signal_fence(x) (gcc_unreachable (), NULL_RTX)
+#endif
+
+void
+expand_mem_signal_fence (enum memmodel model)
+{
+ if (HAVE_mem_signal_fence)
+ emit_insn (gen_mem_signal_fence (GEN_INT (model)));
+ else if (model != MEMMODEL_RELAXED)
+ {
+ /* By default targets are coherent between a thread and the signal
+ handler running on the same thread. Thus this really becomes a
+ compiler barrier, in that stores must not be sunk past
+ (or raised above) a given point. */
+ expand_asm_memory_barrier ();
+ }
+}
+
+/* This function expands the atomic load operation:
+ return the atomically loaded value in MEM.
+
+ MEMMODEL is the memory model variant to use.
+ TARGET is an option place to stick the return value. */
+
+rtx
+expand_atomic_load (rtx target, rtx mem, enum memmodel model)
+{
+ enum machine_mode mode = GET_MODE (mem);
+ enum insn_code icode;
+
+ /* If the target supports the load directly, great. */
+ icode = direct_optab_handler (atomic_load_optab, mode);
+ if (icode != CODE_FOR_nothing)
+ {
+ struct expand_operand ops[3];
+
+ create_output_operand (&ops[0], target, mode);
+ create_fixed_operand (&ops[1], mem);
+ create_integer_operand (&ops[2], model);
+ if (maybe_expand_insn (icode, 3, ops))
+ return ops[0].value;
+ }
+
+ /* If the size of the object is greater than word size on this target,
+ then we assume that a load will not be atomic. */
+ if (GET_MODE_PRECISION (mode) > BITS_PER_WORD)
+ {
+ /* Issue val = compare_and_swap (mem, 0, 0).
+ This may cause the occasional harmless store of 0 when the value is
+ already 0, but it seems to be OK according to the standards guys. */
+ if (expand_atomic_compare_and_swap (NULL, &target, mem, const0_rtx,
+ const0_rtx, false, model, model))
+ return target;
+ else
+ /* Otherwise there is no atomic load, leave the library call. */
+ return NULL_RTX;
+ }
+
+ /* Otherwise assume loads are atomic, and emit the proper barriers. */
+ if (!target || target == const0_rtx)
+ target = gen_reg_rtx (mode);
+
+ /* Emit the appropriate barrier before the load. */
+ expand_mem_thread_fence (model);
+
+ emit_move_insn (target, mem);
+
+ /* For SEQ_CST, also emit a barrier after the load. */
+ if (model == MEMMODEL_SEQ_CST)
+ expand_mem_thread_fence (model);
+
+ return target;
+}
+
+/* This function expands the atomic store operation:
+ Atomically store VAL in MEM.
+ MEMMODEL is the memory model variant to use.
+ USE_RELEASE is true if __sync_lock_release can be used as a fall back.
+ function returns const0_rtx if a pattern was emitted. */
+
+rtx
+expand_atomic_store (rtx mem, rtx val, enum memmodel model, bool use_release)
+{
+ enum machine_mode mode = GET_MODE (mem);
+ enum insn_code icode;
+ struct expand_operand ops[3];
+
+ /* If the target supports the store directly, great. */
+ icode = direct_optab_handler (atomic_store_optab, mode);
+ if (icode != CODE_FOR_nothing)
+ {
+ create_fixed_operand (&ops[0], mem);
+ create_input_operand (&ops[1], val, mode);
+ create_integer_operand (&ops[2], model);
+ if (maybe_expand_insn (icode, 3, ops))
+ return const0_rtx;
+ }
+
+ /* If using __sync_lock_release is a viable alternative, try it. */
+ if (use_release)
+ {
+ icode = direct_optab_handler (sync_lock_release_optab, mode);
+ if (icode != CODE_FOR_nothing)
+ {
+ create_fixed_operand (&ops[0], mem);
+ create_input_operand (&ops[1], const0_rtx, mode);
+ if (maybe_expand_insn (icode, 2, ops))
+ {
+ /* lock_release is only a release barrier. */
+ if (model == MEMMODEL_SEQ_CST)
+ expand_mem_thread_fence (model);
+ return const0_rtx;
+ }
+ }
+ }
+
+ /* If the size of the object is greater than word size on this target,
+ a default store will not be atomic, Try a mem_exchange and throw away
+ the result. If that doesn't work, don't do anything. */
+ if (GET_MODE_PRECISION(mode) > BITS_PER_WORD)
+ {
+ rtx target = maybe_emit_atomic_exchange (NULL_RTX, mem, val, model);
+ if (!target)
+ target = maybe_emit_compare_and_swap_exchange_loop (NULL_RTX, mem, val);
+ if (target)
+ return const0_rtx;
+ else
+ return NULL_RTX;
+ }
+
+ /* If there is no mem_store, default to a move with barriers */
+ if (model == MEMMODEL_SEQ_CST || model == MEMMODEL_RELEASE)
+ expand_mem_thread_fence (model);
+
+ emit_move_insn (mem, val);
+
+ /* For SEQ_CST, also emit a barrier after the load. */
+ if (model == MEMMODEL_SEQ_CST)
+ expand_mem_thread_fence (model);
+
+ return const0_rtx;
+}
+
+
+/* Structure containing the pointers and values required to process the
+ various forms of the atomic_fetch_op and atomic_op_fetch builtins. */
+
+struct atomic_op_functions
+{
+ direct_optab mem_fetch_before;
+ direct_optab mem_fetch_after;
+ direct_optab mem_no_result;
+ optab fetch_before;
+ optab fetch_after;
+ direct_optab no_result;
+ enum rtx_code reverse_code;
+};
+
+
+/* Fill in structure pointed to by OP with the various optab entries for an
+ operation of type CODE. */
+
+static void
+get_atomic_op_for_code (struct atomic_op_functions *op, enum rtx_code code)
+{
+ gcc_assert (op!= NULL);
+
+ /* If SWITCHABLE_TARGET is defined, then subtargets can be switched
+ in the source code during compilation, and the optab entries are not
+ computable until runtime. Fill in the values at runtime. */
+ switch (code)
+ {
+ case PLUS:
+ op->mem_fetch_before = atomic_fetch_add_optab;
+ op->mem_fetch_after = atomic_add_fetch_optab;
+ op->mem_no_result = atomic_add_optab;
+ op->fetch_before = sync_old_add_optab;
+ op->fetch_after = sync_new_add_optab;
+ op->no_result = sync_add_optab;
+ op->reverse_code = MINUS;
+ break;
+ case MINUS:
+ op->mem_fetch_before = atomic_fetch_sub_optab;
+ op->mem_fetch_after = atomic_sub_fetch_optab;
+ op->mem_no_result = atomic_sub_optab;
+ op->fetch_before = sync_old_sub_optab;
+ op->fetch_after = sync_new_sub_optab;
+ op->no_result = sync_sub_optab;
+ op->reverse_code = PLUS;
+ break;
+ case XOR:
+ op->mem_fetch_before = atomic_fetch_xor_optab;
+ op->mem_fetch_after = atomic_xor_fetch_optab;
+ op->mem_no_result = atomic_xor_optab;
+ op->fetch_before = sync_old_xor_optab;
+ op->fetch_after = sync_new_xor_optab;
+ op->no_result = sync_xor_optab;
+ op->reverse_code = XOR;
+ break;
+ case AND:
+ op->mem_fetch_before = atomic_fetch_and_optab;
+ op->mem_fetch_after = atomic_and_fetch_optab;
+ op->mem_no_result = atomic_and_optab;
+ op->fetch_before = sync_old_and_optab;
+ op->fetch_after = sync_new_and_optab;
+ op->no_result = sync_and_optab;
+ op->reverse_code = UNKNOWN;
+ break;
+ case IOR:
+ op->mem_fetch_before = atomic_fetch_or_optab;
+ op->mem_fetch_after = atomic_or_fetch_optab;
+ op->mem_no_result = atomic_or_optab;
+ op->fetch_before = sync_old_ior_optab;
+ op->fetch_after = sync_new_ior_optab;
+ op->no_result = sync_ior_optab;
+ op->reverse_code = UNKNOWN;
+ break;
+ case NOT:
+ op->mem_fetch_before = atomic_fetch_nand_optab;
+ op->mem_fetch_after = atomic_nand_fetch_optab;
+ op->mem_no_result = atomic_nand_optab;
+ op->fetch_before = sync_old_nand_optab;
+ op->fetch_after = sync_new_nand_optab;
+ op->no_result = sync_nand_optab;
+ op->reverse_code = UNKNOWN;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* See if there is a more optimal way to implement the operation "*MEM CODE VAL"
+ using memory order MODEL. If AFTER is true the operation needs to return
+ the value of *MEM after the operation, otherwise the previous value.
+ TARGET is an optional place to place the result. The result is unused if
+ it is const0_rtx.
+ Return the result if there is a better sequence, otherwise NULL_RTX. */
+
+static rtx
+maybe_optimize_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
+ enum memmodel model, bool after)
+{
+ /* If the value is prefetched, or not used, it may be possible to replace
+ the sequence with a native exchange operation. */
+ if (!after || target == const0_rtx)
+ {
+ /* fetch_and (&x, 0, m) can be replaced with exchange (&x, 0, m). */
+ if (code == AND && val == const0_rtx)
+ {
+ if (target == const0_rtx)
+ target = gen_reg_rtx (GET_MODE (mem));
+ return maybe_emit_atomic_exchange (target, mem, val, model);
+ }
+
+ /* fetch_or (&x, -1, m) can be replaced with exchange (&x, -1, m). */
+ if (code == IOR && val == constm1_rtx)
+ {
+ if (target == const0_rtx)
+ target = gen_reg_rtx (GET_MODE (mem));
+ return maybe_emit_atomic_exchange (target, mem, val, model);
+ }
+ }
+
+ return NULL_RTX;
+}
+
+/* Try to emit an instruction for a specific operation varaition.
+ OPTAB contains the OP functions.
+ TARGET is an optional place to return the result. const0_rtx means unused.
+ MEM is the memory location to operate on.
+ VAL is the value to use in the operation.
+ USE_MEMMODEL is TRUE if the variation with a memory model should be tried.
+ MODEL is the memory model, if used.
+ AFTER is true if the returned result is the value after the operation. */
+
+static rtx
+maybe_emit_op (const struct atomic_op_functions *optab, rtx target, rtx mem,
+ rtx val, bool use_memmodel, enum memmodel model, bool after)
+{
+ enum machine_mode mode = GET_MODE (mem);
+ struct expand_operand ops[4];
+ enum insn_code icode;
+ int op_counter = 0;
+ int num_ops;
+
+ /* Check to see if there is a result returned. */
+ if (target == const0_rtx)
+ {
+ if (use_memmodel)
+ {
+ icode = direct_optab_handler (optab->mem_no_result, mode);
+ create_integer_operand (&ops[2], model);
+ num_ops = 3;
+ }
+ else
+ {
+ icode = direct_optab_handler (optab->no_result, mode);
+ num_ops = 2;
+ }
+ }
+ /* Otherwise, we need to generate a result. */
+ else
+ {
+ if (use_memmodel)
+ {
+ icode = direct_optab_handler (after ? optab->mem_fetch_after
+ : optab->mem_fetch_before, mode);
+ create_integer_operand (&ops[3], model);
+ num_ops = 4;
+ }
+ else
+ {
+ icode = optab_handler (after ? optab->fetch_after
+ : optab->fetch_before, mode);
+ num_ops = 3;
+ }
+ create_output_operand (&ops[op_counter++], target, mode);
+ }
+ if (icode == CODE_FOR_nothing)
+ return NULL_RTX;
+
+ create_fixed_operand (&ops[op_counter++], mem);
+ /* VAL may have been promoted to a wider mode. Shrink it if so. */
+ create_convert_operand_to (&ops[op_counter++], val, mode, true);
+
+ if (maybe_expand_insn (icode, num_ops, ops))
+ return (target == const0_rtx ? const0_rtx : ops[0].value);
+
+ return NULL_RTX;
+}
+
+
+/* This function expands an atomic fetch_OP or OP_fetch operation:
+ TARGET is an option place to stick the return value. const0_rtx indicates
+ the result is unused.
+ atomically fetch MEM, perform the operation with VAL and return it to MEM.
+ CODE is the operation being performed (OP)
+ MEMMODEL is the memory model variant to use.
+ AFTER is true to return the result of the operation (OP_fetch).
+ AFTER is false to return the value before the operation (fetch_OP). */
+rtx
+expand_atomic_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
+ enum memmodel model, bool after)
+{
+ enum machine_mode mode = GET_MODE (mem);
+ struct atomic_op_functions optab;
+ rtx result;
+ bool unused_result = (target == const0_rtx);
+
+ get_atomic_op_for_code (&optab, code);
+
+ /* Check to see if there are any better instructions. */
+ result = maybe_optimize_fetch_op (target, mem, val, code, model, after);
+ if (result)
+ return result;
+
+ /* Check for the case where the result isn't used and try those patterns. */
+ if (unused_result)
+ {
+ /* Try the memory model variant first. */
+ result = maybe_emit_op (&optab, target, mem, val, true, model, true);
+ if (result)
+ return result;
+
+ /* Next try the old style withuot a memory model. */
+ result = maybe_emit_op (&optab, target, mem, val, false, model, true);
+ if (result)
+ return result;
+
+ /* There is no no-result pattern, so try patterns with a result. */
+ target = NULL_RTX;
+ }
+
+ /* Try the __atomic version. */
+ result = maybe_emit_op (&optab, target, mem, val, true, model, after);
+ if (result)
+ return result;
+
+ /* Try the older __sync version. */
+ result = maybe_emit_op (&optab, target, mem, val, false, model, after);
+ if (result)
+ return result;
+
+ /* If the fetch value can be calculated from the other variation of fetch,
+ try that operation. */
+ if (after || unused_result || optab.reverse_code != UNKNOWN)
+ {
+ /* Try the __atomic version, then the older __sync version. */
+ result = maybe_emit_op (&optab, target, mem, val, true, model, !after);
+ if (!result)
+ result = maybe_emit_op (&optab, target, mem, val, false, model, !after);
+
+ if (result)
+ {
+ /* If the result isn't used, no need to do compensation code. */
+ if (unused_result)
+ return result;
+
+ /* Issue compensation code. Fetch_after == fetch_before OP val.
+ Fetch_before == after REVERSE_OP val. */
+ if (!after)
+ code = optab.reverse_code;
+ if (code == NOT)
+ {
+ result = expand_simple_binop (mode, AND, result, val, NULL_RTX,
+ true, OPTAB_LIB_WIDEN);
+ result = expand_simple_unop (mode, NOT, result, target, true);
+ }
+ else
+ result = expand_simple_binop (mode, code, result, val, target,
+ true, OPTAB_LIB_WIDEN);
+ return result;
+ }
+ }
+
+ /* Try the __sync libcalls only if we can't do compare-and-swap inline. */
+ if (!can_compare_and_swap_p (mode, false))
+ {
+ rtx libfunc;
+ bool fixup = false;
+
+ libfunc = optab_libfunc (after ? optab.fetch_after
+ : optab.fetch_before, mode);
+ if (libfunc == NULL
+ && (after || unused_result || optab.reverse_code != UNKNOWN))
+ {
+ fixup = true;
+ if (!after)
+ code = optab.reverse_code;
+ libfunc = optab_libfunc (after ? optab.fetch_before
+ : optab.fetch_after, mode);
+ }
+ if (libfunc != NULL)
+ {
+ rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
+ result = emit_library_call_value (libfunc, NULL, LCT_NORMAL, mode,
+ 2, addr, ptr_mode, val, mode);
+
+ if (!unused_result && fixup)
+ result = expand_simple_binop (mode, code, result, val, target,
+ true, OPTAB_LIB_WIDEN);
+ return result;
+ }
+ }
+
+ /* If nothing else has succeeded, default to a compare and swap loop. */
+ if (can_compare_and_swap_p (mode, true))
+ {
+ rtx insn;
+ rtx t0 = gen_reg_rtx (mode), t1;
+
+ start_sequence ();
+
+ /* If the result is used, get a register for it. */
+ if (!unused_result)
+ {
+ if (!target || !register_operand (target, mode))
+ target = gen_reg_rtx (mode);
+ /* If fetch_before, copy the value now. */
+ if (!after)
+ emit_move_insn (target, t0);
+ }
+ else
+ target = const0_rtx;
+
+ t1 = t0;
+ if (code == NOT)
+ {
+ t1 = expand_simple_binop (mode, AND, t1, val, NULL_RTX,
+ true, OPTAB_LIB_WIDEN);
+ t1 = expand_simple_unop (mode, code, t1, NULL_RTX, true);
+ }
+ else
+ t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX, true,
+ OPTAB_LIB_WIDEN);
+
+ /* For after, copy the value now. */
+ if (!unused_result && after)
+ emit_move_insn (target, t1);
+ insn = get_insns ();
+ end_sequence ();
+
+ if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
+ return target;
+ }
+
+ return NULL_RTX;
+}
+
+/* Return true if OPERAND is suitable for operand number OPNO of
+ instruction ICODE. */
+
+bool
+insn_operand_matches (enum insn_code icode, unsigned int opno, rtx operand)
+{
+ return (!insn_data[(int) icode].operand[opno].predicate
+ || (insn_data[(int) icode].operand[opno].predicate
+ (operand, insn_data[(int) icode].operand[opno].mode)));
+}
+
+/* TARGET is a target of a multiword operation that we are going to
+ implement as a series of word-mode operations. Return true if
+ TARGET is suitable for this purpose. */
+
+bool
+valid_multiword_target_p (rtx target)
+{
+ enum machine_mode mode;
+ int i;
+
+ mode = GET_MODE (target);
+ for (i = 0; i < GET_MODE_SIZE (mode); i += UNITS_PER_WORD)
+ if (!validate_subreg (word_mode, mode, target, i))
+ return false;
+ return true;
+}
+
+/* Like maybe_legitimize_operand, but do not change the code of the
+ current rtx value. */
+
+static bool
+maybe_legitimize_operand_same_code (enum insn_code icode, unsigned int opno,
+ struct expand_operand *op)
+{
+ /* See if the operand matches in its current form. */
+ if (insn_operand_matches (icode, opno, op->value))
+ return true;
+
+ /* If the operand is a memory whose address has no side effects,
+ try forcing the address into a non-virtual pseudo register.
+ The check for side effects is important because copy_to_mode_reg
+ cannot handle things like auto-modified addresses. */
+ if (insn_data[(int) icode].operand[opno].allows_mem && MEM_P (op->value))
+ {
+ rtx addr, mem;
+
+ mem = op->value;
+ addr = XEXP (mem, 0);
+ if (!(REG_P (addr) && REGNO (addr) > LAST_VIRTUAL_REGISTER)
+ && !side_effects_p (addr))
+ {
+ rtx last;
+ enum machine_mode mode;
+
+ last = get_last_insn ();
+ mode = targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
+ mem = replace_equiv_address (mem, copy_to_mode_reg (mode, addr));
+ if (insn_operand_matches (icode, opno, mem))
+ {
+ op->value = mem;
+ return true;
+ }
+ delete_insns_since (last);
+ }
+ }
+
+ return false;
+}
+
+/* Try to make OP match operand OPNO of instruction ICODE. Return true
+ on success, storing the new operand value back in OP. */
+
+static bool
+maybe_legitimize_operand (enum insn_code icode, unsigned int opno,
+ struct expand_operand *op)
+{
+ enum machine_mode mode, imode;
+ bool old_volatile_ok, result;
+
+ mode = op->mode;
+ switch (op->type)
+ {
+ case EXPAND_FIXED:
+ old_volatile_ok = volatile_ok;
+ volatile_ok = true;
+ result = maybe_legitimize_operand_same_code (icode, opno, op);
+ volatile_ok = old_volatile_ok;
+ return result;
+
+ case EXPAND_OUTPUT:
+ gcc_assert (mode != VOIDmode);
+ if (op->value
+ && op->value != const0_rtx
+ && GET_MODE (op->value) == mode
+ && maybe_legitimize_operand_same_code (icode, opno, op))
+ return true;
+
+ op->value = gen_reg_rtx (mode);
+ break;
+
+ case EXPAND_INPUT:
+ input:
+ gcc_assert (mode != VOIDmode);
+ gcc_assert (GET_MODE (op->value) == VOIDmode
+ || GET_MODE (op->value) == mode);
+ if (maybe_legitimize_operand_same_code (icode, opno, op))
+ return true;
+
+ op->value = copy_to_mode_reg (mode, op->value);
+ break;
+
+ case EXPAND_CONVERT_TO:
+ gcc_assert (mode != VOIDmode);
+ op->value = convert_to_mode (mode, op->value, op->unsigned_p);
+ goto input;
+
+ case EXPAND_CONVERT_FROM:
+ if (GET_MODE (op->value) != VOIDmode)
+ mode = GET_MODE (op->value);
+ else
+ /* The caller must tell us what mode this value has. */
+ gcc_assert (mode != VOIDmode);
+
+ imode = insn_data[(int) icode].operand[opno].mode;
+ if (imode != VOIDmode && imode != mode)
+ {
+ op->value = convert_modes (imode, mode, op->value, op->unsigned_p);
+ mode = imode;
+ }
+ goto input;
+
+ case EXPAND_ADDRESS:
+ gcc_assert (mode != VOIDmode);
+ op->value = convert_memory_address (mode, op->value);
+ goto input;
+
+ case EXPAND_INTEGER:
+ mode = insn_data[(int) icode].operand[opno].mode;
+ if (mode != VOIDmode && const_int_operand (op->value, mode))
+ goto input;
+ break;
+ }
+ return insn_operand_matches (icode, opno, op->value);
+}
+
+/* Make OP describe an input operand that should have the same value
+ as VALUE, after any mode conversion that the target might request.
+ TYPE is the type of VALUE. */
+
+void
+create_convert_operand_from_type (struct expand_operand *op,
+ rtx value, tree type)
+{
+ create_convert_operand_from (op, value, TYPE_MODE (type),
+ TYPE_UNSIGNED (type));
+}
+
+/* Try to make operands [OPS, OPS + NOPS) match operands [OPNO, OPNO + NOPS)
+ of instruction ICODE. Return true on success, leaving the new operand
+ values in the OPS themselves. Emit no code on failure. */
+
+bool
+maybe_legitimize_operands (enum insn_code icode, unsigned int opno,
+ unsigned int nops, struct expand_operand *ops)
+{
+ rtx last;
+ unsigned int i;
+
+ last = get_last_insn ();
+ for (i = 0; i < nops; i++)
+ if (!maybe_legitimize_operand (icode, opno + i, &ops[i]))
+ {
+ delete_insns_since (last);
+ return false;
+ }
+ return true;
+}
+
+/* Try to generate instruction ICODE, using operands [OPS, OPS + NOPS)
+ as its operands. Return the instruction pattern on success,
+ and emit any necessary set-up code. Return null and emit no
+ code on failure. */
+
+rtx
+maybe_gen_insn (enum insn_code icode, unsigned int nops,
+ struct expand_operand *ops)
+{
+ gcc_assert (nops == (unsigned int) insn_data[(int) icode].n_generator_args);
+ if (!maybe_legitimize_operands (icode, 0, nops, ops))
+ return NULL_RTX;
+
+ switch (nops)
+ {
+ case 1:
+ return GEN_FCN (icode) (ops[0].value);
+ case 2:
+ return GEN_FCN (icode) (ops[0].value, ops[1].value);
+ case 3:
+ return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value);
+ case 4:
+ return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
+ ops[3].value);
+ case 5:
+ return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
+ ops[3].value, ops[4].value);
+ case 6:
+ return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
+ ops[3].value, ops[4].value, ops[5].value);
+ case 7:
+ return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
+ ops[3].value, ops[4].value, ops[5].value,
+ ops[6].value);
+ case 8:
+ return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
+ ops[3].value, ops[4].value, ops[5].value,
+ ops[6].value, ops[7].value);
+ }
+ gcc_unreachable ();
+}
+
+/* Try to emit instruction ICODE, using operands [OPS, OPS + NOPS)
+ as its operands. Return true on success and emit no code on failure. */
+
+bool
+maybe_expand_insn (enum insn_code icode, unsigned int nops,
+ struct expand_operand *ops)
+{
+ rtx pat = maybe_gen_insn (icode, nops, ops);
+ if (pat)
+ {
+ emit_insn (pat);
+ return true;
+ }
+ return false;
+}
+
+/* Like maybe_expand_insn, but for jumps. */
+
+bool
+maybe_expand_jump_insn (enum insn_code icode, unsigned int nops,
+ struct expand_operand *ops)
+{
+ rtx pat = maybe_gen_insn (icode, nops, ops);
+ if (pat)
+ {
+ emit_jump_insn (pat);
+ return true;
+ }
+ return false;
+}
+
+/* Emit instruction ICODE, using operands [OPS, OPS + NOPS)
+ as its operands. */
+
+void
+expand_insn (enum insn_code icode, unsigned int nops,
+ struct expand_operand *ops)
+{
+ if (!maybe_expand_insn (icode, nops, ops))
+ gcc_unreachable ();
+}
+
+/* Like expand_insn, but for jumps. */
+
+void
+expand_jump_insn (enum insn_code icode, unsigned int nops,
+ struct expand_operand *ops)
+{
+ if (!maybe_expand_jump_insn (icode, nops, ops))
+ gcc_unreachable ();
+}
+
+#include "gt-optabs.h"