aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.7/gcc/graphite-clast-to-gimple.c
diff options
context:
space:
mode:
authorBen Cheng <bccheng@google.com>2012-10-01 10:30:31 -0700
committerBen Cheng <bccheng@google.com>2012-10-01 10:30:31 -0700
commit82bcbebce43f0227f506d75a5b764b6847041bae (patch)
treefe9f8597b48a430c4daeb5123e3e8eb28e6f9da9 /gcc-4.7/gcc/graphite-clast-to-gimple.c
parent3c052de3bb16ac53b6b6ed659ec7557eb84c7590 (diff)
downloadtoolchain_gcc-82bcbebce43f0227f506d75a5b764b6847041bae.tar.gz
toolchain_gcc-82bcbebce43f0227f506d75a5b764b6847041bae.tar.bz2
toolchain_gcc-82bcbebce43f0227f506d75a5b764b6847041bae.zip
Initial check-in of gcc 4.7.2.
Change-Id: I4a2f5a921c21741a0e18bda986d77e5f1bef0365
Diffstat (limited to 'gcc-4.7/gcc/graphite-clast-to-gimple.c')
-rw-r--r--gcc-4.7/gcc/graphite-clast-to-gimple.c1704
1 files changed, 1704 insertions, 0 deletions
diff --git a/gcc-4.7/gcc/graphite-clast-to-gimple.c b/gcc-4.7/gcc/graphite-clast-to-gimple.c
new file mode 100644
index 000000000..abf88778f
--- /dev/null
+++ b/gcc-4.7/gcc/graphite-clast-to-gimple.c
@@ -0,0 +1,1704 @@
+/* Translation of CLAST (CLooG AST) to Gimple.
+ Copyright (C) 2009, 2010, 2011 Free Software Foundation, Inc.
+ Contributed by Sebastian Pop <sebastian.pop@amd.com>.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 3, or (at your option)
+any later version.
+
+GCC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "diagnostic-core.h"
+#include "tree-flow.h"
+#include "tree-dump.h"
+#include "cfgloop.h"
+#include "tree-chrec.h"
+#include "tree-data-ref.h"
+#include "tree-scalar-evolution.h"
+#include "sese.h"
+
+#ifdef HAVE_cloog
+#include "cloog/cloog.h"
+#include "ppl_c.h"
+#include "graphite-cloog-util.h"
+#include "graphite-ppl.h"
+#include "graphite-poly.h"
+#include "graphite-clast-to-gimple.h"
+#include "graphite-dependences.h"
+#include "graphite-cloog-compat.h"
+
+#ifndef CLOOG_LANGUAGE_C
+#define CLOOG_LANGUAGE_C LANGUAGE_C
+#endif
+
+/* This flag is set when an error occurred during the translation of
+ CLAST to Gimple. */
+static bool gloog_error;
+
+/* Verifies properties that GRAPHITE should maintain during translation. */
+
+static inline void
+graphite_verify (void)
+{
+#ifdef ENABLE_CHECKING
+ verify_loop_structure ();
+ verify_dominators (CDI_DOMINATORS);
+ verify_loop_closed_ssa (true);
+#endif
+}
+
+/* Stores the INDEX in a vector and the loop nesting LEVEL for a given
+ clast NAME. BOUND_ONE and BOUND_TWO represent the exact lower and
+ upper bounds that can be inferred from the polyhedral representation. */
+
+typedef struct clast_name_index {
+ int index;
+ int level;
+ mpz_t bound_one, bound_two;
+ const char *name;
+} *clast_name_index_p;
+
+/* Returns a pointer to a new element of type clast_name_index_p built
+ from NAME, INDEX, LEVEL, BOUND_ONE, and BOUND_TWO. */
+
+static inline clast_name_index_p
+new_clast_name_index (const char *name, int index, int level,
+ mpz_t bound_one, mpz_t bound_two)
+{
+ clast_name_index_p res = XNEW (struct clast_name_index);
+
+ res->name = name;
+ res->level = level;
+ res->index = index;
+ mpz_init (res->bound_one);
+ mpz_init (res->bound_two);
+ mpz_set (res->bound_one, bound_one);
+ mpz_set (res->bound_two, bound_two);
+ return res;
+}
+
+/* Free the memory taken by a clast_name_index struct. */
+
+static void
+free_clast_name_index (void *ptr)
+{
+ struct clast_name_index *c = (struct clast_name_index *) ptr;
+ mpz_clear (c->bound_one);
+ mpz_clear (c->bound_two);
+ free (ptr);
+}
+
+/* For a given clast NAME, returns -1 if NAME is not in the
+ INDEX_TABLE, otherwise returns the loop level for the induction
+ variable NAME, or if it is a parameter, the parameter number in the
+ vector of parameters. */
+
+static inline int
+clast_name_to_level (clast_name_p name, htab_t index_table)
+{
+ struct clast_name_index tmp;
+ PTR *slot;
+
+#ifdef CLOOG_ORG
+ gcc_assert (name->type == clast_expr_name);
+ tmp.name = ((const struct clast_name *) name)->name;
+#else
+ tmp.name = name;
+#endif
+
+ slot = htab_find_slot (index_table, &tmp, NO_INSERT);
+
+ if (slot && *slot)
+ return ((struct clast_name_index *) *slot)->level;
+
+ return -1;
+}
+
+/* For a given clast NAME, returns -1 if it does not correspond to any
+ parameter, or otherwise, returns the index in the PARAMS or
+ SCATTERING_DIMENSIONS vector. */
+
+static inline int
+clast_name_to_index (clast_name_p name, htab_t index_table)
+{
+ struct clast_name_index tmp;
+ PTR *slot;
+
+#ifdef CLOOG_ORG
+ gcc_assert (name->type == clast_expr_name);
+ tmp.name = ((const struct clast_name *) name)->name;
+#else
+ tmp.name = name;
+#endif
+
+ slot = htab_find_slot (index_table, &tmp, NO_INSERT);
+
+ if (slot && *slot)
+ return ((struct clast_name_index *) *slot)->index;
+
+ return -1;
+}
+
+/* For a given clast NAME, initializes the lower and upper bounds BOUND_ONE
+ and BOUND_TWO stored in the INDEX_TABLE. Returns true when NAME has been
+ found in the INDEX_TABLE, false otherwise. */
+
+static inline bool
+clast_name_to_lb_ub (clast_name_p name, htab_t index_table, mpz_t bound_one,
+ mpz_t bound_two)
+{
+ struct clast_name_index tmp;
+ PTR *slot;
+
+#ifdef CLOOG_ORG
+ gcc_assert (name->type == clast_expr_name);
+ tmp.name = ((const struct clast_name *) name)->name;
+#else
+ tmp.name = name;
+#endif
+
+ slot = htab_find_slot (index_table, &tmp, NO_INSERT);
+
+ if (slot && *slot)
+ {
+ mpz_set (bound_one, ((struct clast_name_index *) *slot)->bound_one);
+ mpz_set (bound_two, ((struct clast_name_index *) *slot)->bound_two);
+ return true;
+ }
+
+ return false;
+}
+
+/* Records in INDEX_TABLE the INDEX and LEVEL for NAME. */
+
+static inline void
+save_clast_name_index (htab_t index_table, const char *name,
+ int index, int level, mpz_t bound_one, mpz_t bound_two)
+{
+ struct clast_name_index tmp;
+ PTR *slot;
+
+ tmp.name = name;
+ slot = htab_find_slot (index_table, &tmp, INSERT);
+
+ if (slot)
+ {
+ free (*slot);
+
+ *slot = new_clast_name_index (name, index, level, bound_one, bound_two);
+ }
+}
+
+/* Computes a hash function for database element ELT. */
+
+static inline hashval_t
+clast_name_index_elt_info (const void *elt)
+{
+ return htab_hash_pointer (((const struct clast_name_index *) elt)->name);
+}
+
+/* Compares database elements E1 and E2. */
+
+static inline int
+eq_clast_name_indexes (const void *e1, const void *e2)
+{
+ const struct clast_name_index *elt1 = (const struct clast_name_index *) e1;
+ const struct clast_name_index *elt2 = (const struct clast_name_index *) e2;
+
+ return (elt1->name == elt2->name);
+}
+
+
+
+/* NEWIVS_INDEX binds CLooG's scattering name to the index of the tree
+ induction variable in NEWIVS.
+
+ PARAMS_INDEX binds CLooG's parameter name to the index of the tree
+ parameter in PARAMS. */
+
+typedef struct ivs_params {
+ VEC (tree, heap) *params, **newivs;
+ htab_t newivs_index, params_index;
+ sese region;
+} *ivs_params_p;
+
+/* Returns the tree variable from the name NAME that was given in
+ Cloog representation. */
+
+static tree
+clast_name_to_gcc (clast_name_p name, ivs_params_p ip)
+{
+ int index;
+
+ if (ip->params && ip->params_index)
+ {
+ index = clast_name_to_index (name, ip->params_index);
+
+ if (index >= 0)
+ return VEC_index (tree, ip->params, index);
+ }
+
+ gcc_assert (*(ip->newivs) && ip->newivs_index);
+ index = clast_name_to_index (name, ip->newivs_index);
+ gcc_assert (index >= 0);
+
+ return VEC_index (tree, *(ip->newivs), index);
+}
+
+/* Returns the maximal precision type for expressions TYPE1 and TYPE2. */
+
+static tree
+max_precision_type (tree type1, tree type2)
+{
+ enum machine_mode mode;
+ int p1, p2, precision;
+ tree type;
+
+ if (POINTER_TYPE_P (type1))
+ return type1;
+
+ if (POINTER_TYPE_P (type2))
+ return type2;
+
+ if (TYPE_UNSIGNED (type1)
+ && TYPE_UNSIGNED (type2))
+ return TYPE_PRECISION (type1) > TYPE_PRECISION (type2) ? type1 : type2;
+
+ p1 = TYPE_PRECISION (type1);
+ p2 = TYPE_PRECISION (type2);
+
+ if (p1 > p2)
+ precision = TYPE_UNSIGNED (type1) ? p1 * 2 : p1;
+ else
+ precision = TYPE_UNSIGNED (type2) ? p2 * 2 : p2;
+
+ if (precision > BITS_PER_WORD)
+ {
+ gloog_error = true;
+ return integer_type_node;
+ }
+
+ mode = smallest_mode_for_size (precision, MODE_INT);
+ precision = GET_MODE_PRECISION (mode);
+ type = build_nonstandard_integer_type (precision, false);
+
+ if (!type)
+ {
+ gloog_error = true;
+ return integer_type_node;
+ }
+
+ return type;
+}
+
+static tree
+clast_to_gcc_expression (tree, struct clast_expr *, ivs_params_p);
+
+/* Converts a Cloog reduction expression R with reduction operation OP
+ to a GCC expression tree of type TYPE. */
+
+static tree
+clast_to_gcc_expression_red (tree type, enum tree_code op,
+ struct clast_reduction *r, ivs_params_p ip)
+{
+ int i;
+ tree res = clast_to_gcc_expression (type, r->elts[0], ip);
+ tree operand_type = (op == POINTER_PLUS_EXPR) ? sizetype : type;
+
+ for (i = 1; i < r->n; i++)
+ {
+ tree t = clast_to_gcc_expression (operand_type, r->elts[i], ip);
+ res = fold_build2 (op, type, res, t);
+ }
+
+ return res;
+}
+
+/* Converts a Cloog AST expression E back to a GCC expression tree of
+ type TYPE. */
+
+static tree
+clast_to_gcc_expression (tree type, struct clast_expr *e, ivs_params_p ip)
+{
+ switch (e->type)
+ {
+ case clast_expr_term:
+ {
+ struct clast_term *t = (struct clast_term *) e;
+
+ if (t->var)
+ {
+ if (mpz_cmp_si (t->val, 1) == 0)
+ {
+ tree name = clast_name_to_gcc (t->var, ip);
+
+ if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
+ name = convert_to_ptrofftype (name);
+
+ name = fold_convert (type, name);
+ return name;
+ }
+
+ else if (mpz_cmp_si (t->val, -1) == 0)
+ {
+ tree name = clast_name_to_gcc (t->var, ip);
+
+ if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
+ name = convert_to_ptrofftype (name);
+
+ name = fold_convert (type, name);
+
+ return fold_build1 (NEGATE_EXPR, type, name);
+ }
+ else
+ {
+ tree name = clast_name_to_gcc (t->var, ip);
+ tree cst = gmp_cst_to_tree (type, t->val);
+
+ if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
+ name = convert_to_ptrofftype (name);
+
+ name = fold_convert (type, name);
+
+ if (!POINTER_TYPE_P (type))
+ return fold_build2 (MULT_EXPR, type, cst, name);
+
+ gloog_error = true;
+ return cst;
+ }
+ }
+ else
+ return gmp_cst_to_tree (type, t->val);
+ }
+
+ case clast_expr_red:
+ {
+ struct clast_reduction *r = (struct clast_reduction *) e;
+
+ switch (r->type)
+ {
+ case clast_red_sum:
+ return clast_to_gcc_expression_red
+ (type, POINTER_TYPE_P (type) ? POINTER_PLUS_EXPR : PLUS_EXPR,
+ r, ip);
+
+ case clast_red_min:
+ return clast_to_gcc_expression_red (type, MIN_EXPR, r, ip);
+
+ case clast_red_max:
+ return clast_to_gcc_expression_red (type, MAX_EXPR, r, ip);
+
+ default:
+ gcc_unreachable ();
+ }
+ break;
+ }
+
+ case clast_expr_bin:
+ {
+ struct clast_binary *b = (struct clast_binary *) e;
+ struct clast_expr *lhs = (struct clast_expr *) b->LHS;
+ tree tl = clast_to_gcc_expression (type, lhs, ip);
+ tree tr = gmp_cst_to_tree (type, b->RHS);
+
+ switch (b->type)
+ {
+ case clast_bin_fdiv:
+ return fold_build2 (FLOOR_DIV_EXPR, type, tl, tr);
+
+ case clast_bin_cdiv:
+ return fold_build2 (CEIL_DIV_EXPR, type, tl, tr);
+
+ case clast_bin_div:
+ return fold_build2 (EXACT_DIV_EXPR, type, tl, tr);
+
+ case clast_bin_mod:
+ return fold_build2 (TRUNC_MOD_EXPR, type, tl, tr);
+
+ default:
+ gcc_unreachable ();
+ }
+ }
+
+ default:
+ gcc_unreachable ();
+ }
+
+ return NULL_TREE;
+}
+
+/* Return a type that could represent the values between BOUND_ONE and
+ BOUND_TWO. */
+
+static tree
+type_for_interval (mpz_t bound_one, mpz_t bound_two)
+{
+ bool unsigned_p;
+ tree type;
+ enum machine_mode mode;
+ int wider_precision;
+ int precision = MAX (mpz_sizeinbase (bound_one, 2),
+ mpz_sizeinbase (bound_two, 2));
+
+ if (precision > BITS_PER_WORD)
+ {
+ gloog_error = true;
+ return integer_type_node;
+ }
+
+ if (mpz_cmp (bound_one, bound_two) <= 0)
+ unsigned_p = (mpz_sgn (bound_one) >= 0);
+ else
+ unsigned_p = (mpz_sgn (bound_two) >= 0);
+
+ mode = smallest_mode_for_size (precision, MODE_INT);
+ wider_precision = GET_MODE_PRECISION (mode);
+
+ /* As we want to generate signed types as much as possible, try to
+ fit the interval [bound_one, bound_two] in a signed type. For example,
+ supposing that we have the interval [0, 100], instead of
+ generating unsigned char, we want to generate a signed char. */
+ if (unsigned_p && precision < wider_precision)
+ unsigned_p = false;
+
+ type = build_nonstandard_integer_type (wider_precision, unsigned_p);
+
+ if (!type)
+ {
+ gloog_error = true;
+ return integer_type_node;
+ }
+
+ return type;
+}
+
+/* Return a type that could represent the integer value VAL, or
+ otherwise return NULL_TREE. */
+
+static tree
+type_for_value (mpz_t val)
+{
+ return type_for_interval (val, val);
+}
+
+/* Return the type for the clast_term T. Initializes BOUND_ONE and
+ BOUND_TWO to the bounds of the term. */
+
+static tree
+type_for_clast_term (struct clast_term *t, ivs_params_p ip, mpz_t bound_one,
+ mpz_t bound_two)
+{
+ clast_name_p name = t->var;
+ bool found = false;
+
+ gcc_assert (t->expr.type == clast_expr_term);
+
+ if (!name)
+ {
+ mpz_set (bound_one, t->val);
+ mpz_set (bound_two, t->val);
+ return type_for_value (t->val);
+ }
+
+ if (ip->params && ip->params_index)
+ found = clast_name_to_lb_ub (name, ip->params_index, bound_one, bound_two);
+
+ if (!found)
+ {
+ gcc_assert (*(ip->newivs) && ip->newivs_index);
+ found = clast_name_to_lb_ub (name, ip->newivs_index,
+ bound_one, bound_two);
+ gcc_assert (found);
+ }
+
+ mpz_mul (bound_one, bound_one, t->val);
+ mpz_mul (bound_two, bound_two, t->val);
+
+ return TREE_TYPE (clast_name_to_gcc (name, ip));
+}
+
+static tree
+type_for_clast_expr (struct clast_expr *, ivs_params_p, mpz_t, mpz_t);
+
+/* Return the type for the clast_reduction R. Initializes BOUND_ONE
+ and BOUND_TWO to the bounds of the reduction expression. */
+
+static tree
+type_for_clast_red (struct clast_reduction *r, ivs_params_p ip,
+ mpz_t bound_one, mpz_t bound_two)
+{
+ int i;
+ tree type = type_for_clast_expr (r->elts[0], ip, bound_one, bound_two);
+ mpz_t b1, b2, m1, m2;
+
+ if (r->n == 1)
+ return type;
+
+ mpz_init (b1);
+ mpz_init (b2);
+ mpz_init (m1);
+ mpz_init (m2);
+
+ for (i = 1; i < r->n; i++)
+ {
+ tree t = type_for_clast_expr (r->elts[i], ip, b1, b2);
+ type = max_precision_type (type, t);
+
+ switch (r->type)
+ {
+ case clast_red_sum:
+ value_min (m1, bound_one, bound_two);
+ value_min (m2, b1, b2);
+ mpz_add (bound_one, m1, m2);
+
+ value_max (m1, bound_one, bound_two);
+ value_max (m2, b1, b2);
+ mpz_add (bound_two, m1, m2);
+ break;
+
+ case clast_red_min:
+ value_min (bound_one, bound_one, bound_two);
+ value_min (bound_two, b1, b2);
+ break;
+
+ case clast_red_max:
+ value_max (bound_one, bound_one, bound_two);
+ value_max (bound_two, b1, b2);
+ break;
+
+ default:
+ gcc_unreachable ();
+ break;
+ }
+ }
+
+ mpz_clear (b1);
+ mpz_clear (b2);
+ mpz_clear (m1);
+ mpz_clear (m2);
+
+ /* Return a type that can represent the result of the reduction. */
+ return max_precision_type (type, type_for_interval (bound_one, bound_two));
+}
+
+/* Return the type for the clast_binary B used in STMT. */
+
+static tree
+type_for_clast_bin (struct clast_binary *b, ivs_params_p ip, mpz_t bound_one,
+ mpz_t bound_two)
+{
+ mpz_t one;
+ tree l = type_for_clast_expr ((struct clast_expr *) b->LHS, ip,
+ bound_one, bound_two);
+ tree r = type_for_value (b->RHS);
+ tree type = max_precision_type (l, r);
+
+ switch (b->type)
+ {
+ case clast_bin_fdiv:
+ mpz_mdiv (bound_one, bound_one, b->RHS);
+ mpz_mdiv (bound_two, bound_two, b->RHS);
+ break;
+
+ case clast_bin_cdiv:
+ mpz_mdiv (bound_one, bound_one, b->RHS);
+ mpz_mdiv (bound_two, bound_two, b->RHS);
+ mpz_init (one);
+ mpz_add (bound_one, bound_one, one);
+ mpz_add (bound_two, bound_two, one);
+ mpz_clear (one);
+ break;
+
+ case clast_bin_div:
+ mpz_div (bound_one, bound_one, b->RHS);
+ mpz_div (bound_two, bound_two, b->RHS);
+ break;
+
+ case clast_bin_mod:
+ mpz_mod (bound_one, bound_one, b->RHS);
+ mpz_mod (bound_two, bound_two, b->RHS);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ /* Return a type that can represent the result of the reduction. */
+ return max_precision_type (type, type_for_interval (bound_one, bound_two));
+}
+
+/* Returns the type for the CLAST expression E when used in statement
+ STMT. */
+
+static tree
+type_for_clast_expr (struct clast_expr *e, ivs_params_p ip, mpz_t bound_one,
+ mpz_t bound_two)
+{
+ switch (e->type)
+ {
+ case clast_expr_term:
+ return type_for_clast_term ((struct clast_term *) e, ip,
+ bound_one, bound_two);
+
+ case clast_expr_red:
+ return type_for_clast_red ((struct clast_reduction *) e, ip,
+ bound_one, bound_two);
+
+ case clast_expr_bin:
+ return type_for_clast_bin ((struct clast_binary *) e, ip,
+ bound_one, bound_two);
+
+ default:
+ gcc_unreachable ();
+ }
+
+ return NULL_TREE;
+}
+
+/* Returns the type for the equation CLEQ. */
+
+static tree
+type_for_clast_eq (struct clast_equation *cleq, ivs_params_p ip)
+{
+ mpz_t bound_one, bound_two;
+ tree l, r;
+
+ mpz_init (bound_one);
+ mpz_init (bound_two);
+
+ l = type_for_clast_expr (cleq->LHS, ip, bound_one, bound_two);
+ r = type_for_clast_expr (cleq->RHS, ip, bound_one, bound_two);
+
+ mpz_clear (bound_one);
+ mpz_clear (bound_two);
+ return max_precision_type (l, r);
+}
+
+/* Translates a clast equation CLEQ to a tree. */
+
+static tree
+graphite_translate_clast_equation (struct clast_equation *cleq,
+ ivs_params_p ip)
+{
+ enum tree_code comp;
+ tree type = type_for_clast_eq (cleq, ip);
+ tree lhs = clast_to_gcc_expression (type, cleq->LHS, ip);
+ tree rhs = clast_to_gcc_expression (type, cleq->RHS, ip);
+
+ if (cleq->sign == 0)
+ comp = EQ_EXPR;
+
+ else if (cleq->sign > 0)
+ comp = GE_EXPR;
+
+ else
+ comp = LE_EXPR;
+
+ return fold_build2 (comp, boolean_type_node, lhs, rhs);
+}
+
+/* Creates the test for the condition in STMT. */
+
+static tree
+graphite_create_guard_cond_expr (struct clast_guard *stmt,
+ ivs_params_p ip)
+{
+ tree cond = NULL;
+ int i;
+
+ for (i = 0; i < stmt->n; i++)
+ {
+ tree eq = graphite_translate_clast_equation (&stmt->eq[i], ip);
+
+ if (cond)
+ cond = fold_build2 (TRUTH_AND_EXPR, TREE_TYPE (eq), cond, eq);
+ else
+ cond = eq;
+ }
+
+ return cond;
+}
+
+/* Creates a new if region corresponding to Cloog's guard. */
+
+static edge
+graphite_create_new_guard (edge entry_edge, struct clast_guard *stmt,
+ ivs_params_p ip)
+{
+ tree cond_expr = graphite_create_guard_cond_expr (stmt, ip);
+ edge exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr);
+ return exit_edge;
+}
+
+/* Compute the lower bound LOW and upper bound UP for the parameter
+ PARAM in scop SCOP based on the constraints in the context. */
+
+static void
+compute_bounds_for_param (scop_p scop, int param, mpz_t low, mpz_t up)
+{
+ ppl_Linear_Expression_t le;
+
+ /* Prepare the linear expression corresponding to the parameter that
+ we want to maximize/minimize. */
+ ppl_new_Linear_Expression_with_dimension (&le, scop_nb_params (scop));
+ ppl_set_coef (le, param, 1);
+
+ ppl_max_for_le_pointset (SCOP_CONTEXT (scop), le, up);
+ ppl_min_for_le_pointset (SCOP_CONTEXT (scop), le, low);
+ ppl_delete_Linear_Expression (le);
+}
+
+/* Compute the lower bound LOW and upper bound UP for the induction
+ variable at LEVEL for the statement PBB, based on the transformed
+ scattering of PBB: T|I|G|Cst, with T the scattering transform, I
+ the iteration domain, and G the context parameters. */
+
+static void
+compute_bounds_for_level (poly_bb_p pbb, int level, mpz_t low, mpz_t up)
+{
+ ppl_Pointset_Powerset_C_Polyhedron_t ps;
+ ppl_Linear_Expression_t le;
+
+ combine_context_id_scat (&ps, pbb, false);
+
+ /* Prepare the linear expression corresponding to the level that we
+ want to maximize/minimize. */
+ {
+ ppl_dimension_type dim = pbb_nb_scattering_transform (pbb)
+ + pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb);
+
+ ppl_new_Linear_Expression_with_dimension (&le, dim);
+ ppl_set_coef (le, psct_dynamic_dim (pbb, level), 1);
+ }
+
+ ppl_max_for_le_pointset (ps, le, up);
+ ppl_min_for_le_pointset (ps, le, low);
+ ppl_delete_Linear_Expression (le);
+ ppl_delete_Pointset_Powerset_C_Polyhedron (ps);
+}
+
+/* Walks a CLAST and returns the first statement in the body of a
+ loop.
+
+ FIXME: This function should not be used to get a PBB in the STMT
+ loop in order to find out the iteration domain of the loop: the
+ counter example from Tobias is:
+
+ | for (i = 0; i < 100; i++)
+ | {
+ | if (i == 0)
+ | S1;
+ | S2;
+ | }
+
+ This function would return S1 whose iteration domain contains only
+ one point "i = 0", whereas the iteration domain of S2 has 100 points.
+
+ This should be implemented using some functionality existing in
+ CLooG-ISL. */
+
+static struct clast_user_stmt *
+clast_get_body_of_loop (struct clast_stmt *stmt)
+{
+ if (!stmt
+ || CLAST_STMT_IS_A (stmt, stmt_user))
+ return (struct clast_user_stmt *) stmt;
+
+ if (CLAST_STMT_IS_A (stmt, stmt_for))
+ return clast_get_body_of_loop (((struct clast_for *) stmt)->body);
+
+ if (CLAST_STMT_IS_A (stmt, stmt_guard))
+ return clast_get_body_of_loop (((struct clast_guard *) stmt)->then);
+
+ if (CLAST_STMT_IS_A (stmt, stmt_block))
+ return clast_get_body_of_loop (((struct clast_block *) stmt)->body);
+
+ if (CLAST_STMT_IS_A (stmt, stmt_ass))
+ return clast_get_body_of_loop (stmt->next);
+
+ gcc_unreachable ();
+}
+
+/* Returns the type for the induction variable for the loop translated
+ from STMT_FOR. */
+
+static tree
+type_for_clast_for (struct clast_for *stmt_for, ivs_params_p ip)
+{
+ mpz_t bound_one, bound_two;
+ tree lb_type, ub_type;
+
+ mpz_init (bound_one);
+ mpz_init (bound_two);
+
+ lb_type = type_for_clast_expr (stmt_for->LB, ip, bound_one, bound_two);
+ ub_type = type_for_clast_expr (stmt_for->UB, ip, bound_one, bound_two);
+
+ mpz_clear (bound_one);
+ mpz_clear (bound_two);
+
+ return max_precision_type (lb_type, ub_type);
+}
+
+/* Creates a new LOOP corresponding to Cloog's STMT. Inserts an
+ induction variable for the new LOOP. New LOOP is attached to CFG
+ starting at ENTRY_EDGE. LOOP is inserted into the loop tree and
+ becomes the child loop of the OUTER_LOOP. NEWIVS_INDEX binds
+ CLooG's scattering name to the induction variable created for the
+ loop of STMT. The new induction variable is inserted in the NEWIVS
+ vector and is of type TYPE. */
+
+static struct loop *
+graphite_create_new_loop (edge entry_edge, struct clast_for *stmt,
+ loop_p outer, tree type, tree lb, tree ub,
+ int level, ivs_params_p ip)
+{
+ mpz_t low, up;
+
+ struct clast_user_stmt *body
+ = clast_get_body_of_loop ((struct clast_stmt *) stmt);
+ poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (body->statement);
+
+ tree stride = gmp_cst_to_tree (type, stmt->stride);
+ tree ivvar = create_tmp_var (type, "graphite_IV");
+ tree iv, iv_after_increment;
+ loop_p loop = create_empty_loop_on_edge
+ (entry_edge, lb, stride, ub, ivvar, &iv, &iv_after_increment,
+ outer ? outer : entry_edge->src->loop_father);
+
+ add_referenced_var (ivvar);
+
+ mpz_init (low);
+ mpz_init (up);
+ compute_bounds_for_level (pbb, level, low, up);
+ save_clast_name_index (ip->newivs_index, stmt->iterator,
+ VEC_length (tree, *(ip->newivs)), level, low, up);
+ mpz_clear (low);
+ mpz_clear (up);
+ VEC_safe_push (tree, heap, *(ip->newivs), iv);
+ return loop;
+}
+
+/* Inserts in iv_map a tuple (OLD_LOOP->num, NEW_NAME) for the
+ induction variables of the loops around GBB in SESE. */
+
+static void
+build_iv_mapping (VEC (tree, heap) *iv_map, struct clast_user_stmt *user_stmt,
+ ivs_params_p ip)
+{
+ struct clast_stmt *t;
+ int depth = 0;
+ CloogStatement *cs = user_stmt->statement;
+ poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (cs);
+ gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
+ mpz_t bound_one, bound_two;
+
+ mpz_init (bound_one);
+ mpz_init (bound_two);
+
+ for (t = user_stmt->substitutions; t; t = t->next, depth++)
+ {
+ struct clast_expr *expr = (struct clast_expr *)
+ ((struct clast_assignment *)t)->RHS;
+ tree type = type_for_clast_expr (expr, ip, bound_one, bound_two);
+ tree new_name = clast_to_gcc_expression (type, expr, ip);
+ loop_p old_loop = gbb_loop_at_index (gbb, ip->region, depth);
+
+ VEC_replace (tree, iv_map, old_loop->num, new_name);
+ }
+
+ mpz_clear (bound_one);
+ mpz_clear (bound_two);
+}
+
+/* Construct bb_pbb_def with BB and PBB. */
+
+static bb_pbb_def *
+new_bb_pbb_def (basic_block bb, poly_bb_p pbb)
+{
+ bb_pbb_def *bb_pbb_p;
+
+ bb_pbb_p = XNEW (bb_pbb_def);
+ bb_pbb_p->bb = bb;
+ bb_pbb_p->pbb = pbb;
+
+ return bb_pbb_p;
+}
+
+/* Mark BB with it's relevant PBB via hashing table BB_PBB_MAPPING. */
+
+static void
+mark_bb_with_pbb (poly_bb_p pbb, basic_block bb, htab_t bb_pbb_mapping)
+{
+ bb_pbb_def tmp;
+ PTR *x;
+
+ tmp.bb = bb;
+ x = htab_find_slot (bb_pbb_mapping, &tmp, INSERT);
+
+ if (x && !*x)
+ *x = new_bb_pbb_def (bb, pbb);
+}
+
+/* Find BB's related poly_bb_p in hash table BB_PBB_MAPPING. */
+
+static poly_bb_p
+find_pbb_via_hash (htab_t bb_pbb_mapping, basic_block bb)
+{
+ bb_pbb_def tmp;
+ PTR *slot;
+
+ tmp.bb = bb;
+ slot = htab_find_slot (bb_pbb_mapping, &tmp, NO_INSERT);
+
+ if (slot && *slot)
+ return ((bb_pbb_def *) *slot)->pbb;
+
+ return NULL;
+}
+
+/* Check data dependency in LOOP at level LEVEL.
+ BB_PBB_MAPPING is a basic_block and it's related poly_bb_p
+ mapping. */
+
+static bool
+dependency_in_loop_p (loop_p loop, htab_t bb_pbb_mapping, int level)
+{
+ unsigned i,j;
+ basic_block *bbs = get_loop_body_in_dom_order (loop);
+
+ for (i = 0; i < loop->num_nodes; i++)
+ {
+ poly_bb_p pbb1 = find_pbb_via_hash (bb_pbb_mapping, bbs[i]);
+
+ if (pbb1 == NULL)
+ continue;
+
+ for (j = 0; j < loop->num_nodes; j++)
+ {
+ poly_bb_p pbb2 = find_pbb_via_hash (bb_pbb_mapping, bbs[j]);
+
+ if (pbb2 == NULL)
+ continue;
+
+ if (dependency_between_pbbs_p (pbb1, pbb2, level))
+ {
+ free (bbs);
+ return true;
+ }
+ }
+ }
+
+ free (bbs);
+
+ return false;
+}
+
+/* Translates a clast user statement STMT to gimple.
+
+ - NEXT_E is the edge where new generated code should be attached.
+ - CONTEXT_LOOP is the loop in which the generated code will be placed
+ - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */
+
+static edge
+translate_clast_user (struct clast_user_stmt *stmt, edge next_e,
+ htab_t bb_pbb_mapping, ivs_params_p ip)
+{
+ int i, nb_loops;
+ basic_block new_bb;
+ poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (stmt->statement);
+ gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
+ VEC (tree, heap) *iv_map;
+
+ if (GBB_BB (gbb) == ENTRY_BLOCK_PTR)
+ return next_e;
+
+ nb_loops = number_of_loops ();
+ iv_map = VEC_alloc (tree, heap, nb_loops);
+ for (i = 0; i < nb_loops; i++)
+ VEC_quick_push (tree, iv_map, NULL_TREE);
+
+ build_iv_mapping (iv_map, stmt, ip);
+ next_e = copy_bb_and_scalar_dependences (GBB_BB (gbb), ip->region,
+ next_e, iv_map, &gloog_error);
+ VEC_free (tree, heap, iv_map);
+
+ new_bb = next_e->src;
+ mark_bb_with_pbb (pbb, new_bb, bb_pbb_mapping);
+ update_ssa (TODO_update_ssa);
+
+ return next_e;
+}
+
+/* Creates a new if region protecting the loop to be executed, if the execution
+ count is zero (lb > ub). */
+
+static edge
+graphite_create_new_loop_guard (edge entry_edge, struct clast_for *stmt,
+ tree *type, tree *lb, tree *ub,
+ ivs_params_p ip)
+{
+ tree cond_expr;
+ edge exit_edge;
+
+ *type = type_for_clast_for (stmt, ip);
+ *lb = clast_to_gcc_expression (*type, stmt->LB, ip);
+ *ub = clast_to_gcc_expression (*type, stmt->UB, ip);
+
+ /* When ub is simply a constant or a parameter, use lb <= ub. */
+ if (TREE_CODE (*ub) == INTEGER_CST || TREE_CODE (*ub) == SSA_NAME)
+ cond_expr = fold_build2 (LE_EXPR, boolean_type_node, *lb, *ub);
+ else
+ {
+ tree one = (POINTER_TYPE_P (*type)
+ ? convert_to_ptrofftype (integer_one_node)
+ : fold_convert (*type, integer_one_node));
+ /* Adding +1 and using LT_EXPR helps with loop latches that have a
+ loop iteration count of "PARAMETER - 1". For PARAMETER == 0 this becomes
+ 2^k-1 due to integer overflow, and the condition lb <= ub is true,
+ even if we do not want this. However lb < ub + 1 is false, as
+ expected. */
+ tree ub_one = fold_build2 (POINTER_TYPE_P (*type) ? POINTER_PLUS_EXPR
+ : PLUS_EXPR, *type, *ub, one);
+
+ cond_expr = fold_build2 (LT_EXPR, boolean_type_node, *lb, ub_one);
+ }
+
+ exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr);
+
+ return exit_edge;
+}
+
+static edge
+translate_clast (loop_p, struct clast_stmt *, edge, htab_t, int, ivs_params_p);
+
+/* Create the loop for a clast for statement.
+
+ - NEXT_E is the edge where new generated code should be attached.
+ - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */
+
+static edge
+translate_clast_for_loop (loop_p context_loop, struct clast_for *stmt,
+ edge next_e, htab_t bb_pbb_mapping, int level,
+ tree type, tree lb, tree ub, ivs_params_p ip)
+{
+ struct loop *loop = graphite_create_new_loop (next_e, stmt, context_loop,
+ type, lb, ub, level, ip);
+ edge last_e = single_exit (loop);
+ edge to_body = single_succ_edge (loop->header);
+ basic_block after = to_body->dest;
+
+ /* Create a basic block for loop close phi nodes. */
+ last_e = single_succ_edge (split_edge (last_e));
+
+ /* Translate the body of the loop. */
+ next_e = translate_clast (loop, stmt->body, to_body, bb_pbb_mapping,
+ level + 1, ip);
+ redirect_edge_succ_nodup (next_e, after);
+ set_immediate_dominator (CDI_DOMINATORS, next_e->dest, next_e->src);
+
+ if (flag_loop_parallelize_all
+ && !dependency_in_loop_p (loop, bb_pbb_mapping, level))
+ loop->can_be_parallel = true;
+
+ return last_e;
+}
+
+/* Translates a clast for statement STMT to gimple. First a guard is created
+ protecting the loop, if it is executed zero times. In this guard we create
+ the real loop structure.
+
+ - NEXT_E is the edge where new generated code should be attached.
+ - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */
+
+static edge
+translate_clast_for (loop_p context_loop, struct clast_for *stmt, edge next_e,
+ htab_t bb_pbb_mapping, int level, ivs_params_p ip)
+{
+ tree type, lb, ub;
+ edge last_e = graphite_create_new_loop_guard (next_e, stmt, &type,
+ &lb, &ub, ip);
+ edge true_e = get_true_edge_from_guard_bb (next_e->dest);
+
+ translate_clast_for_loop (context_loop, stmt, true_e, bb_pbb_mapping, level,
+ type, lb, ub, ip);
+ return last_e;
+}
+
+/* Translates a clast assignment STMT to gimple.
+
+ - NEXT_E is the edge where new generated code should be attached.
+ - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */
+
+static edge
+translate_clast_assignment (struct clast_assignment *stmt, edge next_e,
+ int level, ivs_params_p ip)
+{
+ gimple_seq stmts;
+ mpz_t bound_one, bound_two;
+ tree type, new_name, var;
+ edge res = single_succ_edge (split_edge (next_e));
+ struct clast_expr *expr = (struct clast_expr *) stmt->RHS;
+
+ mpz_init (bound_one);
+ mpz_init (bound_two);
+ type = type_for_clast_expr (expr, ip, bound_one, bound_two);
+ var = create_tmp_var (type, "graphite_var");
+ new_name = force_gimple_operand (clast_to_gcc_expression (type, expr, ip),
+ &stmts, true, var);
+ add_referenced_var (var);
+ if (stmts)
+ {
+ gsi_insert_seq_on_edge (next_e, stmts);
+ gsi_commit_edge_inserts ();
+ }
+
+ save_clast_name_index (ip->newivs_index, stmt->LHS,
+ VEC_length (tree, *(ip->newivs)), level,
+ bound_one, bound_two);
+ VEC_safe_push (tree, heap, *(ip->newivs), new_name);
+
+ mpz_clear (bound_one);
+ mpz_clear (bound_two);
+
+ return res;
+}
+
+/* Translates a clast guard statement STMT to gimple.
+
+ - NEXT_E is the edge where new generated code should be attached.
+ - CONTEXT_LOOP is the loop in which the generated code will be placed
+ - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */
+
+static edge
+translate_clast_guard (loop_p context_loop, struct clast_guard *stmt,
+ edge next_e, htab_t bb_pbb_mapping, int level,
+ ivs_params_p ip)
+{
+ edge last_e = graphite_create_new_guard (next_e, stmt, ip);
+ edge true_e = get_true_edge_from_guard_bb (next_e->dest);
+
+ translate_clast (context_loop, stmt->then, true_e, bb_pbb_mapping, level, ip);
+ return last_e;
+}
+
+/* Translates a CLAST statement STMT to GCC representation in the
+ context of a SESE.
+
+ - NEXT_E is the edge where new generated code should be attached.
+ - CONTEXT_LOOP is the loop in which the generated code will be placed
+ - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */
+
+static edge
+translate_clast (loop_p context_loop, struct clast_stmt *stmt, edge next_e,
+ htab_t bb_pbb_mapping, int level, ivs_params_p ip)
+{
+ if (!stmt)
+ return next_e;
+
+ if (CLAST_STMT_IS_A (stmt, stmt_root))
+ ; /* Do nothing. */
+
+ else if (CLAST_STMT_IS_A (stmt, stmt_user))
+ next_e = translate_clast_user ((struct clast_user_stmt *) stmt,
+ next_e, bb_pbb_mapping, ip);
+
+ else if (CLAST_STMT_IS_A (stmt, stmt_for))
+ next_e = translate_clast_for (context_loop, (struct clast_for *) stmt,
+ next_e, bb_pbb_mapping, level, ip);
+
+ else if (CLAST_STMT_IS_A (stmt, stmt_guard))
+ next_e = translate_clast_guard (context_loop, (struct clast_guard *) stmt,
+ next_e, bb_pbb_mapping, level, ip);
+
+ else if (CLAST_STMT_IS_A (stmt, stmt_block))
+ next_e = translate_clast (context_loop, ((struct clast_block *) stmt)->body,
+ next_e, bb_pbb_mapping, level, ip);
+
+ else if (CLAST_STMT_IS_A (stmt, stmt_ass))
+ next_e = translate_clast_assignment ((struct clast_assignment *) stmt,
+ next_e, level, ip);
+ else
+ gcc_unreachable();
+
+ recompute_all_dominators ();
+ graphite_verify ();
+
+ return translate_clast (context_loop, stmt->next, next_e, bb_pbb_mapping,
+ level, ip);
+}
+
+/* Free the SCATTERING domain list. */
+
+static void
+free_scattering (CloogScatteringList *scattering)
+{
+ while (scattering)
+ {
+ CloogScattering *dom = cloog_scattering (scattering);
+ CloogScatteringList *next = cloog_next_scattering (scattering);
+
+ cloog_scattering_free (dom);
+ free (scattering);
+ scattering = next;
+ }
+}
+
+/* Initialize Cloog's parameter names from the names used in GIMPLE.
+ Initialize Cloog's iterator names, using 'graphite_iterator_%d'
+ from 0 to scop_nb_loops (scop). */
+
+static void
+initialize_cloog_names (scop_p scop, CloogProgram *prog)
+{
+ sese region = SCOP_REGION (scop);
+ int i;
+ int nb_iterators = scop_max_loop_depth (scop);
+ int nb_scattering = cloog_program_nb_scattdims (prog);
+ int nb_parameters = VEC_length (tree, SESE_PARAMS (region));
+ char **iterators = XNEWVEC (char *, nb_iterators * 2);
+ char **scattering = XNEWVEC (char *, nb_scattering);
+ char **parameters= XNEWVEC (char *, nb_parameters);
+
+ cloog_program_set_names (prog, cloog_names_malloc ());
+
+ for (i = 0; i < nb_parameters; i++)
+ {
+ tree param = VEC_index (tree, SESE_PARAMS (region), i);
+ const char *name = get_name (param);
+ int len;
+
+ if (!name)
+ name = "T";
+
+ len = strlen (name);
+ len += 17;
+ parameters[i] = XNEWVEC (char, len + 1);
+ snprintf (parameters[i], len, "%s_%d", name, SSA_NAME_VERSION (param));
+ }
+
+ cloog_names_set_nb_parameters (cloog_program_names (prog), nb_parameters);
+ cloog_names_set_parameters (cloog_program_names (prog), parameters);
+
+ for (i = 0; i < nb_iterators; i++)
+ {
+ int len = 4 + 16;
+ iterators[i] = XNEWVEC (char, len);
+ snprintf (iterators[i], len, "git_%d", i);
+ }
+
+ cloog_names_set_nb_iterators (cloog_program_names (prog),
+ nb_iterators);
+ cloog_names_set_iterators (cloog_program_names (prog),
+ iterators);
+
+ for (i = 0; i < nb_scattering; i++)
+ {
+ int len = 5 + 16;
+ scattering[i] = XNEWVEC (char, len);
+ snprintf (scattering[i], len, "scat_%d", i);
+ }
+
+ cloog_names_set_nb_scattering (cloog_program_names (prog),
+ nb_scattering);
+ cloog_names_set_scattering (cloog_program_names (prog),
+ scattering);
+}
+
+/* Initialize a CLooG input file. */
+
+static FILE *
+init_cloog_input_file (int scop_number)
+{
+ FILE *graphite_out_file;
+ int len = strlen (dump_base_name);
+ char *dumpname = XNEWVEC (char, len + 25);
+ char *s_scop_number = XNEWVEC (char, 15);
+
+ memcpy (dumpname, dump_base_name, len + 1);
+ strip_off_ending (dumpname, len);
+ sprintf (s_scop_number, ".%d", scop_number);
+ strcat (dumpname, s_scop_number);
+ strcat (dumpname, ".cloog");
+ graphite_out_file = fopen (dumpname, "w+b");
+
+ if (graphite_out_file == 0)
+ fatal_error ("can%'t open %s for writing: %m", dumpname);
+
+ free (dumpname);
+
+ return graphite_out_file;
+}
+
+/* Build cloog program for SCoP. */
+
+static void
+build_cloog_prog (scop_p scop, CloogProgram *prog,
+ CloogOptions *options)
+{
+ int i;
+ int max_nb_loops = scop_max_loop_depth (scop);
+ poly_bb_p pbb;
+ CloogLoop *loop_list = NULL;
+ CloogBlockList *block_list = NULL;
+ CloogScatteringList *scattering = NULL;
+ int nbs = 2 * max_nb_loops + 1;
+ int *scaldims;
+
+ cloog_program_set_context
+ (prog, new_Cloog_Domain_from_ppl_Pointset_Powerset (SCOP_CONTEXT (scop),
+ scop_nb_params (scop), cloog_state));
+ nbs = unify_scattering_dimensions (scop);
+ scaldims = (int *) xmalloc (nbs * (sizeof (int)));
+ cloog_program_set_nb_scattdims (prog, nbs);
+ initialize_cloog_names (scop, prog);
+
+ FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
+ {
+ CloogStatement *stmt;
+ CloogBlock *block;
+ CloogDomain *dom;
+
+ /* Dead code elimination: when the domain of a PBB is empty,
+ don't generate code for the PBB. */
+ if (ppl_Pointset_Powerset_C_Polyhedron_is_empty (PBB_DOMAIN (pbb)))
+ continue;
+
+ /* Build the new statement and its block. */
+ stmt = cloog_statement_alloc (cloog_state, pbb_index (pbb));
+ dom = new_Cloog_Domain_from_ppl_Pointset_Powerset (PBB_DOMAIN (pbb),
+ scop_nb_params (scop),
+ cloog_state);
+ block = cloog_block_alloc (stmt, 0, NULL, pbb_dim_iter_domain (pbb));
+ cloog_statement_set_usr (stmt, pbb);
+
+ /* Build loop list. */
+ {
+ CloogLoop *new_loop_list = cloog_loop_malloc (cloog_state);
+ cloog_loop_set_next (new_loop_list, loop_list);
+ cloog_loop_set_domain (new_loop_list, dom);
+ cloog_loop_set_block (new_loop_list, block);
+ loop_list = new_loop_list;
+ }
+
+ /* Build block list. */
+ {
+ CloogBlockList *new_block_list = cloog_block_list_malloc ();
+
+ cloog_block_list_set_next (new_block_list, block_list);
+ cloog_block_list_set_block (new_block_list, block);
+ block_list = new_block_list;
+ }
+
+ /* Build scattering list. */
+ {
+ /* XXX: Replace with cloog_domain_list_alloc(), when available. */
+ CloogScatteringList *new_scattering
+ = (CloogScatteringList *) xmalloc (sizeof (CloogScatteringList));
+ ppl_Polyhedron_t scat;
+ CloogScattering *dom;
+
+ scat = PBB_TRANSFORMED_SCATTERING (pbb);
+ dom = new_Cloog_Scattering_from_ppl_Polyhedron
+ (scat, scop_nb_params (scop), pbb_nb_scattering_transform (pbb),
+ cloog_state);
+
+ cloog_set_next_scattering (new_scattering, scattering);
+ cloog_set_scattering (new_scattering, dom);
+ scattering = new_scattering;
+ }
+ }
+
+ cloog_program_set_loop (prog, loop_list);
+ cloog_program_set_blocklist (prog, block_list);
+
+ for (i = 0; i < nbs; i++)
+ scaldims[i] = 0 ;
+
+ cloog_program_set_scaldims (prog, scaldims);
+
+ /* Extract scalar dimensions to simplify the code generation problem. */
+ cloog_program_extract_scalars (prog, scattering, options);
+
+ /* Dump a .cloog input file, if requested. This feature is only
+ enabled in the Graphite branch. */
+ if (0)
+ {
+ static size_t file_scop_number = 0;
+ FILE *cloog_file = init_cloog_input_file (file_scop_number);
+
+ cloog_program_dump_cloog (cloog_file, prog, scattering);
+ ++file_scop_number;
+ }
+
+ /* Apply scattering. */
+ cloog_program_scatter (prog, scattering, options);
+ free_scattering (scattering);
+
+ /* Iterators corresponding to scalar dimensions have to be extracted. */
+ cloog_names_scalarize (cloog_program_names (prog), nbs,
+ cloog_program_scaldims (prog));
+
+ /* Free blocklist. */
+ {
+ CloogBlockList *next = cloog_program_blocklist (prog);
+
+ while (next)
+ {
+ CloogBlockList *toDelete = next;
+ next = cloog_block_list_next (next);
+ cloog_block_list_set_next (toDelete, NULL);
+ cloog_block_list_set_block (toDelete, NULL);
+ cloog_block_list_free (toDelete);
+ }
+ cloog_program_set_blocklist (prog, NULL);
+ }
+}
+
+/* Return the options that will be used in GLOOG. */
+
+static CloogOptions *
+set_cloog_options (void)
+{
+ CloogOptions *options = cloog_options_malloc (cloog_state);
+
+ /* Change cloog output language to C. If we do use FORTRAN instead, cloog
+ will stop e.g. with "ERROR: unbounded loops not allowed in FORTRAN.", if
+ we pass an incomplete program to cloog. */
+ options->language = CLOOG_LANGUAGE_C;
+
+ /* Enable complex equality spreading: removes dummy statements
+ (assignments) in the generated code which repeats the
+ substitution equations for statements. This is useless for
+ GLooG. */
+ options->esp = 1;
+
+#ifdef CLOOG_ORG
+ /* Silence CLooG to avoid failing tests due to debug output to stderr. */
+ options->quiet = 1;
+#else
+ /* Enable C pretty-printing mode: normalizes the substitution
+ equations for statements. */
+ options->cpp = 1;
+#endif
+
+ /* Allow cloog to build strides with a stride width different to one.
+ This example has stride = 4:
+
+ for (i = 0; i < 20; i += 4)
+ A */
+ options->strides = 1;
+
+ /* Disable optimizations and make cloog generate source code closer to the
+ input. This is useful for debugging, but later we want the optimized
+ code.
+
+ XXX: We can not disable optimizations, as loop blocking is not working
+ without them. */
+ if (0)
+ {
+ options->f = -1;
+ options->l = INT_MAX;
+ }
+
+ return options;
+}
+
+/* Prints STMT to STDERR. */
+
+void
+print_clast_stmt (FILE *file, struct clast_stmt *stmt)
+{
+ CloogOptions *options = set_cloog_options ();
+
+ clast_pprint (file, stmt, 0, options);
+ cloog_options_free (options);
+}
+
+/* Prints STMT to STDERR. */
+
+DEBUG_FUNCTION void
+debug_clast_stmt (struct clast_stmt *stmt)
+{
+ print_clast_stmt (stderr, stmt);
+}
+
+/* Translate SCOP to a CLooG program and clast. These two
+ representations should be freed together: a clast cannot be used
+ without a program. */
+
+cloog_prog_clast
+scop_to_clast (scop_p scop)
+{
+ CloogOptions *options = set_cloog_options ();
+ cloog_prog_clast pc;
+
+ /* Connect new cloog prog generation to graphite. */
+ pc.prog = cloog_program_malloc ();
+ build_cloog_prog (scop, pc.prog, options);
+ pc.prog = cloog_program_generate (pc.prog, options);
+ pc.stmt = cloog_clast_create (pc.prog, options);
+
+ cloog_options_free (options);
+ return pc;
+}
+
+/* Prints to FILE the code generated by CLooG for SCOP. */
+
+void
+print_generated_program (FILE *file, scop_p scop)
+{
+ CloogOptions *options = set_cloog_options ();
+
+ cloog_prog_clast pc = scop_to_clast (scop);
+
+ fprintf (file, " (prog: \n");
+ cloog_program_print (file, pc.prog);
+ fprintf (file, " )\n");
+
+ fprintf (file, " (clast: \n");
+ clast_pprint (file, pc.stmt, 0, options);
+ fprintf (file, " )\n");
+
+ cloog_options_free (options);
+ cloog_clast_free (pc.stmt);
+ cloog_program_free (pc.prog);
+}
+
+/* Prints to STDERR the code generated by CLooG for SCOP. */
+
+DEBUG_FUNCTION void
+debug_generated_program (scop_p scop)
+{
+ print_generated_program (stderr, scop);
+}
+
+/* Add CLooG names to parameter index. The index is used to translate
+ back from CLooG names to GCC trees. */
+
+static void
+create_params_index (scop_p scop, htab_t index_table, CloogProgram *prog) {
+ CloogNames* names = cloog_program_names (prog);
+ int nb_parameters = cloog_names_nb_parameters (names);
+ char **parameters = cloog_names_parameters (names);
+ int i;
+ mpz_t bound_one, bound_two;
+
+ mpz_init (bound_one);
+ mpz_init (bound_two);
+
+ for (i = 0; i < nb_parameters; i++)
+ {
+ compute_bounds_for_param (scop, i, bound_one, bound_two);
+ save_clast_name_index (index_table, parameters[i], i, i,
+ bound_one, bound_two);
+ }
+
+ mpz_clear (bound_one);
+ mpz_clear (bound_two);
+}
+
+/* GIMPLE Loop Generator: generates loops from STMT in GIMPLE form for
+ the given SCOP. Return true if code generation succeeded.
+ BB_PBB_MAPPING is a basic_block and it's related poly_bb_p mapping.
+*/
+
+bool
+gloog (scop_p scop, htab_t bb_pbb_mapping)
+{
+ VEC (tree, heap) *newivs = VEC_alloc (tree, heap, 10);
+ loop_p context_loop;
+ sese region = SCOP_REGION (scop);
+ ifsese if_region = NULL;
+ htab_t newivs_index, params_index;
+ cloog_prog_clast pc;
+ struct ivs_params ip;
+
+ timevar_push (TV_GRAPHITE_CODE_GEN);
+ gloog_error = false;
+
+ pc = scop_to_clast (scop);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "\nCLAST generated by CLooG: \n");
+ print_clast_stmt (dump_file, pc.stmt);
+ fprintf (dump_file, "\n");
+ }
+
+ recompute_all_dominators ();
+ graphite_verify ();
+
+ if_region = move_sese_in_condition (region);
+ sese_insert_phis_for_liveouts (region,
+ if_region->region->exit->src,
+ if_region->false_region->exit,
+ if_region->true_region->exit);
+ recompute_all_dominators ();
+ graphite_verify ();
+
+ context_loop = SESE_ENTRY (region)->src->loop_father;
+ newivs_index = htab_create (10, clast_name_index_elt_info,
+ eq_clast_name_indexes, free_clast_name_index);
+ params_index = htab_create (10, clast_name_index_elt_info,
+ eq_clast_name_indexes, free_clast_name_index);
+
+ create_params_index (scop, params_index, pc.prog);
+
+ ip.newivs = &newivs;
+ ip.newivs_index = newivs_index;
+ ip.params = SESE_PARAMS (region);
+ ip.params_index = params_index;
+ ip.region = region;
+
+ translate_clast (context_loop, pc.stmt, if_region->true_region->entry,
+ bb_pbb_mapping, 0, &ip);
+ graphite_verify ();
+ scev_reset ();
+ recompute_all_dominators ();
+ graphite_verify ();
+
+ if (gloog_error)
+ set_ifsese_condition (if_region, integer_zero_node);
+
+ free (if_region->true_region);
+ free (if_region->region);
+ free (if_region);
+
+ htab_delete (newivs_index);
+ htab_delete (params_index);
+ VEC_free (tree, heap, newivs);
+ cloog_clast_free (pc.stmt);
+ cloog_program_free (pc.prog);
+ timevar_pop (TV_GRAPHITE_CODE_GEN);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ loop_p loop;
+ loop_iterator li;
+ int num_no_dependency = 0;
+
+ FOR_EACH_LOOP (li, loop, 0)
+ if (loop->can_be_parallel)
+ num_no_dependency++;
+
+ fprintf (dump_file, "\n%d loops carried no dependency.\n",
+ num_no_dependency);
+ }
+
+ return !gloog_error;
+}
+#endif