aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.7/gcc/fortran/dependency.c
diff options
context:
space:
mode:
authorDan Albert <danalbert@google.com>2015-06-17 11:09:54 -0700
committerDan Albert <danalbert@google.com>2015-06-17 14:15:22 -0700
commitf378ebf14df0952eae870c9865bab8326aa8f137 (patch)
tree31794503eb2a8c64ea5f313b93100f1163afcffb /gcc-4.7/gcc/fortran/dependency.c
parent2c58169824949d3a597d9fa81931e001ef9b1bd0 (diff)
downloadtoolchain_gcc-f378ebf14df0952eae870c9865bab8326aa8f137.tar.gz
toolchain_gcc-f378ebf14df0952eae870c9865bab8326aa8f137.tar.bz2
toolchain_gcc-f378ebf14df0952eae870c9865bab8326aa8f137.zip
Delete old versions of GCC.
Change-Id: I710f125d905290e1024cbd67f48299861790c66c
Diffstat (limited to 'gcc-4.7/gcc/fortran/dependency.c')
-rw-r--r--gcc-4.7/gcc/fortran/dependency.c1943
1 files changed, 0 insertions, 1943 deletions
diff --git a/gcc-4.7/gcc/fortran/dependency.c b/gcc-4.7/gcc/fortran/dependency.c
deleted file mode 100644
index a2cf21d65..000000000
--- a/gcc-4.7/gcc/fortran/dependency.c
+++ /dev/null
@@ -1,1943 +0,0 @@
-/* Dependency analysis
- Copyright (C) 2000, 2001, 2002, 2005, 2006, 2007, 2008, 2009, 2010
- Free Software Foundation, Inc.
- Contributed by Paul Brook <paul@nowt.org>
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 3, or (at your option) any later
-version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
-<http://www.gnu.org/licenses/>. */
-
-/* dependency.c -- Expression dependency analysis code. */
-/* There's probably quite a bit of duplication in this file. We currently
- have different dependency checking functions for different types
- if dependencies. Ideally these would probably be merged. */
-
-#include "config.h"
-#include "system.h"
-#include "gfortran.h"
-#include "dependency.h"
-#include "constructor.h"
-#include "arith.h"
-
-/* static declarations */
-/* Enums */
-enum range {LHS, RHS, MID};
-
-/* Dependency types. These must be in reverse order of priority. */
-typedef enum
-{
- GFC_DEP_ERROR,
- GFC_DEP_EQUAL, /* Identical Ranges. */
- GFC_DEP_FORWARD, /* e.g., a(1:3) = a(2:4). */
- GFC_DEP_BACKWARD, /* e.g. a(2:4) = a(1:3). */
- GFC_DEP_OVERLAP, /* May overlap in some other way. */
- GFC_DEP_NODEP /* Distinct ranges. */
-}
-gfc_dependency;
-
-/* Macros */
-#define IS_ARRAY_EXPLICIT(as) ((as->type == AS_EXPLICIT ? 1 : 0))
-
-/* Forward declarations */
-
-static gfc_dependency check_section_vs_section (gfc_array_ref *,
- gfc_array_ref *, int);
-
-/* Returns 1 if the expr is an integer constant value 1, 0 if it is not or
- def if the value could not be determined. */
-
-int
-gfc_expr_is_one (gfc_expr *expr, int def)
-{
- gcc_assert (expr != NULL);
-
- if (expr->expr_type != EXPR_CONSTANT)
- return def;
-
- if (expr->ts.type != BT_INTEGER)
- return def;
-
- return mpz_cmp_si (expr->value.integer, 1) == 0;
-}
-
-/* Check if two array references are known to be identical. Calls
- gfc_dep_compare_expr if necessary for comparing array indices. */
-
-static bool
-identical_array_ref (gfc_array_ref *a1, gfc_array_ref *a2)
-{
- int i;
-
- if (a1->type == AR_FULL && a2->type == AR_FULL)
- return true;
-
- if (a1->type == AR_SECTION && a2->type == AR_SECTION)
- {
- gcc_assert (a1->dimen == a2->dimen);
-
- for ( i = 0; i < a1->dimen; i++)
- {
- /* TODO: Currently, we punt on an integer array as an index. */
- if (a1->dimen_type[i] != DIMEN_RANGE
- || a2->dimen_type[i] != DIMEN_RANGE)
- return false;
-
- if (check_section_vs_section (a1, a2, i) != GFC_DEP_EQUAL)
- return false;
- }
- return true;
- }
-
- if (a1->type == AR_ELEMENT && a2->type == AR_ELEMENT)
- {
- gcc_assert (a1->dimen == a2->dimen);
- for (i = 0; i < a1->dimen; i++)
- {
- if (gfc_dep_compare_expr (a1->start[i], a2->start[i]) != 0)
- return false;
- }
- return true;
- }
- return false;
-}
-
-
-
-/* Return true for identical variables, checking for references if
- necessary. Calls identical_array_ref for checking array sections. */
-
-static bool
-are_identical_variables (gfc_expr *e1, gfc_expr *e2)
-{
- gfc_ref *r1, *r2;
-
- if (e1->symtree->n.sym->attr.dummy && e2->symtree->n.sym->attr.dummy)
- {
- /* Dummy arguments: Only check for equal names. */
- if (e1->symtree->n.sym->name != e2->symtree->n.sym->name)
- return false;
- }
- else
- {
- /* Check for equal symbols. */
- if (e1->symtree->n.sym != e2->symtree->n.sym)
- return false;
- }
-
- /* Volatile variables should never compare equal to themselves. */
-
- if (e1->symtree->n.sym->attr.volatile_)
- return false;
-
- r1 = e1->ref;
- r2 = e2->ref;
-
- while (r1 != NULL || r2 != NULL)
- {
-
- /* Assume the variables are not equal if one has a reference and the
- other doesn't.
- TODO: Handle full references like comparing a(:) to a.
- */
-
- if (r1 == NULL || r2 == NULL)
- return false;
-
- if (r1->type != r2->type)
- return false;
-
- switch (r1->type)
- {
-
- case REF_ARRAY:
- if (!identical_array_ref (&r1->u.ar, &r2->u.ar))
- return false;
-
- break;
-
- case REF_COMPONENT:
- if (r1->u.c.component != r2->u.c.component)
- return false;
- break;
-
- case REF_SUBSTRING:
- if (gfc_dep_compare_expr (r1->u.ss.start, r2->u.ss.start) != 0)
- return false;
-
- /* If both are NULL, the end length compares equal, because we
- are looking at the same variable. This can only happen for
- assumed- or deferred-length character arguments. */
-
- if (r1->u.ss.end == NULL && r2->u.ss.end == NULL)
- break;
-
- if (gfc_dep_compare_expr (r1->u.ss.end, r2->u.ss.end) != 0)
- return false;
-
- break;
-
- default:
- gfc_internal_error ("are_identical_variables: Bad type");
- }
- r1 = r1->next;
- r2 = r2->next;
- }
- return true;
-}
-
-/* Compare two functions for equality. Returns 0 if e1==e2, -2 otherwise. If
- impure_ok is false, only return 0 for pure functions. */
-
-int
-gfc_dep_compare_functions (gfc_expr *e1, gfc_expr *e2, bool impure_ok)
-{
-
- gfc_actual_arglist *args1;
- gfc_actual_arglist *args2;
-
- if (e1->expr_type != EXPR_FUNCTION || e2->expr_type != EXPR_FUNCTION)
- return -2;
-
- if ((e1->value.function.esym && e2->value.function.esym
- && e1->value.function.esym == e2->value.function.esym
- && (e1->value.function.esym->result->attr.pure || impure_ok))
- || (e1->value.function.isym && e2->value.function.isym
- && e1->value.function.isym == e2->value.function.isym
- && (e1->value.function.isym->pure || impure_ok)))
- {
- args1 = e1->value.function.actual;
- args2 = e2->value.function.actual;
-
- /* Compare the argument lists for equality. */
- while (args1 && args2)
- {
- /* Bitwise xor, since C has no non-bitwise xor operator. */
- if ((args1->expr == NULL) ^ (args2->expr == NULL))
- return -2;
-
- if (args1->expr != NULL && args2->expr != NULL
- && gfc_dep_compare_expr (args1->expr, args2->expr) != 0)
- return -2;
-
- args1 = args1->next;
- args2 = args2->next;
- }
- return (args1 || args2) ? -2 : 0;
- }
- else
- return -2;
-}
-
-/* Compare two expressions. Return values:
- * +1 if e1 > e2
- * 0 if e1 == e2
- * -1 if e1 < e2
- * -2 if the relationship could not be determined
- * -3 if e1 /= e2, but we cannot tell which one is larger.
- REAL and COMPLEX constants are only compared for equality
- or inequality; if they are unequal, -2 is returned in all cases. */
-
-int
-gfc_dep_compare_expr (gfc_expr *e1, gfc_expr *e2)
-{
- gfc_actual_arglist *args1;
- gfc_actual_arglist *args2;
- int i;
- gfc_expr *n1, *n2;
-
- n1 = NULL;
- n2 = NULL;
-
- /* Remove any integer conversion functions to larger types. */
- if (e1->expr_type == EXPR_FUNCTION && e1->value.function.isym
- && e1->value.function.isym->id == GFC_ISYM_CONVERSION
- && e1->ts.type == BT_INTEGER)
- {
- args1 = e1->value.function.actual;
- if (args1->expr->ts.type == BT_INTEGER
- && e1->ts.kind > args1->expr->ts.kind)
- n1 = args1->expr;
- }
-
- if (e2->expr_type == EXPR_FUNCTION && e2->value.function.isym
- && e2->value.function.isym->id == GFC_ISYM_CONVERSION
- && e2->ts.type == BT_INTEGER)
- {
- args2 = e2->value.function.actual;
- if (args2->expr->ts.type == BT_INTEGER
- && e2->ts.kind > args2->expr->ts.kind)
- n2 = args2->expr;
- }
-
- if (n1 != NULL)
- {
- if (n2 != NULL)
- return gfc_dep_compare_expr (n1, n2);
- else
- return gfc_dep_compare_expr (n1, e2);
- }
- else
- {
- if (n2 != NULL)
- return gfc_dep_compare_expr (e1, n2);
- }
-
- if (e1->expr_type == EXPR_OP
- && (e1->value.op.op == INTRINSIC_UPLUS
- || e1->value.op.op == INTRINSIC_PARENTHESES))
- return gfc_dep_compare_expr (e1->value.op.op1, e2);
- if (e2->expr_type == EXPR_OP
- && (e2->value.op.op == INTRINSIC_UPLUS
- || e2->value.op.op == INTRINSIC_PARENTHESES))
- return gfc_dep_compare_expr (e1, e2->value.op.op1);
-
- if (e1->expr_type == EXPR_OP && e1->value.op.op == INTRINSIC_PLUS)
- {
- /* Compare X+C vs. X, for INTEGER only. */
- if (e1->value.op.op2->expr_type == EXPR_CONSTANT
- && e1->value.op.op2->ts.type == BT_INTEGER
- && gfc_dep_compare_expr (e1->value.op.op1, e2) == 0)
- return mpz_sgn (e1->value.op.op2->value.integer);
-
- /* Compare P+Q vs. R+S. */
- if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_PLUS)
- {
- int l, r;
-
- l = gfc_dep_compare_expr (e1->value.op.op1, e2->value.op.op1);
- r = gfc_dep_compare_expr (e1->value.op.op2, e2->value.op.op2);
- if (l == 0 && r == 0)
- return 0;
- if (l == 0 && r > -2)
- return r;
- if (l > -2 && r == 0)
- return l;
- if (l == 1 && r == 1)
- return 1;
- if (l == -1 && r == -1)
- return -1;
-
- l = gfc_dep_compare_expr (e1->value.op.op1, e2->value.op.op2);
- r = gfc_dep_compare_expr (e1->value.op.op2, e2->value.op.op1);
- if (l == 0 && r == 0)
- return 0;
- if (l == 0 && r > -2)
- return r;
- if (l > -2 && r == 0)
- return l;
- if (l == 1 && r == 1)
- return 1;
- if (l == -1 && r == -1)
- return -1;
- }
- }
-
- /* Compare X vs. X+C, for INTEGER only. */
- if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_PLUS)
- {
- if (e2->value.op.op2->expr_type == EXPR_CONSTANT
- && e2->value.op.op2->ts.type == BT_INTEGER
- && gfc_dep_compare_expr (e1, e2->value.op.op1) == 0)
- return -mpz_sgn (e2->value.op.op2->value.integer);
- }
-
- /* Compare X-C vs. X, for INTEGER only. */
- if (e1->expr_type == EXPR_OP && e1->value.op.op == INTRINSIC_MINUS)
- {
- if (e1->value.op.op2->expr_type == EXPR_CONSTANT
- && e1->value.op.op2->ts.type == BT_INTEGER
- && gfc_dep_compare_expr (e1->value.op.op1, e2) == 0)
- return -mpz_sgn (e1->value.op.op2->value.integer);
-
- /* Compare P-Q vs. R-S. */
- if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_MINUS)
- {
- int l, r;
-
- l = gfc_dep_compare_expr (e1->value.op.op1, e2->value.op.op1);
- r = gfc_dep_compare_expr (e1->value.op.op2, e2->value.op.op2);
- if (l == 0 && r == 0)
- return 0;
- if (l > -2 && r == 0)
- return l;
- if (l == 0 && r > -2)
- return -r;
- if (l == 1 && r == -1)
- return 1;
- if (l == -1 && r == 1)
- return -1;
- }
- }
-
- /* Compare A // B vs. C // D. */
-
- if (e1->expr_type == EXPR_OP && e1->value.op.op == INTRINSIC_CONCAT
- && e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_CONCAT)
- {
- int l, r;
-
- l = gfc_dep_compare_expr (e1->value.op.op1, e2->value.op.op1);
- r = gfc_dep_compare_expr (e1->value.op.op2, e2->value.op.op2);
-
- if (l <= -2)
- return l;
-
- if (l == 0)
- {
- /* Watch out for 'A ' // x vs. 'A' // x. */
- gfc_expr *e1_left = e1->value.op.op1;
- gfc_expr *e2_left = e2->value.op.op1;
-
- if (e1_left->expr_type == EXPR_CONSTANT
- && e2_left->expr_type == EXPR_CONSTANT
- && e1_left->value.character.length
- != e2_left->value.character.length)
- return -2;
- else
- return r;
- }
- else
- {
- if (l != 0)
- return l;
- else
- return r;
- }
- }
-
- /* Compare X vs. X-C, for INTEGER only. */
- if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_MINUS)
- {
- if (e2->value.op.op2->expr_type == EXPR_CONSTANT
- && e2->value.op.op2->ts.type == BT_INTEGER
- && gfc_dep_compare_expr (e1, e2->value.op.op1) == 0)
- return mpz_sgn (e2->value.op.op2->value.integer);
- }
-
- if (e1->expr_type != e2->expr_type)
- return -3;
-
- switch (e1->expr_type)
- {
- case EXPR_CONSTANT:
- /* Compare strings for equality. */
- if (e1->ts.type == BT_CHARACTER && e2->ts.type == BT_CHARACTER)
- return gfc_compare_string (e1, e2);
-
- /* Compare REAL and COMPLEX constants. Because of the
- traps and pitfalls associated with comparing
- a + 1.0 with a + 0.5, check for equality only. */
- if (e2->expr_type == EXPR_CONSTANT)
- {
- if (e1->ts.type == BT_REAL && e2->ts.type == BT_REAL)
- {
- if (mpfr_cmp (e1->value.real, e2->value.real) == 0)
- return 0;
- else
- return -2;
- }
- else if (e1->ts.type == BT_COMPLEX && e2->ts.type == BT_COMPLEX)
- {
- if (mpc_cmp (e1->value.complex, e2->value.complex) == 0)
- return 0;
- else
- return -2;
- }
- }
-
- if (e1->ts.type != BT_INTEGER || e2->ts.type != BT_INTEGER)
- return -2;
-
- /* For INTEGER, all cases where e2 is not constant should have
- been filtered out above. */
- gcc_assert (e2->expr_type == EXPR_CONSTANT);
-
- i = mpz_cmp (e1->value.integer, e2->value.integer);
- if (i == 0)
- return 0;
- else if (i < 0)
- return -1;
- return 1;
-
- case EXPR_VARIABLE:
- if (are_identical_variables (e1, e2))
- return 0;
- else
- return -3;
-
- case EXPR_OP:
- /* Intrinsic operators are the same if their operands are the same. */
- if (e1->value.op.op != e2->value.op.op)
- return -2;
- if (e1->value.op.op2 == 0)
- {
- i = gfc_dep_compare_expr (e1->value.op.op1, e2->value.op.op1);
- return i == 0 ? 0 : -2;
- }
- if (gfc_dep_compare_expr (e1->value.op.op1, e2->value.op.op1) == 0
- && gfc_dep_compare_expr (e1->value.op.op2, e2->value.op.op2) == 0)
- return 0;
- else if (e1->value.op.op == INTRINSIC_TIMES
- && gfc_dep_compare_expr (e1->value.op.op1, e2->value.op.op2) == 0
- && gfc_dep_compare_expr (e1->value.op.op2, e2->value.op.op1) == 0)
- /* Commutativity of multiplication; addition is handled above. */
- return 0;
-
- return -2;
-
- case EXPR_FUNCTION:
- return gfc_dep_compare_functions (e1, e2, false);
- break;
-
- default:
- return -2;
- }
-}
-
-
-/* Returns 1 if the two ranges are the same and 0 if they are not (or if the
- results are indeterminate). 'n' is the dimension to compare. */
-
-static int
-is_same_range (gfc_array_ref *ar1, gfc_array_ref *ar2, int n)
-{
- gfc_expr *e1;
- gfc_expr *e2;
- int i;
-
- /* TODO: More sophisticated range comparison. */
- gcc_assert (ar1 && ar2);
-
- gcc_assert (ar1->dimen_type[n] == ar2->dimen_type[n]);
-
- e1 = ar1->stride[n];
- e2 = ar2->stride[n];
- /* Check for mismatching strides. A NULL stride means a stride of 1. */
- if (e1 && !e2)
- {
- i = gfc_expr_is_one (e1, -1);
- if (i == -1 || i == 0)
- return 0;
- }
- else if (e2 && !e1)
- {
- i = gfc_expr_is_one (e2, -1);
- if (i == -1 || i == 0)
- return 0;
- }
- else if (e1 && e2)
- {
- i = gfc_dep_compare_expr (e1, e2);
- if (i != 0)
- return 0;
- }
- /* The strides match. */
-
- /* Check the range start. */
- e1 = ar1->start[n];
- e2 = ar2->start[n];
- if (e1 || e2)
- {
- /* Use the bound of the array if no bound is specified. */
- if (ar1->as && !e1)
- e1 = ar1->as->lower[n];
-
- if (ar2->as && !e2)
- e2 = ar2->as->lower[n];
-
- /* Check we have values for both. */
- if (!(e1 && e2))
- return 0;
-
- i = gfc_dep_compare_expr (e1, e2);
- if (i != 0)
- return 0;
- }
-
- /* Check the range end. */
- e1 = ar1->end[n];
- e2 = ar2->end[n];
- if (e1 || e2)
- {
- /* Use the bound of the array if no bound is specified. */
- if (ar1->as && !e1)
- e1 = ar1->as->upper[n];
-
- if (ar2->as && !e2)
- e2 = ar2->as->upper[n];
-
- /* Check we have values for both. */
- if (!(e1 && e2))
- return 0;
-
- i = gfc_dep_compare_expr (e1, e2);
- if (i != 0)
- return 0;
- }
-
- return 1;
-}
-
-
-/* Some array-returning intrinsics can be implemented by reusing the
- data from one of the array arguments. For example, TRANSPOSE does
- not necessarily need to allocate new data: it can be implemented
- by copying the original array's descriptor and simply swapping the
- two dimension specifications.
-
- If EXPR is a call to such an intrinsic, return the argument
- whose data can be reused, otherwise return NULL. */
-
-gfc_expr *
-gfc_get_noncopying_intrinsic_argument (gfc_expr *expr)
-{
- if (expr->expr_type != EXPR_FUNCTION || !expr->value.function.isym)
- return NULL;
-
- switch (expr->value.function.isym->id)
- {
- case GFC_ISYM_TRANSPOSE:
- return expr->value.function.actual->expr;
-
- default:
- return NULL;
- }
-}
-
-
-/* Return true if the result of reference REF can only be constructed
- using a temporary array. */
-
-bool
-gfc_ref_needs_temporary_p (gfc_ref *ref)
-{
- int n;
- bool subarray_p;
-
- subarray_p = false;
- for (; ref; ref = ref->next)
- switch (ref->type)
- {
- case REF_ARRAY:
- /* Vector dimensions are generally not monotonic and must be
- handled using a temporary. */
- if (ref->u.ar.type == AR_SECTION)
- for (n = 0; n < ref->u.ar.dimen; n++)
- if (ref->u.ar.dimen_type[n] == DIMEN_VECTOR)
- return true;
-
- subarray_p = true;
- break;
-
- case REF_SUBSTRING:
- /* Within an array reference, character substrings generally
- need a temporary. Character array strides are expressed as
- multiples of the element size (consistent with other array
- types), not in characters. */
- return subarray_p;
-
- case REF_COMPONENT:
- break;
- }
-
- return false;
-}
-
-
-static int
-gfc_is_data_pointer (gfc_expr *e)
-{
- gfc_ref *ref;
-
- if (e->expr_type != EXPR_VARIABLE && e->expr_type != EXPR_FUNCTION)
- return 0;
-
- /* No subreference if it is a function */
- gcc_assert (e->expr_type == EXPR_VARIABLE || !e->ref);
-
- if (e->symtree->n.sym->attr.pointer)
- return 1;
-
- for (ref = e->ref; ref; ref = ref->next)
- if (ref->type == REF_COMPONENT && ref->u.c.component->attr.pointer)
- return 1;
-
- return 0;
-}
-
-
-/* Return true if array variable VAR could be passed to the same function
- as argument EXPR without interfering with EXPR. INTENT is the intent
- of VAR.
-
- This is considerably less conservative than other dependencies
- because many function arguments will already be copied into a
- temporary. */
-
-static int
-gfc_check_argument_var_dependency (gfc_expr *var, sym_intent intent,
- gfc_expr *expr, gfc_dep_check elemental)
-{
- gfc_expr *arg;
-
- gcc_assert (var->expr_type == EXPR_VARIABLE);
- gcc_assert (var->rank > 0);
-
- switch (expr->expr_type)
- {
- case EXPR_VARIABLE:
- /* In case of elemental subroutines, there is no dependency
- between two same-range array references. */
- if (gfc_ref_needs_temporary_p (expr->ref)
- || gfc_check_dependency (var, expr, elemental == NOT_ELEMENTAL))
- {
- if (elemental == ELEM_DONT_CHECK_VARIABLE)
- {
- /* Too many false positive with pointers. */
- if (!gfc_is_data_pointer (var) && !gfc_is_data_pointer (expr))
- {
- /* Elemental procedures forbid unspecified intents,
- and we don't check dependencies for INTENT_IN args. */
- gcc_assert (intent == INTENT_OUT || intent == INTENT_INOUT);
-
- /* We are told not to check dependencies.
- We do it, however, and issue a warning in case we find one.
- If a dependency is found in the case
- elemental == ELEM_CHECK_VARIABLE, we will generate
- a temporary, so we don't need to bother the user. */
- gfc_warning ("INTENT(%s) actual argument at %L might "
- "interfere with actual argument at %L.",
- intent == INTENT_OUT ? "OUT" : "INOUT",
- &var->where, &expr->where);
- }
- return 0;
- }
- else
- return 1;
- }
- return 0;
-
- case EXPR_ARRAY:
- return gfc_check_dependency (var, expr, 1);
-
- case EXPR_FUNCTION:
- if (intent != INTENT_IN)
- {
- arg = gfc_get_noncopying_intrinsic_argument (expr);
- if (arg != NULL)
- return gfc_check_argument_var_dependency (var, intent, arg,
- NOT_ELEMENTAL);
- }
-
- if (elemental != NOT_ELEMENTAL)
- {
- if ((expr->value.function.esym
- && expr->value.function.esym->attr.elemental)
- || (expr->value.function.isym
- && expr->value.function.isym->elemental))
- return gfc_check_fncall_dependency (var, intent, NULL,
- expr->value.function.actual,
- ELEM_CHECK_VARIABLE);
-
- if (gfc_inline_intrinsic_function_p (expr))
- {
- /* The TRANSPOSE case should have been caught in the
- noncopying intrinsic case above. */
- gcc_assert (expr->value.function.isym->id != GFC_ISYM_TRANSPOSE);
-
- return gfc_check_fncall_dependency (var, intent, NULL,
- expr->value.function.actual,
- ELEM_CHECK_VARIABLE);
- }
- }
- return 0;
-
- case EXPR_OP:
- /* In case of non-elemental procedures, there is no need to catch
- dependencies, as we will make a temporary anyway. */
- if (elemental)
- {
- /* If the actual arg EXPR is an expression, we need to catch
- a dependency between variables in EXPR and VAR,
- an intent((IN)OUT) variable. */
- if (expr->value.op.op1
- && gfc_check_argument_var_dependency (var, intent,
- expr->value.op.op1,
- ELEM_CHECK_VARIABLE))
- return 1;
- else if (expr->value.op.op2
- && gfc_check_argument_var_dependency (var, intent,
- expr->value.op.op2,
- ELEM_CHECK_VARIABLE))
- return 1;
- }
- return 0;
-
- default:
- return 0;
- }
-}
-
-
-/* Like gfc_check_argument_var_dependency, but extended to any
- array expression OTHER, not just variables. */
-
-static int
-gfc_check_argument_dependency (gfc_expr *other, sym_intent intent,
- gfc_expr *expr, gfc_dep_check elemental)
-{
- switch (other->expr_type)
- {
- case EXPR_VARIABLE:
- return gfc_check_argument_var_dependency (other, intent, expr, elemental);
-
- case EXPR_FUNCTION:
- other = gfc_get_noncopying_intrinsic_argument (other);
- if (other != NULL)
- return gfc_check_argument_dependency (other, INTENT_IN, expr,
- NOT_ELEMENTAL);
-
- return 0;
-
- default:
- return 0;
- }
-}
-
-
-/* Like gfc_check_argument_dependency, but check all the arguments in ACTUAL.
- FNSYM is the function being called, or NULL if not known. */
-
-int
-gfc_check_fncall_dependency (gfc_expr *other, sym_intent intent,
- gfc_symbol *fnsym, gfc_actual_arglist *actual,
- gfc_dep_check elemental)
-{
- gfc_formal_arglist *formal;
- gfc_expr *expr;
-
- formal = fnsym ? fnsym->formal : NULL;
- for (; actual; actual = actual->next, formal = formal ? formal->next : NULL)
- {
- expr = actual->expr;
-
- /* Skip args which are not present. */
- if (!expr)
- continue;
-
- /* Skip other itself. */
- if (expr == other)
- continue;
-
- /* Skip intent(in) arguments if OTHER itself is intent(in). */
- if (formal && intent == INTENT_IN
- && formal->sym->attr.intent == INTENT_IN)
- continue;
-
- if (gfc_check_argument_dependency (other, intent, expr, elemental))
- return 1;
- }
-
- return 0;
-}
-
-
-/* Return 1 if e1 and e2 are equivalenced arrays, either
- directly or indirectly; i.e., equivalence (a,b) for a and b
- or equivalence (a,c),(b,c). This function uses the equiv_
- lists, generated in trans-common(add_equivalences), that are
- guaranteed to pick up indirect equivalences. We explicitly
- check for overlap using the offset and length of the equivalence.
- This function is symmetric.
- TODO: This function only checks whether the full top-level
- symbols overlap. An improved implementation could inspect
- e1->ref and e2->ref to determine whether the actually accessed
- portions of these variables/arrays potentially overlap. */
-
-int
-gfc_are_equivalenced_arrays (gfc_expr *e1, gfc_expr *e2)
-{
- gfc_equiv_list *l;
- gfc_equiv_info *s, *fl1, *fl2;
-
- gcc_assert (e1->expr_type == EXPR_VARIABLE
- && e2->expr_type == EXPR_VARIABLE);
-
- if (!e1->symtree->n.sym->attr.in_equivalence
- || !e2->symtree->n.sym->attr.in_equivalence|| !e1->rank || !e2->rank)
- return 0;
-
- if (e1->symtree->n.sym->ns
- && e1->symtree->n.sym->ns != gfc_current_ns)
- l = e1->symtree->n.sym->ns->equiv_lists;
- else
- l = gfc_current_ns->equiv_lists;
-
- /* Go through the equiv_lists and return 1 if the variables
- e1 and e2 are members of the same group and satisfy the
- requirement on their relative offsets. */
- for (; l; l = l->next)
- {
- fl1 = NULL;
- fl2 = NULL;
- for (s = l->equiv; s; s = s->next)
- {
- if (s->sym == e1->symtree->n.sym)
- {
- fl1 = s;
- if (fl2)
- break;
- }
- if (s->sym == e2->symtree->n.sym)
- {
- fl2 = s;
- if (fl1)
- break;
- }
- }
-
- if (s)
- {
- /* Can these lengths be zero? */
- if (fl1->length <= 0 || fl2->length <= 0)
- return 1;
- /* These can't overlap if [f11,fl1+length] is before
- [fl2,fl2+length], or [fl2,fl2+length] is before
- [fl1,fl1+length], otherwise they do overlap. */
- if (fl1->offset + fl1->length > fl2->offset
- && fl2->offset + fl2->length > fl1->offset)
- return 1;
- }
- }
- return 0;
-}
-
-
-/* Return true if there is no possibility of aliasing because of a type
- mismatch between all the possible pointer references and the
- potential target. Note that this function is asymmetric in the
- arguments and so must be called twice with the arguments exchanged. */
-
-static bool
-check_data_pointer_types (gfc_expr *expr1, gfc_expr *expr2)
-{
- gfc_component *cm1;
- gfc_symbol *sym1;
- gfc_symbol *sym2;
- gfc_ref *ref1;
- bool seen_component_ref;
-
- if (expr1->expr_type != EXPR_VARIABLE
- || expr1->expr_type != EXPR_VARIABLE)
- return false;
-
- sym1 = expr1->symtree->n.sym;
- sym2 = expr2->symtree->n.sym;
-
- /* Keep it simple for now. */
- if (sym1->ts.type == BT_DERIVED && sym2->ts.type == BT_DERIVED)
- return false;
-
- if (sym1->attr.pointer)
- {
- if (gfc_compare_types (&sym1->ts, &sym2->ts))
- return false;
- }
-
- /* This is a conservative check on the components of the derived type
- if no component references have been seen. Since we will not dig
- into the components of derived type components, we play it safe by
- returning false. First we check the reference chain and then, if
- no component references have been seen, the components. */
- seen_component_ref = false;
- if (sym1->ts.type == BT_DERIVED)
- {
- for (ref1 = expr1->ref; ref1; ref1 = ref1->next)
- {
- if (ref1->type != REF_COMPONENT)
- continue;
-
- if (ref1->u.c.component->ts.type == BT_DERIVED)
- return false;
-
- if ((sym2->attr.pointer || ref1->u.c.component->attr.pointer)
- && gfc_compare_types (&ref1->u.c.component->ts, &sym2->ts))
- return false;
-
- seen_component_ref = true;
- }
- }
-
- if (sym1->ts.type == BT_DERIVED && !seen_component_ref)
- {
- for (cm1 = sym1->ts.u.derived->components; cm1; cm1 = cm1->next)
- {
- if (cm1->ts.type == BT_DERIVED)
- return false;
-
- if ((sym2->attr.pointer || cm1->attr.pointer)
- && gfc_compare_types (&cm1->ts, &sym2->ts))
- return false;
- }
- }
-
- return true;
-}
-
-
-/* Return true if the statement body redefines the condition. Returns
- true if expr2 depends on expr1. expr1 should be a single term
- suitable for the lhs of an assignment. The IDENTICAL flag indicates
- whether array references to the same symbol with identical range
- references count as a dependency or not. Used for forall and where
- statements. Also used with functions returning arrays without a
- temporary. */
-
-int
-gfc_check_dependency (gfc_expr *expr1, gfc_expr *expr2, bool identical)
-{
- gfc_actual_arglist *actual;
- gfc_constructor *c;
- int n;
-
- gcc_assert (expr1->expr_type == EXPR_VARIABLE);
-
- switch (expr2->expr_type)
- {
- case EXPR_OP:
- n = gfc_check_dependency (expr1, expr2->value.op.op1, identical);
- if (n)
- return n;
- if (expr2->value.op.op2)
- return gfc_check_dependency (expr1, expr2->value.op.op2, identical);
- return 0;
-
- case EXPR_VARIABLE:
- /* The interesting cases are when the symbols don't match. */
- if (expr1->symtree->n.sym != expr2->symtree->n.sym)
- {
- gfc_typespec *ts1 = &expr1->symtree->n.sym->ts;
- gfc_typespec *ts2 = &expr2->symtree->n.sym->ts;
-
- /* Return 1 if expr1 and expr2 are equivalenced arrays. */
- if (gfc_are_equivalenced_arrays (expr1, expr2))
- return 1;
-
- /* Symbols can only alias if they have the same type. */
- if (ts1->type != BT_UNKNOWN && ts2->type != BT_UNKNOWN
- && ts1->type != BT_DERIVED && ts2->type != BT_DERIVED)
- {
- if (ts1->type != ts2->type || ts1->kind != ts2->kind)
- return 0;
- }
-
- /* If either variable is a pointer, assume the worst. */
- /* TODO: -fassume-no-pointer-aliasing */
- if (gfc_is_data_pointer (expr1) || gfc_is_data_pointer (expr2))
- {
- if (check_data_pointer_types (expr1, expr2)
- && check_data_pointer_types (expr2, expr1))
- return 0;
-
- return 1;
- }
- else
- {
- gfc_symbol *sym1 = expr1->symtree->n.sym;
- gfc_symbol *sym2 = expr2->symtree->n.sym;
- if (sym1->attr.target && sym2->attr.target
- && ((sym1->attr.dummy && !sym1->attr.contiguous
- && (!sym1->attr.dimension
- || sym2->as->type == AS_ASSUMED_SHAPE))
- || (sym2->attr.dummy && !sym2->attr.contiguous
- && (!sym2->attr.dimension
- || sym2->as->type == AS_ASSUMED_SHAPE))))
- return 1;
- }
-
- /* Otherwise distinct symbols have no dependencies. */
- return 0;
- }
-
- if (identical)
- return 1;
-
- /* Identical and disjoint ranges return 0,
- overlapping ranges return 1. */
- if (expr1->ref && expr2->ref)
- return gfc_dep_resolver (expr1->ref, expr2->ref, NULL);
-
- return 1;
-
- case EXPR_FUNCTION:
- if (gfc_get_noncopying_intrinsic_argument (expr2) != NULL)
- identical = 1;
-
- /* Remember possible differences between elemental and
- transformational functions. All functions inside a FORALL
- will be pure. */
- for (actual = expr2->value.function.actual;
- actual; actual = actual->next)
- {
- if (!actual->expr)
- continue;
- n = gfc_check_dependency (expr1, actual->expr, identical);
- if (n)
- return n;
- }
- return 0;
-
- case EXPR_CONSTANT:
- case EXPR_NULL:
- return 0;
-
- case EXPR_ARRAY:
- /* Loop through the array constructor's elements. */
- for (c = gfc_constructor_first (expr2->value.constructor);
- c; c = gfc_constructor_next (c))
- {
- /* If this is an iterator, assume the worst. */
- if (c->iterator)
- return 1;
- /* Avoid recursion in the common case. */
- if (c->expr->expr_type == EXPR_CONSTANT)
- continue;
- if (gfc_check_dependency (expr1, c->expr, 1))
- return 1;
- }
- return 0;
-
- default:
- return 1;
- }
-}
-
-
-/* Determines overlapping for two array sections. */
-
-static gfc_dependency
-check_section_vs_section (gfc_array_ref *l_ar, gfc_array_ref *r_ar, int n)
-{
- gfc_expr *l_start;
- gfc_expr *l_end;
- gfc_expr *l_stride;
- gfc_expr *l_lower;
- gfc_expr *l_upper;
- int l_dir;
-
- gfc_expr *r_start;
- gfc_expr *r_end;
- gfc_expr *r_stride;
- gfc_expr *r_lower;
- gfc_expr *r_upper;
- gfc_expr *one_expr;
- int r_dir;
- int stride_comparison;
- int start_comparison;
-
- /* If they are the same range, return without more ado. */
- if (is_same_range (l_ar, r_ar, n))
- return GFC_DEP_EQUAL;
-
- l_start = l_ar->start[n];
- l_end = l_ar->end[n];
- l_stride = l_ar->stride[n];
-
- r_start = r_ar->start[n];
- r_end = r_ar->end[n];
- r_stride = r_ar->stride[n];
-
- /* If l_start is NULL take it from array specifier. */
- if (NULL == l_start && IS_ARRAY_EXPLICIT (l_ar->as))
- l_start = l_ar->as->lower[n];
- /* If l_end is NULL take it from array specifier. */
- if (NULL == l_end && IS_ARRAY_EXPLICIT (l_ar->as))
- l_end = l_ar->as->upper[n];
-
- /* If r_start is NULL take it from array specifier. */
- if (NULL == r_start && IS_ARRAY_EXPLICIT (r_ar->as))
- r_start = r_ar->as->lower[n];
- /* If r_end is NULL take it from array specifier. */
- if (NULL == r_end && IS_ARRAY_EXPLICIT (r_ar->as))
- r_end = r_ar->as->upper[n];
-
- /* Determine whether the l_stride is positive or negative. */
- if (!l_stride)
- l_dir = 1;
- else if (l_stride->expr_type == EXPR_CONSTANT
- && l_stride->ts.type == BT_INTEGER)
- l_dir = mpz_sgn (l_stride->value.integer);
- else if (l_start && l_end)
- l_dir = gfc_dep_compare_expr (l_end, l_start);
- else
- l_dir = -2;
-
- /* Determine whether the r_stride is positive or negative. */
- if (!r_stride)
- r_dir = 1;
- else if (r_stride->expr_type == EXPR_CONSTANT
- && r_stride->ts.type == BT_INTEGER)
- r_dir = mpz_sgn (r_stride->value.integer);
- else if (r_start && r_end)
- r_dir = gfc_dep_compare_expr (r_end, r_start);
- else
- r_dir = -2;
-
- /* The strides should never be zero. */
- if (l_dir == 0 || r_dir == 0)
- return GFC_DEP_OVERLAP;
-
- /* Determine the relationship between the strides. Set stride_comparison to
- -2 if the dependency cannot be determined
- -1 if l_stride < r_stride
- 0 if l_stride == r_stride
- 1 if l_stride > r_stride
- as determined by gfc_dep_compare_expr. */
-
- one_expr = gfc_get_int_expr (gfc_index_integer_kind, NULL, 1);
-
- stride_comparison = gfc_dep_compare_expr (l_stride ? l_stride : one_expr,
- r_stride ? r_stride : one_expr);
-
- if (l_start && r_start)
- start_comparison = gfc_dep_compare_expr (l_start, r_start);
- else
- start_comparison = -2;
-
- free (one_expr);
-
- /* Determine LHS upper and lower bounds. */
- if (l_dir == 1)
- {
- l_lower = l_start;
- l_upper = l_end;
- }
- else if (l_dir == -1)
- {
- l_lower = l_end;
- l_upper = l_start;
- }
- else
- {
- l_lower = NULL;
- l_upper = NULL;
- }
-
- /* Determine RHS upper and lower bounds. */
- if (r_dir == 1)
- {
- r_lower = r_start;
- r_upper = r_end;
- }
- else if (r_dir == -1)
- {
- r_lower = r_end;
- r_upper = r_start;
- }
- else
- {
- r_lower = NULL;
- r_upper = NULL;
- }
-
- /* Check whether the ranges are disjoint. */
- if (l_upper && r_lower && gfc_dep_compare_expr (l_upper, r_lower) == -1)
- return GFC_DEP_NODEP;
- if (r_upper && l_lower && gfc_dep_compare_expr (r_upper, l_lower) == -1)
- return GFC_DEP_NODEP;
-
- /* Handle cases like x:y:1 vs. x:z:-1 as GFC_DEP_EQUAL. */
- if (l_start && r_start && gfc_dep_compare_expr (l_start, r_start) == 0)
- {
- if (l_dir == 1 && r_dir == -1)
- return GFC_DEP_EQUAL;
- if (l_dir == -1 && r_dir == 1)
- return GFC_DEP_EQUAL;
- }
-
- /* Handle cases like x:y:1 vs. z:y:-1 as GFC_DEP_EQUAL. */
- if (l_end && r_end && gfc_dep_compare_expr (l_end, r_end) == 0)
- {
- if (l_dir == 1 && r_dir == -1)
- return GFC_DEP_EQUAL;
- if (l_dir == -1 && r_dir == 1)
- return GFC_DEP_EQUAL;
- }
-
- /* Handle cases like x:y:2 vs. x+1:z:4 as GFC_DEP_NODEP.
- There is no dependency if the remainder of
- (l_start - r_start) / gcd(l_stride, r_stride) is
- nonzero.
- TODO:
- - Handle cases where x is an expression.
- - Cases like a(1:4:2) = a(2:3) are still not handled.
- */
-
-#define IS_CONSTANT_INTEGER(a) ((a) && ((a)->expr_type == EXPR_CONSTANT) \
- && (a)->ts.type == BT_INTEGER)
-
- if (IS_CONSTANT_INTEGER(l_start) && IS_CONSTANT_INTEGER(r_start)
- && IS_CONSTANT_INTEGER(l_stride) && IS_CONSTANT_INTEGER(r_stride))
- {
- mpz_t gcd, tmp;
- int result;
-
- mpz_init (gcd);
- mpz_init (tmp);
-
- mpz_gcd (gcd, l_stride->value.integer, r_stride->value.integer);
- mpz_sub (tmp, l_start->value.integer, r_start->value.integer);
-
- mpz_fdiv_r (tmp, tmp, gcd);
- result = mpz_cmp_si (tmp, 0L);
-
- mpz_clear (gcd);
- mpz_clear (tmp);
-
- if (result != 0)
- return GFC_DEP_NODEP;
- }
-
-#undef IS_CONSTANT_INTEGER
-
- /* Check for forward dependencies x:y vs. x+1:z and x:y:z vs. x:y:z+1. */
-
- if (l_dir == 1 && r_dir == 1 &&
- (start_comparison == 0 || start_comparison == -1)
- && (stride_comparison == 0 || stride_comparison == -1))
- return GFC_DEP_FORWARD;
-
- /* Check for forward dependencies x:y:-1 vs. x-1:z:-1 and
- x:y:-1 vs. x:y:-2. */
- if (l_dir == -1 && r_dir == -1 &&
- (start_comparison == 0 || start_comparison == 1)
- && (stride_comparison == 0 || stride_comparison == 1))
- return GFC_DEP_FORWARD;
-
- if (stride_comparison == 0 || stride_comparison == -1)
- {
- if (l_start && IS_ARRAY_EXPLICIT (l_ar->as))
- {
-
- /* Check for a(low:y:s) vs. a(z:x:s) or
- a(low:y:s) vs. a(z:x:s+1) where a has a lower bound
- of low, which is always at least a forward dependence. */
-
- if (r_dir == 1
- && gfc_dep_compare_expr (l_start, l_ar->as->lower[n]) == 0)
- return GFC_DEP_FORWARD;
- }
- }
-
- if (stride_comparison == 0 || stride_comparison == 1)
- {
- if (l_start && IS_ARRAY_EXPLICIT (l_ar->as))
- {
-
- /* Check for a(high:y:-s) vs. a(z:x:-s) or
- a(high:y:-s vs. a(z:x:-s-1) where a has a higher bound
- of high, which is always at least a forward dependence. */
-
- if (r_dir == -1
- && gfc_dep_compare_expr (l_start, l_ar->as->upper[n]) == 0)
- return GFC_DEP_FORWARD;
- }
- }
-
-
- if (stride_comparison == 0)
- {
- /* From here, check for backwards dependencies. */
- /* x+1:y vs. x:z. */
- if (l_dir == 1 && r_dir == 1 && start_comparison == 1)
- return GFC_DEP_BACKWARD;
-
- /* x-1:y:-1 vs. x:z:-1. */
- if (l_dir == -1 && r_dir == -1 && start_comparison == -1)
- return GFC_DEP_BACKWARD;
- }
-
- return GFC_DEP_OVERLAP;
-}
-
-
-/* Determines overlapping for a single element and a section. */
-
-static gfc_dependency
-gfc_check_element_vs_section( gfc_ref *lref, gfc_ref *rref, int n)
-{
- gfc_array_ref *ref;
- gfc_expr *elem;
- gfc_expr *start;
- gfc_expr *end;
- gfc_expr *stride;
- int s;
-
- elem = lref->u.ar.start[n];
- if (!elem)
- return GFC_DEP_OVERLAP;
-
- ref = &rref->u.ar;
- start = ref->start[n] ;
- end = ref->end[n] ;
- stride = ref->stride[n];
-
- if (!start && IS_ARRAY_EXPLICIT (ref->as))
- start = ref->as->lower[n];
- if (!end && IS_ARRAY_EXPLICIT (ref->as))
- end = ref->as->upper[n];
-
- /* Determine whether the stride is positive or negative. */
- if (!stride)
- s = 1;
- else if (stride->expr_type == EXPR_CONSTANT
- && stride->ts.type == BT_INTEGER)
- s = mpz_sgn (stride->value.integer);
- else
- s = -2;
-
- /* Stride should never be zero. */
- if (s == 0)
- return GFC_DEP_OVERLAP;
-
- /* Positive strides. */
- if (s == 1)
- {
- /* Check for elem < lower. */
- if (start && gfc_dep_compare_expr (elem, start) == -1)
- return GFC_DEP_NODEP;
- /* Check for elem > upper. */
- if (end && gfc_dep_compare_expr (elem, end) == 1)
- return GFC_DEP_NODEP;
-
- if (start && end)
- {
- s = gfc_dep_compare_expr (start, end);
- /* Check for an empty range. */
- if (s == 1)
- return GFC_DEP_NODEP;
- if (s == 0 && gfc_dep_compare_expr (elem, start) == 0)
- return GFC_DEP_EQUAL;
- }
- }
- /* Negative strides. */
- else if (s == -1)
- {
- /* Check for elem > upper. */
- if (end && gfc_dep_compare_expr (elem, start) == 1)
- return GFC_DEP_NODEP;
- /* Check for elem < lower. */
- if (start && gfc_dep_compare_expr (elem, end) == -1)
- return GFC_DEP_NODEP;
-
- if (start && end)
- {
- s = gfc_dep_compare_expr (start, end);
- /* Check for an empty range. */
- if (s == -1)
- return GFC_DEP_NODEP;
- if (s == 0 && gfc_dep_compare_expr (elem, start) == 0)
- return GFC_DEP_EQUAL;
- }
- }
- /* Unknown strides. */
- else
- {
- if (!start || !end)
- return GFC_DEP_OVERLAP;
- s = gfc_dep_compare_expr (start, end);
- if (s <= -2)
- return GFC_DEP_OVERLAP;
- /* Assume positive stride. */
- if (s == -1)
- {
- /* Check for elem < lower. */
- if (gfc_dep_compare_expr (elem, start) == -1)
- return GFC_DEP_NODEP;
- /* Check for elem > upper. */
- if (gfc_dep_compare_expr (elem, end) == 1)
- return GFC_DEP_NODEP;
- }
- /* Assume negative stride. */
- else if (s == 1)
- {
- /* Check for elem > upper. */
- if (gfc_dep_compare_expr (elem, start) == 1)
- return GFC_DEP_NODEP;
- /* Check for elem < lower. */
- if (gfc_dep_compare_expr (elem, end) == -1)
- return GFC_DEP_NODEP;
- }
- /* Equal bounds. */
- else if (s == 0)
- {
- s = gfc_dep_compare_expr (elem, start);
- if (s == 0)
- return GFC_DEP_EQUAL;
- if (s == 1 || s == -1)
- return GFC_DEP_NODEP;
- }
- }
-
- return GFC_DEP_OVERLAP;
-}
-
-
-/* Traverse expr, checking all EXPR_VARIABLE symbols for their
- forall_index attribute. Return true if any variable may be
- being used as a FORALL index. Its safe to pessimistically
- return true, and assume a dependency. */
-
-static bool
-contains_forall_index_p (gfc_expr *expr)
-{
- gfc_actual_arglist *arg;
- gfc_constructor *c;
- gfc_ref *ref;
- int i;
-
- if (!expr)
- return false;
-
- switch (expr->expr_type)
- {
- case EXPR_VARIABLE:
- if (expr->symtree->n.sym->forall_index)
- return true;
- break;
-
- case EXPR_OP:
- if (contains_forall_index_p (expr->value.op.op1)
- || contains_forall_index_p (expr->value.op.op2))
- return true;
- break;
-
- case EXPR_FUNCTION:
- for (arg = expr->value.function.actual; arg; arg = arg->next)
- if (contains_forall_index_p (arg->expr))
- return true;
- break;
-
- case EXPR_CONSTANT:
- case EXPR_NULL:
- case EXPR_SUBSTRING:
- break;
-
- case EXPR_STRUCTURE:
- case EXPR_ARRAY:
- for (c = gfc_constructor_first (expr->value.constructor);
- c; gfc_constructor_next (c))
- if (contains_forall_index_p (c->expr))
- return true;
- break;
-
- default:
- gcc_unreachable ();
- }
-
- for (ref = expr->ref; ref; ref = ref->next)
- switch (ref->type)
- {
- case REF_ARRAY:
- for (i = 0; i < ref->u.ar.dimen; i++)
- if (contains_forall_index_p (ref->u.ar.start[i])
- || contains_forall_index_p (ref->u.ar.end[i])
- || contains_forall_index_p (ref->u.ar.stride[i]))
- return true;
- break;
-
- case REF_COMPONENT:
- break;
-
- case REF_SUBSTRING:
- if (contains_forall_index_p (ref->u.ss.start)
- || contains_forall_index_p (ref->u.ss.end))
- return true;
- break;
-
- default:
- gcc_unreachable ();
- }
-
- return false;
-}
-
-/* Determines overlapping for two single element array references. */
-
-static gfc_dependency
-gfc_check_element_vs_element (gfc_ref *lref, gfc_ref *rref, int n)
-{
- gfc_array_ref l_ar;
- gfc_array_ref r_ar;
- gfc_expr *l_start;
- gfc_expr *r_start;
- int i;
-
- l_ar = lref->u.ar;
- r_ar = rref->u.ar;
- l_start = l_ar.start[n] ;
- r_start = r_ar.start[n] ;
- i = gfc_dep_compare_expr (r_start, l_start);
- if (i == 0)
- return GFC_DEP_EQUAL;
-
- /* Treat two scalar variables as potentially equal. This allows
- us to prove that a(i,:) and a(j,:) have no dependency. See
- Gerald Roth, "Evaluation of Array Syntax Dependence Analysis",
- Proceedings of the International Conference on Parallel and
- Distributed Processing Techniques and Applications (PDPTA2001),
- Las Vegas, Nevada, June 2001. */
- /* However, we need to be careful when either scalar expression
- contains a FORALL index, as these can potentially change value
- during the scalarization/traversal of this array reference. */
- if (contains_forall_index_p (r_start) || contains_forall_index_p (l_start))
- return GFC_DEP_OVERLAP;
-
- if (i > -2)
- return GFC_DEP_NODEP;
- return GFC_DEP_EQUAL;
-}
-
-
-/* Determine if an array ref, usually an array section specifies the
- entire array. In addition, if the second, pointer argument is
- provided, the function will return true if the reference is
- contiguous; eg. (:, 1) gives true but (1,:) gives false. */
-
-bool
-gfc_full_array_ref_p (gfc_ref *ref, bool *contiguous)
-{
- int i;
- int n;
- bool lbound_OK = true;
- bool ubound_OK = true;
-
- if (contiguous)
- *contiguous = false;
-
- if (ref->type != REF_ARRAY)
- return false;
-
- if (ref->u.ar.type == AR_FULL)
- {
- if (contiguous)
- *contiguous = true;
- return true;
- }
-
- if (ref->u.ar.type != AR_SECTION)
- return false;
- if (ref->next)
- return false;
-
- for (i = 0; i < ref->u.ar.dimen; i++)
- {
- /* If we have a single element in the reference, for the reference
- to be full, we need to ascertain that the array has a single
- element in this dimension and that we actually reference the
- correct element. */
- if (ref->u.ar.dimen_type[i] == DIMEN_ELEMENT)
- {
- /* This is unconditionally a contiguous reference if all the
- remaining dimensions are elements. */
- if (contiguous)
- {
- *contiguous = true;
- for (n = i + 1; n < ref->u.ar.dimen; n++)
- if (ref->u.ar.dimen_type[n] != DIMEN_ELEMENT)
- *contiguous = false;
- }
-
- if (!ref->u.ar.as
- || !ref->u.ar.as->lower[i]
- || !ref->u.ar.as->upper[i]
- || gfc_dep_compare_expr (ref->u.ar.as->lower[i],
- ref->u.ar.as->upper[i])
- || !ref->u.ar.start[i]
- || gfc_dep_compare_expr (ref->u.ar.start[i],
- ref->u.ar.as->lower[i]))
- return false;
- else
- continue;
- }
-
- /* Check the lower bound. */
- if (ref->u.ar.start[i]
- && (!ref->u.ar.as
- || !ref->u.ar.as->lower[i]
- || gfc_dep_compare_expr (ref->u.ar.start[i],
- ref->u.ar.as->lower[i])))
- lbound_OK = false;
- /* Check the upper bound. */
- if (ref->u.ar.end[i]
- && (!ref->u.ar.as
- || !ref->u.ar.as->upper[i]
- || gfc_dep_compare_expr (ref->u.ar.end[i],
- ref->u.ar.as->upper[i])))
- ubound_OK = false;
- /* Check the stride. */
- if (ref->u.ar.stride[i]
- && !gfc_expr_is_one (ref->u.ar.stride[i], 0))
- return false;
-
- /* This is unconditionally a contiguous reference as long as all
- the subsequent dimensions are elements. */
- if (contiguous)
- {
- *contiguous = true;
- for (n = i + 1; n < ref->u.ar.dimen; n++)
- if (ref->u.ar.dimen_type[n] != DIMEN_ELEMENT)
- *contiguous = false;
- }
-
- if (!lbound_OK || !ubound_OK)
- return false;
- }
- return true;
-}
-
-
-/* Determine if a full array is the same as an array section with one
- variable limit. For this to be so, the strides must both be unity
- and one of either start == lower or end == upper must be true. */
-
-static bool
-ref_same_as_full_array (gfc_ref *full_ref, gfc_ref *ref)
-{
- int i;
- bool upper_or_lower;
-
- if (full_ref->type != REF_ARRAY)
- return false;
- if (full_ref->u.ar.type != AR_FULL)
- return false;
- if (ref->type != REF_ARRAY)
- return false;
- if (ref->u.ar.type != AR_SECTION)
- return false;
-
- for (i = 0; i < ref->u.ar.dimen; i++)
- {
- /* If we have a single element in the reference, we need to check
- that the array has a single element and that we actually reference
- the correct element. */
- if (ref->u.ar.dimen_type[i] == DIMEN_ELEMENT)
- {
- if (!full_ref->u.ar.as
- || !full_ref->u.ar.as->lower[i]
- || !full_ref->u.ar.as->upper[i]
- || gfc_dep_compare_expr (full_ref->u.ar.as->lower[i],
- full_ref->u.ar.as->upper[i])
- || !ref->u.ar.start[i]
- || gfc_dep_compare_expr (ref->u.ar.start[i],
- full_ref->u.ar.as->lower[i]))
- return false;
- }
-
- /* Check the strides. */
- if (full_ref->u.ar.stride[i] && !gfc_expr_is_one (full_ref->u.ar.stride[i], 0))
- return false;
- if (ref->u.ar.stride[i] && !gfc_expr_is_one (ref->u.ar.stride[i], 0))
- return false;
-
- upper_or_lower = false;
- /* Check the lower bound. */
- if (ref->u.ar.start[i]
- && (ref->u.ar.as
- && full_ref->u.ar.as->lower[i]
- && gfc_dep_compare_expr (ref->u.ar.start[i],
- full_ref->u.ar.as->lower[i]) == 0))
- upper_or_lower = true;
- /* Check the upper bound. */
- if (ref->u.ar.end[i]
- && (ref->u.ar.as
- && full_ref->u.ar.as->upper[i]
- && gfc_dep_compare_expr (ref->u.ar.end[i],
- full_ref->u.ar.as->upper[i]) == 0))
- upper_or_lower = true;
- if (!upper_or_lower)
- return false;
- }
- return true;
-}
-
-
-/* Finds if two array references are overlapping or not.
- Return value
- 2 : array references are overlapping but reversal of one or
- more dimensions will clear the dependency.
- 1 : array references are overlapping.
- 0 : array references are identical or not overlapping. */
-
-int
-gfc_dep_resolver (gfc_ref *lref, gfc_ref *rref, gfc_reverse *reverse)
-{
- int n;
- gfc_dependency fin_dep;
- gfc_dependency this_dep;
-
- this_dep = GFC_DEP_ERROR;
- fin_dep = GFC_DEP_ERROR;
- /* Dependencies due to pointers should already have been identified.
- We only need to check for overlapping array references. */
-
- while (lref && rref)
- {
- /* We're resolving from the same base symbol, so both refs should be
- the same type. We traverse the reference chain until we find ranges
- that are not equal. */
- gcc_assert (lref->type == rref->type);
- switch (lref->type)
- {
- case REF_COMPONENT:
- /* The two ranges can't overlap if they are from different
- components. */
- if (lref->u.c.component != rref->u.c.component)
- return 0;
- break;
-
- case REF_SUBSTRING:
- /* Substring overlaps are handled by the string assignment code
- if there is not an underlying dependency. */
- return (fin_dep == GFC_DEP_OVERLAP) ? 1 : 0;
-
- case REF_ARRAY:
-
- if (ref_same_as_full_array (lref, rref))
- return 0;
-
- if (ref_same_as_full_array (rref, lref))
- return 0;
-
- if (lref->u.ar.dimen != rref->u.ar.dimen)
- {
- if (lref->u.ar.type == AR_FULL)
- fin_dep = gfc_full_array_ref_p (rref, NULL) ? GFC_DEP_EQUAL
- : GFC_DEP_OVERLAP;
- else if (rref->u.ar.type == AR_FULL)
- fin_dep = gfc_full_array_ref_p (lref, NULL) ? GFC_DEP_EQUAL
- : GFC_DEP_OVERLAP;
- else
- return 1;
- break;
- }
-
- for (n=0; n < lref->u.ar.dimen; n++)
- {
- /* Assume dependency when either of array reference is vector
- subscript. */
- if (lref->u.ar.dimen_type[n] == DIMEN_VECTOR
- || rref->u.ar.dimen_type[n] == DIMEN_VECTOR)
- return 1;
-
- if (lref->u.ar.dimen_type[n] == DIMEN_RANGE
- && rref->u.ar.dimen_type[n] == DIMEN_RANGE)
- this_dep = check_section_vs_section (&lref->u.ar, &rref->u.ar, n);
- else if (lref->u.ar.dimen_type[n] == DIMEN_ELEMENT
- && rref->u.ar.dimen_type[n] == DIMEN_RANGE)
- this_dep = gfc_check_element_vs_section (lref, rref, n);
- else if (rref->u.ar.dimen_type[n] == DIMEN_ELEMENT
- && lref->u.ar.dimen_type[n] == DIMEN_RANGE)
- this_dep = gfc_check_element_vs_section (rref, lref, n);
- else
- {
- gcc_assert (rref->u.ar.dimen_type[n] == DIMEN_ELEMENT
- && lref->u.ar.dimen_type[n] == DIMEN_ELEMENT);
- this_dep = gfc_check_element_vs_element (rref, lref, n);
- }
-
- /* If any dimension doesn't overlap, we have no dependency. */
- if (this_dep == GFC_DEP_NODEP)
- return 0;
-
- /* Now deal with the loop reversal logic: This only works on
- ranges and is activated by setting
- reverse[n] == GFC_ENABLE_REVERSE
- The ability to reverse or not is set by previous conditions
- in this dimension. If reversal is not activated, the
- value GFC_DEP_BACKWARD is reset to GFC_DEP_OVERLAP. */
- if (rref->u.ar.dimen_type[n] == DIMEN_RANGE
- && lref->u.ar.dimen_type[n] == DIMEN_RANGE)
- {
- /* Set reverse if backward dependence and not inhibited. */
- if (reverse && reverse[n] == GFC_ENABLE_REVERSE)
- reverse[n] = (this_dep == GFC_DEP_BACKWARD) ?
- GFC_REVERSE_SET : reverse[n];
-
- /* Set forward if forward dependence and not inhibited. */
- if (reverse && reverse[n] == GFC_ENABLE_REVERSE)
- reverse[n] = (this_dep == GFC_DEP_FORWARD) ?
- GFC_FORWARD_SET : reverse[n];
-
- /* Flag up overlap if dependence not compatible with
- the overall state of the expression. */
- if (reverse && reverse[n] == GFC_REVERSE_SET
- && this_dep == GFC_DEP_FORWARD)
- {
- reverse[n] = GFC_INHIBIT_REVERSE;
- this_dep = GFC_DEP_OVERLAP;
- }
- else if (reverse && reverse[n] == GFC_FORWARD_SET
- && this_dep == GFC_DEP_BACKWARD)
- {
- reverse[n] = GFC_INHIBIT_REVERSE;
- this_dep = GFC_DEP_OVERLAP;
- }
-
- /* If no intention of reversing or reversing is explicitly
- inhibited, convert backward dependence to overlap. */
- if ((reverse == NULL && this_dep == GFC_DEP_BACKWARD)
- || (reverse != NULL && reverse[n] == GFC_INHIBIT_REVERSE))
- this_dep = GFC_DEP_OVERLAP;
- }
-
- /* Overlap codes are in order of priority. We only need to
- know the worst one.*/
- if (this_dep > fin_dep)
- fin_dep = this_dep;
- }
-
- /* If this is an equal element, we have to keep going until we find
- the "real" array reference. */
- if (lref->u.ar.type == AR_ELEMENT
- && rref->u.ar.type == AR_ELEMENT
- && fin_dep == GFC_DEP_EQUAL)
- break;
-
- /* Exactly matching and forward overlapping ranges don't cause a
- dependency. */
- if (fin_dep < GFC_DEP_BACKWARD)
- return 0;
-
- /* Keep checking. We only have a dependency if
- subsequent references also overlap. */
- break;
-
- default:
- gcc_unreachable ();
- }
- lref = lref->next;
- rref = rref->next;
- }
-
- /* If we haven't seen any array refs then something went wrong. */
- gcc_assert (fin_dep != GFC_DEP_ERROR);
-
- /* Assume the worst if we nest to different depths. */
- if (lref || rref)
- return 1;
-
- return fin_dep == GFC_DEP_OVERLAP;
-}