aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.7/gcc/config/sh/sh4.md
diff options
context:
space:
mode:
authorBen Cheng <bccheng@google.com>2012-10-01 10:30:31 -0700
committerBen Cheng <bccheng@google.com>2012-10-01 10:30:31 -0700
commit82bcbebce43f0227f506d75a5b764b6847041bae (patch)
treefe9f8597b48a430c4daeb5123e3e8eb28e6f9da9 /gcc-4.7/gcc/config/sh/sh4.md
parent3c052de3bb16ac53b6b6ed659ec7557eb84c7590 (diff)
downloadtoolchain_gcc-82bcbebce43f0227f506d75a5b764b6847041bae.tar.gz
toolchain_gcc-82bcbebce43f0227f506d75a5b764b6847041bae.tar.bz2
toolchain_gcc-82bcbebce43f0227f506d75a5b764b6847041bae.zip
Initial check-in of gcc 4.7.2.
Change-Id: I4a2f5a921c21741a0e18bda986d77e5f1bef0365
Diffstat (limited to 'gcc-4.7/gcc/config/sh/sh4.md')
-rw-r--r--gcc-4.7/gcc/config/sh/sh4.md486
1 files changed, 486 insertions, 0 deletions
diff --git a/gcc-4.7/gcc/config/sh/sh4.md b/gcc-4.7/gcc/config/sh/sh4.md
new file mode 100644
index 000000000..0fb4a9aec
--- /dev/null
+++ b/gcc-4.7/gcc/config/sh/sh4.md
@@ -0,0 +1,486 @@
+;; DFA scheduling description for SH4.
+;; Copyright (C) 2004, 2006, 2007 Free Software Foundation, Inc.
+
+;; This file is part of GCC.
+
+;; GCC is free software; you can redistribute it and/or modify
+;; it under the terms of the GNU General Public License as published by
+;; the Free Software Foundation; either version 3, or (at your option)
+;; any later version.
+
+;; GCC is distributed in the hope that it will be useful,
+;; but WITHOUT ANY WARRANTY; without even the implied warranty of
+;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+;; GNU General Public License for more details.
+
+;; You should have received a copy of the GNU General Public License
+;; along with GCC; see the file COPYING3. If not see
+;; <http://www.gnu.org/licenses/>.
+
+;; Load and store instructions save a cycle if they are aligned on a
+;; four byte boundary. Using a function unit for stores encourages
+;; gcc to separate load and store instructions by one instruction,
+;; which makes it more likely that the linker will be able to word
+;; align them when relaxing.
+
+;; The following description models the SH4 pipeline using the DFA based
+;; scheduler. The DFA based description is better way to model a
+;; superscalar pipeline as compared to function unit reservation model.
+;; 1. The function unit based model is oriented to describe at most one
+;; unit reservation by each insn. It is difficult to model unit reservations
+;; in multiple pipeline units by same insn. This can be done using DFA
+;; based description.
+;; 2. The execution performance of DFA based scheduler does not depend on
+;; processor complexity.
+;; 3. Writing all unit reservations for an instruction class is a more natural
+;; description of the pipeline and makes the interface to the hazard
+;; recognizer simpler than the old function unit based model.
+;; 4. The DFA model is richer and is a part of greater overall framework
+;; of RCSP.
+
+
+;; Two automata are defined to reduce number of states
+;; which a single large automaton will have. (Factoring)
+
+(define_automaton "inst_pipeline,fpu_pipe")
+
+;; This unit is basically the decode unit of the processor.
+;; Since SH4 is a dual issue machine,it is as if there are two
+;; units so that any insn can be processed by either one
+;; of the decoding unit.
+
+(define_cpu_unit "pipe_01,pipe_02" "inst_pipeline")
+
+
+;; The fixed point arithmetic calculator(?? EX Unit).
+
+(define_cpu_unit "int" "inst_pipeline")
+
+;; f1_1 and f1_2 are floating point units.Actually there is
+;; a f1 unit which can overlap with other f1 unit but
+;; not another F1 unit.It is as though there were two
+;; f1 units.
+
+(define_cpu_unit "f1_1,f1_2" "fpu_pipe")
+
+;; The floating point units (except FS - F2 always precedes it.)
+
+(define_cpu_unit "F0,F1,F2,F3" "fpu_pipe")
+
+;; This is basically the MA unit of SH4
+;; used in LOAD/STORE pipeline.
+
+(define_cpu_unit "memory" "inst_pipeline")
+
+;; However, there are LS group insns that don't use it, even ones that
+;; complete in 0 cycles. So we use an extra unit for the issue of LS insns.
+(define_cpu_unit "load_store" "inst_pipeline")
+
+;; The address calculator used for branch instructions.
+;; This will be reserved after "issue" of branch instructions
+;; and this is to make sure that no two branch instructions
+;; can be issued in parallel.
+
+(define_cpu_unit "pcr_addrcalc" "inst_pipeline")
+
+;; ----------------------------------------------------
+;; This reservation is to simplify the dual issue description.
+
+(define_reservation "issue" "pipe_01|pipe_02")
+
+;; This is to express the locking of D stage.
+;; Note that the issue of a CO group insn also effectively locks the D stage.
+
+(define_reservation "d_lock" "pipe_01+pipe_02")
+
+;; Every FE instruction but fipr / ftrv starts with issue and this.
+(define_reservation "F01" "F0+F1")
+
+;; This is to simplify description where F1,F2,FS
+;; are used simultaneously.
+
+(define_reservation "fpu" "F1+F2")
+
+;; This is to highlight the fact that f1
+;; cannot overlap with F1.
+
+(exclusion_set "f1_1,f1_2" "F1")
+
+(define_insn_reservation "nil" 0 (eq_attr "type" "nil") "nothing")
+
+;; Although reg moves have a latency of zero
+;; we need to highlight that they use D stage
+;; for one cycle.
+
+;; Group: MT
+
+(define_insn_reservation "reg_mov" 0
+ (and (eq_attr "pipe_model" "sh4")
+ (eq_attr "type" "move"))
+ "issue")
+
+;; Group: LS
+
+(define_insn_reservation "freg_mov" 0
+ (and (eq_attr "pipe_model" "sh4")
+ (eq_attr "type" "fmove"))
+ "issue+load_store")
+
+;; We don't model all pipeline stages; we model the issue ('D') stage
+;; inasmuch as we allow only two instructions to issue simultaneously,
+;; and CO instructions prevent any simultaneous issue of another instruction.
+;; (This uses pipe_01 and pipe_02).
+;; Double issue of EX insns is prevented by using the int unit in the EX stage.
+;; Double issue of EX / BR insns is prevented by using the int unit /
+;; pcr_addrcalc unit in the EX stage.
+;; Double issue of BR / LS instructions is prevented by using the
+;; pcr_addrcalc / load_store unit in the issue cycle.
+;; Double issue of FE instructions is prevented by using F0 in the first
+;; pipeline stage after the first D stage.
+;; There is no need to describe the [ES]X / [MN]A / S stages after a D stage
+;; (except in the cases outlined above), nor to describe the FS stage after
+;; the F2 stage.
+
+;; Other MT group instructions(1 step operations)
+;; Group: MT
+;; Latency: 1
+;; Issue Rate: 1
+
+(define_insn_reservation "mt" 1
+ (and (eq_attr "pipe_model" "sh4")
+ (eq_attr "type" "mt_group"))
+ "issue")
+
+;; Fixed Point Arithmetic Instructions(1 step operations)
+;; Group: EX
+;; Latency: 1
+;; Issue Rate: 1
+
+(define_insn_reservation "sh4_simple_arith" 1
+ (and (eq_attr "pipe_model" "sh4")
+ (eq_attr "insn_class" "ex_group"))
+ "issue,int")
+
+;; Load and store instructions have no alignment peculiarities for the SH4,
+;; but they use the load-store unit, which they share with the fmove type
+;; insns (fldi[01]; fmov frn,frm; flds; fsts; fabs; fneg) .
+;; Loads have a latency of two.
+;; However, call insns can only paired with a preceding insn, and have
+;; a delay slot, so that we want two more insns to be scheduled between the
+;; load of the function address and the call. This is equivalent to a
+;; latency of three.
+;; ADJUST_COST can only properly handle reductions of the cost, so we
+;; use a latency of three here, which gets multiplied by 10 to yield 30.
+;; We only do this for SImode loads of general registers, to make the work
+;; for ADJUST_COST easier.
+
+;; Load Store instructions. (MOV.[BWL]@(d,GBR)
+;; Group: LS
+;; Latency: 2
+;; Issue Rate: 1
+
+(define_insn_reservation "sh4_load" 2
+ (and (eq_attr "pipe_model" "sh4")
+ (eq_attr "type" "load,pcload"))
+ "issue+load_store,nothing,memory")
+
+;; calls / sfuncs need an extra instruction for their delay slot.
+;; Moreover, estimating the latency for SImode loads as 3 will also allow
+;; adjust_cost to meaningfully bump it back up to 3 if they load the shift
+;; count of a dynamic shift.
+(define_insn_reservation "sh4_load_si" 3
+ (and (eq_attr "pipe_model" "sh4")
+ (eq_attr "type" "load_si,pcload_si"))
+ "issue+load_store,nothing,memory")
+
+;; (define_bypass 2 "sh4_load_si" "!sh4_call")
+
+;; The load latency is upped to three higher if the dependent insn does
+;; double precision computation. We want the 'default' latency to reflect
+;; that increased latency because otherwise the insn priorities won't
+;; allow proper scheduling.
+(define_insn_reservation "sh4_fload" 3
+ (and (eq_attr "pipe_model" "sh4")
+ (eq_attr "type" "fload,pcfload"))
+ "issue+load_store,nothing,memory")
+
+;; (define_bypass 2 "sh4_fload" "!")
+
+(define_insn_reservation "sh4_store" 1
+ (and (eq_attr "pipe_model" "sh4")
+ (eq_attr "type" "store,fstore"))
+ "issue+load_store,nothing,memory")
+
+(define_insn_reservation "mac_mem" 1
+ (and (eq_attr "pipe_model" "sh4")
+ (eq_attr "type" "mac_mem"))
+ "d_lock,nothing,memory")
+
+;; Load Store instructions.
+;; Group: LS
+;; Latency: 1
+;; Issue Rate: 1
+
+(define_insn_reservation "sh4_gp_fpul" 1
+ (and (eq_attr "pipe_model" "sh4")
+ (eq_attr "type" "gp_fpul"))
+ "issue+load_store")
+
+;; Load Store instructions.
+;; Group: LS
+;; Latency: 3
+;; Issue Rate: 1
+
+(define_insn_reservation "sh4_fpul_gp" 3
+ (and (eq_attr "pipe_model" "sh4")
+ (eq_attr "type" "fpul_gp"))
+ "issue+load_store")
+
+;; Branch (BF,BF/S,BT,BT/S,BRA)
+;; Group: BR
+;; Latency when taken: 2 (or 1)
+;; Issue Rate: 1
+;; The latency is 1 when displacement is 0.
+;; We can't really do much with the latency, even if we could express it,
+;; but the pairing restrictions are useful to take into account.
+;; ??? If the branch is likely, we might want to fill the delay slot;
+;; if the branch is likely, but not very likely, should we pretend to use
+;; a resource that CO instructions use, to get a pairable delay slot insn?
+
+(define_insn_reservation "sh4_branch" 1
+ (and (eq_attr "pipe_model" "sh4")
+ (eq_attr "type" "cbranch,jump"))
+ "issue+pcr_addrcalc")
+
+;; Branch Far (JMP,RTS,BRAF)
+;; Group: CO
+;; Latency: 3
+;; Issue Rate: 2
+;; ??? Scheduling happens before branch shortening, and hence jmp and braf
+;; can't be distinguished from bra for the "jump" pattern.
+
+(define_insn_reservation "sh4_return" 3
+ (and (eq_attr "pipe_model" "sh4")
+ (eq_attr "type" "return,jump_ind"))
+ "d_lock*2")
+
+;; RTE
+;; Group: CO
+;; Latency: 5
+;; Issue Rate: 5
+;; this instruction can be executed in any of the pipelines
+;; and blocks the pipeline for next 4 stages.
+
+(define_insn_reservation "sh4_return_from_exp" 5
+ (and (eq_attr "pipe_model" "sh4")
+ (eq_attr "type" "rte"))
+ "d_lock*5")
+
+;; OCBP, OCBWB
+;; Group: CO
+;; Latency: 1-5
+;; Issue Rate: 1
+
+;; cwb is used for the sequence ocbwb @%0; extu.w %0,%2; or %1,%2; mov.l %0,@%2
+;; ocbwb on its own would be "d_lock,nothing,memory*5"
+(define_insn_reservation "ocbwb" 6
+ (and (eq_attr "pipe_model" "sh4")
+ (eq_attr "type" "cwb"))
+ "d_lock*2,(d_lock+memory)*3,issue+load_store+memory,memory*2")
+
+;; LDS to PR,JSR
+;; Group: CO
+;; Latency: 3
+;; Issue Rate: 2
+;; The SX stage is blocked for last 2 cycles.
+;; OTOH, the only time that has an effect for insns generated by the compiler
+;; is when lds to PR is followed by sts from PR - and that is highly unlikely -
+;; or when we are doing a function call - and we don't do inter-function
+;; scheduling. For the function call case, it's really best that we end with
+;; something that models an rts.
+
+(define_insn_reservation "sh4_lds_to_pr" 3
+ (and (eq_attr "pipe_model" "sh4")
+ (eq_attr "type" "prset") )
+ "d_lock*2")
+
+;; calls introduce a longisch delay that is likely to flush the pipelines
+;; of the caller's instructions. Ordinary functions tend to end with a
+;; load to restore a register (in the delay slot of rts), while sfuncs
+;; tend to end with an EX or MT insn. But that is not actually relevant,
+;; since there are no instructions that contend for memory access early.
+;; We could, of course, provide exact scheduling information for specific
+;; sfuncs, if that should prove useful.
+
+(define_insn_reservation "sh4_call" 16
+ (and (eq_attr "pipe_model" "sh4")
+ (eq_attr "type" "call,sfunc"))
+ "d_lock*16")
+
+;; LDS.L to PR
+;; Group: CO
+;; Latency: 3
+;; Issue Rate: 2
+;; The SX unit is blocked for last 2 cycles.
+
+(define_insn_reservation "ldsmem_to_pr" 3
+ (and (eq_attr "pipe_model" "sh4")
+ (eq_attr "type" "pload"))
+ "d_lock*2")
+
+;; STS from PR
+;; Group: CO
+;; Latency: 2
+;; Issue Rate: 2
+;; The SX unit in second and third cycles.
+
+(define_insn_reservation "sts_from_pr" 2
+ (and (eq_attr "pipe_model" "sh4")
+ (eq_attr "type" "prget"))
+ "d_lock*2")
+
+;; STS.L from PR
+;; Group: CO
+;; Latency: 2
+;; Issue Rate: 2
+
+(define_insn_reservation "sh4_prstore_mem" 2
+ (and (eq_attr "pipe_model" "sh4")
+ (eq_attr "type" "pstore"))
+ "d_lock*2,nothing,memory")
+
+;; LDS to FPSCR
+;; Group: CO
+;; Latency: 4
+;; Issue Rate: 1
+;; F1 is blocked for last three cycles.
+
+(define_insn_reservation "fpscr_load" 4
+ (and (eq_attr "pipe_model" "sh4")
+ (eq_attr "type" "gp_fpscr"))
+ "d_lock,nothing,F1*3")
+
+;; LDS.L to FPSCR
+;; Group: CO
+;; Latency: 1 / 4
+;; Latency to update Rn is 1 and latency to update FPSCR is 4
+;; Issue Rate: 1
+;; F1 is blocked for last three cycles.
+
+(define_insn_reservation "fpscr_load_mem" 4
+ (and (eq_attr "pipe_model" "sh4")
+ (eq_attr "type" "mem_fpscr"))
+ "d_lock,nothing,(F1+memory),F1*2")
+
+
+;; Fixed point multiplication (DMULS.L DMULU.L MUL.L MULS.W,MULU.W)
+;; Group: CO
+;; Latency: 4 / 4
+;; Issue Rate: 2
+
+(define_insn_reservation "multi" 4
+ (and (eq_attr "pipe_model" "sh4")
+ (eq_attr "type" "smpy,dmpy"))
+ "d_lock,(d_lock+f1_1),(f1_1|f1_2)*3,F2")
+
+;; Fixed STS from, and LDS to MACL / MACH
+;; Group: CO
+;; Latency: 3
+;; Issue Rate: 1
+
+(define_insn_reservation "sh4_mac_gp" 3
+ (and (eq_attr "pipe_model" "sh4")
+ (eq_attr "type" "mac_gp,gp_mac,mem_mac"))
+ "d_lock")
+
+
+;; Single precision floating point computation FCMP/EQ,
+;; FCMP/GT, FADD, FLOAT, FMAC, FMUL, FSUB, FTRC, FRCHG, FSCHG
+;; Group: FE
+;; Latency: 3/4
+;; Issue Rate: 1
+
+(define_insn_reservation "fp_arith" 3
+ (and (eq_attr "pipe_model" "sh4")
+ (eq_attr "type" "fp,fp_cmp"))
+ "issue,F01,F2")
+
+;; We don't model the resource usage of this exactly because that would
+;; introduce a bogus latency.
+(define_insn_reservation "sh4_fpscr_toggle" 1
+ (and (eq_attr "pipe_model" "sh4")
+ (eq_attr "type" "fpscr_toggle"))
+ "issue")
+
+(define_insn_reservation "fp_arith_ftrc" 3
+ (and (eq_attr "pipe_model" "sh4")
+ (eq_attr "type" "ftrc_s"))
+ "issue,F01,F2")
+
+(define_bypass 1 "fp_arith_ftrc" "sh4_fpul_gp")
+
+;; Single Precision FDIV/SQRT
+;; Group: FE
+;; Latency: 12/13 (FDIV); 11/12 (FSQRT)
+;; Issue Rate: 1
+;; We describe fdiv here; fsqrt is actually one cycle faster.
+
+(define_insn_reservation "fp_div" 12
+ (and (eq_attr "pipe_model" "sh4")
+ (eq_attr "type" "fdiv"))
+ "issue,F01+F3,F2+F3,F3*7,F1+F3,F2")
+
+;; Double Precision floating point computation
+;; (FCNVDS, FCNVSD, FLOAT, FTRC)
+;; Group: FE
+;; Latency: (3,4)/5
+;; Issue Rate: 1
+
+(define_insn_reservation "dp_float" 4
+ (and (eq_attr "pipe_model" "sh4")
+ (eq_attr "type" "dfp_conv"))
+ "issue,F01,F1+F2,F2")
+
+;; Double-precision floating-point (FADD,FMUL,FSUB)
+;; Group: FE
+;; Latency: (7,8)/9
+;; Issue Rate: 1
+
+(define_insn_reservation "fp_double_arith" 8
+ (and (eq_attr "pipe_model" "sh4")
+ (eq_attr "type" "dfp_arith,dfp_mul"))
+ "issue,F01,F1+F2,fpu*4,F2")
+
+;; Double-precision FCMP (FCMP/EQ,FCMP/GT)
+;; Group: CO
+;; Latency: 3/5
+;; Issue Rate: 2
+
+(define_insn_reservation "fp_double_cmp" 3
+ (and (eq_attr "pipe_model" "sh4")
+ (eq_attr "type" "dfp_cmp"))
+ "d_lock,(d_lock+F01),F1+F2,F2")
+
+;; Double precision FDIV/SQRT
+;; Group: FE
+;; Latency: (24,25)/26
+;; Issue Rate: 1
+
+(define_insn_reservation "dp_div" 25
+ (and (eq_attr "pipe_model" "sh4")
+ (eq_attr "type" "dfdiv"))
+ "issue,F01+F3,F1+F2+F3,F2+F3,F3*16,F1+F3,(fpu+F3)*2,F2")
+
+
+;; Use the branch-not-taken case to model arith3 insns. For the branch taken
+;; case, we'd get a d_lock instead of issue at the end.
+(define_insn_reservation "arith3" 3
+ (and (eq_attr "pipe_model" "sh4")
+ (eq_attr "type" "arith3"))
+ "issue,d_lock+pcr_addrcalc,issue")
+
+;; arith3b insns schedule the same no matter if the branch is taken or not.
+(define_insn_reservation "arith3b" 2
+ (and (eq_attr "pipe_model" "sh4")
+ (eq_attr "type" "arith3"))
+ "issue,d_lock+pcr_addrcalc")