aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.6/gcc/graphite-sese-to-poly.c
diff options
context:
space:
mode:
authorJing Yu <jingyu@google.com>2011-12-19 16:56:54 -0800
committerJing Yu <jingyu@google.com>2011-12-19 16:56:54 -0800
commit40d7cd0fd78fe2004e2a53c4618c148339b02733 (patch)
tree5874557a6c86a1f564a03e5f28b266e31bc3759c /gcc-4.6/gcc/graphite-sese-to-poly.c
parentfe2afdf3f3701489c05d2a7509752d6f0c7616f7 (diff)
downloadtoolchain_gcc-40d7cd0fd78fe2004e2a53c4618c148339b02733.tar.gz
toolchain_gcc-40d7cd0fd78fe2004e2a53c4618c148339b02733.tar.bz2
toolchain_gcc-40d7cd0fd78fe2004e2a53c4618c148339b02733.zip
Add gcc-4.6. Synced to @180989
Change-Id: Ie3676586e1d8e3c8cd9f07d022f450d05fa08439 svn://gcc.gnu.org/svn/gcc/branches/google/gcc-4_6-mobile
Diffstat (limited to 'gcc-4.6/gcc/graphite-sese-to-poly.c')
-rw-r--r--gcc-4.6/gcc/graphite-sese-to-poly.c3310
1 files changed, 3310 insertions, 0 deletions
diff --git a/gcc-4.6/gcc/graphite-sese-to-poly.c b/gcc-4.6/gcc/graphite-sese-to-poly.c
new file mode 100644
index 000000000..064ded3e2
--- /dev/null
+++ b/gcc-4.6/gcc/graphite-sese-to-poly.c
@@ -0,0 +1,3310 @@
+/* Conversion of SESE regions to Polyhedra.
+ Copyright (C) 2009, 2010, 2011 Free Software Foundation, Inc.
+ Contributed by Sebastian Pop <sebastian.pop@amd.com>.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 3, or (at your option)
+any later version.
+
+GCC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tree-flow.h"
+#include "tree-dump.h"
+#include "cfgloop.h"
+#include "tree-chrec.h"
+#include "tree-data-ref.h"
+#include "tree-scalar-evolution.h"
+#include "domwalk.h"
+#include "sese.h"
+
+#ifdef HAVE_cloog
+#include "ppl_c.h"
+#include "graphite-ppl.h"
+#include "graphite-poly.h"
+#include "graphite-sese-to-poly.h"
+
+/* Returns the index of the PHI argument defined in the outermost
+ loop. */
+
+static size_t
+phi_arg_in_outermost_loop (gimple phi)
+{
+ loop_p loop = gimple_bb (phi)->loop_father;
+ size_t i, res = 0;
+
+ for (i = 0; i < gimple_phi_num_args (phi); i++)
+ if (!flow_bb_inside_loop_p (loop, gimple_phi_arg_edge (phi, i)->src))
+ {
+ loop = gimple_phi_arg_edge (phi, i)->src->loop_father;
+ res = i;
+ }
+
+ return res;
+}
+
+/* Removes a simple copy phi node "RES = phi (INIT, RES)" at position
+ PSI by inserting on the loop ENTRY edge assignment "RES = INIT". */
+
+static void
+remove_simple_copy_phi (gimple_stmt_iterator *psi)
+{
+ gimple phi = gsi_stmt (*psi);
+ tree res = gimple_phi_result (phi);
+ size_t entry = phi_arg_in_outermost_loop (phi);
+ tree init = gimple_phi_arg_def (phi, entry);
+ gimple stmt = gimple_build_assign (res, init);
+ edge e = gimple_phi_arg_edge (phi, entry);
+
+ remove_phi_node (psi, false);
+ gsi_insert_on_edge_immediate (e, stmt);
+ SSA_NAME_DEF_STMT (res) = stmt;
+}
+
+/* Removes an invariant phi node at position PSI by inserting on the
+ loop ENTRY edge the assignment RES = INIT. */
+
+static void
+remove_invariant_phi (sese region, gimple_stmt_iterator *psi)
+{
+ gimple phi = gsi_stmt (*psi);
+ loop_p loop = loop_containing_stmt (phi);
+ tree res = gimple_phi_result (phi);
+ tree scev = scalar_evolution_in_region (region, loop, res);
+ size_t entry = phi_arg_in_outermost_loop (phi);
+ edge e = gimple_phi_arg_edge (phi, entry);
+ tree var;
+ gimple stmt;
+ gimple_seq stmts;
+ gimple_stmt_iterator gsi;
+
+ if (tree_contains_chrecs (scev, NULL))
+ scev = gimple_phi_arg_def (phi, entry);
+
+ var = force_gimple_operand (scev, &stmts, true, NULL_TREE);
+ stmt = gimple_build_assign (res, var);
+ remove_phi_node (psi, false);
+
+ if (!stmts)
+ stmts = gimple_seq_alloc ();
+
+ gsi = gsi_last (stmts);
+ gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
+ gsi_insert_seq_on_edge (e, stmts);
+ gsi_commit_edge_inserts ();
+ SSA_NAME_DEF_STMT (res) = stmt;
+}
+
+/* Returns true when the phi node at PSI is of the form "a = phi (a, x)". */
+
+static inline bool
+simple_copy_phi_p (gimple phi)
+{
+ tree res;
+
+ if (gimple_phi_num_args (phi) != 2)
+ return false;
+
+ res = gimple_phi_result (phi);
+ return (res == gimple_phi_arg_def (phi, 0)
+ || res == gimple_phi_arg_def (phi, 1));
+}
+
+/* Returns true when the phi node at position PSI is a reduction phi
+ node in REGION. Otherwise moves the pointer PSI to the next phi to
+ be considered. */
+
+static bool
+reduction_phi_p (sese region, gimple_stmt_iterator *psi)
+{
+ loop_p loop;
+ gimple phi = gsi_stmt (*psi);
+ tree res = gimple_phi_result (phi);
+
+ loop = loop_containing_stmt (phi);
+
+ if (simple_copy_phi_p (phi))
+ {
+ /* PRE introduces phi nodes like these, for an example,
+ see id-5.f in the fortran graphite testsuite:
+
+ # prephitmp.85_265 = PHI <prephitmp.85_258(33), prephitmp.85_265(18)>
+ */
+ remove_simple_copy_phi (psi);
+ return false;
+ }
+
+ if (scev_analyzable_p (res, region))
+ {
+ tree scev = scalar_evolution_in_region (region, loop, res);
+
+ if (evolution_function_is_invariant_p (scev, loop->num))
+ remove_invariant_phi (region, psi);
+ else
+ gsi_next (psi);
+
+ return false;
+ }
+
+ /* All the other cases are considered reductions. */
+ return true;
+}
+
+/* Store the GRAPHITE representation of BB. */
+
+static gimple_bb_p
+new_gimple_bb (basic_block bb, VEC (data_reference_p, heap) *drs)
+{
+ struct gimple_bb *gbb;
+
+ gbb = XNEW (struct gimple_bb);
+ bb->aux = gbb;
+ GBB_BB (gbb) = bb;
+ GBB_DATA_REFS (gbb) = drs;
+ GBB_CONDITIONS (gbb) = NULL;
+ GBB_CONDITION_CASES (gbb) = NULL;
+
+ return gbb;
+}
+
+static void
+free_data_refs_aux (VEC (data_reference_p, heap) *datarefs)
+{
+ unsigned int i;
+ struct data_reference *dr;
+
+ FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
+ if (dr->aux)
+ {
+ base_alias_pair *bap = (base_alias_pair *)(dr->aux);
+
+ if (bap->alias_set)
+ free (bap->alias_set);
+
+ free (bap);
+ dr->aux = NULL;
+ }
+}
+/* Frees GBB. */
+
+static void
+free_gimple_bb (struct gimple_bb *gbb)
+{
+ free_data_refs_aux (GBB_DATA_REFS (gbb));
+ free_data_refs (GBB_DATA_REFS (gbb));
+
+ VEC_free (gimple, heap, GBB_CONDITIONS (gbb));
+ VEC_free (gimple, heap, GBB_CONDITION_CASES (gbb));
+ GBB_BB (gbb)->aux = 0;
+ XDELETE (gbb);
+}
+
+/* Deletes all gimple bbs in SCOP. */
+
+static void
+remove_gbbs_in_scop (scop_p scop)
+{
+ int i;
+ poly_bb_p pbb;
+
+ FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
+ free_gimple_bb (PBB_BLACK_BOX (pbb));
+}
+
+/* Deletes all scops in SCOPS. */
+
+void
+free_scops (VEC (scop_p, heap) *scops)
+{
+ int i;
+ scop_p scop;
+
+ FOR_EACH_VEC_ELT (scop_p, scops, i, scop)
+ {
+ remove_gbbs_in_scop (scop);
+ free_sese (SCOP_REGION (scop));
+ free_scop (scop);
+ }
+
+ VEC_free (scop_p, heap, scops);
+}
+
+/* Same as outermost_loop_in_sese, returns the outermost loop
+ containing BB in REGION, but makes sure that the returned loop
+ belongs to the REGION, and so this returns the first loop in the
+ REGION when the loop containing BB does not belong to REGION. */
+
+static loop_p
+outermost_loop_in_sese_1 (sese region, basic_block bb)
+{
+ loop_p nest = outermost_loop_in_sese (region, bb);
+
+ if (loop_in_sese_p (nest, region))
+ return nest;
+
+ /* When the basic block BB does not belong to a loop in the region,
+ return the first loop in the region. */
+ nest = nest->inner;
+ while (nest)
+ if (loop_in_sese_p (nest, region))
+ break;
+ else
+ nest = nest->next;
+
+ gcc_assert (nest);
+ return nest;
+}
+
+/* Generates a polyhedral black box only if the bb contains interesting
+ information. */
+
+static gimple_bb_p
+try_generate_gimple_bb (scop_p scop, basic_block bb)
+{
+ VEC (data_reference_p, heap) *drs = VEC_alloc (data_reference_p, heap, 5);
+ sese region = SCOP_REGION (scop);
+ loop_p nest = outermost_loop_in_sese_1 (region, bb);
+ gimple_stmt_iterator gsi;
+
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple stmt = gsi_stmt (gsi);
+ loop_p loop;
+
+ if (is_gimple_debug (stmt))
+ continue;
+
+ loop = loop_containing_stmt (stmt);
+ if (!loop_in_sese_p (loop, region))
+ loop = nest;
+
+ graphite_find_data_references_in_stmt (nest, loop, stmt, &drs);
+ }
+
+ return new_gimple_bb (bb, drs);
+}
+
+/* Returns true if all predecessors of BB, that are not dominated by BB, are
+ marked in MAP. The predecessors dominated by BB are loop latches and will
+ be handled after BB. */
+
+static bool
+all_non_dominated_preds_marked_p (basic_block bb, sbitmap map)
+{
+ edge e;
+ edge_iterator ei;
+
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ if (!TEST_BIT (map, e->src->index)
+ && !dominated_by_p (CDI_DOMINATORS, e->src, bb))
+ return false;
+
+ return true;
+}
+
+/* Compare the depth of two basic_block's P1 and P2. */
+
+static int
+compare_bb_depths (const void *p1, const void *p2)
+{
+ const_basic_block const bb1 = *(const_basic_block const*)p1;
+ const_basic_block const bb2 = *(const_basic_block const*)p2;
+ int d1 = loop_depth (bb1->loop_father);
+ int d2 = loop_depth (bb2->loop_father);
+
+ if (d1 < d2)
+ return 1;
+
+ if (d1 > d2)
+ return -1;
+
+ return 0;
+}
+
+/* Sort the basic blocks from DOM such that the first are the ones at
+ a deepest loop level. */
+
+static void
+graphite_sort_dominated_info (VEC (basic_block, heap) *dom)
+{
+ VEC_qsort (basic_block, dom, compare_bb_depths);
+}
+
+/* Recursive helper function for build_scops_bbs. */
+
+static void
+build_scop_bbs_1 (scop_p scop, sbitmap visited, basic_block bb)
+{
+ sese region = SCOP_REGION (scop);
+ VEC (basic_block, heap) *dom;
+ poly_bb_p pbb;
+
+ if (TEST_BIT (visited, bb->index)
+ || !bb_in_sese_p (bb, region))
+ return;
+
+ pbb = new_poly_bb (scop, try_generate_gimple_bb (scop, bb));
+ VEC_safe_push (poly_bb_p, heap, SCOP_BBS (scop), pbb);
+ SET_BIT (visited, bb->index);
+
+ dom = get_dominated_by (CDI_DOMINATORS, bb);
+
+ if (dom == NULL)
+ return;
+
+ graphite_sort_dominated_info (dom);
+
+ while (!VEC_empty (basic_block, dom))
+ {
+ int i;
+ basic_block dom_bb;
+
+ FOR_EACH_VEC_ELT (basic_block, dom, i, dom_bb)
+ if (all_non_dominated_preds_marked_p (dom_bb, visited))
+ {
+ build_scop_bbs_1 (scop, visited, dom_bb);
+ VEC_unordered_remove (basic_block, dom, i);
+ break;
+ }
+ }
+
+ VEC_free (basic_block, heap, dom);
+}
+
+/* Gather the basic blocks belonging to the SCOP. */
+
+static void
+build_scop_bbs (scop_p scop)
+{
+ sbitmap visited = sbitmap_alloc (last_basic_block);
+ sese region = SCOP_REGION (scop);
+
+ sbitmap_zero (visited);
+ build_scop_bbs_1 (scop, visited, SESE_ENTRY_BB (region));
+ sbitmap_free (visited);
+}
+
+/* Converts the STATIC_SCHEDULE of PBB into a scattering polyhedron.
+ We generate SCATTERING_DIMENSIONS scattering dimensions.
+
+ CLooG 0.15.0 and previous versions require, that all
+ scattering functions of one CloogProgram have the same number of
+ scattering dimensions, therefore we allow to specify it. This
+ should be removed in future versions of CLooG.
+
+ The scattering polyhedron consists of these dimensions: scattering,
+ loop_iterators, parameters.
+
+ Example:
+
+ | scattering_dimensions = 5
+ | used_scattering_dimensions = 3
+ | nb_iterators = 1
+ | scop_nb_params = 2
+ |
+ | Schedule:
+ | i
+ | 4 5
+ |
+ | Scattering polyhedron:
+ |
+ | scattering: {s1, s2, s3, s4, s5}
+ | loop_iterators: {i}
+ | parameters: {p1, p2}
+ |
+ | s1 s2 s3 s4 s5 i p1 p2 1
+ | 1 0 0 0 0 0 0 0 -4 = 0
+ | 0 1 0 0 0 -1 0 0 0 = 0
+ | 0 0 1 0 0 0 0 0 -5 = 0 */
+
+static void
+build_pbb_scattering_polyhedrons (ppl_Linear_Expression_t static_schedule,
+ poly_bb_p pbb, int scattering_dimensions)
+{
+ int i;
+ scop_p scop = PBB_SCOP (pbb);
+ int nb_iterators = pbb_dim_iter_domain (pbb);
+ int used_scattering_dimensions = nb_iterators * 2 + 1;
+ int nb_params = scop_nb_params (scop);
+ ppl_Coefficient_t c;
+ ppl_dimension_type dim = scattering_dimensions + nb_iterators + nb_params;
+ mpz_t v;
+
+ gcc_assert (scattering_dimensions >= used_scattering_dimensions);
+
+ mpz_init (v);
+ ppl_new_Coefficient (&c);
+ PBB_TRANSFORMED (pbb) = poly_scattering_new ();
+ ppl_new_C_Polyhedron_from_space_dimension
+ (&PBB_TRANSFORMED_SCATTERING (pbb), dim, 0);
+
+ PBB_NB_SCATTERING_TRANSFORM (pbb) = scattering_dimensions;
+
+ for (i = 0; i < scattering_dimensions; i++)
+ {
+ ppl_Constraint_t cstr;
+ ppl_Linear_Expression_t expr;
+
+ ppl_new_Linear_Expression_with_dimension (&expr, dim);
+ mpz_set_si (v, 1);
+ ppl_assign_Coefficient_from_mpz_t (c, v);
+ ppl_Linear_Expression_add_to_coefficient (expr, i, c);
+
+ /* Textual order inside this loop. */
+ if ((i % 2) == 0)
+ {
+ ppl_Linear_Expression_coefficient (static_schedule, i / 2, c);
+ ppl_Coefficient_to_mpz_t (c, v);
+ mpz_neg (v, v);
+ ppl_assign_Coefficient_from_mpz_t (c, v);
+ ppl_Linear_Expression_add_to_inhomogeneous (expr, c);
+ }
+
+ /* Iterations of this loop. */
+ else /* if ((i % 2) == 1) */
+ {
+ int loop = (i - 1) / 2;
+
+ mpz_set_si (v, -1);
+ ppl_assign_Coefficient_from_mpz_t (c, v);
+ ppl_Linear_Expression_add_to_coefficient
+ (expr, scattering_dimensions + loop, c);
+ }
+
+ ppl_new_Constraint (&cstr, expr, PPL_CONSTRAINT_TYPE_EQUAL);
+ ppl_Polyhedron_add_constraint (PBB_TRANSFORMED_SCATTERING (pbb), cstr);
+ ppl_delete_Linear_Expression (expr);
+ ppl_delete_Constraint (cstr);
+ }
+
+ mpz_clear (v);
+ ppl_delete_Coefficient (c);
+
+ PBB_ORIGINAL (pbb) = poly_scattering_copy (PBB_TRANSFORMED (pbb));
+}
+
+/* Build for BB the static schedule.
+
+ The static schedule is a Dewey numbering of the abstract syntax
+ tree: http://en.wikipedia.org/wiki/Dewey_Decimal_Classification
+
+ The following example informally defines the static schedule:
+
+ A
+ for (i: ...)
+ {
+ for (j: ...)
+ {
+ B
+ C
+ }
+
+ for (k: ...)
+ {
+ D
+ E
+ }
+ }
+ F
+
+ Static schedules for A to F:
+
+ DEPTH
+ 0 1 2
+ A 0
+ B 1 0 0
+ C 1 0 1
+ D 1 1 0
+ E 1 1 1
+ F 2
+*/
+
+static void
+build_scop_scattering (scop_p scop)
+{
+ int i;
+ poly_bb_p pbb;
+ gimple_bb_p previous_gbb = NULL;
+ ppl_Linear_Expression_t static_schedule;
+ ppl_Coefficient_t c;
+ mpz_t v;
+
+ mpz_init (v);
+ ppl_new_Coefficient (&c);
+ ppl_new_Linear_Expression (&static_schedule);
+
+ /* We have to start schedules at 0 on the first component and
+ because we cannot compare_prefix_loops against a previous loop,
+ prefix will be equal to zero, and that index will be
+ incremented before copying. */
+ mpz_set_si (v, -1);
+ ppl_assign_Coefficient_from_mpz_t (c, v);
+ ppl_Linear_Expression_add_to_coefficient (static_schedule, 0, c);
+
+ FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
+ {
+ gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
+ ppl_Linear_Expression_t common;
+ int prefix;
+ int nb_scat_dims = pbb_dim_iter_domain (pbb) * 2 + 1;
+
+ if (previous_gbb)
+ prefix = nb_common_loops (SCOP_REGION (scop), previous_gbb, gbb);
+ else
+ prefix = 0;
+
+ previous_gbb = gbb;
+ ppl_new_Linear_Expression_with_dimension (&common, prefix + 1);
+ ppl_assign_Linear_Expression_from_Linear_Expression (common,
+ static_schedule);
+
+ mpz_set_si (v, 1);
+ ppl_assign_Coefficient_from_mpz_t (c, v);
+ ppl_Linear_Expression_add_to_coefficient (common, prefix, c);
+ ppl_assign_Linear_Expression_from_Linear_Expression (static_schedule,
+ common);
+
+ build_pbb_scattering_polyhedrons (common, pbb, nb_scat_dims);
+
+ ppl_delete_Linear_Expression (common);
+ }
+
+ mpz_clear (v);
+ ppl_delete_Coefficient (c);
+ ppl_delete_Linear_Expression (static_schedule);
+}
+
+/* Add the value K to the dimension D of the linear expression EXPR. */
+
+static void
+add_value_to_dim (ppl_dimension_type d, ppl_Linear_Expression_t expr,
+ mpz_t k)
+{
+ mpz_t val;
+ ppl_Coefficient_t coef;
+
+ ppl_new_Coefficient (&coef);
+ ppl_Linear_Expression_coefficient (expr, d, coef);
+ mpz_init (val);
+ ppl_Coefficient_to_mpz_t (coef, val);
+
+ mpz_add (val, val, k);
+
+ ppl_assign_Coefficient_from_mpz_t (coef, val);
+ ppl_Linear_Expression_add_to_coefficient (expr, d, coef);
+ mpz_clear (val);
+ ppl_delete_Coefficient (coef);
+}
+
+/* In the context of scop S, scan E, the right hand side of a scalar
+ evolution function in loop VAR, and translate it to a linear
+ expression EXPR. */
+
+static void
+scan_tree_for_params_right_scev (sese s, tree e, int var,
+ ppl_Linear_Expression_t expr)
+{
+ if (expr)
+ {
+ loop_p loop = get_loop (var);
+ ppl_dimension_type l = sese_loop_depth (s, loop) - 1;
+ mpz_t val;
+
+ /* Scalar evolutions should happen in the sese region. */
+ gcc_assert (sese_loop_depth (s, loop) > 0);
+
+ /* We can not deal with parametric strides like:
+
+ | p = parameter;
+ |
+ | for i:
+ | a [i * p] = ... */
+ gcc_assert (TREE_CODE (e) == INTEGER_CST);
+
+ mpz_init (val);
+ tree_int_to_gmp (e, val);
+ add_value_to_dim (l, expr, val);
+ mpz_clear (val);
+ }
+}
+
+/* Scan the integer constant CST, and add it to the inhomogeneous part of the
+ linear expression EXPR. K is the multiplier of the constant. */
+
+static void
+scan_tree_for_params_int (tree cst, ppl_Linear_Expression_t expr, mpz_t k)
+{
+ mpz_t val;
+ ppl_Coefficient_t coef;
+ tree type = TREE_TYPE (cst);
+
+ mpz_init (val);
+
+ /* Necessary to not get "-1 = 2^n - 1". */
+ mpz_set_double_int (val, double_int_sext (tree_to_double_int (cst),
+ TYPE_PRECISION (type)), false);
+
+ mpz_mul (val, val, k);
+ ppl_new_Coefficient (&coef);
+ ppl_assign_Coefficient_from_mpz_t (coef, val);
+ ppl_Linear_Expression_add_to_inhomogeneous (expr, coef);
+ mpz_clear (val);
+ ppl_delete_Coefficient (coef);
+}
+
+/* When parameter NAME is in REGION, returns its index in SESE_PARAMS.
+ Otherwise returns -1. */
+
+static inline int
+parameter_index_in_region_1 (tree name, sese region)
+{
+ int i;
+ tree p;
+
+ gcc_assert (TREE_CODE (name) == SSA_NAME);
+
+ FOR_EACH_VEC_ELT (tree, SESE_PARAMS (region), i, p)
+ if (p == name)
+ return i;
+
+ return -1;
+}
+
+/* When the parameter NAME is in REGION, returns its index in
+ SESE_PARAMS. Otherwise this function inserts NAME in SESE_PARAMS
+ and returns the index of NAME. */
+
+static int
+parameter_index_in_region (tree name, sese region)
+{
+ int i;
+
+ gcc_assert (TREE_CODE (name) == SSA_NAME);
+
+ i = parameter_index_in_region_1 (name, region);
+ if (i != -1)
+ return i;
+
+ gcc_assert (SESE_ADD_PARAMS (region));
+
+ i = VEC_length (tree, SESE_PARAMS (region));
+ VEC_safe_push (tree, heap, SESE_PARAMS (region), name);
+ return i;
+}
+
+/* In the context of sese S, scan the expression E and translate it to
+ a linear expression C. When parsing a symbolic multiplication, K
+ represents the constant multiplier of an expression containing
+ parameters. */
+
+static void
+scan_tree_for_params (sese s, tree e, ppl_Linear_Expression_t c,
+ mpz_t k)
+{
+ if (e == chrec_dont_know)
+ return;
+
+ switch (TREE_CODE (e))
+ {
+ case POLYNOMIAL_CHREC:
+ scan_tree_for_params_right_scev (s, CHREC_RIGHT (e),
+ CHREC_VARIABLE (e), c);
+ scan_tree_for_params (s, CHREC_LEFT (e), c, k);
+ break;
+
+ case MULT_EXPR:
+ if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
+ {
+ if (c)
+ {
+ mpz_t val;
+ gcc_assert (host_integerp (TREE_OPERAND (e, 1), 0));
+ mpz_init (val);
+ tree_int_to_gmp (TREE_OPERAND (e, 1), val);
+ mpz_mul (val, val, k);
+ scan_tree_for_params (s, TREE_OPERAND (e, 0), c, val);
+ mpz_clear (val);
+ }
+ else
+ scan_tree_for_params (s, TREE_OPERAND (e, 0), c, k);
+ }
+ else
+ {
+ if (c)
+ {
+ mpz_t val;
+ gcc_assert (host_integerp (TREE_OPERAND (e, 0), 0));
+ mpz_init (val);
+ tree_int_to_gmp (TREE_OPERAND (e, 0), val);
+ mpz_mul (val, val, k);
+ scan_tree_for_params (s, TREE_OPERAND (e, 1), c, val);
+ mpz_clear (val);
+ }
+ else
+ scan_tree_for_params (s, TREE_OPERAND (e, 1), c, k);
+ }
+ break;
+
+ case PLUS_EXPR:
+ case POINTER_PLUS_EXPR:
+ scan_tree_for_params (s, TREE_OPERAND (e, 0), c, k);
+ scan_tree_for_params (s, TREE_OPERAND (e, 1), c, k);
+ break;
+
+ case MINUS_EXPR:
+ {
+ ppl_Linear_Expression_t tmp_expr = NULL;
+
+ if (c)
+ {
+ ppl_dimension_type dim;
+ ppl_Linear_Expression_space_dimension (c, &dim);
+ ppl_new_Linear_Expression_with_dimension (&tmp_expr, dim);
+ }
+
+ scan_tree_for_params (s, TREE_OPERAND (e, 0), c, k);
+ scan_tree_for_params (s, TREE_OPERAND (e, 1), tmp_expr, k);
+
+ if (c)
+ {
+ ppl_subtract_Linear_Expression_from_Linear_Expression (c,
+ tmp_expr);
+ ppl_delete_Linear_Expression (tmp_expr);
+ }
+
+ break;
+ }
+
+ case NEGATE_EXPR:
+ {
+ ppl_Linear_Expression_t tmp_expr = NULL;
+
+ if (c)
+ {
+ ppl_dimension_type dim;
+ ppl_Linear_Expression_space_dimension (c, &dim);
+ ppl_new_Linear_Expression_with_dimension (&tmp_expr, dim);
+ }
+
+ scan_tree_for_params (s, TREE_OPERAND (e, 0), tmp_expr, k);
+
+ if (c)
+ {
+ ppl_subtract_Linear_Expression_from_Linear_Expression (c,
+ tmp_expr);
+ ppl_delete_Linear_Expression (tmp_expr);
+ }
+
+ break;
+ }
+
+ case BIT_NOT_EXPR:
+ {
+ ppl_Linear_Expression_t tmp_expr = NULL;
+
+ if (c)
+ {
+ ppl_dimension_type dim;
+ ppl_Linear_Expression_space_dimension (c, &dim);
+ ppl_new_Linear_Expression_with_dimension (&tmp_expr, dim);
+ }
+
+ scan_tree_for_params (s, TREE_OPERAND (e, 0), tmp_expr, k);
+
+ if (c)
+ {
+ ppl_Coefficient_t coef;
+ mpz_t minus_one;
+
+ ppl_subtract_Linear_Expression_from_Linear_Expression (c,
+ tmp_expr);
+ ppl_delete_Linear_Expression (tmp_expr);
+ mpz_init (minus_one);
+ mpz_set_si (minus_one, -1);
+ ppl_new_Coefficient_from_mpz_t (&coef, minus_one);
+ ppl_Linear_Expression_add_to_inhomogeneous (c, coef);
+ mpz_clear (minus_one);
+ ppl_delete_Coefficient (coef);
+ }
+
+ break;
+ }
+
+ case SSA_NAME:
+ {
+ ppl_dimension_type p = parameter_index_in_region (e, s);
+
+ if (c)
+ {
+ ppl_dimension_type dim;
+ ppl_Linear_Expression_space_dimension (c, &dim);
+ p += dim - sese_nb_params (s);
+ add_value_to_dim (p, c, k);
+ }
+ break;
+ }
+
+ case INTEGER_CST:
+ if (c)
+ scan_tree_for_params_int (e, c, k);
+ break;
+
+ CASE_CONVERT:
+ case NON_LVALUE_EXPR:
+ scan_tree_for_params (s, TREE_OPERAND (e, 0), c, k);
+ break;
+
+ case ADDR_EXPR:
+ break;
+
+ default:
+ gcc_unreachable ();
+ break;
+ }
+}
+
+/* Find parameters with respect to REGION in BB. We are looking in memory
+ access functions, conditions and loop bounds. */
+
+static void
+find_params_in_bb (sese region, gimple_bb_p gbb)
+{
+ int i;
+ unsigned j;
+ data_reference_p dr;
+ gimple stmt;
+ loop_p loop = GBB_BB (gbb)->loop_father;
+ mpz_t one;
+
+ mpz_init (one);
+ mpz_set_si (one, 1);
+
+ /* Find parameters in the access functions of data references. */
+ FOR_EACH_VEC_ELT (data_reference_p, GBB_DATA_REFS (gbb), i, dr)
+ for (j = 0; j < DR_NUM_DIMENSIONS (dr); j++)
+ scan_tree_for_params (region, DR_ACCESS_FN (dr, j), NULL, one);
+
+ /* Find parameters in conditional statements. */
+ FOR_EACH_VEC_ELT (gimple, GBB_CONDITIONS (gbb), i, stmt)
+ {
+ tree lhs = scalar_evolution_in_region (region, loop,
+ gimple_cond_lhs (stmt));
+ tree rhs = scalar_evolution_in_region (region, loop,
+ gimple_cond_rhs (stmt));
+
+ scan_tree_for_params (region, lhs, NULL, one);
+ scan_tree_for_params (region, rhs, NULL, one);
+ }
+
+ mpz_clear (one);
+}
+
+/* Record the parameters used in the SCOP. A variable is a parameter
+ in a scop if it does not vary during the execution of that scop. */
+
+static void
+find_scop_parameters (scop_p scop)
+{
+ poly_bb_p pbb;
+ unsigned i;
+ sese region = SCOP_REGION (scop);
+ struct loop *loop;
+ mpz_t one;
+
+ mpz_init (one);
+ mpz_set_si (one, 1);
+
+ /* Find the parameters used in the loop bounds. */
+ FOR_EACH_VEC_ELT (loop_p, SESE_LOOP_NEST (region), i, loop)
+ {
+ tree nb_iters = number_of_latch_executions (loop);
+
+ if (!chrec_contains_symbols (nb_iters))
+ continue;
+
+ nb_iters = scalar_evolution_in_region (region, loop, nb_iters);
+ scan_tree_for_params (region, nb_iters, NULL, one);
+ }
+
+ mpz_clear (one);
+
+ /* Find the parameters used in data accesses. */
+ FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
+ find_params_in_bb (region, PBB_BLACK_BOX (pbb));
+
+ scop_set_nb_params (scop, sese_nb_params (region));
+ SESE_ADD_PARAMS (region) = false;
+
+ ppl_new_Pointset_Powerset_C_Polyhedron_from_space_dimension
+ (&SCOP_CONTEXT (scop), scop_nb_params (scop), 0);
+}
+
+/* Insert in the SCOP context constraints from the estimation of the
+ number of iterations. UB_EXPR is a linear expression describing
+ the number of iterations in a loop. This expression is bounded by
+ the estimation NIT. */
+
+static void
+add_upper_bounds_from_estimated_nit (scop_p scop, double_int nit,
+ ppl_dimension_type dim,
+ ppl_Linear_Expression_t ub_expr)
+{
+ mpz_t val;
+ ppl_Linear_Expression_t nb_iters_le;
+ ppl_Polyhedron_t pol;
+ ppl_Coefficient_t coef;
+ ppl_Constraint_t ub;
+
+ ppl_new_C_Polyhedron_from_space_dimension (&pol, dim, 0);
+ ppl_new_Linear_Expression_from_Linear_Expression (&nb_iters_le,
+ ub_expr);
+
+ /* Construct the negated number of last iteration in VAL. */
+ mpz_init (val);
+ mpz_set_double_int (val, nit, false);
+ mpz_sub_ui (val, val, 1);
+ mpz_neg (val, val);
+
+ /* NB_ITERS_LE holds the number of last iteration in
+ parametrical form. Subtract estimated number of last
+ iteration and assert that result is not positive. */
+ ppl_new_Coefficient_from_mpz_t (&coef, val);
+ ppl_Linear_Expression_add_to_inhomogeneous (nb_iters_le, coef);
+ ppl_delete_Coefficient (coef);
+ ppl_new_Constraint (&ub, nb_iters_le,
+ PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL);
+ ppl_Polyhedron_add_constraint (pol, ub);
+
+ /* Remove all but last GDIM dimensions from POL to obtain
+ only the constraints on the parameters. */
+ {
+ graphite_dim_t gdim = scop_nb_params (scop);
+ ppl_dimension_type *dims = XNEWVEC (ppl_dimension_type, dim - gdim);
+ graphite_dim_t i;
+
+ for (i = 0; i < dim - gdim; i++)
+ dims[i] = i;
+
+ ppl_Polyhedron_remove_space_dimensions (pol, dims, dim - gdim);
+ XDELETEVEC (dims);
+ }
+
+ /* Add the constraints on the parameters to the SCoP context. */
+ {
+ ppl_Pointset_Powerset_C_Polyhedron_t constraints_ps;
+
+ ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
+ (&constraints_ps, pol);
+ ppl_Pointset_Powerset_C_Polyhedron_intersection_assign
+ (SCOP_CONTEXT (scop), constraints_ps);
+ ppl_delete_Pointset_Powerset_C_Polyhedron (constraints_ps);
+ }
+
+ ppl_delete_Polyhedron (pol);
+ ppl_delete_Linear_Expression (nb_iters_le);
+ ppl_delete_Constraint (ub);
+ mpz_clear (val);
+}
+
+/* Builds the constraint polyhedra for LOOP in SCOP. OUTER_PH gives
+ the constraints for the surrounding loops. */
+
+static void
+build_loop_iteration_domains (scop_p scop, struct loop *loop,
+ ppl_Polyhedron_t outer_ph, int nb,
+ ppl_Pointset_Powerset_C_Polyhedron_t *domains)
+{
+ int i;
+ ppl_Polyhedron_t ph;
+ tree nb_iters = number_of_latch_executions (loop);
+ ppl_dimension_type dim = nb + 1 + scop_nb_params (scop);
+ sese region = SCOP_REGION (scop);
+
+ {
+ ppl_const_Constraint_System_t pcs;
+ ppl_dimension_type *map
+ = (ppl_dimension_type *) XNEWVEC (ppl_dimension_type, dim);
+
+ ppl_new_C_Polyhedron_from_space_dimension (&ph, dim, 0);
+ ppl_Polyhedron_get_constraints (outer_ph, &pcs);
+ ppl_Polyhedron_add_constraints (ph, pcs);
+
+ for (i = 0; i < (int) nb; i++)
+ map[i] = i;
+ for (i = (int) nb; i < (int) dim - 1; i++)
+ map[i] = i + 1;
+ map[dim - 1] = nb;
+
+ ppl_Polyhedron_map_space_dimensions (ph, map, dim);
+ free (map);
+ }
+
+ /* 0 <= loop_i */
+ {
+ ppl_Constraint_t lb;
+ ppl_Linear_Expression_t lb_expr;
+
+ ppl_new_Linear_Expression_with_dimension (&lb_expr, dim);
+ ppl_set_coef (lb_expr, nb, 1);
+ ppl_new_Constraint (&lb, lb_expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
+ ppl_delete_Linear_Expression (lb_expr);
+ ppl_Polyhedron_add_constraint (ph, lb);
+ ppl_delete_Constraint (lb);
+ }
+
+ if (TREE_CODE (nb_iters) == INTEGER_CST)
+ {
+ ppl_Constraint_t ub;
+ ppl_Linear_Expression_t ub_expr;
+
+ ppl_new_Linear_Expression_with_dimension (&ub_expr, dim);
+
+ /* loop_i <= cst_nb_iters */
+ ppl_set_coef (ub_expr, nb, -1);
+ ppl_set_inhomogeneous_tree (ub_expr, nb_iters);
+ ppl_new_Constraint (&ub, ub_expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
+ ppl_Polyhedron_add_constraint (ph, ub);
+ ppl_delete_Linear_Expression (ub_expr);
+ ppl_delete_Constraint (ub);
+ }
+ else if (!chrec_contains_undetermined (nb_iters))
+ {
+ mpz_t one;
+ ppl_Constraint_t ub;
+ ppl_Linear_Expression_t ub_expr;
+ double_int nit;
+
+ mpz_init (one);
+ mpz_set_si (one, 1);
+ ppl_new_Linear_Expression_with_dimension (&ub_expr, dim);
+ nb_iters = scalar_evolution_in_region (region, loop, nb_iters);
+ scan_tree_for_params (SCOP_REGION (scop), nb_iters, ub_expr, one);
+ mpz_clear (one);
+
+ if (estimated_loop_iterations (loop, true, &nit))
+ add_upper_bounds_from_estimated_nit (scop, nit, dim, ub_expr);
+
+ /* loop_i <= expr_nb_iters */
+ ppl_set_coef (ub_expr, nb, -1);
+ ppl_new_Constraint (&ub, ub_expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
+ ppl_Polyhedron_add_constraint (ph, ub);
+ ppl_delete_Linear_Expression (ub_expr);
+ ppl_delete_Constraint (ub);
+ }
+ else
+ gcc_unreachable ();
+
+ if (loop->inner && loop_in_sese_p (loop->inner, region))
+ build_loop_iteration_domains (scop, loop->inner, ph, nb + 1, domains);
+
+ if (nb != 0
+ && loop->next
+ && loop_in_sese_p (loop->next, region))
+ build_loop_iteration_domains (scop, loop->next, outer_ph, nb, domains);
+
+ ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
+ (&domains[loop->num], ph);
+
+ ppl_delete_Polyhedron (ph);
+}
+
+/* Returns a linear expression for tree T evaluated in PBB. */
+
+static ppl_Linear_Expression_t
+create_linear_expr_from_tree (poly_bb_p pbb, tree t)
+{
+ mpz_t one;
+ ppl_Linear_Expression_t res;
+ ppl_dimension_type dim;
+ sese region = SCOP_REGION (PBB_SCOP (pbb));
+ loop_p loop = pbb_loop (pbb);
+
+ dim = pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb);
+ ppl_new_Linear_Expression_with_dimension (&res, dim);
+
+ t = scalar_evolution_in_region (region, loop, t);
+ gcc_assert (!automatically_generated_chrec_p (t));
+
+ mpz_init (one);
+ mpz_set_si (one, 1);
+ scan_tree_for_params (region, t, res, one);
+ mpz_clear (one);
+
+ return res;
+}
+
+/* Returns the ppl constraint type from the gimple tree code CODE. */
+
+static enum ppl_enum_Constraint_Type
+ppl_constraint_type_from_tree_code (enum tree_code code)
+{
+ switch (code)
+ {
+ /* We do not support LT and GT to be able to work with C_Polyhedron.
+ As we work on integer polyhedron "a < b" can be expressed by
+ "a + 1 <= b". */
+ case LT_EXPR:
+ case GT_EXPR:
+ gcc_unreachable ();
+
+ case LE_EXPR:
+ return PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL;
+
+ case GE_EXPR:
+ return PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL;
+
+ case EQ_EXPR:
+ return PPL_CONSTRAINT_TYPE_EQUAL;
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Add conditional statement STMT to PS. It is evaluated in PBB and
+ CODE is used as the comparison operator. This allows us to invert the
+ condition or to handle inequalities. */
+
+static void
+add_condition_to_domain (ppl_Pointset_Powerset_C_Polyhedron_t ps, gimple stmt,
+ poly_bb_p pbb, enum tree_code code)
+{
+ mpz_t v;
+ ppl_Coefficient_t c;
+ ppl_Linear_Expression_t left, right;
+ ppl_Constraint_t cstr;
+ enum ppl_enum_Constraint_Type type;
+
+ left = create_linear_expr_from_tree (pbb, gimple_cond_lhs (stmt));
+ right = create_linear_expr_from_tree (pbb, gimple_cond_rhs (stmt));
+
+ /* If we have < or > expressions convert them to <= or >= by adding 1 to
+ the left or the right side of the expression. */
+ if (code == LT_EXPR)
+ {
+ mpz_init (v);
+ mpz_set_si (v, 1);
+ ppl_new_Coefficient (&c);
+ ppl_assign_Coefficient_from_mpz_t (c, v);
+ ppl_Linear_Expression_add_to_inhomogeneous (left, c);
+ ppl_delete_Coefficient (c);
+ mpz_clear (v);
+
+ code = LE_EXPR;
+ }
+ else if (code == GT_EXPR)
+ {
+ mpz_init (v);
+ mpz_set_si (v, 1);
+ ppl_new_Coefficient (&c);
+ ppl_assign_Coefficient_from_mpz_t (c, v);
+ ppl_Linear_Expression_add_to_inhomogeneous (right, c);
+ ppl_delete_Coefficient (c);
+ mpz_clear (v);
+
+ code = GE_EXPR;
+ }
+
+ type = ppl_constraint_type_from_tree_code (code);
+
+ ppl_subtract_Linear_Expression_from_Linear_Expression (left, right);
+
+ ppl_new_Constraint (&cstr, left, type);
+ ppl_Pointset_Powerset_C_Polyhedron_add_constraint (ps, cstr);
+
+ ppl_delete_Constraint (cstr);
+ ppl_delete_Linear_Expression (left);
+ ppl_delete_Linear_Expression (right);
+}
+
+/* Add conditional statement STMT to pbb. CODE is used as the comparision
+ operator. This allows us to invert the condition or to handle
+ inequalities. */
+
+static void
+add_condition_to_pbb (poly_bb_p pbb, gimple stmt, enum tree_code code)
+{
+ if (code == NE_EXPR)
+ {
+ ppl_Pointset_Powerset_C_Polyhedron_t left = PBB_DOMAIN (pbb);
+ ppl_Pointset_Powerset_C_Polyhedron_t right;
+ ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
+ (&right, left);
+ add_condition_to_domain (left, stmt, pbb, LT_EXPR);
+ add_condition_to_domain (right, stmt, pbb, GT_EXPR);
+ ppl_Pointset_Powerset_C_Polyhedron_upper_bound_assign (left, right);
+ ppl_delete_Pointset_Powerset_C_Polyhedron (right);
+ }
+ else
+ add_condition_to_domain (PBB_DOMAIN (pbb), stmt, pbb, code);
+}
+
+/* Add conditions to the domain of PBB. */
+
+static void
+add_conditions_to_domain (poly_bb_p pbb)
+{
+ unsigned int i;
+ gimple stmt;
+ gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
+
+ if (VEC_empty (gimple, GBB_CONDITIONS (gbb)))
+ return;
+
+ FOR_EACH_VEC_ELT (gimple, GBB_CONDITIONS (gbb), i, stmt)
+ switch (gimple_code (stmt))
+ {
+ case GIMPLE_COND:
+ {
+ enum tree_code code = gimple_cond_code (stmt);
+
+ /* The conditions for ELSE-branches are inverted. */
+ if (!VEC_index (gimple, GBB_CONDITION_CASES (gbb), i))
+ code = invert_tree_comparison (code, false);
+
+ add_condition_to_pbb (pbb, stmt, code);
+ break;
+ }
+
+ case GIMPLE_SWITCH:
+ /* Switch statements are not supported right now - fall throught. */
+
+ default:
+ gcc_unreachable ();
+ break;
+ }
+}
+
+/* Traverses all the GBBs of the SCOP and add their constraints to the
+ iteration domains. */
+
+static void
+add_conditions_to_constraints (scop_p scop)
+{
+ int i;
+ poly_bb_p pbb;
+
+ FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
+ add_conditions_to_domain (pbb);
+}
+
+/* Structure used to pass data to dom_walk. */
+
+struct bsc
+{
+ VEC (gimple, heap) **conditions, **cases;
+ sese region;
+};
+
+/* Returns a COND_EXPR statement when BB has a single predecessor, the
+ edge between BB and its predecessor is not a loop exit edge, and
+ the last statement of the single predecessor is a COND_EXPR. */
+
+static gimple
+single_pred_cond_non_loop_exit (basic_block bb)
+{
+ if (single_pred_p (bb))
+ {
+ edge e = single_pred_edge (bb);
+ basic_block pred = e->src;
+ gimple stmt;
+
+ if (loop_depth (pred->loop_father) > loop_depth (bb->loop_father))
+ return NULL;
+
+ stmt = last_stmt (pred);
+
+ if (stmt && gimple_code (stmt) == GIMPLE_COND)
+ return stmt;
+ }
+
+ return NULL;
+}
+
+/* Call-back for dom_walk executed before visiting the dominated
+ blocks. */
+
+static void
+build_sese_conditions_before (struct dom_walk_data *dw_data,
+ basic_block bb)
+{
+ struct bsc *data = (struct bsc *) dw_data->global_data;
+ VEC (gimple, heap) **conditions = data->conditions;
+ VEC (gimple, heap) **cases = data->cases;
+ gimple_bb_p gbb;
+ gimple stmt;
+
+ if (!bb_in_sese_p (bb, data->region))
+ return;
+
+ stmt = single_pred_cond_non_loop_exit (bb);
+
+ if (stmt)
+ {
+ edge e = single_pred_edge (bb);
+
+ VEC_safe_push (gimple, heap, *conditions, stmt);
+
+ if (e->flags & EDGE_TRUE_VALUE)
+ VEC_safe_push (gimple, heap, *cases, stmt);
+ else
+ VEC_safe_push (gimple, heap, *cases, NULL);
+ }
+
+ gbb = gbb_from_bb (bb);
+
+ if (gbb)
+ {
+ GBB_CONDITIONS (gbb) = VEC_copy (gimple, heap, *conditions);
+ GBB_CONDITION_CASES (gbb) = VEC_copy (gimple, heap, *cases);
+ }
+}
+
+/* Call-back for dom_walk executed after visiting the dominated
+ blocks. */
+
+static void
+build_sese_conditions_after (struct dom_walk_data *dw_data,
+ basic_block bb)
+{
+ struct bsc *data = (struct bsc *) dw_data->global_data;
+ VEC (gimple, heap) **conditions = data->conditions;
+ VEC (gimple, heap) **cases = data->cases;
+
+ if (!bb_in_sese_p (bb, data->region))
+ return;
+
+ if (single_pred_cond_non_loop_exit (bb))
+ {
+ VEC_pop (gimple, *conditions);
+ VEC_pop (gimple, *cases);
+ }
+}
+
+/* Record all conditions in REGION. */
+
+static void
+build_sese_conditions (sese region)
+{
+ struct dom_walk_data walk_data;
+ VEC (gimple, heap) *conditions = VEC_alloc (gimple, heap, 3);
+ VEC (gimple, heap) *cases = VEC_alloc (gimple, heap, 3);
+ struct bsc data;
+
+ data.conditions = &conditions;
+ data.cases = &cases;
+ data.region = region;
+
+ walk_data.dom_direction = CDI_DOMINATORS;
+ walk_data.initialize_block_local_data = NULL;
+ walk_data.before_dom_children = build_sese_conditions_before;
+ walk_data.after_dom_children = build_sese_conditions_after;
+ walk_data.global_data = &data;
+ walk_data.block_local_data_size = 0;
+
+ init_walk_dominator_tree (&walk_data);
+ walk_dominator_tree (&walk_data, SESE_ENTRY_BB (region));
+ fini_walk_dominator_tree (&walk_data);
+
+ VEC_free (gimple, heap, conditions);
+ VEC_free (gimple, heap, cases);
+}
+
+/* Add constraints on the possible values of parameter P from the type
+ of P. */
+
+static void
+add_param_constraints (scop_p scop, ppl_Polyhedron_t context, graphite_dim_t p)
+{
+ ppl_Constraint_t cstr;
+ ppl_Linear_Expression_t le;
+ tree parameter = VEC_index (tree, SESE_PARAMS (SCOP_REGION (scop)), p);
+ tree type = TREE_TYPE (parameter);
+ tree lb = NULL_TREE;
+ tree ub = NULL_TREE;
+
+ if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
+ lb = lower_bound_in_type (type, type);
+ else
+ lb = TYPE_MIN_VALUE (type);
+
+ if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
+ ub = upper_bound_in_type (type, type);
+ else
+ ub = TYPE_MAX_VALUE (type);
+
+ if (lb)
+ {
+ ppl_new_Linear_Expression_with_dimension (&le, scop_nb_params (scop));
+ ppl_set_coef (le, p, -1);
+ ppl_set_inhomogeneous_tree (le, lb);
+ ppl_new_Constraint (&cstr, le, PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL);
+ ppl_Polyhedron_add_constraint (context, cstr);
+ ppl_delete_Linear_Expression (le);
+ ppl_delete_Constraint (cstr);
+ }
+
+ if (ub)
+ {
+ ppl_new_Linear_Expression_with_dimension (&le, scop_nb_params (scop));
+ ppl_set_coef (le, p, -1);
+ ppl_set_inhomogeneous_tree (le, ub);
+ ppl_new_Constraint (&cstr, le, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
+ ppl_Polyhedron_add_constraint (context, cstr);
+ ppl_delete_Linear_Expression (le);
+ ppl_delete_Constraint (cstr);
+ }
+}
+
+/* Build the context of the SCOP. The context usually contains extra
+ constraints that are added to the iteration domains that constrain
+ some parameters. */
+
+static void
+build_scop_context (scop_p scop)
+{
+ ppl_Polyhedron_t context;
+ ppl_Pointset_Powerset_C_Polyhedron_t ps;
+ graphite_dim_t p, n = scop_nb_params (scop);
+
+ ppl_new_C_Polyhedron_from_space_dimension (&context, n, 0);
+
+ for (p = 0; p < n; p++)
+ add_param_constraints (scop, context, p);
+
+ ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
+ (&ps, context);
+ ppl_Pointset_Powerset_C_Polyhedron_intersection_assign
+ (SCOP_CONTEXT (scop), ps);
+
+ ppl_delete_Pointset_Powerset_C_Polyhedron (ps);
+ ppl_delete_Polyhedron (context);
+}
+
+/* Build the iteration domains: the loops belonging to the current
+ SCOP, and that vary for the execution of the current basic block.
+ Returns false if there is no loop in SCOP. */
+
+static void
+build_scop_iteration_domain (scop_p scop)
+{
+ struct loop *loop;
+ sese region = SCOP_REGION (scop);
+ int i;
+ ppl_Polyhedron_t ph;
+ poly_bb_p pbb;
+ int nb_loops = number_of_loops ();
+ ppl_Pointset_Powerset_C_Polyhedron_t *domains
+ = XNEWVEC (ppl_Pointset_Powerset_C_Polyhedron_t, nb_loops);
+
+ for (i = 0; i < nb_loops; i++)
+ domains[i] = NULL;
+
+ ppl_new_C_Polyhedron_from_space_dimension (&ph, scop_nb_params (scop), 0);
+
+ FOR_EACH_VEC_ELT (loop_p, SESE_LOOP_NEST (region), i, loop)
+ if (!loop_in_sese_p (loop_outer (loop), region))
+ build_loop_iteration_domains (scop, loop, ph, 0, domains);
+
+ FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
+ if (domains[gbb_loop (PBB_BLACK_BOX (pbb))->num])
+ ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
+ (&PBB_DOMAIN (pbb), (ppl_const_Pointset_Powerset_C_Polyhedron_t)
+ domains[gbb_loop (PBB_BLACK_BOX (pbb))->num]);
+ else
+ ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
+ (&PBB_DOMAIN (pbb), ph);
+
+ for (i = 0; i < nb_loops; i++)
+ if (domains[i])
+ ppl_delete_Pointset_Powerset_C_Polyhedron (domains[i]);
+
+ ppl_delete_Polyhedron (ph);
+ free (domains);
+}
+
+/* Add a constrain to the ACCESSES polyhedron for the alias set of
+ data reference DR. ACCESSP_NB_DIMS is the dimension of the
+ ACCESSES polyhedron, DOM_NB_DIMS is the dimension of the iteration
+ domain. */
+
+static void
+pdr_add_alias_set (ppl_Polyhedron_t accesses, data_reference_p dr,
+ ppl_dimension_type accessp_nb_dims,
+ ppl_dimension_type dom_nb_dims)
+{
+ ppl_Linear_Expression_t alias;
+ ppl_Constraint_t cstr;
+ int alias_set_num = 0;
+ base_alias_pair *bap = (base_alias_pair *)(dr->aux);
+
+ if (bap && bap->alias_set)
+ alias_set_num = *(bap->alias_set);
+
+ ppl_new_Linear_Expression_with_dimension (&alias, accessp_nb_dims);
+
+ ppl_set_coef (alias, dom_nb_dims, 1);
+ ppl_set_inhomogeneous (alias, -alias_set_num);
+ ppl_new_Constraint (&cstr, alias, PPL_CONSTRAINT_TYPE_EQUAL);
+ ppl_Polyhedron_add_constraint (accesses, cstr);
+
+ ppl_delete_Linear_Expression (alias);
+ ppl_delete_Constraint (cstr);
+}
+
+/* Add to ACCESSES polyhedron equalities defining the access functions
+ to the memory. ACCESSP_NB_DIMS is the dimension of the ACCESSES
+ polyhedron, DOM_NB_DIMS is the dimension of the iteration domain.
+ PBB is the poly_bb_p that contains the data reference DR. */
+
+static void
+pdr_add_memory_accesses (ppl_Polyhedron_t accesses, data_reference_p dr,
+ ppl_dimension_type accessp_nb_dims,
+ ppl_dimension_type dom_nb_dims,
+ poly_bb_p pbb)
+{
+ int i, nb_subscripts = DR_NUM_DIMENSIONS (dr);
+ mpz_t v;
+ scop_p scop = PBB_SCOP (pbb);
+ sese region = SCOP_REGION (scop);
+
+ mpz_init (v);
+
+ for (i = 0; i < nb_subscripts; i++)
+ {
+ ppl_Linear_Expression_t fn, access;
+ ppl_Constraint_t cstr;
+ ppl_dimension_type subscript = dom_nb_dims + 1 + i;
+ tree afn = DR_ACCESS_FN (dr, nb_subscripts - 1 - i);
+
+ ppl_new_Linear_Expression_with_dimension (&fn, dom_nb_dims);
+ ppl_new_Linear_Expression_with_dimension (&access, accessp_nb_dims);
+
+ mpz_set_si (v, 1);
+ scan_tree_for_params (region, afn, fn, v);
+ ppl_assign_Linear_Expression_from_Linear_Expression (access, fn);
+
+ ppl_set_coef (access, subscript, -1);
+ ppl_new_Constraint (&cstr, access, PPL_CONSTRAINT_TYPE_EQUAL);
+ ppl_Polyhedron_add_constraint (accesses, cstr);
+
+ ppl_delete_Linear_Expression (fn);
+ ppl_delete_Linear_Expression (access);
+ ppl_delete_Constraint (cstr);
+ }
+
+ mpz_clear (v);
+}
+
+/* Add constrains representing the size of the accessed data to the
+ ACCESSES polyhedron. ACCESSP_NB_DIMS is the dimension of the
+ ACCESSES polyhedron, DOM_NB_DIMS is the dimension of the iteration
+ domain. */
+
+static void
+pdr_add_data_dimensions (ppl_Polyhedron_t accesses, data_reference_p dr,
+ ppl_dimension_type accessp_nb_dims,
+ ppl_dimension_type dom_nb_dims)
+{
+ tree ref = DR_REF (dr);
+ int i, nb_subscripts = DR_NUM_DIMENSIONS (dr);
+
+ for (i = nb_subscripts - 1; i >= 0; i--, ref = TREE_OPERAND (ref, 0))
+ {
+ ppl_Linear_Expression_t expr;
+ ppl_Constraint_t cstr;
+ ppl_dimension_type subscript = dom_nb_dims + 1 + i;
+ tree low, high;
+
+ if (TREE_CODE (ref) != ARRAY_REF)
+ break;
+
+ low = array_ref_low_bound (ref);
+
+ /* subscript - low >= 0 */
+ if (host_integerp (low, 0))
+ {
+ tree minus_low;
+
+ ppl_new_Linear_Expression_with_dimension (&expr, accessp_nb_dims);
+ ppl_set_coef (expr, subscript, 1);
+
+ minus_low = fold_build1 (NEGATE_EXPR, TREE_TYPE (low), low);
+ ppl_set_inhomogeneous_tree (expr, minus_low);
+
+ ppl_new_Constraint (&cstr, expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
+ ppl_Polyhedron_add_constraint (accesses, cstr);
+ ppl_delete_Linear_Expression (expr);
+ ppl_delete_Constraint (cstr);
+ }
+
+ high = array_ref_up_bound (ref);
+
+ /* high - subscript >= 0 */
+ if (high && host_integerp (high, 0)
+ /* 1-element arrays at end of structures may extend over
+ their declared size. */
+ && !(array_at_struct_end_p (ref)
+ && operand_equal_p (low, high, 0)))
+ {
+ ppl_new_Linear_Expression_with_dimension (&expr, accessp_nb_dims);
+ ppl_set_coef (expr, subscript, -1);
+
+ ppl_set_inhomogeneous_tree (expr, high);
+
+ ppl_new_Constraint (&cstr, expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
+ ppl_Polyhedron_add_constraint (accesses, cstr);
+ ppl_delete_Linear_Expression (expr);
+ ppl_delete_Constraint (cstr);
+ }
+ }
+}
+
+/* Build data accesses for DR in PBB. */
+
+static void
+build_poly_dr (data_reference_p dr, poly_bb_p pbb)
+{
+ ppl_Polyhedron_t accesses;
+ ppl_Pointset_Powerset_C_Polyhedron_t accesses_ps;
+ ppl_dimension_type dom_nb_dims;
+ ppl_dimension_type accessp_nb_dims;
+ int dr_base_object_set;
+
+ ppl_Pointset_Powerset_C_Polyhedron_space_dimension (PBB_DOMAIN (pbb),
+ &dom_nb_dims);
+ accessp_nb_dims = dom_nb_dims + 1 + DR_NUM_DIMENSIONS (dr);
+
+ ppl_new_C_Polyhedron_from_space_dimension (&accesses, accessp_nb_dims, 0);
+
+ pdr_add_alias_set (accesses, dr, accessp_nb_dims, dom_nb_dims);
+ pdr_add_memory_accesses (accesses, dr, accessp_nb_dims, dom_nb_dims, pbb);
+ pdr_add_data_dimensions (accesses, dr, accessp_nb_dims, dom_nb_dims);
+
+ ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron (&accesses_ps,
+ accesses);
+ ppl_delete_Polyhedron (accesses);
+
+ gcc_assert (dr->aux);
+ dr_base_object_set = ((base_alias_pair *)(dr->aux))->base_obj_set;
+
+ new_poly_dr (pbb, dr_base_object_set, accesses_ps,
+ DR_IS_READ (dr) ? PDR_READ : PDR_WRITE,
+ dr, DR_NUM_DIMENSIONS (dr));
+}
+
+/* Write to FILE the alias graph of data references in DIMACS format. */
+
+static inline bool
+write_alias_graph_to_ascii_dimacs (FILE *file, char *comment,
+ VEC (data_reference_p, heap) *drs)
+{
+ int num_vertex = VEC_length (data_reference_p, drs);
+ int edge_num = 0;
+ data_reference_p dr1, dr2;
+ int i, j;
+
+ if (num_vertex == 0)
+ return true;
+
+ FOR_EACH_VEC_ELT (data_reference_p, drs, i, dr1)
+ for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
+ if (dr_may_alias_p (dr1, dr2))
+ edge_num++;
+
+ fprintf (file, "$\n");
+
+ if (comment)
+ fprintf (file, "c %s\n", comment);
+
+ fprintf (file, "p edge %d %d\n", num_vertex, edge_num);
+
+ FOR_EACH_VEC_ELT (data_reference_p, drs, i, dr1)
+ for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
+ if (dr_may_alias_p (dr1, dr2))
+ fprintf (file, "e %d %d\n", i + 1, j + 1);
+
+ return true;
+}
+
+/* Write to FILE the alias graph of data references in DOT format. */
+
+static inline bool
+write_alias_graph_to_ascii_dot (FILE *file, char *comment,
+ VEC (data_reference_p, heap) *drs)
+{
+ int num_vertex = VEC_length (data_reference_p, drs);
+ data_reference_p dr1, dr2;
+ int i, j;
+
+ if (num_vertex == 0)
+ return true;
+
+ fprintf (file, "$\n");
+
+ if (comment)
+ fprintf (file, "c %s\n", comment);
+
+ /* First print all the vertices. */
+ FOR_EACH_VEC_ELT (data_reference_p, drs, i, dr1)
+ fprintf (file, "n%d;\n", i);
+
+ FOR_EACH_VEC_ELT (data_reference_p, drs, i, dr1)
+ for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
+ if (dr_may_alias_p (dr1, dr2))
+ fprintf (file, "n%d n%d\n", i, j);
+
+ return true;
+}
+
+/* Write to FILE the alias graph of data references in ECC format. */
+
+static inline bool
+write_alias_graph_to_ascii_ecc (FILE *file, char *comment,
+ VEC (data_reference_p, heap) *drs)
+{
+ int num_vertex = VEC_length (data_reference_p, drs);
+ data_reference_p dr1, dr2;
+ int i, j;
+
+ if (num_vertex == 0)
+ return true;
+
+ fprintf (file, "$\n");
+
+ if (comment)
+ fprintf (file, "c %s\n", comment);
+
+ FOR_EACH_VEC_ELT (data_reference_p, drs, i, dr1)
+ for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
+ if (dr_may_alias_p (dr1, dr2))
+ fprintf (file, "%d %d\n", i, j);
+
+ return true;
+}
+
+/* Check if DR1 and DR2 are in the same object set. */
+
+static bool
+dr_same_base_object_p (const struct data_reference *dr1,
+ const struct data_reference *dr2)
+{
+ return operand_equal_p (DR_BASE_OBJECT (dr1), DR_BASE_OBJECT (dr2), 0);
+}
+
+/* Uses DFS component number as representative of alias-sets. Also tests for
+ optimality by verifying if every connected component is a clique. Returns
+ true (1) if the above test is true, and false (0) otherwise. */
+
+static int
+build_alias_set_optimal_p (VEC (data_reference_p, heap) *drs)
+{
+ int num_vertices = VEC_length (data_reference_p, drs);
+ struct graph *g = new_graph (num_vertices);
+ data_reference_p dr1, dr2;
+ int i, j;
+ int num_connected_components;
+ int v_indx1, v_indx2, num_vertices_in_component;
+ int *all_vertices;
+ int *vertices;
+ struct graph_edge *e;
+ int this_component_is_clique;
+ int all_components_are_cliques = 1;
+
+ FOR_EACH_VEC_ELT (data_reference_p, drs, i, dr1)
+ for (j = i+1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
+ if (dr_may_alias_p (dr1, dr2))
+ {
+ add_edge (g, i, j);
+ add_edge (g, j, i);
+ }
+
+ all_vertices = XNEWVEC (int, num_vertices);
+ vertices = XNEWVEC (int, num_vertices);
+ for (i = 0; i < num_vertices; i++)
+ all_vertices[i] = i;
+
+ num_connected_components = graphds_dfs (g, all_vertices, num_vertices,
+ NULL, true, NULL);
+ for (i = 0; i < g->n_vertices; i++)
+ {
+ data_reference_p dr = VEC_index (data_reference_p, drs, i);
+ base_alias_pair *bap;
+
+ gcc_assert (dr->aux);
+ bap = (base_alias_pair *)(dr->aux);
+
+ bap->alias_set = XNEW (int);
+ *(bap->alias_set) = g->vertices[i].component + 1;
+ }
+
+ /* Verify if the DFS numbering results in optimal solution. */
+ for (i = 0; i < num_connected_components; i++)
+ {
+ num_vertices_in_component = 0;
+ /* Get all vertices whose DFS component number is the same as i. */
+ for (j = 0; j < num_vertices; j++)
+ if (g->vertices[j].component == i)
+ vertices[num_vertices_in_component++] = j;
+
+ /* Now test if the vertices in 'vertices' form a clique, by testing
+ for edges among each pair. */
+ this_component_is_clique = 1;
+ for (v_indx1 = 0; v_indx1 < num_vertices_in_component; v_indx1++)
+ {
+ for (v_indx2 = v_indx1+1; v_indx2 < num_vertices_in_component; v_indx2++)
+ {
+ /* Check if the two vertices are connected by iterating
+ through all the edges which have one of these are source. */
+ e = g->vertices[vertices[v_indx2]].pred;
+ while (e)
+ {
+ if (e->src == vertices[v_indx1])
+ break;
+ e = e->pred_next;
+ }
+ if (!e)
+ {
+ this_component_is_clique = 0;
+ break;
+ }
+ }
+ if (!this_component_is_clique)
+ all_components_are_cliques = 0;
+ }
+ }
+
+ free (all_vertices);
+ free (vertices);
+ free_graph (g);
+ return all_components_are_cliques;
+}
+
+/* Group each data reference in DRS with its base object set num. */
+
+static void
+build_base_obj_set_for_drs (VEC (data_reference_p, heap) *drs)
+{
+ int num_vertex = VEC_length (data_reference_p, drs);
+ struct graph *g = new_graph (num_vertex);
+ data_reference_p dr1, dr2;
+ int i, j;
+ int *queue;
+
+ FOR_EACH_VEC_ELT (data_reference_p, drs, i, dr1)
+ for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
+ if (dr_same_base_object_p (dr1, dr2))
+ {
+ add_edge (g, i, j);
+ add_edge (g, j, i);
+ }
+
+ queue = XNEWVEC (int, num_vertex);
+ for (i = 0; i < num_vertex; i++)
+ queue[i] = i;
+
+ graphds_dfs (g, queue, num_vertex, NULL, true, NULL);
+
+ for (i = 0; i < g->n_vertices; i++)
+ {
+ data_reference_p dr = VEC_index (data_reference_p, drs, i);
+ base_alias_pair *bap;
+
+ gcc_assert (dr->aux);
+ bap = (base_alias_pair *)(dr->aux);
+
+ bap->base_obj_set = g->vertices[i].component + 1;
+ }
+
+ free (queue);
+ free_graph (g);
+}
+
+/* Build the data references for PBB. */
+
+static void
+build_pbb_drs (poly_bb_p pbb)
+{
+ int j;
+ data_reference_p dr;
+ VEC (data_reference_p, heap) *gbb_drs = GBB_DATA_REFS (PBB_BLACK_BOX (pbb));
+
+ FOR_EACH_VEC_ELT (data_reference_p, gbb_drs, j, dr)
+ build_poly_dr (dr, pbb);
+}
+
+/* Dump to file the alias graphs for the data references in DRS. */
+
+static void
+dump_alias_graphs (VEC (data_reference_p, heap) *drs)
+{
+ char comment[100];
+ FILE *file_dimacs, *file_ecc, *file_dot;
+
+ file_dimacs = fopen ("/tmp/dr_alias_graph_dimacs", "ab");
+ if (file_dimacs)
+ {
+ snprintf (comment, sizeof (comment), "%s %s", main_input_filename,
+ current_function_name ());
+ write_alias_graph_to_ascii_dimacs (file_dimacs, comment, drs);
+ fclose (file_dimacs);
+ }
+
+ file_ecc = fopen ("/tmp/dr_alias_graph_ecc", "ab");
+ if (file_ecc)
+ {
+ snprintf (comment, sizeof (comment), "%s %s", main_input_filename,
+ current_function_name ());
+ write_alias_graph_to_ascii_ecc (file_ecc, comment, drs);
+ fclose (file_ecc);
+ }
+
+ file_dot = fopen ("/tmp/dr_alias_graph_dot", "ab");
+ if (file_dot)
+ {
+ snprintf (comment, sizeof (comment), "%s %s", main_input_filename,
+ current_function_name ());
+ write_alias_graph_to_ascii_dot (file_dot, comment, drs);
+ fclose (file_dot);
+ }
+}
+
+/* Build data references in SCOP. */
+
+static void
+build_scop_drs (scop_p scop)
+{
+ int i, j;
+ poly_bb_p pbb;
+ data_reference_p dr;
+ VEC (data_reference_p, heap) *drs = VEC_alloc (data_reference_p, heap, 3);
+
+ /* Remove all the PBBs that do not have data references: these basic
+ blocks are not handled in the polyhedral representation. */
+ for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
+ if (VEC_empty (data_reference_p, GBB_DATA_REFS (PBB_BLACK_BOX (pbb))))
+ {
+ free_gimple_bb (PBB_BLACK_BOX (pbb));
+ VEC_ordered_remove (poly_bb_p, SCOP_BBS (scop), i);
+ i--;
+ }
+
+ FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
+ for (j = 0; VEC_iterate (data_reference_p,
+ GBB_DATA_REFS (PBB_BLACK_BOX (pbb)), j, dr); j++)
+ VEC_safe_push (data_reference_p, heap, drs, dr);
+
+ FOR_EACH_VEC_ELT (data_reference_p, drs, i, dr)
+ dr->aux = XNEW (base_alias_pair);
+
+ if (!build_alias_set_optimal_p (drs))
+ {
+ /* TODO: Add support when building alias set is not optimal. */
+ ;
+ }
+
+ build_base_obj_set_for_drs (drs);
+
+ /* When debugging, enable the following code. This cannot be used
+ in production compilers. */
+ if (0)
+ dump_alias_graphs (drs);
+
+ VEC_free (data_reference_p, heap, drs);
+
+ FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
+ build_pbb_drs (pbb);
+}
+
+/* Return a gsi at the position of the phi node STMT. */
+
+static gimple_stmt_iterator
+gsi_for_phi_node (gimple stmt)
+{
+ gimple_stmt_iterator psi;
+ basic_block bb = gimple_bb (stmt);
+
+ for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
+ if (stmt == gsi_stmt (psi))
+ return psi;
+
+ gcc_unreachable ();
+ return psi;
+}
+
+/* Analyze all the data references of STMTS and add them to the
+ GBB_DATA_REFS vector of BB. */
+
+static void
+analyze_drs_in_stmts (scop_p scop, basic_block bb, VEC (gimple, heap) *stmts)
+{
+ loop_p nest;
+ gimple_bb_p gbb;
+ gimple stmt;
+ int i;
+ sese region = SCOP_REGION (scop);
+
+ if (!bb_in_sese_p (bb, region))
+ return;
+
+ nest = outermost_loop_in_sese_1 (region, bb);
+ gbb = gbb_from_bb (bb);
+
+ FOR_EACH_VEC_ELT (gimple, stmts, i, stmt)
+ {
+ loop_p loop;
+
+ if (is_gimple_debug (stmt))
+ continue;
+
+ loop = loop_containing_stmt (stmt);
+ if (!loop_in_sese_p (loop, region))
+ loop = nest;
+
+ graphite_find_data_references_in_stmt (nest, loop, stmt,
+ &GBB_DATA_REFS (gbb));
+ }
+}
+
+/* Insert STMT at the end of the STMTS sequence and then insert the
+ statements from STMTS at INSERT_GSI and call analyze_drs_in_stmts
+ on STMTS. */
+
+static void
+insert_stmts (scop_p scop, gimple stmt, gimple_seq stmts,
+ gimple_stmt_iterator insert_gsi)
+{
+ gimple_stmt_iterator gsi;
+ VEC (gimple, heap) *x = VEC_alloc (gimple, heap, 3);
+
+ if (!stmts)
+ stmts = gimple_seq_alloc ();
+
+ gsi = gsi_last (stmts);
+ gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
+ for (gsi = gsi_start (stmts); !gsi_end_p (gsi); gsi_next (&gsi))
+ VEC_safe_push (gimple, heap, x, gsi_stmt (gsi));
+
+ gsi_insert_seq_before (&insert_gsi, stmts, GSI_SAME_STMT);
+ analyze_drs_in_stmts (scop, gsi_bb (insert_gsi), x);
+ VEC_free (gimple, heap, x);
+}
+
+/* Insert the assignment "RES := EXPR" just after AFTER_STMT. */
+
+static void
+insert_out_of_ssa_copy (scop_p scop, tree res, tree expr, gimple after_stmt)
+{
+ gimple_seq stmts;
+ gimple_stmt_iterator si;
+ gimple_stmt_iterator gsi;
+ tree var = force_gimple_operand (expr, &stmts, true, NULL_TREE);
+ gimple stmt = gimple_build_assign (res, var);
+ VEC (gimple, heap) *x = VEC_alloc (gimple, heap, 3);
+
+ if (!stmts)
+ stmts = gimple_seq_alloc ();
+ si = gsi_last (stmts);
+ gsi_insert_after (&si, stmt, GSI_NEW_STMT);
+ for (gsi = gsi_start (stmts); !gsi_end_p (gsi); gsi_next (&gsi))
+ VEC_safe_push (gimple, heap, x, gsi_stmt (gsi));
+
+ if (gimple_code (after_stmt) == GIMPLE_PHI)
+ {
+ gsi = gsi_after_labels (gimple_bb (after_stmt));
+ gsi_insert_seq_before (&gsi, stmts, GSI_NEW_STMT);
+ }
+ else
+ {
+ gsi = gsi_for_stmt (after_stmt);
+ gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
+ }
+
+ analyze_drs_in_stmts (scop, gimple_bb (after_stmt), x);
+ VEC_free (gimple, heap, x);
+}
+
+/* Creates a poly_bb_p for basic_block BB from the existing PBB. */
+
+static void
+new_pbb_from_pbb (scop_p scop, poly_bb_p pbb, basic_block bb)
+{
+ VEC (data_reference_p, heap) *drs = VEC_alloc (data_reference_p, heap, 3);
+ gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
+ gimple_bb_p gbb1 = new_gimple_bb (bb, drs);
+ poly_bb_p pbb1 = new_poly_bb (scop, gbb1);
+ int index, n = VEC_length (poly_bb_p, SCOP_BBS (scop));
+
+ /* The INDEX of PBB in SCOP_BBS. */
+ for (index = 0; index < n; index++)
+ if (VEC_index (poly_bb_p, SCOP_BBS (scop), index) == pbb)
+ break;
+
+ if (PBB_DOMAIN (pbb))
+ ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
+ (&PBB_DOMAIN (pbb1), PBB_DOMAIN (pbb));
+
+ GBB_PBB (gbb1) = pbb1;
+ GBB_CONDITIONS (gbb1) = VEC_copy (gimple, heap, GBB_CONDITIONS (gbb));
+ GBB_CONDITION_CASES (gbb1) = VEC_copy (gimple, heap, GBB_CONDITION_CASES (gbb));
+ VEC_safe_insert (poly_bb_p, heap, SCOP_BBS (scop), index + 1, pbb1);
+}
+
+/* Insert on edge E the assignment "RES := EXPR". */
+
+static void
+insert_out_of_ssa_copy_on_edge (scop_p scop, edge e, tree res, tree expr)
+{
+ gimple_stmt_iterator gsi;
+ gimple_seq stmts;
+ tree var = force_gimple_operand (expr, &stmts, true, NULL_TREE);
+ gimple stmt = gimple_build_assign (res, var);
+ basic_block bb;
+ VEC (gimple, heap) *x = VEC_alloc (gimple, heap, 3);
+
+ if (!stmts)
+ stmts = gimple_seq_alloc ();
+
+ gsi = gsi_last (stmts);
+ gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
+ for (gsi = gsi_start (stmts); !gsi_end_p (gsi); gsi_next (&gsi))
+ VEC_safe_push (gimple, heap, x, gsi_stmt (gsi));
+
+ gsi_insert_seq_on_edge (e, stmts);
+ gsi_commit_edge_inserts ();
+ bb = gimple_bb (stmt);
+
+ if (!bb_in_sese_p (bb, SCOP_REGION (scop)))
+ return;
+
+ if (!gbb_from_bb (bb))
+ new_pbb_from_pbb (scop, pbb_from_bb (e->src), bb);
+
+ analyze_drs_in_stmts (scop, bb, x);
+ VEC_free (gimple, heap, x);
+}
+
+/* Creates a zero dimension array of the same type as VAR. */
+
+static tree
+create_zero_dim_array (tree var, const char *base_name)
+{
+ tree index_type = build_index_type (integer_zero_node);
+ tree elt_type = TREE_TYPE (var);
+ tree array_type = build_array_type (elt_type, index_type);
+ tree base = create_tmp_var (array_type, base_name);
+
+ add_referenced_var (base);
+
+ return build4 (ARRAY_REF, elt_type, base, integer_zero_node, NULL_TREE,
+ NULL_TREE);
+}
+
+/* Returns true when PHI is a loop close phi node. */
+
+static bool
+scalar_close_phi_node_p (gimple phi)
+{
+ if (gimple_code (phi) != GIMPLE_PHI
+ || !is_gimple_reg (gimple_phi_result (phi)))
+ return false;
+
+ /* Note that loop close phi nodes should have a single argument
+ because we translated the representation into a canonical form
+ before Graphite: see canonicalize_loop_closed_ssa_form. */
+ return (gimple_phi_num_args (phi) == 1);
+}
+
+/* For a definition DEF in REGION, propagates the expression EXPR in
+ all the uses of DEF outside REGION. */
+
+static void
+propagate_expr_outside_region (tree def, tree expr, sese region)
+{
+ imm_use_iterator imm_iter;
+ gimple use_stmt;
+ gimple_seq stmts;
+ bool replaced_once = false;
+
+ gcc_assert (TREE_CODE (def) == SSA_NAME);
+
+ expr = force_gimple_operand (unshare_expr (expr), &stmts, true,
+ NULL_TREE);
+
+ FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
+ if (!is_gimple_debug (use_stmt)
+ && !bb_in_sese_p (gimple_bb (use_stmt), region))
+ {
+ ssa_op_iter iter;
+ use_operand_p use_p;
+
+ FOR_EACH_PHI_OR_STMT_USE (use_p, use_stmt, iter, SSA_OP_ALL_USES)
+ if (operand_equal_p (def, USE_FROM_PTR (use_p), 0)
+ && (replaced_once = true))
+ replace_exp (use_p, expr);
+
+ update_stmt (use_stmt);
+ }
+
+ if (replaced_once)
+ {
+ gsi_insert_seq_on_edge (SESE_ENTRY (region), stmts);
+ gsi_commit_edge_inserts ();
+ }
+}
+
+/* Rewrite out of SSA the reduction phi node at PSI by creating a zero
+ dimension array for it. */
+
+static void
+rewrite_close_phi_out_of_ssa (scop_p scop, gimple_stmt_iterator *psi)
+{
+ sese region = SCOP_REGION (scop);
+ gimple phi = gsi_stmt (*psi);
+ tree res = gimple_phi_result (phi);
+ tree var = SSA_NAME_VAR (res);
+ basic_block bb = gimple_bb (phi);
+ gimple_stmt_iterator gsi = gsi_after_labels (bb);
+ tree arg = gimple_phi_arg_def (phi, 0);
+ gimple stmt;
+
+ /* Note that loop close phi nodes should have a single argument
+ because we translated the representation into a canonical form
+ before Graphite: see canonicalize_loop_closed_ssa_form. */
+ gcc_assert (gimple_phi_num_args (phi) == 1);
+
+ /* The phi node can be a non close phi node, when its argument is
+ invariant, or a default definition. */
+ if (is_gimple_min_invariant (arg)
+ || SSA_NAME_IS_DEFAULT_DEF (arg))
+ {
+ propagate_expr_outside_region (res, arg, region);
+ gsi_next (psi);
+ return;
+ }
+
+ else if (gimple_bb (SSA_NAME_DEF_STMT (arg))->loop_father == bb->loop_father)
+ {
+ propagate_expr_outside_region (res, arg, region);
+ stmt = gimple_build_assign (res, arg);
+ remove_phi_node (psi, false);
+ gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
+ SSA_NAME_DEF_STMT (res) = stmt;
+ return;
+ }
+
+ /* If res is scev analyzable and is not a scalar value, it is safe
+ to ignore the close phi node: it will be code generated in the
+ out of Graphite pass. */
+ else if (scev_analyzable_p (res, region))
+ {
+ loop_p loop = loop_containing_stmt (SSA_NAME_DEF_STMT (res));
+ tree scev;
+
+ if (!loop_in_sese_p (loop, region))
+ {
+ loop = loop_containing_stmt (SSA_NAME_DEF_STMT (arg));
+ scev = scalar_evolution_in_region (region, loop, arg);
+ scev = compute_overall_effect_of_inner_loop (loop, scev);
+ }
+ else
+ scev = scalar_evolution_in_region (region, loop, res);
+
+ if (tree_does_not_contain_chrecs (scev))
+ propagate_expr_outside_region (res, scev, region);
+
+ gsi_next (psi);
+ return;
+ }
+ else
+ {
+ tree zero_dim_array = create_zero_dim_array (var, "Close_Phi");
+
+ stmt = gimple_build_assign (res, zero_dim_array);
+
+ if (TREE_CODE (arg) == SSA_NAME)
+ insert_out_of_ssa_copy (scop, zero_dim_array, arg,
+ SSA_NAME_DEF_STMT (arg));
+ else
+ insert_out_of_ssa_copy_on_edge (scop, single_pred_edge (bb),
+ zero_dim_array, arg);
+ }
+
+ remove_phi_node (psi, false);
+ SSA_NAME_DEF_STMT (res) = stmt;
+
+ insert_stmts (scop, stmt, NULL, gsi_after_labels (bb));
+}
+
+/* Rewrite out of SSA the reduction phi node at PSI by creating a zero
+ dimension array for it. */
+
+static void
+rewrite_phi_out_of_ssa (scop_p scop, gimple_stmt_iterator *psi)
+{
+ size_t i;
+ gimple phi = gsi_stmt (*psi);
+ basic_block bb = gimple_bb (phi);
+ tree res = gimple_phi_result (phi);
+ tree var = SSA_NAME_VAR (res);
+ tree zero_dim_array = create_zero_dim_array (var, "phi_out_of_ssa");
+ gimple stmt;
+ gimple_seq stmts;
+
+ for (i = 0; i < gimple_phi_num_args (phi); i++)
+ {
+ tree arg = gimple_phi_arg_def (phi, i);
+ edge e = gimple_phi_arg_edge (phi, i);
+
+ /* Avoid the insertion of code in the loop latch to please the
+ pattern matching of the vectorizer. */
+ if (TREE_CODE (arg) == SSA_NAME
+ && e->src == bb->loop_father->latch)
+ insert_out_of_ssa_copy (scop, zero_dim_array, arg,
+ SSA_NAME_DEF_STMT (arg));
+ else
+ insert_out_of_ssa_copy_on_edge (scop, e, zero_dim_array, arg);
+ }
+
+ var = force_gimple_operand (zero_dim_array, &stmts, true, NULL_TREE);
+
+ stmt = gimple_build_assign (res, var);
+ remove_phi_node (psi, false);
+ SSA_NAME_DEF_STMT (res) = stmt;
+
+ insert_stmts (scop, stmt, stmts, gsi_after_labels (bb));
+}
+
+/* Rewrite the degenerate phi node at position PSI from the degenerate
+ form "x = phi (y, y, ..., y)" to "x = y". */
+
+static void
+rewrite_degenerate_phi (gimple_stmt_iterator *psi)
+{
+ tree rhs;
+ gimple stmt;
+ gimple_stmt_iterator gsi;
+ gimple phi = gsi_stmt (*psi);
+ tree res = gimple_phi_result (phi);
+ basic_block bb;
+
+ bb = gimple_bb (phi);
+ rhs = degenerate_phi_result (phi);
+ gcc_assert (rhs);
+
+ stmt = gimple_build_assign (res, rhs);
+ remove_phi_node (psi, false);
+ SSA_NAME_DEF_STMT (res) = stmt;
+
+ gsi = gsi_after_labels (bb);
+ gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
+}
+
+/* Rewrite out of SSA all the reduction phi nodes of SCOP. */
+
+static void
+rewrite_reductions_out_of_ssa (scop_p scop)
+{
+ basic_block bb;
+ gimple_stmt_iterator psi;
+ sese region = SCOP_REGION (scop);
+
+ FOR_EACH_BB (bb)
+ if (bb_in_sese_p (bb, region))
+ for (psi = gsi_start_phis (bb); !gsi_end_p (psi);)
+ {
+ gimple phi = gsi_stmt (psi);
+
+ if (!is_gimple_reg (gimple_phi_result (phi)))
+ {
+ gsi_next (&psi);
+ continue;
+ }
+
+ if (gimple_phi_num_args (phi) > 1
+ && degenerate_phi_result (phi))
+ rewrite_degenerate_phi (&psi);
+
+ else if (scalar_close_phi_node_p (phi))
+ rewrite_close_phi_out_of_ssa (scop, &psi);
+
+ else if (reduction_phi_p (region, &psi))
+ rewrite_phi_out_of_ssa (scop, &psi);
+ }
+
+ update_ssa (TODO_update_ssa);
+#ifdef ENABLE_CHECKING
+ verify_loop_closed_ssa (true);
+#endif
+}
+
+/* Rewrite the scalar dependence of DEF used in USE_STMT with a memory
+ read from ZERO_DIM_ARRAY. */
+
+static void
+rewrite_cross_bb_scalar_dependence (scop_p scop, tree zero_dim_array,
+ tree def, gimple use_stmt)
+{
+ tree var = SSA_NAME_VAR (def);
+ gimple name_stmt = gimple_build_assign (var, zero_dim_array);
+ tree name = make_ssa_name (var, name_stmt);
+ ssa_op_iter iter;
+ use_operand_p use_p;
+
+ gcc_assert (gimple_code (use_stmt) != GIMPLE_PHI);
+
+ gimple_assign_set_lhs (name_stmt, name);
+ insert_stmts (scop, name_stmt, NULL, gsi_for_stmt (use_stmt));
+
+ FOR_EACH_SSA_USE_OPERAND (use_p, use_stmt, iter, SSA_OP_ALL_USES)
+ if (operand_equal_p (def, USE_FROM_PTR (use_p), 0))
+ replace_exp (use_p, name);
+
+ update_stmt (use_stmt);
+}
+
+/* For every definition DEF in the SCOP that is used outside the scop,
+ insert a closing-scop definition in the basic block just after this
+ SCOP. */
+
+static void
+handle_scalar_deps_crossing_scop_limits (scop_p scop, tree def, gimple stmt)
+{
+ tree var = create_tmp_reg (TREE_TYPE (def), NULL);
+ tree new_name = make_ssa_name (var, stmt);
+ bool needs_copy = false;
+ use_operand_p use_p;
+ imm_use_iterator imm_iter;
+ gimple use_stmt;
+ sese region = SCOP_REGION (scop);
+
+ FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
+ {
+ if (!bb_in_sese_p (gimple_bb (use_stmt), region))
+ {
+ FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
+ {
+ SET_USE (use_p, new_name);
+ }
+ update_stmt (use_stmt);
+ needs_copy = true;
+ }
+ }
+
+ /* Insert in the empty BB just after the scop a use of DEF such
+ that the rewrite of cross_bb_scalar_dependences won't insert
+ arrays everywhere else. */
+ if (needs_copy)
+ {
+ gimple assign = gimple_build_assign (new_name, def);
+ gimple_stmt_iterator psi = gsi_after_labels (SESE_EXIT (region)->dest);
+
+ add_referenced_var (var);
+ SSA_NAME_DEF_STMT (new_name) = assign;
+ update_stmt (assign);
+ gsi_insert_before (&psi, assign, GSI_SAME_STMT);
+ }
+}
+
+/* Rewrite the scalar dependences crossing the boundary of the BB
+ containing STMT with an array. Return true when something has been
+ changed. */
+
+static bool
+rewrite_cross_bb_scalar_deps (scop_p scop, gimple_stmt_iterator *gsi)
+{
+ sese region = SCOP_REGION (scop);
+ gimple stmt = gsi_stmt (*gsi);
+ imm_use_iterator imm_iter;
+ tree def;
+ basic_block def_bb;
+ tree zero_dim_array = NULL_TREE;
+ gimple use_stmt;
+ bool res = false;
+
+ switch (gimple_code (stmt))
+ {
+ case GIMPLE_ASSIGN:
+ def = gimple_assign_lhs (stmt);
+ break;
+
+ case GIMPLE_CALL:
+ def = gimple_call_lhs (stmt);
+ break;
+
+ default:
+ return false;
+ }
+
+ if (!def
+ || !is_gimple_reg (def))
+ return false;
+
+ if (scev_analyzable_p (def, region))
+ {
+ loop_p loop = loop_containing_stmt (SSA_NAME_DEF_STMT (def));
+ tree scev = scalar_evolution_in_region (region, loop, def);
+
+ if (tree_contains_chrecs (scev, NULL))
+ return false;
+
+ propagate_expr_outside_region (def, scev, region);
+ return true;
+ }
+
+ def_bb = gimple_bb (stmt);
+
+ handle_scalar_deps_crossing_scop_limits (scop, def, stmt);
+
+ FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
+ if (gimple_code (use_stmt) == GIMPLE_PHI
+ && (res = true))
+ {
+ gimple_stmt_iterator psi = gsi_for_stmt (use_stmt);
+
+ if (scalar_close_phi_node_p (gsi_stmt (psi)))
+ rewrite_close_phi_out_of_ssa (scop, &psi);
+ else
+ rewrite_phi_out_of_ssa (scop, &psi);
+ }
+
+ FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
+ if (gimple_code (use_stmt) != GIMPLE_PHI
+ && def_bb != gimple_bb (use_stmt)
+ && !is_gimple_debug (use_stmt)
+ && (res = true))
+ {
+ if (!zero_dim_array)
+ {
+ zero_dim_array = create_zero_dim_array
+ (SSA_NAME_VAR (def), "Cross_BB_scalar_dependence");
+ insert_out_of_ssa_copy (scop, zero_dim_array, def,
+ SSA_NAME_DEF_STMT (def));
+ gsi_next (gsi);
+ }
+
+ rewrite_cross_bb_scalar_dependence (scop, zero_dim_array,
+ def, use_stmt);
+ }
+
+ return res;
+}
+
+/* Rewrite out of SSA all the reduction phi nodes of SCOP. */
+
+static void
+rewrite_cross_bb_scalar_deps_out_of_ssa (scop_p scop)
+{
+ basic_block bb;
+ gimple_stmt_iterator psi;
+ sese region = SCOP_REGION (scop);
+ bool changed = false;
+
+ /* Create an extra empty BB after the scop. */
+ split_edge (SESE_EXIT (region));
+
+ FOR_EACH_BB (bb)
+ if (bb_in_sese_p (bb, region))
+ for (psi = gsi_start_bb (bb); !gsi_end_p (psi); gsi_next (&psi))
+ changed |= rewrite_cross_bb_scalar_deps (scop, &psi);
+
+ if (changed)
+ {
+ scev_reset_htab ();
+ update_ssa (TODO_update_ssa);
+#ifdef ENABLE_CHECKING
+ verify_loop_closed_ssa (true);
+#endif
+ }
+}
+
+/* Returns the number of pbbs that are in loops contained in SCOP. */
+
+static int
+nb_pbbs_in_loops (scop_p scop)
+{
+ int i;
+ poly_bb_p pbb;
+ int res = 0;
+
+ FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
+ if (loop_in_sese_p (gbb_loop (PBB_BLACK_BOX (pbb)), SCOP_REGION (scop)))
+ res++;
+
+ return res;
+}
+
+/* Return the number of data references in BB that write in
+ memory. */
+
+static int
+nb_data_writes_in_bb (basic_block bb)
+{
+ int res = 0;
+ gimple_stmt_iterator gsi;
+
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ if (gimple_vdef (gsi_stmt (gsi)))
+ res++;
+
+ return res;
+}
+
+/* Splits at STMT the basic block BB represented as PBB in the
+ polyhedral form. */
+
+static edge
+split_pbb (scop_p scop, poly_bb_p pbb, basic_block bb, gimple stmt)
+{
+ edge e1 = split_block (bb, stmt);
+ new_pbb_from_pbb (scop, pbb, e1->dest);
+ return e1;
+}
+
+/* Splits STMT out of its current BB. This is done for reduction
+ statements for which we want to ignore data dependences. */
+
+static basic_block
+split_reduction_stmt (scop_p scop, gimple stmt)
+{
+ basic_block bb = gimple_bb (stmt);
+ poly_bb_p pbb = pbb_from_bb (bb);
+ gimple_bb_p gbb = gbb_from_bb (bb);
+ edge e1;
+ int i;
+ data_reference_p dr;
+
+ /* Do not split basic blocks with no writes to memory: the reduction
+ will be the only write to memory. */
+ if (nb_data_writes_in_bb (bb) == 0
+ /* Or if we have already marked BB as a reduction. */
+ || PBB_IS_REDUCTION (pbb_from_bb (bb)))
+ return bb;
+
+ e1 = split_pbb (scop, pbb, bb, stmt);
+
+ /* Split once more only when the reduction stmt is not the only one
+ left in the original BB. */
+ if (!gsi_one_before_end_p (gsi_start_nondebug_bb (bb)))
+ {
+ gimple_stmt_iterator gsi = gsi_last_bb (bb);
+ gsi_prev (&gsi);
+ e1 = split_pbb (scop, pbb, bb, gsi_stmt (gsi));
+ }
+
+ /* A part of the data references will end in a different basic block
+ after the split: move the DRs from the original GBB to the newly
+ created GBB1. */
+ FOR_EACH_VEC_ELT (data_reference_p, GBB_DATA_REFS (gbb), i, dr)
+ {
+ basic_block bb1 = gimple_bb (DR_STMT (dr));
+
+ if (bb1 != bb)
+ {
+ gimple_bb_p gbb1 = gbb_from_bb (bb1);
+ VEC_safe_push (data_reference_p, heap, GBB_DATA_REFS (gbb1), dr);
+ VEC_ordered_remove (data_reference_p, GBB_DATA_REFS (gbb), i);
+ i--;
+ }
+ }
+
+ return e1->dest;
+}
+
+/* Return true when stmt is a reduction operation. */
+
+static inline bool
+is_reduction_operation_p (gimple stmt)
+{
+ enum tree_code code;
+
+ gcc_assert (is_gimple_assign (stmt));
+ code = gimple_assign_rhs_code (stmt);
+
+ return flag_associative_math
+ && commutative_tree_code (code)
+ && associative_tree_code (code);
+}
+
+/* Returns true when PHI contains an argument ARG. */
+
+static bool
+phi_contains_arg (gimple phi, tree arg)
+{
+ size_t i;
+
+ for (i = 0; i < gimple_phi_num_args (phi); i++)
+ if (operand_equal_p (arg, gimple_phi_arg_def (phi, i), 0))
+ return true;
+
+ return false;
+}
+
+/* Return a loop phi node that corresponds to a reduction containing LHS. */
+
+static gimple
+follow_ssa_with_commutative_ops (tree arg, tree lhs)
+{
+ gimple stmt;
+
+ if (TREE_CODE (arg) != SSA_NAME)
+ return NULL;
+
+ stmt = SSA_NAME_DEF_STMT (arg);
+
+ if (gimple_code (stmt) == GIMPLE_NOP
+ || gimple_code (stmt) == GIMPLE_CALL)
+ return NULL;
+
+ if (gimple_code (stmt) == GIMPLE_PHI)
+ {
+ if (phi_contains_arg (stmt, lhs))
+ return stmt;
+ return NULL;
+ }
+
+ if (!is_gimple_assign (stmt))
+ return NULL;
+
+ if (gimple_num_ops (stmt) == 2)
+ return follow_ssa_with_commutative_ops (gimple_assign_rhs1 (stmt), lhs);
+
+ if (is_reduction_operation_p (stmt))
+ {
+ gimple res = follow_ssa_with_commutative_ops (gimple_assign_rhs1 (stmt), lhs);
+
+ return res ? res :
+ follow_ssa_with_commutative_ops (gimple_assign_rhs2 (stmt), lhs);
+ }
+
+ return NULL;
+}
+
+/* Detect commutative and associative scalar reductions starting at
+ the STMT. Return the phi node of the reduction cycle, or NULL. */
+
+static gimple
+detect_commutative_reduction_arg (tree lhs, gimple stmt, tree arg,
+ VEC (gimple, heap) **in,
+ VEC (gimple, heap) **out)
+{
+ gimple phi = follow_ssa_with_commutative_ops (arg, lhs);
+
+ if (!phi)
+ return NULL;
+
+ VEC_safe_push (gimple, heap, *in, stmt);
+ VEC_safe_push (gimple, heap, *out, stmt);
+ return phi;
+}
+
+/* Detect commutative and associative scalar reductions starting at
+ STMT. Return the phi node of the reduction cycle, or NULL. */
+
+static gimple
+detect_commutative_reduction_assign (gimple stmt, VEC (gimple, heap) **in,
+ VEC (gimple, heap) **out)
+{
+ tree lhs = gimple_assign_lhs (stmt);
+
+ if (gimple_num_ops (stmt) == 2)
+ return detect_commutative_reduction_arg (lhs, stmt,
+ gimple_assign_rhs1 (stmt),
+ in, out);
+
+ if (is_reduction_operation_p (stmt))
+ {
+ gimple res = detect_commutative_reduction_arg (lhs, stmt,
+ gimple_assign_rhs1 (stmt),
+ in, out);
+ return res ? res
+ : detect_commutative_reduction_arg (lhs, stmt,
+ gimple_assign_rhs2 (stmt),
+ in, out);
+ }
+
+ return NULL;
+}
+
+/* Return a loop phi node that corresponds to a reduction containing LHS. */
+
+static gimple
+follow_inital_value_to_phi (tree arg, tree lhs)
+{
+ gimple stmt;
+
+ if (!arg || TREE_CODE (arg) != SSA_NAME)
+ return NULL;
+
+ stmt = SSA_NAME_DEF_STMT (arg);
+
+ if (gimple_code (stmt) == GIMPLE_PHI
+ && phi_contains_arg (stmt, lhs))
+ return stmt;
+
+ return NULL;
+}
+
+
+/* Return the argument of the loop PHI that is the inital value coming
+ from outside the loop. */
+
+static edge
+edge_initial_value_for_loop_phi (gimple phi)
+{
+ size_t i;
+
+ for (i = 0; i < gimple_phi_num_args (phi); i++)
+ {
+ edge e = gimple_phi_arg_edge (phi, i);
+
+ if (loop_depth (e->src->loop_father)
+ < loop_depth (e->dest->loop_father))
+ return e;
+ }
+
+ return NULL;
+}
+
+/* Return the argument of the loop PHI that is the inital value coming
+ from outside the loop. */
+
+static tree
+initial_value_for_loop_phi (gimple phi)
+{
+ size_t i;
+
+ for (i = 0; i < gimple_phi_num_args (phi); i++)
+ {
+ edge e = gimple_phi_arg_edge (phi, i);
+
+ if (loop_depth (e->src->loop_father)
+ < loop_depth (e->dest->loop_father))
+ return gimple_phi_arg_def (phi, i);
+ }
+
+ return NULL_TREE;
+}
+
+/* Returns true when DEF is used outside the reduction cycle of
+ LOOP_PHI. */
+
+static bool
+used_outside_reduction (tree def, gimple loop_phi)
+{
+ use_operand_p use_p;
+ imm_use_iterator imm_iter;
+ loop_p loop = loop_containing_stmt (loop_phi);
+
+ /* In LOOP, DEF should be used only in LOOP_PHI. */
+ FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
+ {
+ gimple stmt = USE_STMT (use_p);
+
+ if (stmt != loop_phi
+ && !is_gimple_debug (stmt)
+ && flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
+ return true;
+ }
+
+ return false;
+}
+
+/* Detect commutative and associative scalar reductions belonging to
+ the SCOP starting at the loop closed phi node STMT. Return the phi
+ node of the reduction cycle, or NULL. */
+
+static gimple
+detect_commutative_reduction (scop_p scop, gimple stmt, VEC (gimple, heap) **in,
+ VEC (gimple, heap) **out)
+{
+ if (scalar_close_phi_node_p (stmt))
+ {
+ gimple def, loop_phi, phi, close_phi = stmt;
+ tree init, lhs, arg = gimple_phi_arg_def (close_phi, 0);
+
+ if (TREE_CODE (arg) != SSA_NAME)
+ return NULL;
+
+ /* Note that loop close phi nodes should have a single argument
+ because we translated the representation into a canonical form
+ before Graphite: see canonicalize_loop_closed_ssa_form. */
+ gcc_assert (gimple_phi_num_args (close_phi) == 1);
+
+ def = SSA_NAME_DEF_STMT (arg);
+ if (!stmt_in_sese_p (def, SCOP_REGION (scop))
+ || !(loop_phi = detect_commutative_reduction (scop, def, in, out)))
+ return NULL;
+
+ lhs = gimple_phi_result (close_phi);
+ init = initial_value_for_loop_phi (loop_phi);
+ phi = follow_inital_value_to_phi (init, lhs);
+
+ if (phi && (used_outside_reduction (lhs, phi)
+ || !has_single_use (gimple_phi_result (phi))))
+ return NULL;
+
+ VEC_safe_push (gimple, heap, *in, loop_phi);
+ VEC_safe_push (gimple, heap, *out, close_phi);
+ return phi;
+ }
+
+ if (gimple_code (stmt) == GIMPLE_ASSIGN)
+ return detect_commutative_reduction_assign (stmt, in, out);
+
+ return NULL;
+}
+
+/* Translate the scalar reduction statement STMT to an array RED
+ knowing that its recursive phi node is LOOP_PHI. */
+
+static void
+translate_scalar_reduction_to_array_for_stmt (scop_p scop, tree red,
+ gimple stmt, gimple loop_phi)
+{
+ tree res = gimple_phi_result (loop_phi);
+ gimple assign = gimple_build_assign (res, unshare_expr (red));
+ gimple_stmt_iterator gsi;
+
+ insert_stmts (scop, assign, NULL, gsi_after_labels (gimple_bb (loop_phi)));
+
+ assign = gimple_build_assign (unshare_expr (red), gimple_assign_lhs (stmt));
+ gsi = gsi_for_stmt (stmt);
+ gsi_next (&gsi);
+ insert_stmts (scop, assign, NULL, gsi);
+}
+
+/* Removes the PHI node and resets all the debug stmts that are using
+ the PHI_RESULT. */
+
+static void
+remove_phi (gimple phi)
+{
+ imm_use_iterator imm_iter;
+ tree def;
+ use_operand_p use_p;
+ gimple_stmt_iterator gsi;
+ VEC (gimple, heap) *update = VEC_alloc (gimple, heap, 3);
+ unsigned int i;
+ gimple stmt;
+
+ def = PHI_RESULT (phi);
+ FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
+ {
+ stmt = USE_STMT (use_p);
+
+ if (is_gimple_debug (stmt))
+ {
+ gimple_debug_bind_reset_value (stmt);
+ VEC_safe_push (gimple, heap, update, stmt);
+ }
+ }
+
+ FOR_EACH_VEC_ELT (gimple, update, i, stmt)
+ update_stmt (stmt);
+
+ VEC_free (gimple, heap, update);
+
+ gsi = gsi_for_phi_node (phi);
+ remove_phi_node (&gsi, false);
+}
+
+/* Helper function for for_each_index. For each INDEX of the data
+ reference REF, returns true when its indices are valid in the loop
+ nest LOOP passed in as DATA. */
+
+static bool
+dr_indices_valid_in_loop (tree ref ATTRIBUTE_UNUSED, tree *index, void *data)
+{
+ loop_p loop;
+ basic_block header, def_bb;
+ gimple stmt;
+
+ if (TREE_CODE (*index) != SSA_NAME)
+ return true;
+
+ loop = *((loop_p *) data);
+ header = loop->header;
+ stmt = SSA_NAME_DEF_STMT (*index);
+
+ if (!stmt)
+ return true;
+
+ def_bb = gimple_bb (stmt);
+
+ if (!def_bb)
+ return true;
+
+ return dominated_by_p (CDI_DOMINATORS, header, def_bb);
+}
+
+/* When the result of a CLOSE_PHI is written to a memory location,
+ return a pointer to that memory reference, otherwise return
+ NULL_TREE. */
+
+static tree
+close_phi_written_to_memory (gimple close_phi)
+{
+ imm_use_iterator imm_iter;
+ use_operand_p use_p;
+ gimple stmt;
+ tree res, def = gimple_phi_result (close_phi);
+
+ FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
+ if ((stmt = USE_STMT (use_p))
+ && gimple_code (stmt) == GIMPLE_ASSIGN
+ && (res = gimple_assign_lhs (stmt)))
+ {
+ switch (TREE_CODE (res))
+ {
+ case VAR_DECL:
+ case PARM_DECL:
+ case RESULT_DECL:
+ return res;
+
+ case ARRAY_REF:
+ case MEM_REF:
+ {
+ tree arg = gimple_phi_arg_def (close_phi, 0);
+ loop_p nest = loop_containing_stmt (SSA_NAME_DEF_STMT (arg));
+
+ /* FIXME: this restriction is for id-{24,25}.f and
+ could be handled by duplicating the computation of
+ array indices before the loop of the close_phi. */
+ if (for_each_index (&res, dr_indices_valid_in_loop, &nest))
+ return res;
+ }
+ /* Fallthru. */
+
+ default:
+ continue;
+ }
+ }
+ return NULL_TREE;
+}
+
+/* Rewrite out of SSA the reduction described by the loop phi nodes
+ IN, and the close phi nodes OUT. IN and OUT are structured by loop
+ levels like this:
+
+ IN: stmt, loop_n, ..., loop_0
+ OUT: stmt, close_n, ..., close_0
+
+ the first element is the reduction statement, and the next elements
+ are the loop and close phi nodes of each of the outer loops. */
+
+static void
+translate_scalar_reduction_to_array (scop_p scop,
+ VEC (gimple, heap) *in,
+ VEC (gimple, heap) *out)
+{
+ gimple loop_phi;
+ unsigned int i = VEC_length (gimple, out) - 1;
+ tree red = close_phi_written_to_memory (VEC_index (gimple, out, i));
+
+ FOR_EACH_VEC_ELT (gimple, in, i, loop_phi)
+ {
+ gimple close_phi = VEC_index (gimple, out, i);
+
+ if (i == 0)
+ {
+ gimple stmt = loop_phi;
+ basic_block bb = split_reduction_stmt (scop, stmt);
+ poly_bb_p pbb = pbb_from_bb (bb);
+ PBB_IS_REDUCTION (pbb) = true;
+ gcc_assert (close_phi == loop_phi);
+
+ if (!red)
+ red = create_zero_dim_array
+ (gimple_assign_lhs (stmt), "Commutative_Associative_Reduction");
+
+ translate_scalar_reduction_to_array_for_stmt
+ (scop, red, stmt, VEC_index (gimple, in, 1));
+ continue;
+ }
+
+ if (i == VEC_length (gimple, in) - 1)
+ {
+ insert_out_of_ssa_copy (scop, gimple_phi_result (close_phi),
+ unshare_expr (red), close_phi);
+ insert_out_of_ssa_copy_on_edge
+ (scop, edge_initial_value_for_loop_phi (loop_phi),
+ unshare_expr (red), initial_value_for_loop_phi (loop_phi));
+ }
+
+ remove_phi (loop_phi);
+ remove_phi (close_phi);
+ }
+}
+
+/* Rewrites out of SSA a commutative reduction at CLOSE_PHI. Returns
+ true when something has been changed. */
+
+static bool
+rewrite_commutative_reductions_out_of_ssa_close_phi (scop_p scop,
+ gimple close_phi)
+{
+ bool res;
+ VEC (gimple, heap) *in = VEC_alloc (gimple, heap, 10);
+ VEC (gimple, heap) *out = VEC_alloc (gimple, heap, 10);
+
+ detect_commutative_reduction (scop, close_phi, &in, &out);
+ res = VEC_length (gimple, in) > 1;
+ if (res)
+ translate_scalar_reduction_to_array (scop, in, out);
+
+ VEC_free (gimple, heap, in);
+ VEC_free (gimple, heap, out);
+ return res;
+}
+
+/* Rewrites all the commutative reductions from LOOP out of SSA.
+ Returns true when something has been changed. */
+
+static bool
+rewrite_commutative_reductions_out_of_ssa_loop (scop_p scop,
+ loop_p loop)
+{
+ gimple_stmt_iterator gsi;
+ edge exit = single_exit (loop);
+ tree res;
+ bool changed = false;
+
+ if (!exit)
+ return false;
+
+ for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
+ if ((res = gimple_phi_result (gsi_stmt (gsi)))
+ && is_gimple_reg (res)
+ && !scev_analyzable_p (res, SCOP_REGION (scop)))
+ changed |= rewrite_commutative_reductions_out_of_ssa_close_phi
+ (scop, gsi_stmt (gsi));
+
+ return changed;
+}
+
+/* Rewrites all the commutative reductions from SCOP out of SSA. */
+
+static void
+rewrite_commutative_reductions_out_of_ssa (scop_p scop)
+{
+ loop_iterator li;
+ loop_p loop;
+ bool changed = false;
+ sese region = SCOP_REGION (scop);
+
+ FOR_EACH_LOOP (li, loop, 0)
+ if (loop_in_sese_p (loop, region))
+ changed |= rewrite_commutative_reductions_out_of_ssa_loop (scop, loop);
+
+ if (changed)
+ {
+ scev_reset_htab ();
+ gsi_commit_edge_inserts ();
+ update_ssa (TODO_update_ssa);
+#ifdef ENABLE_CHECKING
+ verify_loop_closed_ssa (true);
+#endif
+ }
+}
+
+/* Java does not initialize long_long_integer_type_node. */
+#define my_long_long (long_long_integer_type_node ? long_long_integer_type_node : ssizetype)
+
+/* Can all ivs be represented by a signed integer?
+ As CLooG might generate negative values in its expressions, signed loop ivs
+ are required in the backend. */
+
+static bool
+scop_ivs_can_be_represented (scop_p scop)
+{
+ loop_iterator li;
+ loop_p loop;
+ gimple_stmt_iterator psi;
+
+ FOR_EACH_LOOP (li, loop, 0)
+ {
+ if (!loop_in_sese_p (loop, SCOP_REGION (scop)))
+ continue;
+
+ for (psi = gsi_start_phis (loop->header);
+ !gsi_end_p (psi); gsi_next (&psi))
+ {
+ gimple phi = gsi_stmt (psi);
+ tree res = PHI_RESULT (phi);
+ tree type = TREE_TYPE (res);
+
+ if (TYPE_UNSIGNED (type)
+ && TYPE_PRECISION (type) >= TYPE_PRECISION (my_long_long))
+ return false;
+ }
+ }
+
+ return true;
+}
+
+#undef my_long_long
+
+/* Builds the polyhedral representation for a SESE region. */
+
+void
+build_poly_scop (scop_p scop)
+{
+ sese region = SCOP_REGION (scop);
+ graphite_dim_t max_dim;
+
+ build_scop_bbs (scop);
+
+ /* FIXME: This restriction is needed to avoid a problem in CLooG.
+ Once CLooG is fixed, remove this guard. Anyways, it makes no
+ sense to optimize a scop containing only PBBs that do not belong
+ to any loops. */
+ if (nb_pbbs_in_loops (scop) == 0)
+ return;
+
+ if (!scop_ivs_can_be_represented (scop))
+ return;
+
+ if (flag_associative_math)
+ rewrite_commutative_reductions_out_of_ssa (scop);
+
+ build_sese_loop_nests (region);
+ build_sese_conditions (region);
+ find_scop_parameters (scop);
+
+ max_dim = PARAM_VALUE (PARAM_GRAPHITE_MAX_NB_SCOP_PARAMS);
+ if (scop_nb_params (scop) > max_dim)
+ return;
+
+ build_scop_iteration_domain (scop);
+ build_scop_context (scop);
+ add_conditions_to_constraints (scop);
+
+ /* Rewrite out of SSA only after having translated the
+ representation to the polyhedral representation to avoid scev
+ analysis failures. That means that these functions will insert
+ new data references that they create in the right place. */
+ rewrite_reductions_out_of_ssa (scop);
+ rewrite_cross_bb_scalar_deps_out_of_ssa (scop);
+
+ build_scop_drs (scop);
+ scop_to_lst (scop);
+ build_scop_scattering (scop);
+
+ /* This SCoP has been translated to the polyhedral
+ representation. */
+ POLY_SCOP_P (scop) = true;
+}
+#endif