aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/gcc/tree.c
diff options
context:
space:
mode:
authorJing Yu <jingyu@google.com>2010-07-22 14:03:48 -0700
committerJing Yu <jingyu@google.com>2010-07-22 14:03:48 -0700
commitb094d6c4bf572654a031ecc4afe675154c886dc5 (patch)
tree89394c56b05e13a5413ee60237d65b0214fd98e2 /gcc-4.4.3/gcc/tree.c
parentdc34721ac3bf7e3c406fba8cfe9d139393345ec5 (diff)
downloadtoolchain_gcc-b094d6c4bf572654a031ecc4afe675154c886dc5.tar.gz
toolchain_gcc-b094d6c4bf572654a031ecc4afe675154c886dc5.tar.bz2
toolchain_gcc-b094d6c4bf572654a031ecc4afe675154c886dc5.zip
commit gcc-4.4.3 which is used to build gcc-4.4.3 Android toolchain in master.
The source is based on fsf gcc-4.4.3 and contains local patches which are recorded in gcc-4.4.3/README.google. Change-Id: Id8c6d6927df274ae9749196a1cc24dbd9abc9887
Diffstat (limited to 'gcc-4.4.3/gcc/tree.c')
-rw-r--r--gcc-4.4.3/gcc/tree.c9290
1 files changed, 9290 insertions, 0 deletions
diff --git a/gcc-4.4.3/gcc/tree.c b/gcc-4.4.3/gcc/tree.c
new file mode 100644
index 000000000..bece05b53
--- /dev/null
+++ b/gcc-4.4.3/gcc/tree.c
@@ -0,0 +1,9290 @@
+/* Language-independent node constructors for parse phase of GNU compiler.
+ Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
+ 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
+ Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+/* This file contains the low level primitives for operating on tree nodes,
+ including allocation, list operations, interning of identifiers,
+ construction of data type nodes and statement nodes,
+ and construction of type conversion nodes. It also contains
+ tables index by tree code that describe how to take apart
+ nodes of that code.
+
+ It is intended to be language-independent, but occasionally
+ calls language-dependent routines defined (for C) in typecheck.c. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "flags.h"
+#include "tree.h"
+#include "real.h"
+#include "tm_p.h"
+#include "function.h"
+#include "obstack.h"
+#include "toplev.h"
+#include "ggc.h"
+#include "hashtab.h"
+#include "output.h"
+#include "target.h"
+#include "langhooks.h"
+#include "tree-iterator.h"
+#include "basic-block.h"
+#include "tree-flow.h"
+#include "params.h"
+#include "pointer-set.h"
+#include "fixed-value.h"
+
+/* Tree code classes. */
+
+#define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
+#define END_OF_BASE_TREE_CODES tcc_exceptional,
+
+const enum tree_code_class tree_code_type[] = {
+#include "all-tree.def"
+};
+
+#undef DEFTREECODE
+#undef END_OF_BASE_TREE_CODES
+
+/* Table indexed by tree code giving number of expression
+ operands beyond the fixed part of the node structure.
+ Not used for types or decls. */
+
+#define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
+#define END_OF_BASE_TREE_CODES 0,
+
+const unsigned char tree_code_length[] = {
+#include "all-tree.def"
+};
+
+#undef DEFTREECODE
+#undef END_OF_BASE_TREE_CODES
+
+/* Names of tree components.
+ Used for printing out the tree and error messages. */
+#define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
+#define END_OF_BASE_TREE_CODES "@dummy",
+
+const char *const tree_code_name[] = {
+#include "all-tree.def"
+};
+
+#undef DEFTREECODE
+#undef END_OF_BASE_TREE_CODES
+
+/* Each tree code class has an associated string representation.
+ These must correspond to the tree_code_class entries. */
+
+const char *const tree_code_class_strings[] =
+{
+ "exceptional",
+ "constant",
+ "type",
+ "declaration",
+ "reference",
+ "comparison",
+ "unary",
+ "binary",
+ "statement",
+ "vl_exp",
+ "expression"
+};
+
+/* obstack.[ch] explicitly declined to prototype this. */
+extern int _obstack_allocated_p (struct obstack *h, void *obj);
+
+#ifdef GATHER_STATISTICS
+/* Statistics-gathering stuff. */
+
+int tree_node_counts[(int) all_kinds];
+int tree_node_sizes[(int) all_kinds];
+
+/* Keep in sync with tree.h:enum tree_node_kind. */
+static const char * const tree_node_kind_names[] = {
+ "decls",
+ "types",
+ "blocks",
+ "stmts",
+ "refs",
+ "exprs",
+ "constants",
+ "identifiers",
+ "perm_tree_lists",
+ "temp_tree_lists",
+ "vecs",
+ "binfos",
+ "ssa names",
+ "constructors",
+ "random kinds",
+ "lang_decl kinds",
+ "lang_type kinds",
+ "omp clauses",
+};
+#endif /* GATHER_STATISTICS */
+
+/* Unique id for next decl created. */
+static GTY(()) int next_decl_uid;
+/* Unique id for next type created. */
+static GTY(()) int next_type_uid = 1;
+
+/* Since we cannot rehash a type after it is in the table, we have to
+ keep the hash code. */
+
+struct type_hash GTY(())
+{
+ unsigned long hash;
+ tree type;
+};
+
+/* Initial size of the hash table (rounded to next prime). */
+#define TYPE_HASH_INITIAL_SIZE 1000
+
+/* Now here is the hash table. When recording a type, it is added to
+ the slot whose index is the hash code. Note that the hash table is
+ used for several kinds of types (function types, array types and
+ array index range types, for now). While all these live in the
+ same table, they are completely independent, and the hash code is
+ computed differently for each of these. */
+
+static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
+ htab_t type_hash_table;
+
+/* Hash table and temporary node for larger integer const values. */
+static GTY (()) tree int_cst_node;
+static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
+ htab_t int_cst_hash_table;
+
+/* Hash table for optimization flags and target option flags. Use the same
+ hash table for both sets of options. Nodes for building the current
+ optimization and target option nodes. The assumption is most of the time
+ the options created will already be in the hash table, so we avoid
+ allocating and freeing up a node repeatably. */
+static GTY (()) tree cl_optimization_node;
+static GTY (()) tree cl_target_option_node;
+static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
+ htab_t cl_option_hash_table;
+
+/* General tree->tree mapping structure for use in hash tables. */
+
+
+static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
+ htab_t debug_expr_for_decl;
+
+static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
+ htab_t value_expr_for_decl;
+
+static GTY ((if_marked ("tree_priority_map_marked_p"),
+ param_is (struct tree_priority_map)))
+ htab_t init_priority_for_decl;
+
+static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
+ htab_t restrict_base_for_decl;
+
+static void set_type_quals (tree, int);
+static int type_hash_eq (const void *, const void *);
+static hashval_t type_hash_hash (const void *);
+static hashval_t int_cst_hash_hash (const void *);
+static int int_cst_hash_eq (const void *, const void *);
+static hashval_t cl_option_hash_hash (const void *);
+static int cl_option_hash_eq (const void *, const void *);
+static void print_type_hash_statistics (void);
+static void print_debug_expr_statistics (void);
+static void print_value_expr_statistics (void);
+static int type_hash_marked_p (const void *);
+static unsigned int type_hash_list (const_tree, hashval_t);
+static unsigned int attribute_hash_list (const_tree, hashval_t);
+
+tree global_trees[TI_MAX];
+tree integer_types[itk_none];
+
+unsigned char tree_contains_struct[MAX_TREE_CODES][64];
+
+/* Number of operands for each OpenMP clause. */
+unsigned const char omp_clause_num_ops[] =
+{
+ 0, /* OMP_CLAUSE_ERROR */
+ 1, /* OMP_CLAUSE_PRIVATE */
+ 1, /* OMP_CLAUSE_SHARED */
+ 1, /* OMP_CLAUSE_FIRSTPRIVATE */
+ 2, /* OMP_CLAUSE_LASTPRIVATE */
+ 4, /* OMP_CLAUSE_REDUCTION */
+ 1, /* OMP_CLAUSE_COPYIN */
+ 1, /* OMP_CLAUSE_COPYPRIVATE */
+ 1, /* OMP_CLAUSE_IF */
+ 1, /* OMP_CLAUSE_NUM_THREADS */
+ 1, /* OMP_CLAUSE_SCHEDULE */
+ 0, /* OMP_CLAUSE_NOWAIT */
+ 0, /* OMP_CLAUSE_ORDERED */
+ 0, /* OMP_CLAUSE_DEFAULT */
+ 3, /* OMP_CLAUSE_COLLAPSE */
+ 0 /* OMP_CLAUSE_UNTIED */
+};
+
+const char * const omp_clause_code_name[] =
+{
+ "error_clause",
+ "private",
+ "shared",
+ "firstprivate",
+ "lastprivate",
+ "reduction",
+ "copyin",
+ "copyprivate",
+ "if",
+ "num_threads",
+ "schedule",
+ "nowait",
+ "ordered",
+ "default",
+ "collapse",
+ "untied"
+};
+
+/* Init tree.c. */
+
+void
+init_ttree (void)
+{
+ /* Initialize the hash table of types. */
+ type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
+ type_hash_eq, 0);
+
+ debug_expr_for_decl = htab_create_ggc (512, tree_map_hash,
+ tree_map_eq, 0);
+
+ value_expr_for_decl = htab_create_ggc (512, tree_map_hash,
+ tree_map_eq, 0);
+ init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
+ tree_priority_map_eq, 0);
+ restrict_base_for_decl = htab_create_ggc (256, tree_map_hash,
+ tree_map_eq, 0);
+
+ int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
+ int_cst_hash_eq, NULL);
+
+ int_cst_node = make_node (INTEGER_CST);
+
+ cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash,
+ cl_option_hash_eq, NULL);
+
+ cl_optimization_node = make_node (OPTIMIZATION_NODE);
+ cl_target_option_node = make_node (TARGET_OPTION_NODE);
+
+ tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON] = 1;
+ tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_NON_COMMON] = 1;
+ tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON] = 1;
+
+
+ tree_contains_struct[CONST_DECL][TS_DECL_COMMON] = 1;
+ tree_contains_struct[VAR_DECL][TS_DECL_COMMON] = 1;
+ tree_contains_struct[PARM_DECL][TS_DECL_COMMON] = 1;
+ tree_contains_struct[RESULT_DECL][TS_DECL_COMMON] = 1;
+ tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON] = 1;
+ tree_contains_struct[TYPE_DECL][TS_DECL_COMMON] = 1;
+ tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON] = 1;
+ tree_contains_struct[LABEL_DECL][TS_DECL_COMMON] = 1;
+ tree_contains_struct[FIELD_DECL][TS_DECL_COMMON] = 1;
+
+
+ tree_contains_struct[CONST_DECL][TS_DECL_WRTL] = 1;
+ tree_contains_struct[VAR_DECL][TS_DECL_WRTL] = 1;
+ tree_contains_struct[PARM_DECL][TS_DECL_WRTL] = 1;
+ tree_contains_struct[RESULT_DECL][TS_DECL_WRTL] = 1;
+ tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL] = 1;
+ tree_contains_struct[LABEL_DECL][TS_DECL_WRTL] = 1;
+
+ tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL] = 1;
+ tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL] = 1;
+ tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL] = 1;
+ tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL] = 1;
+ tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL] = 1;
+ tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL] = 1;
+ tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL] = 1;
+ tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL] = 1;
+ tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL] = 1;
+ tree_contains_struct[NAME_MEMORY_TAG][TS_DECL_MINIMAL] = 1;
+ tree_contains_struct[SYMBOL_MEMORY_TAG][TS_DECL_MINIMAL] = 1;
+ tree_contains_struct[MEMORY_PARTITION_TAG][TS_DECL_MINIMAL] = 1;
+
+ tree_contains_struct[NAME_MEMORY_TAG][TS_MEMORY_TAG] = 1;
+ tree_contains_struct[SYMBOL_MEMORY_TAG][TS_MEMORY_TAG] = 1;
+ tree_contains_struct[MEMORY_PARTITION_TAG][TS_MEMORY_TAG] = 1;
+
+ tree_contains_struct[MEMORY_PARTITION_TAG][TS_MEMORY_PARTITION_TAG] = 1;
+
+ tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS] = 1;
+ tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS] = 1;
+ tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS] = 1;
+ tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_WITH_VIS] = 1;
+
+ tree_contains_struct[VAR_DECL][TS_VAR_DECL] = 1;
+ tree_contains_struct[FIELD_DECL][TS_FIELD_DECL] = 1;
+ tree_contains_struct[PARM_DECL][TS_PARM_DECL] = 1;
+ tree_contains_struct[LABEL_DECL][TS_LABEL_DECL] = 1;
+ tree_contains_struct[RESULT_DECL][TS_RESULT_DECL] = 1;
+ tree_contains_struct[CONST_DECL][TS_CONST_DECL] = 1;
+ tree_contains_struct[TYPE_DECL][TS_TYPE_DECL] = 1;
+ tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL] = 1;
+ tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL] = 1;
+ tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON] = 1;
+
+ lang_hooks.init_ts ();
+}
+
+
+/* The name of the object as the assembler will see it (but before any
+ translations made by ASM_OUTPUT_LABELREF). Often this is the same
+ as DECL_NAME. It is an IDENTIFIER_NODE. */
+tree
+decl_assembler_name (tree decl)
+{
+ if (!DECL_ASSEMBLER_NAME_SET_P (decl))
+ lang_hooks.set_decl_assembler_name (decl);
+ return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
+}
+
+/* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
+
+bool
+decl_assembler_name_equal (tree decl, const_tree asmname)
+{
+ tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
+ const char *decl_str;
+ const char *asmname_str;
+ bool test = false;
+
+ if (decl_asmname == asmname)
+ return true;
+
+ decl_str = IDENTIFIER_POINTER (decl_asmname);
+ asmname_str = IDENTIFIER_POINTER (asmname);
+
+
+ /* If the target assembler name was set by the user, things are trickier.
+ We have a leading '*' to begin with. After that, it's arguable what
+ is the correct thing to do with -fleading-underscore. Arguably, we've
+ historically been doing the wrong thing in assemble_alias by always
+ printing the leading underscore. Since we're not changing that, make
+ sure user_label_prefix follows the '*' before matching. */
+ if (decl_str[0] == '*')
+ {
+ size_t ulp_len = strlen (user_label_prefix);
+
+ decl_str ++;
+
+ if (ulp_len == 0)
+ test = true;
+ else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
+ decl_str += ulp_len, test=true;
+ else
+ decl_str --;
+ }
+ if (asmname_str[0] == '*')
+ {
+ size_t ulp_len = strlen (user_label_prefix);
+
+ asmname_str ++;
+
+ if (ulp_len == 0)
+ test = true;
+ else if (strncmp (asmname_str, user_label_prefix, ulp_len) == 0)
+ asmname_str += ulp_len, test=true;
+ else
+ asmname_str --;
+ }
+
+ if (!test)
+ return false;
+ return strcmp (decl_str, asmname_str) == 0;
+}
+
+/* Hash asmnames ignoring the user specified marks. */
+
+hashval_t
+decl_assembler_name_hash (const_tree asmname)
+{
+ if (IDENTIFIER_POINTER (asmname)[0] == '*')
+ {
+ const char *decl_str = IDENTIFIER_POINTER (asmname) + 1;
+ size_t ulp_len = strlen (user_label_prefix);
+
+ if (ulp_len == 0)
+ ;
+ else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
+ decl_str += ulp_len;
+
+ return htab_hash_string (decl_str);
+ }
+
+ return htab_hash_string (IDENTIFIER_POINTER (asmname));
+}
+
+/* Compute the number of bytes occupied by a tree with code CODE.
+ This function cannot be used for nodes that have variable sizes,
+ including TREE_VEC, STRING_CST, and CALL_EXPR. */
+size_t
+tree_code_size (enum tree_code code)
+{
+ switch (TREE_CODE_CLASS (code))
+ {
+ case tcc_declaration: /* A decl node */
+ {
+ switch (code)
+ {
+ case FIELD_DECL:
+ return sizeof (struct tree_field_decl);
+ case PARM_DECL:
+ return sizeof (struct tree_parm_decl);
+ case VAR_DECL:
+ return sizeof (struct tree_var_decl);
+ case LABEL_DECL:
+ return sizeof (struct tree_label_decl);
+ case RESULT_DECL:
+ return sizeof (struct tree_result_decl);
+ case CONST_DECL:
+ return sizeof (struct tree_const_decl);
+ case TYPE_DECL:
+ return sizeof (struct tree_type_decl);
+ case FUNCTION_DECL:
+ return sizeof (struct tree_function_decl);
+ case NAME_MEMORY_TAG:
+ case SYMBOL_MEMORY_TAG:
+ return sizeof (struct tree_memory_tag);
+ case MEMORY_PARTITION_TAG:
+ return sizeof (struct tree_memory_partition_tag);
+ default:
+ return sizeof (struct tree_decl_non_common);
+ }
+ }
+
+ case tcc_type: /* a type node */
+ return sizeof (struct tree_type);
+
+ case tcc_reference: /* a reference */
+ case tcc_expression: /* an expression */
+ case tcc_statement: /* an expression with side effects */
+ case tcc_comparison: /* a comparison expression */
+ case tcc_unary: /* a unary arithmetic expression */
+ case tcc_binary: /* a binary arithmetic expression */
+ return (sizeof (struct tree_exp)
+ + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
+
+ case tcc_constant: /* a constant */
+ switch (code)
+ {
+ case INTEGER_CST: return sizeof (struct tree_int_cst);
+ case REAL_CST: return sizeof (struct tree_real_cst);
+ case FIXED_CST: return sizeof (struct tree_fixed_cst);
+ case COMPLEX_CST: return sizeof (struct tree_complex);
+ case VECTOR_CST: return sizeof (struct tree_vector);
+ case STRING_CST: gcc_unreachable ();
+ default:
+ return lang_hooks.tree_size (code);
+ }
+
+ case tcc_exceptional: /* something random, like an identifier. */
+ switch (code)
+ {
+ case IDENTIFIER_NODE: return lang_hooks.identifier_size;
+ case TREE_LIST: return sizeof (struct tree_list);
+
+ case ERROR_MARK:
+ case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
+
+ case TREE_VEC:
+ case OMP_CLAUSE: gcc_unreachable ();
+
+ case SSA_NAME: return sizeof (struct tree_ssa_name);
+
+ case STATEMENT_LIST: return sizeof (struct tree_statement_list);
+ case BLOCK: return sizeof (struct tree_block);
+ case CONSTRUCTOR: return sizeof (struct tree_constructor);
+ case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
+ case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
+
+ default:
+ return lang_hooks.tree_size (code);
+ }
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Compute the number of bytes occupied by NODE. This routine only
+ looks at TREE_CODE, except for those nodes that have variable sizes. */
+size_t
+tree_size (const_tree node)
+{
+ const enum tree_code code = TREE_CODE (node);
+ switch (code)
+ {
+ case TREE_BINFO:
+ return (offsetof (struct tree_binfo, base_binfos)
+ + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
+
+ case TREE_VEC:
+ return (sizeof (struct tree_vec)
+ + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
+
+ case STRING_CST:
+ return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
+
+ case OMP_CLAUSE:
+ return (sizeof (struct tree_omp_clause)
+ + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
+ * sizeof (tree));
+
+ default:
+ if (TREE_CODE_CLASS (code) == tcc_vl_exp)
+ return (sizeof (struct tree_exp)
+ + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
+ else
+ return tree_code_size (code);
+ }
+}
+
+/* Return a newly allocated node of code CODE. For decl and type
+ nodes, some other fields are initialized. The rest of the node is
+ initialized to zero. This function cannot be used for TREE_VEC or
+ OMP_CLAUSE nodes, which is enforced by asserts in tree_code_size.
+
+ Achoo! I got a code in the node. */
+
+tree
+make_node_stat (enum tree_code code MEM_STAT_DECL)
+{
+ tree t;
+ enum tree_code_class type = TREE_CODE_CLASS (code);
+ size_t length = tree_code_size (code);
+#ifdef GATHER_STATISTICS
+ tree_node_kind kind;
+
+ switch (type)
+ {
+ case tcc_declaration: /* A decl node */
+ kind = d_kind;
+ break;
+
+ case tcc_type: /* a type node */
+ kind = t_kind;
+ break;
+
+ case tcc_statement: /* an expression with side effects */
+ kind = s_kind;
+ break;
+
+ case tcc_reference: /* a reference */
+ kind = r_kind;
+ break;
+
+ case tcc_expression: /* an expression */
+ case tcc_comparison: /* a comparison expression */
+ case tcc_unary: /* a unary arithmetic expression */
+ case tcc_binary: /* a binary arithmetic expression */
+ kind = e_kind;
+ break;
+
+ case tcc_constant: /* a constant */
+ kind = c_kind;
+ break;
+
+ case tcc_exceptional: /* something random, like an identifier. */
+ switch (code)
+ {
+ case IDENTIFIER_NODE:
+ kind = id_kind;
+ break;
+
+ case TREE_VEC:
+ kind = vec_kind;
+ break;
+
+ case TREE_BINFO:
+ kind = binfo_kind;
+ break;
+
+ case SSA_NAME:
+ kind = ssa_name_kind;
+ break;
+
+ case BLOCK:
+ kind = b_kind;
+ break;
+
+ case CONSTRUCTOR:
+ kind = constr_kind;
+ break;
+
+ default:
+ kind = x_kind;
+ break;
+ }
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ tree_node_counts[(int) kind]++;
+ tree_node_sizes[(int) kind] += length;
+#endif
+
+ if (code == IDENTIFIER_NODE)
+ t = (tree) ggc_alloc_zone_pass_stat (length, &tree_id_zone);
+ else
+ t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
+
+ memset (t, 0, length);
+
+ TREE_SET_CODE (t, code);
+
+ switch (type)
+ {
+ case tcc_statement:
+ TREE_SIDE_EFFECTS (t) = 1;
+ break;
+
+ case tcc_declaration:
+ if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
+ {
+ if (code == FUNCTION_DECL)
+ {
+ DECL_ALIGN (t) = FUNCTION_BOUNDARY;
+ DECL_MODE (t) = FUNCTION_MODE;
+ }
+ else
+ DECL_ALIGN (t) = 1;
+ /* We have not yet computed the alias set for this declaration. */
+ DECL_POINTER_ALIAS_SET (t) = -1;
+ }
+ DECL_SOURCE_LOCATION (t) = input_location;
+ DECL_UID (t) = next_decl_uid++;
+
+ break;
+
+ case tcc_type:
+ TYPE_UID (t) = next_type_uid++;
+ TYPE_ALIGN (t) = BITS_PER_UNIT;
+ TYPE_USER_ALIGN (t) = 0;
+ TYPE_MAIN_VARIANT (t) = t;
+ TYPE_CANONICAL (t) = t;
+
+ /* Default to no attributes for type, but let target change that. */
+ TYPE_ATTRIBUTES (t) = NULL_TREE;
+ targetm.set_default_type_attributes (t);
+
+ /* We have not yet computed the alias set for this type. */
+ TYPE_ALIAS_SET (t) = -1;
+ break;
+
+ case tcc_constant:
+ TREE_CONSTANT (t) = 1;
+ break;
+
+ case tcc_expression:
+ switch (code)
+ {
+ case INIT_EXPR:
+ case MODIFY_EXPR:
+ case VA_ARG_EXPR:
+ case PREDECREMENT_EXPR:
+ case PREINCREMENT_EXPR:
+ case POSTDECREMENT_EXPR:
+ case POSTINCREMENT_EXPR:
+ /* All of these have side-effects, no matter what their
+ operands are. */
+ TREE_SIDE_EFFECTS (t) = 1;
+ break;
+
+ default:
+ break;
+ }
+ break;
+
+ default:
+ /* Other classes need no special treatment. */
+ break;
+ }
+
+ return t;
+}
+
+/* Return a new node with the same contents as NODE except that its
+ TREE_CHAIN is zero and it has a fresh uid. */
+
+tree
+copy_node_stat (tree node MEM_STAT_DECL)
+{
+ tree t;
+ enum tree_code code = TREE_CODE (node);
+ size_t length;
+
+ gcc_assert (code != STATEMENT_LIST);
+
+ length = tree_size (node);
+ t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
+ memcpy (t, node, length);
+
+ TREE_CHAIN (t) = 0;
+ TREE_ASM_WRITTEN (t) = 0;
+ TREE_VISITED (t) = 0;
+ t->base.ann = 0;
+
+ if (TREE_CODE_CLASS (code) == tcc_declaration)
+ {
+ DECL_UID (t) = next_decl_uid++;
+ if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
+ && DECL_HAS_VALUE_EXPR_P (node))
+ {
+ SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
+ DECL_HAS_VALUE_EXPR_P (t) = 1;
+ }
+ if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
+ {
+ SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
+ DECL_HAS_INIT_PRIORITY_P (t) = 1;
+ }
+ if (TREE_CODE (node) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (node))
+ {
+ SET_DECL_RESTRICT_BASE (t, DECL_GET_RESTRICT_BASE (node));
+ DECL_BASED_ON_RESTRICT_P (t) = 1;
+ }
+ }
+ else if (TREE_CODE_CLASS (code) == tcc_type)
+ {
+ TYPE_UID (t) = next_type_uid++;
+ /* The following is so that the debug code for
+ the copy is different from the original type.
+ The two statements usually duplicate each other
+ (because they clear fields of the same union),
+ but the optimizer should catch that. */
+ TYPE_SYMTAB_POINTER (t) = 0;
+ TYPE_SYMTAB_ADDRESS (t) = 0;
+
+ /* Do not copy the values cache. */
+ if (TYPE_CACHED_VALUES_P(t))
+ {
+ TYPE_CACHED_VALUES_P (t) = 0;
+ TYPE_CACHED_VALUES (t) = NULL_TREE;
+ }
+ }
+
+ return t;
+}
+
+/* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
+ For example, this can copy a list made of TREE_LIST nodes. */
+
+tree
+copy_list (tree list)
+{
+ tree head;
+ tree prev, next;
+
+ if (list == 0)
+ return 0;
+
+ head = prev = copy_node (list);
+ next = TREE_CHAIN (list);
+ while (next)
+ {
+ TREE_CHAIN (prev) = copy_node (next);
+ prev = TREE_CHAIN (prev);
+ next = TREE_CHAIN (next);
+ }
+ return head;
+}
+
+
+/* Create an INT_CST node with a LOW value sign extended. */
+
+tree
+build_int_cst (tree type, HOST_WIDE_INT low)
+{
+ /* Support legacy code. */
+ if (!type)
+ type = integer_type_node;
+
+ return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
+}
+
+/* Create an INT_CST node with a LOW value zero extended. */
+
+tree
+build_int_cstu (tree type, unsigned HOST_WIDE_INT low)
+{
+ return build_int_cst_wide (type, low, 0);
+}
+
+/* Create an INT_CST node with a LOW value in TYPE. The value is sign extended
+ if it is negative. This function is similar to build_int_cst, but
+ the extra bits outside of the type precision are cleared. Constants
+ with these extra bits may confuse the fold so that it detects overflows
+ even in cases when they do not occur, and in general should be avoided.
+ We cannot however make this a default behavior of build_int_cst without
+ more intrusive changes, since there are parts of gcc that rely on the extra
+ precision of the integer constants. */
+
+tree
+build_int_cst_type (tree type, HOST_WIDE_INT low)
+{
+ unsigned HOST_WIDE_INT low1;
+ HOST_WIDE_INT hi;
+
+ gcc_assert (type);
+
+ fit_double_type (low, low < 0 ? -1 : 0, &low1, &hi, type);
+
+ return build_int_cst_wide (type, low1, hi);
+}
+
+/* Create an INT_CST node of TYPE and value HI:LOW. The value is truncated
+ and sign extended according to the value range of TYPE. */
+
+tree
+build_int_cst_wide_type (tree type,
+ unsigned HOST_WIDE_INT low, HOST_WIDE_INT high)
+{
+ fit_double_type (low, high, &low, &high, type);
+ return build_int_cst_wide (type, low, high);
+}
+
+/* These are the hash table functions for the hash table of INTEGER_CST
+ nodes of a sizetype. */
+
+/* Return the hash code code X, an INTEGER_CST. */
+
+static hashval_t
+int_cst_hash_hash (const void *x)
+{
+ const_tree const t = (const_tree) x;
+
+ return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
+ ^ htab_hash_pointer (TREE_TYPE (t)));
+}
+
+/* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
+ is the same as that given by *Y, which is the same. */
+
+static int
+int_cst_hash_eq (const void *x, const void *y)
+{
+ const_tree const xt = (const_tree) x;
+ const_tree const yt = (const_tree) y;
+
+ return (TREE_TYPE (xt) == TREE_TYPE (yt)
+ && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
+ && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
+}
+
+/* Create an INT_CST node of TYPE and value HI:LOW.
+ The returned node is always shared. For small integers we use a
+ per-type vector cache, for larger ones we use a single hash table. */
+
+tree
+build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
+{
+ tree t;
+ int ix = -1;
+ int limit = 0;
+
+ gcc_assert (type);
+
+ switch (TREE_CODE (type))
+ {
+ case POINTER_TYPE:
+ case REFERENCE_TYPE:
+ /* Cache NULL pointer. */
+ if (!hi && !low)
+ {
+ limit = 1;
+ ix = 0;
+ }
+ break;
+
+ case BOOLEAN_TYPE:
+ /* Cache false or true. */
+ limit = 2;
+ if (!hi && low < 2)
+ ix = low;
+ break;
+
+ case INTEGER_TYPE:
+ case OFFSET_TYPE:
+ if (TYPE_UNSIGNED (type))
+ {
+ /* Cache 0..N */
+ limit = INTEGER_SHARE_LIMIT;
+ if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
+ ix = low;
+ }
+ else
+ {
+ /* Cache -1..N */
+ limit = INTEGER_SHARE_LIMIT + 1;
+ if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
+ ix = low + 1;
+ else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
+ ix = 0;
+ }
+ break;
+
+ case ENUMERAL_TYPE:
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ if (ix >= 0)
+ {
+ /* Look for it in the type's vector of small shared ints. */
+ if (!TYPE_CACHED_VALUES_P (type))
+ {
+ TYPE_CACHED_VALUES_P (type) = 1;
+ TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
+ }
+
+ t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
+ if (t)
+ {
+ /* Make sure no one is clobbering the shared constant. */
+ gcc_assert (TREE_TYPE (t) == type);
+ gcc_assert (TREE_INT_CST_LOW (t) == low);
+ gcc_assert (TREE_INT_CST_HIGH (t) == hi);
+ }
+ else
+ {
+ /* Create a new shared int. */
+ t = make_node (INTEGER_CST);
+
+ TREE_INT_CST_LOW (t) = low;
+ TREE_INT_CST_HIGH (t) = hi;
+ TREE_TYPE (t) = type;
+
+ TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
+ }
+ }
+ else
+ {
+ /* Use the cache of larger shared ints. */
+ void **slot;
+
+ TREE_INT_CST_LOW (int_cst_node) = low;
+ TREE_INT_CST_HIGH (int_cst_node) = hi;
+ TREE_TYPE (int_cst_node) = type;
+
+ slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
+ t = (tree) *slot;
+ if (!t)
+ {
+ /* Insert this one into the hash table. */
+ t = int_cst_node;
+ *slot = t;
+ /* Make a new node for next time round. */
+ int_cst_node = make_node (INTEGER_CST);
+ }
+ }
+
+ return t;
+}
+
+/* Builds an integer constant in TYPE such that lowest BITS bits are ones
+ and the rest are zeros. */
+
+tree
+build_low_bits_mask (tree type, unsigned bits)
+{
+ unsigned HOST_WIDE_INT low;
+ HOST_WIDE_INT high;
+ unsigned HOST_WIDE_INT all_ones = ~(unsigned HOST_WIDE_INT) 0;
+
+ gcc_assert (bits <= TYPE_PRECISION (type));
+
+ if (bits == TYPE_PRECISION (type)
+ && !TYPE_UNSIGNED (type))
+ {
+ /* Sign extended all-ones mask. */
+ low = all_ones;
+ high = -1;
+ }
+ else if (bits <= HOST_BITS_PER_WIDE_INT)
+ {
+ low = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
+ high = 0;
+ }
+ else
+ {
+ bits -= HOST_BITS_PER_WIDE_INT;
+ low = all_ones;
+ high = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
+ }
+
+ return build_int_cst_wide (type, low, high);
+}
+
+/* Checks that X is integer constant that can be expressed in (unsigned)
+ HOST_WIDE_INT without loss of precision. */
+
+bool
+cst_and_fits_in_hwi (const_tree x)
+{
+ if (TREE_CODE (x) != INTEGER_CST)
+ return false;
+
+ if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
+ return false;
+
+ return (TREE_INT_CST_HIGH (x) == 0
+ || TREE_INT_CST_HIGH (x) == -1);
+}
+
+/* Return a new VECTOR_CST node whose type is TYPE and whose values
+ are in a list pointed to by VALS. */
+
+tree
+build_vector (tree type, tree vals)
+{
+ tree v = make_node (VECTOR_CST);
+ int over = 0;
+ tree link;
+
+ TREE_VECTOR_CST_ELTS (v) = vals;
+ TREE_TYPE (v) = type;
+
+ /* Iterate through elements and check for overflow. */
+ for (link = vals; link; link = TREE_CHAIN (link))
+ {
+ tree value = TREE_VALUE (link);
+
+ /* Don't crash if we get an address constant. */
+ if (!CONSTANT_CLASS_P (value))
+ continue;
+
+ over |= TREE_OVERFLOW (value);
+ }
+
+ TREE_OVERFLOW (v) = over;
+ return v;
+}
+
+/* Return a new VECTOR_CST node whose type is TYPE and whose values
+ are extracted from V, a vector of CONSTRUCTOR_ELT. */
+
+tree
+build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
+{
+ tree list = NULL_TREE;
+ unsigned HOST_WIDE_INT idx;
+ tree value;
+
+ FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
+ list = tree_cons (NULL_TREE, value, list);
+ return build_vector (type, nreverse (list));
+}
+
+/* Return a new CONSTRUCTOR node whose type is TYPE and whose values
+ are in the VEC pointed to by VALS. */
+tree
+build_constructor (tree type, VEC(constructor_elt,gc) *vals)
+{
+ tree c = make_node (CONSTRUCTOR);
+ TREE_TYPE (c) = type;
+ CONSTRUCTOR_ELTS (c) = vals;
+ return c;
+}
+
+/* Build a CONSTRUCTOR node made of a single initializer, with the specified
+ INDEX and VALUE. */
+tree
+build_constructor_single (tree type, tree index, tree value)
+{
+ VEC(constructor_elt,gc) *v;
+ constructor_elt *elt;
+ tree t;
+
+ v = VEC_alloc (constructor_elt, gc, 1);
+ elt = VEC_quick_push (constructor_elt, v, NULL);
+ elt->index = index;
+ elt->value = value;
+
+ t = build_constructor (type, v);
+ TREE_CONSTANT (t) = TREE_CONSTANT (value);
+ return t;
+}
+
+
+/* Return a new CONSTRUCTOR node whose type is TYPE and whose values
+ are in a list pointed to by VALS. */
+tree
+build_constructor_from_list (tree type, tree vals)
+{
+ tree t, val;
+ VEC(constructor_elt,gc) *v = NULL;
+ bool constant_p = true;
+
+ if (vals)
+ {
+ v = VEC_alloc (constructor_elt, gc, list_length (vals));
+ for (t = vals; t; t = TREE_CHAIN (t))
+ {
+ constructor_elt *elt = VEC_quick_push (constructor_elt, v, NULL);
+ val = TREE_VALUE (t);
+ elt->index = TREE_PURPOSE (t);
+ elt->value = val;
+ if (!TREE_CONSTANT (val))
+ constant_p = false;
+ }
+ }
+
+ t = build_constructor (type, v);
+ TREE_CONSTANT (t) = constant_p;
+ return t;
+}
+
+/* Return a new FIXED_CST node whose type is TYPE and value is F. */
+
+tree
+build_fixed (tree type, FIXED_VALUE_TYPE f)
+{
+ tree v;
+ FIXED_VALUE_TYPE *fp;
+
+ v = make_node (FIXED_CST);
+ fp = GGC_NEW (FIXED_VALUE_TYPE);
+ memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
+
+ TREE_TYPE (v) = type;
+ TREE_FIXED_CST_PTR (v) = fp;
+ return v;
+}
+
+/* Return a new REAL_CST node whose type is TYPE and value is D. */
+
+tree
+build_real (tree type, REAL_VALUE_TYPE d)
+{
+ tree v;
+ REAL_VALUE_TYPE *dp;
+ int overflow = 0;
+
+ /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
+ Consider doing it via real_convert now. */
+
+ v = make_node (REAL_CST);
+ dp = GGC_NEW (REAL_VALUE_TYPE);
+ memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
+
+ TREE_TYPE (v) = type;
+ TREE_REAL_CST_PTR (v) = dp;
+ TREE_OVERFLOW (v) = overflow;
+ return v;
+}
+
+/* Return a new REAL_CST node whose type is TYPE
+ and whose value is the integer value of the INTEGER_CST node I. */
+
+REAL_VALUE_TYPE
+real_value_from_int_cst (const_tree type, const_tree i)
+{
+ REAL_VALUE_TYPE d;
+
+ /* Clear all bits of the real value type so that we can later do
+ bitwise comparisons to see if two values are the same. */
+ memset (&d, 0, sizeof d);
+
+ real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
+ TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
+ TYPE_UNSIGNED (TREE_TYPE (i)));
+ return d;
+}
+
+/* Given a tree representing an integer constant I, return a tree
+ representing the same value as a floating-point constant of type TYPE. */
+
+tree
+build_real_from_int_cst (tree type, const_tree i)
+{
+ tree v;
+ int overflow = TREE_OVERFLOW (i);
+
+ v = build_real (type, real_value_from_int_cst (type, i));
+
+ TREE_OVERFLOW (v) |= overflow;
+ return v;
+}
+
+/* Return a newly constructed STRING_CST node whose value is
+ the LEN characters at STR.
+ The TREE_TYPE is not initialized. */
+
+tree
+build_string (int len, const char *str)
+{
+ tree s;
+ size_t length;
+
+ /* Do not waste bytes provided by padding of struct tree_string. */
+ length = len + offsetof (struct tree_string, str) + 1;
+
+#ifdef GATHER_STATISTICS
+ tree_node_counts[(int) c_kind]++;
+ tree_node_sizes[(int) c_kind] += length;
+#endif
+
+ s = ggc_alloc_tree (length);
+
+ memset (s, 0, sizeof (struct tree_common));
+ TREE_SET_CODE (s, STRING_CST);
+ TREE_CONSTANT (s) = 1;
+ TREE_STRING_LENGTH (s) = len;
+ memcpy (s->string.str, str, len);
+ s->string.str[len] = '\0';
+
+ return s;
+}
+
+/* Return a newly constructed COMPLEX_CST node whose value is
+ specified by the real and imaginary parts REAL and IMAG.
+ Both REAL and IMAG should be constant nodes. TYPE, if specified,
+ will be the type of the COMPLEX_CST; otherwise a new type will be made. */
+
+tree
+build_complex (tree type, tree real, tree imag)
+{
+ tree t = make_node (COMPLEX_CST);
+
+ TREE_REALPART (t) = real;
+ TREE_IMAGPART (t) = imag;
+ TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
+ TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
+ return t;
+}
+
+/* Return a constant of arithmetic type TYPE which is the
+ multiplicative identity of the set TYPE. */
+
+tree
+build_one_cst (tree type)
+{
+ switch (TREE_CODE (type))
+ {
+ case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
+ case POINTER_TYPE: case REFERENCE_TYPE:
+ case OFFSET_TYPE:
+ return build_int_cst (type, 1);
+
+ case REAL_TYPE:
+ return build_real (type, dconst1);
+
+ case FIXED_POINT_TYPE:
+ /* We can only generate 1 for accum types. */
+ gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
+ return build_fixed (type, FCONST1(TYPE_MODE (type)));
+
+ case VECTOR_TYPE:
+ {
+ tree scalar, cst;
+ int i;
+
+ scalar = build_one_cst (TREE_TYPE (type));
+
+ /* Create 'vect_cst_ = {cst,cst,...,cst}' */
+ cst = NULL_TREE;
+ for (i = TYPE_VECTOR_SUBPARTS (type); --i >= 0; )
+ cst = tree_cons (NULL_TREE, scalar, cst);
+
+ return build_vector (type, cst);
+ }
+
+ case COMPLEX_TYPE:
+ return build_complex (type,
+ build_one_cst (TREE_TYPE (type)),
+ fold_convert (TREE_TYPE (type), integer_zero_node));
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Build a BINFO with LEN language slots. */
+
+tree
+make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
+{
+ tree t;
+ size_t length = (offsetof (struct tree_binfo, base_binfos)
+ + VEC_embedded_size (tree, base_binfos));
+
+#ifdef GATHER_STATISTICS
+ tree_node_counts[(int) binfo_kind]++;
+ tree_node_sizes[(int) binfo_kind] += length;
+#endif
+
+ t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
+
+ memset (t, 0, offsetof (struct tree_binfo, base_binfos));
+
+ TREE_SET_CODE (t, TREE_BINFO);
+
+ VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
+
+ return t;
+}
+
+
+/* Build a newly constructed TREE_VEC node of length LEN. */
+
+tree
+make_tree_vec_stat (int len MEM_STAT_DECL)
+{
+ tree t;
+ int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
+
+#ifdef GATHER_STATISTICS
+ tree_node_counts[(int) vec_kind]++;
+ tree_node_sizes[(int) vec_kind] += length;
+#endif
+
+ t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
+
+ memset (t, 0, length);
+
+ TREE_SET_CODE (t, TREE_VEC);
+ TREE_VEC_LENGTH (t) = len;
+
+ return t;
+}
+
+/* Return 1 if EXPR is the integer constant zero or a complex constant
+ of zero. */
+
+int
+integer_zerop (const_tree expr)
+{
+ STRIP_NOPS (expr);
+
+ return ((TREE_CODE (expr) == INTEGER_CST
+ && TREE_INT_CST_LOW (expr) == 0
+ && TREE_INT_CST_HIGH (expr) == 0)
+ || (TREE_CODE (expr) == COMPLEX_CST
+ && integer_zerop (TREE_REALPART (expr))
+ && integer_zerop (TREE_IMAGPART (expr))));
+}
+
+/* Return 1 if EXPR is the integer constant one or the corresponding
+ complex constant. */
+
+int
+integer_onep (const_tree expr)
+{
+ STRIP_NOPS (expr);
+
+ return ((TREE_CODE (expr) == INTEGER_CST
+ && TREE_INT_CST_LOW (expr) == 1
+ && TREE_INT_CST_HIGH (expr) == 0)
+ || (TREE_CODE (expr) == COMPLEX_CST
+ && integer_onep (TREE_REALPART (expr))
+ && integer_zerop (TREE_IMAGPART (expr))));
+}
+
+/* Return 1 if EXPR is an integer containing all 1's in as much precision as
+ it contains. Likewise for the corresponding complex constant. */
+
+int
+integer_all_onesp (const_tree expr)
+{
+ int prec;
+ int uns;
+
+ STRIP_NOPS (expr);
+
+ if (TREE_CODE (expr) == COMPLEX_CST
+ && integer_all_onesp (TREE_REALPART (expr))
+ && integer_zerop (TREE_IMAGPART (expr)))
+ return 1;
+
+ else if (TREE_CODE (expr) != INTEGER_CST)
+ return 0;
+
+ uns = TYPE_UNSIGNED (TREE_TYPE (expr));
+ if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
+ && TREE_INT_CST_HIGH (expr) == -1)
+ return 1;
+ if (!uns)
+ return 0;
+
+ /* Note that using TYPE_PRECISION here is wrong. We care about the
+ actual bits, not the (arbitrary) range of the type. */
+ prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
+ if (prec >= HOST_BITS_PER_WIDE_INT)
+ {
+ HOST_WIDE_INT high_value;
+ int shift_amount;
+
+ shift_amount = prec - HOST_BITS_PER_WIDE_INT;
+
+ /* Can not handle precisions greater than twice the host int size. */
+ gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
+ if (shift_amount == HOST_BITS_PER_WIDE_INT)
+ /* Shifting by the host word size is undefined according to the ANSI
+ standard, so we must handle this as a special case. */
+ high_value = -1;
+ else
+ high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
+
+ return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
+ && TREE_INT_CST_HIGH (expr) == high_value);
+ }
+ else
+ return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
+}
+
+/* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
+ one bit on). */
+
+int
+integer_pow2p (const_tree expr)
+{
+ int prec;
+ HOST_WIDE_INT high, low;
+
+ STRIP_NOPS (expr);
+
+ if (TREE_CODE (expr) == COMPLEX_CST
+ && integer_pow2p (TREE_REALPART (expr))
+ && integer_zerop (TREE_IMAGPART (expr)))
+ return 1;
+
+ if (TREE_CODE (expr) != INTEGER_CST)
+ return 0;
+
+ prec = (POINTER_TYPE_P (TREE_TYPE (expr))
+ ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
+ high = TREE_INT_CST_HIGH (expr);
+ low = TREE_INT_CST_LOW (expr);
+
+ /* First clear all bits that are beyond the type's precision in case
+ we've been sign extended. */
+
+ if (prec == 2 * HOST_BITS_PER_WIDE_INT)
+ ;
+ else if (prec > HOST_BITS_PER_WIDE_INT)
+ high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
+ else
+ {
+ high = 0;
+ if (prec < HOST_BITS_PER_WIDE_INT)
+ low &= ~((HOST_WIDE_INT) (-1) << prec);
+ }
+
+ if (high == 0 && low == 0)
+ return 0;
+
+ return ((high == 0 && (low & (low - 1)) == 0)
+ || (low == 0 && (high & (high - 1)) == 0));
+}
+
+/* Return 1 if EXPR is an integer constant other than zero or a
+ complex constant other than zero. */
+
+int
+integer_nonzerop (const_tree expr)
+{
+ STRIP_NOPS (expr);
+
+ return ((TREE_CODE (expr) == INTEGER_CST
+ && (TREE_INT_CST_LOW (expr) != 0
+ || TREE_INT_CST_HIGH (expr) != 0))
+ || (TREE_CODE (expr) == COMPLEX_CST
+ && (integer_nonzerop (TREE_REALPART (expr))
+ || integer_nonzerop (TREE_IMAGPART (expr)))));
+}
+
+/* Return 1 if EXPR is the fixed-point constant zero. */
+
+int
+fixed_zerop (const_tree expr)
+{
+ return (TREE_CODE (expr) == FIXED_CST
+ && double_int_zero_p (TREE_FIXED_CST (expr).data));
+}
+
+/* Return the power of two represented by a tree node known to be a
+ power of two. */
+
+int
+tree_log2 (const_tree expr)
+{
+ int prec;
+ HOST_WIDE_INT high, low;
+
+ STRIP_NOPS (expr);
+
+ if (TREE_CODE (expr) == COMPLEX_CST)
+ return tree_log2 (TREE_REALPART (expr));
+
+ prec = (POINTER_TYPE_P (TREE_TYPE (expr))
+ ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
+
+ high = TREE_INT_CST_HIGH (expr);
+ low = TREE_INT_CST_LOW (expr);
+
+ /* First clear all bits that are beyond the type's precision in case
+ we've been sign extended. */
+
+ if (prec == 2 * HOST_BITS_PER_WIDE_INT)
+ ;
+ else if (prec > HOST_BITS_PER_WIDE_INT)
+ high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
+ else
+ {
+ high = 0;
+ if (prec < HOST_BITS_PER_WIDE_INT)
+ low &= ~((HOST_WIDE_INT) (-1) << prec);
+ }
+
+ return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
+ : exact_log2 (low));
+}
+
+/* Similar, but return the largest integer Y such that 2 ** Y is less
+ than or equal to EXPR. */
+
+int
+tree_floor_log2 (const_tree expr)
+{
+ int prec;
+ HOST_WIDE_INT high, low;
+
+ STRIP_NOPS (expr);
+
+ if (TREE_CODE (expr) == COMPLEX_CST)
+ return tree_log2 (TREE_REALPART (expr));
+
+ prec = (POINTER_TYPE_P (TREE_TYPE (expr))
+ ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
+
+ high = TREE_INT_CST_HIGH (expr);
+ low = TREE_INT_CST_LOW (expr);
+
+ /* First clear all bits that are beyond the type's precision in case
+ we've been sign extended. Ignore if type's precision hasn't been set
+ since what we are doing is setting it. */
+
+ if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
+ ;
+ else if (prec > HOST_BITS_PER_WIDE_INT)
+ high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
+ else
+ {
+ high = 0;
+ if (prec < HOST_BITS_PER_WIDE_INT)
+ low &= ~((HOST_WIDE_INT) (-1) << prec);
+ }
+
+ return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
+ : floor_log2 (low));
+}
+
+/* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
+ decimal float constants, so don't return 1 for them. */
+
+int
+real_zerop (const_tree expr)
+{
+ STRIP_NOPS (expr);
+
+ return ((TREE_CODE (expr) == REAL_CST
+ && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0)
+ && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
+ || (TREE_CODE (expr) == COMPLEX_CST
+ && real_zerop (TREE_REALPART (expr))
+ && real_zerop (TREE_IMAGPART (expr))));
+}
+
+/* Return 1 if EXPR is the real constant one in real or complex form.
+ Trailing zeroes matter for decimal float constants, so don't return
+ 1 for them. */
+
+int
+real_onep (const_tree expr)
+{
+ STRIP_NOPS (expr);
+
+ return ((TREE_CODE (expr) == REAL_CST
+ && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1)
+ && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
+ || (TREE_CODE (expr) == COMPLEX_CST
+ && real_onep (TREE_REALPART (expr))
+ && real_zerop (TREE_IMAGPART (expr))));
+}
+
+/* Return 1 if EXPR is the real constant two. Trailing zeroes matter
+ for decimal float constants, so don't return 1 for them. */
+
+int
+real_twop (const_tree expr)
+{
+ STRIP_NOPS (expr);
+
+ return ((TREE_CODE (expr) == REAL_CST
+ && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2)
+ && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
+ || (TREE_CODE (expr) == COMPLEX_CST
+ && real_twop (TREE_REALPART (expr))
+ && real_zerop (TREE_IMAGPART (expr))));
+}
+
+/* Return 1 if EXPR is the real constant minus one. Trailing zeroes
+ matter for decimal float constants, so don't return 1 for them. */
+
+int
+real_minus_onep (const_tree expr)
+{
+ STRIP_NOPS (expr);
+
+ return ((TREE_CODE (expr) == REAL_CST
+ && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1)
+ && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
+ || (TREE_CODE (expr) == COMPLEX_CST
+ && real_minus_onep (TREE_REALPART (expr))
+ && real_zerop (TREE_IMAGPART (expr))));
+}
+
+/* Nonzero if EXP is a constant or a cast of a constant. */
+
+int
+really_constant_p (const_tree exp)
+{
+ /* This is not quite the same as STRIP_NOPS. It does more. */
+ while (CONVERT_EXPR_P (exp)
+ || TREE_CODE (exp) == NON_LVALUE_EXPR)
+ exp = TREE_OPERAND (exp, 0);
+ return TREE_CONSTANT (exp);
+}
+
+/* Return first list element whose TREE_VALUE is ELEM.
+ Return 0 if ELEM is not in LIST. */
+
+tree
+value_member (tree elem, tree list)
+{
+ while (list)
+ {
+ if (elem == TREE_VALUE (list))
+ return list;
+ list = TREE_CHAIN (list);
+ }
+ return NULL_TREE;
+}
+
+/* Return first list element whose TREE_PURPOSE is ELEM.
+ Return 0 if ELEM is not in LIST. */
+
+tree
+purpose_member (const_tree elem, tree list)
+{
+ while (list)
+ {
+ if (elem == TREE_PURPOSE (list))
+ return list;
+ list = TREE_CHAIN (list);
+ }
+ return NULL_TREE;
+}
+
+/* Return nonzero if ELEM is part of the chain CHAIN. */
+
+int
+chain_member (const_tree elem, const_tree chain)
+{
+ while (chain)
+ {
+ if (elem == chain)
+ return 1;
+ chain = TREE_CHAIN (chain);
+ }
+
+ return 0;
+}
+
+/* Return the length of a chain of nodes chained through TREE_CHAIN.
+ We expect a null pointer to mark the end of the chain.
+ This is the Lisp primitive `length'. */
+
+int
+list_length (const_tree t)
+{
+ const_tree p = t;
+#ifdef ENABLE_TREE_CHECKING
+ const_tree q = t;
+#endif
+ int len = 0;
+
+ while (p)
+ {
+ p = TREE_CHAIN (p);
+#ifdef ENABLE_TREE_CHECKING
+ if (len % 2)
+ q = TREE_CHAIN (q);
+ gcc_assert (p != q);
+#endif
+ len++;
+ }
+
+ return len;
+}
+
+/* Returns the number of FIELD_DECLs in TYPE. */
+
+int
+fields_length (const_tree type)
+{
+ tree t = TYPE_FIELDS (type);
+ int count = 0;
+
+ for (; t; t = TREE_CHAIN (t))
+ if (TREE_CODE (t) == FIELD_DECL)
+ ++count;
+
+ return count;
+}
+
+/* Concatenate two chains of nodes (chained through TREE_CHAIN)
+ by modifying the last node in chain 1 to point to chain 2.
+ This is the Lisp primitive `nconc'. */
+
+tree
+chainon (tree op1, tree op2)
+{
+ tree t1;
+
+ if (!op1)
+ return op2;
+ if (!op2)
+ return op1;
+
+ for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
+ continue;
+ TREE_CHAIN (t1) = op2;
+
+#ifdef ENABLE_TREE_CHECKING
+ {
+ tree t2;
+ for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
+ gcc_assert (t2 != t1);
+ }
+#endif
+
+ return op1;
+}
+
+/* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
+
+tree
+tree_last (tree chain)
+{
+ tree next;
+ if (chain)
+ while ((next = TREE_CHAIN (chain)))
+ chain = next;
+ return chain;
+}
+
+/* Reverse the order of elements in the chain T,
+ and return the new head of the chain (old last element). */
+
+tree
+nreverse (tree t)
+{
+ tree prev = 0, decl, next;
+ for (decl = t; decl; decl = next)
+ {
+ next = TREE_CHAIN (decl);
+ TREE_CHAIN (decl) = prev;
+ prev = decl;
+ }
+ return prev;
+}
+
+/* Return a newly created TREE_LIST node whose
+ purpose and value fields are PARM and VALUE. */
+
+tree
+build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
+{
+ tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
+ TREE_PURPOSE (t) = parm;
+ TREE_VALUE (t) = value;
+ return t;
+}
+
+/* Return a newly created TREE_LIST node whose
+ purpose and value fields are PURPOSE and VALUE
+ and whose TREE_CHAIN is CHAIN. */
+
+tree
+tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
+{
+ tree node;
+
+ node = (tree) ggc_alloc_zone_pass_stat (sizeof (struct tree_list), &tree_zone);
+
+ memset (node, 0, sizeof (struct tree_common));
+
+#ifdef GATHER_STATISTICS
+ tree_node_counts[(int) x_kind]++;
+ tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
+#endif
+
+ TREE_SET_CODE (node, TREE_LIST);
+ TREE_CHAIN (node) = chain;
+ TREE_PURPOSE (node) = purpose;
+ TREE_VALUE (node) = value;
+ return node;
+}
+
+/* Return the elements of a CONSTRUCTOR as a TREE_LIST. */
+
+tree
+ctor_to_list (tree ctor)
+{
+ tree list = NULL_TREE;
+ tree *p = &list;
+ unsigned ix;
+ tree purpose, val;
+
+ FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), ix, purpose, val)
+ {
+ *p = build_tree_list (purpose, val);
+ p = &TREE_CHAIN (*p);
+ }
+
+ return list;
+}
+
+/* Return the size nominally occupied by an object of type TYPE
+ when it resides in memory. The value is measured in units of bytes,
+ and its data type is that normally used for type sizes
+ (which is the first type created by make_signed_type or
+ make_unsigned_type). */
+
+tree
+size_in_bytes (const_tree type)
+{
+ tree t;
+
+ if (type == error_mark_node)
+ return integer_zero_node;
+
+ type = TYPE_MAIN_VARIANT (type);
+ t = TYPE_SIZE_UNIT (type);
+
+ if (t == 0)
+ {
+ lang_hooks.types.incomplete_type_error (NULL_TREE, type);
+ return size_zero_node;
+ }
+
+ return t;
+}
+
+/* Return the size of TYPE (in bytes) as a wide integer
+ or return -1 if the size can vary or is larger than an integer. */
+
+HOST_WIDE_INT
+int_size_in_bytes (const_tree type)
+{
+ tree t;
+
+ if (type == error_mark_node)
+ return 0;
+
+ type = TYPE_MAIN_VARIANT (type);
+ t = TYPE_SIZE_UNIT (type);
+ if (t == 0
+ || TREE_CODE (t) != INTEGER_CST
+ || TREE_INT_CST_HIGH (t) != 0
+ /* If the result would appear negative, it's too big to represent. */
+ || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
+ return -1;
+
+ return TREE_INT_CST_LOW (t);
+}
+
+/* Return the maximum size of TYPE (in bytes) as a wide integer
+ or return -1 if the size can vary or is larger than an integer. */
+
+HOST_WIDE_INT
+max_int_size_in_bytes (const_tree type)
+{
+ HOST_WIDE_INT size = -1;
+ tree size_tree;
+
+ /* If this is an array type, check for a possible MAX_SIZE attached. */
+
+ if (TREE_CODE (type) == ARRAY_TYPE)
+ {
+ size_tree = TYPE_ARRAY_MAX_SIZE (type);
+
+ if (size_tree && host_integerp (size_tree, 1))
+ size = tree_low_cst (size_tree, 1);
+ }
+
+ /* If we still haven't been able to get a size, see if the language
+ can compute a maximum size. */
+
+ if (size == -1)
+ {
+ size_tree = lang_hooks.types.max_size (type);
+
+ if (size_tree && host_integerp (size_tree, 1))
+ size = tree_low_cst (size_tree, 1);
+ }
+
+ return size;
+}
+
+/* Return the bit position of FIELD, in bits from the start of the record.
+ This is a tree of type bitsizetype. */
+
+tree
+bit_position (const_tree field)
+{
+ return bit_from_pos (DECL_FIELD_OFFSET (field),
+ DECL_FIELD_BIT_OFFSET (field));
+}
+
+/* Likewise, but return as an integer. It must be representable in
+ that way (since it could be a signed value, we don't have the
+ option of returning -1 like int_size_in_byte can. */
+
+HOST_WIDE_INT
+int_bit_position (const_tree field)
+{
+ return tree_low_cst (bit_position (field), 0);
+}
+
+/* Return the byte position of FIELD, in bytes from the start of the record.
+ This is a tree of type sizetype. */
+
+tree
+byte_position (const_tree field)
+{
+ return byte_from_pos (DECL_FIELD_OFFSET (field),
+ DECL_FIELD_BIT_OFFSET (field));
+}
+
+/* Likewise, but return as an integer. It must be representable in
+ that way (since it could be a signed value, we don't have the
+ option of returning -1 like int_size_in_byte can. */
+
+HOST_WIDE_INT
+int_byte_position (const_tree field)
+{
+ return tree_low_cst (byte_position (field), 0);
+}
+
+/* Return the strictest alignment, in bits, that T is known to have. */
+
+unsigned int
+expr_align (const_tree t)
+{
+ unsigned int align0, align1;
+
+ switch (TREE_CODE (t))
+ {
+ CASE_CONVERT: case NON_LVALUE_EXPR:
+ /* If we have conversions, we know that the alignment of the
+ object must meet each of the alignments of the types. */
+ align0 = expr_align (TREE_OPERAND (t, 0));
+ align1 = TYPE_ALIGN (TREE_TYPE (t));
+ return MAX (align0, align1);
+
+ case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
+ case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
+ case CLEANUP_POINT_EXPR:
+ /* These don't change the alignment of an object. */
+ return expr_align (TREE_OPERAND (t, 0));
+
+ case COND_EXPR:
+ /* The best we can do is say that the alignment is the least aligned
+ of the two arms. */
+ align0 = expr_align (TREE_OPERAND (t, 1));
+ align1 = expr_align (TREE_OPERAND (t, 2));
+ return MIN (align0, align1);
+
+ /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
+ meaningfully, it's always 1. */
+ case LABEL_DECL: case CONST_DECL:
+ case VAR_DECL: case PARM_DECL: case RESULT_DECL:
+ case FUNCTION_DECL:
+ gcc_assert (DECL_ALIGN (t) != 0);
+ return DECL_ALIGN (t);
+
+ default:
+ break;
+ }
+
+ /* Otherwise take the alignment from that of the type. */
+ return TYPE_ALIGN (TREE_TYPE (t));
+}
+
+/* Return, as a tree node, the number of elements for TYPE (which is an
+ ARRAY_TYPE) minus one. This counts only elements of the top array. */
+
+tree
+array_type_nelts (const_tree type)
+{
+ tree index_type, min, max;
+
+ /* If they did it with unspecified bounds, then we should have already
+ given an error about it before we got here. */
+ if (! TYPE_DOMAIN (type))
+ return error_mark_node;
+
+ index_type = TYPE_DOMAIN (type);
+ min = TYPE_MIN_VALUE (index_type);
+ max = TYPE_MAX_VALUE (index_type);
+
+ return (integer_zerop (min)
+ ? max
+ : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
+}
+
+/* If arg is static -- a reference to an object in static storage -- then
+ return the object. This is not the same as the C meaning of `static'.
+ If arg isn't static, return NULL. */
+
+tree
+staticp (tree arg)
+{
+ switch (TREE_CODE (arg))
+ {
+ case FUNCTION_DECL:
+ /* Nested functions are static, even though taking their address will
+ involve a trampoline as we unnest the nested function and create
+ the trampoline on the tree level. */
+ return arg;
+
+ case VAR_DECL:
+ return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
+ && ! DECL_THREAD_LOCAL_P (arg)
+ && ! DECL_DLLIMPORT_P (arg)
+ ? arg : NULL);
+
+ case CONST_DECL:
+ return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
+ ? arg : NULL);
+
+ case CONSTRUCTOR:
+ return TREE_STATIC (arg) ? arg : NULL;
+
+ case LABEL_DECL:
+ case STRING_CST:
+ return arg;
+
+ case COMPONENT_REF:
+ /* If the thing being referenced is not a field, then it is
+ something language specific. */
+ if (TREE_CODE (TREE_OPERAND (arg, 1)) != FIELD_DECL)
+ return (*lang_hooks.staticp) (arg);
+
+ /* If we are referencing a bitfield, we can't evaluate an
+ ADDR_EXPR at compile time and so it isn't a constant. */
+ if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
+ return NULL;
+
+ return staticp (TREE_OPERAND (arg, 0));
+
+ case BIT_FIELD_REF:
+ return NULL;
+
+ case MISALIGNED_INDIRECT_REF:
+ case ALIGN_INDIRECT_REF:
+ case INDIRECT_REF:
+ return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
+
+ case ARRAY_REF:
+ case ARRAY_RANGE_REF:
+ if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
+ && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
+ return staticp (TREE_OPERAND (arg, 0));
+ else
+ return false;
+
+ default:
+ if ((unsigned int) TREE_CODE (arg)
+ >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
+ return lang_hooks.staticp (arg);
+ else
+ return NULL;
+ }
+}
+
+
+
+
+/* Return whether OP is a DECL whose address is function-invariant. */
+
+bool
+decl_address_invariant_p (const_tree op)
+{
+ /* The conditions below are slightly less strict than the one in
+ staticp. */
+
+ switch (TREE_CODE (op))
+ {
+ case PARM_DECL:
+ case RESULT_DECL:
+ case LABEL_DECL:
+ case FUNCTION_DECL:
+ return true;
+
+ case VAR_DECL:
+ if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
+ && !DECL_DLLIMPORT_P (op))
+ || DECL_THREAD_LOCAL_P (op)
+ || DECL_CONTEXT (op) == current_function_decl
+ || decl_function_context (op) == current_function_decl)
+ return true;
+ break;
+
+ case CONST_DECL:
+ if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
+ || decl_function_context (op) == current_function_decl)
+ return true;
+ break;
+
+ default:
+ break;
+ }
+
+ return false;
+}
+
+/* Return whether OP is a DECL whose address is interprocedural-invariant. */
+
+bool
+decl_address_ip_invariant_p (const_tree op)
+{
+ /* The conditions below are slightly less strict than the one in
+ staticp. */
+
+ switch (TREE_CODE (op))
+ {
+ case LABEL_DECL:
+ case FUNCTION_DECL:
+ case STRING_CST:
+ return true;
+
+ case VAR_DECL:
+ if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
+ && !DECL_DLLIMPORT_P (op))
+ || DECL_THREAD_LOCAL_P (op))
+ return true;
+ break;
+
+ case CONST_DECL:
+ if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
+ return true;
+ break;
+
+ default:
+ break;
+ }
+
+ return false;
+}
+
+
+/* Return true if T is function-invariant (internal function, does
+ not handle arithmetic; that's handled in skip_simple_arithmetic and
+ tree_invariant_p). */
+
+static bool tree_invariant_p (tree t);
+
+static bool
+tree_invariant_p_1 (tree t)
+{
+ tree op;
+
+ if (TREE_CONSTANT (t)
+ || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
+ return true;
+
+ switch (TREE_CODE (t))
+ {
+ case SAVE_EXPR:
+ return true;
+
+ case ADDR_EXPR:
+ op = TREE_OPERAND (t, 0);
+ while (handled_component_p (op))
+ {
+ switch (TREE_CODE (op))
+ {
+ case ARRAY_REF:
+ case ARRAY_RANGE_REF:
+ if (!tree_invariant_p (TREE_OPERAND (op, 1))
+ || TREE_OPERAND (op, 2) != NULL_TREE
+ || TREE_OPERAND (op, 3) != NULL_TREE)
+ return false;
+ break;
+
+ case COMPONENT_REF:
+ if (TREE_OPERAND (op, 2) != NULL_TREE)
+ return false;
+ break;
+
+ default:;
+ }
+ op = TREE_OPERAND (op, 0);
+ }
+
+ return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
+
+ default:
+ break;
+ }
+
+ return false;
+}
+
+/* Return true if T is function-invariant. */
+
+static bool
+tree_invariant_p (tree t)
+{
+ tree inner = skip_simple_arithmetic (t);
+ return tree_invariant_p_1 (inner);
+}
+
+/* Wrap a SAVE_EXPR around EXPR, if appropriate.
+ Do this to any expression which may be used in more than one place,
+ but must be evaluated only once.
+
+ Normally, expand_expr would reevaluate the expression each time.
+ Calling save_expr produces something that is evaluated and recorded
+ the first time expand_expr is called on it. Subsequent calls to
+ expand_expr just reuse the recorded value.
+
+ The call to expand_expr that generates code that actually computes
+ the value is the first call *at compile time*. Subsequent calls
+ *at compile time* generate code to use the saved value.
+ This produces correct result provided that *at run time* control
+ always flows through the insns made by the first expand_expr
+ before reaching the other places where the save_expr was evaluated.
+ You, the caller of save_expr, must make sure this is so.
+
+ Constants, and certain read-only nodes, are returned with no
+ SAVE_EXPR because that is safe. Expressions containing placeholders
+ are not touched; see tree.def for an explanation of what these
+ are used for. */
+
+tree
+save_expr (tree expr)
+{
+ tree t = fold (expr);
+ tree inner;
+
+ /* If the tree evaluates to a constant, then we don't want to hide that
+ fact (i.e. this allows further folding, and direct checks for constants).
+ However, a read-only object that has side effects cannot be bypassed.
+ Since it is no problem to reevaluate literals, we just return the
+ literal node. */
+ inner = skip_simple_arithmetic (t);
+ if (TREE_CODE (inner) == ERROR_MARK)
+ return inner;
+
+ if (tree_invariant_p_1 (inner))
+ return t;
+
+ /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
+ it means that the size or offset of some field of an object depends on
+ the value within another field.
+
+ Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
+ and some variable since it would then need to be both evaluated once and
+ evaluated more than once. Front-ends must assure this case cannot
+ happen by surrounding any such subexpressions in their own SAVE_EXPR
+ and forcing evaluation at the proper time. */
+ if (contains_placeholder_p (inner))
+ return t;
+
+ t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
+
+ /* This expression might be placed ahead of a jump to ensure that the
+ value was computed on both sides of the jump. So make sure it isn't
+ eliminated as dead. */
+ TREE_SIDE_EFFECTS (t) = 1;
+ return t;
+}
+
+/* Look inside EXPR and into any simple arithmetic operations. Return
+ the innermost non-arithmetic node. */
+
+tree
+skip_simple_arithmetic (tree expr)
+{
+ tree inner;
+
+ /* We don't care about whether this can be used as an lvalue in this
+ context. */
+ while (TREE_CODE (expr) == NON_LVALUE_EXPR)
+ expr = TREE_OPERAND (expr, 0);
+
+ /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
+ a constant, it will be more efficient to not make another SAVE_EXPR since
+ it will allow better simplification and GCSE will be able to merge the
+ computations if they actually occur. */
+ inner = expr;
+ while (1)
+ {
+ if (UNARY_CLASS_P (inner))
+ inner = TREE_OPERAND (inner, 0);
+ else if (BINARY_CLASS_P (inner))
+ {
+ if (tree_invariant_p (TREE_OPERAND (inner, 1)))
+ inner = TREE_OPERAND (inner, 0);
+ else if (tree_invariant_p (TREE_OPERAND (inner, 0)))
+ inner = TREE_OPERAND (inner, 1);
+ else
+ break;
+ }
+ else
+ break;
+ }
+
+ return inner;
+}
+
+/* Return which tree structure is used by T. */
+
+enum tree_node_structure_enum
+tree_node_structure (const_tree t)
+{
+ const enum tree_code code = TREE_CODE (t);
+
+ switch (TREE_CODE_CLASS (code))
+ {
+ case tcc_declaration:
+ {
+ switch (code)
+ {
+ case FIELD_DECL:
+ return TS_FIELD_DECL;
+ case PARM_DECL:
+ return TS_PARM_DECL;
+ case VAR_DECL:
+ return TS_VAR_DECL;
+ case LABEL_DECL:
+ return TS_LABEL_DECL;
+ case RESULT_DECL:
+ return TS_RESULT_DECL;
+ case CONST_DECL:
+ return TS_CONST_DECL;
+ case TYPE_DECL:
+ return TS_TYPE_DECL;
+ case FUNCTION_DECL:
+ return TS_FUNCTION_DECL;
+ case SYMBOL_MEMORY_TAG:
+ case NAME_MEMORY_TAG:
+ case MEMORY_PARTITION_TAG:
+ return TS_MEMORY_TAG;
+ default:
+ return TS_DECL_NON_COMMON;
+ }
+ }
+ case tcc_type:
+ return TS_TYPE;
+ case tcc_reference:
+ case tcc_comparison:
+ case tcc_unary:
+ case tcc_binary:
+ case tcc_expression:
+ case tcc_statement:
+ case tcc_vl_exp:
+ return TS_EXP;
+ default: /* tcc_constant and tcc_exceptional */
+ break;
+ }
+ switch (code)
+ {
+ /* tcc_constant cases. */
+ case INTEGER_CST: return TS_INT_CST;
+ case REAL_CST: return TS_REAL_CST;
+ case FIXED_CST: return TS_FIXED_CST;
+ case COMPLEX_CST: return TS_COMPLEX;
+ case VECTOR_CST: return TS_VECTOR;
+ case STRING_CST: return TS_STRING;
+ /* tcc_exceptional cases. */
+ case ERROR_MARK: return TS_COMMON;
+ case IDENTIFIER_NODE: return TS_IDENTIFIER;
+ case TREE_LIST: return TS_LIST;
+ case TREE_VEC: return TS_VEC;
+ case SSA_NAME: return TS_SSA_NAME;
+ case PLACEHOLDER_EXPR: return TS_COMMON;
+ case STATEMENT_LIST: return TS_STATEMENT_LIST;
+ case BLOCK: return TS_BLOCK;
+ case CONSTRUCTOR: return TS_CONSTRUCTOR;
+ case TREE_BINFO: return TS_BINFO;
+ case OMP_CLAUSE: return TS_OMP_CLAUSE;
+ case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
+ case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
+ or offset that depends on a field within a record. */
+
+bool
+contains_placeholder_p (const_tree exp)
+{
+ enum tree_code code;
+
+ if (!exp)
+ return 0;
+
+ code = TREE_CODE (exp);
+ if (code == PLACEHOLDER_EXPR)
+ return 1;
+
+ switch (TREE_CODE_CLASS (code))
+ {
+ case tcc_reference:
+ /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
+ position computations since they will be converted into a
+ WITH_RECORD_EXPR involving the reference, which will assume
+ here will be valid. */
+ return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
+
+ case tcc_exceptional:
+ if (code == TREE_LIST)
+ return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
+ || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
+ break;
+
+ case tcc_unary:
+ case tcc_binary:
+ case tcc_comparison:
+ case tcc_expression:
+ switch (code)
+ {
+ case COMPOUND_EXPR:
+ /* Ignoring the first operand isn't quite right, but works best. */
+ return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
+
+ case COND_EXPR:
+ return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
+ || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
+ || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
+
+ case SAVE_EXPR:
+ /* The save_expr function never wraps anything containing
+ a PLACEHOLDER_EXPR. */
+ return 0;
+
+ default:
+ break;
+ }
+
+ switch (TREE_CODE_LENGTH (code))
+ {
+ case 1:
+ return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
+ case 2:
+ return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
+ || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
+ default:
+ return 0;
+ }
+
+ case tcc_vl_exp:
+ switch (code)
+ {
+ case CALL_EXPR:
+ {
+ const_tree arg;
+ const_call_expr_arg_iterator iter;
+ FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
+ if (CONTAINS_PLACEHOLDER_P (arg))
+ return 1;
+ return 0;
+ }
+ default:
+ return 0;
+ }
+
+ default:
+ return 0;
+ }
+ return 0;
+}
+
+/* Return true if any part of the computation of TYPE involves a
+ PLACEHOLDER_EXPR. This includes size, bounds, qualifiers
+ (for QUAL_UNION_TYPE) and field positions. */
+
+static bool
+type_contains_placeholder_1 (const_tree type)
+{
+ /* If the size contains a placeholder or the parent type (component type in
+ the case of arrays) type involves a placeholder, this type does. */
+ if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
+ || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
+ || (TREE_TYPE (type) != 0
+ && type_contains_placeholder_p (TREE_TYPE (type))))
+ return true;
+
+ /* Now do type-specific checks. Note that the last part of the check above
+ greatly limits what we have to do below. */
+ switch (TREE_CODE (type))
+ {
+ case VOID_TYPE:
+ case COMPLEX_TYPE:
+ case ENUMERAL_TYPE:
+ case BOOLEAN_TYPE:
+ case POINTER_TYPE:
+ case OFFSET_TYPE:
+ case REFERENCE_TYPE:
+ case METHOD_TYPE:
+ case FUNCTION_TYPE:
+ case VECTOR_TYPE:
+ return false;
+
+ case INTEGER_TYPE:
+ case REAL_TYPE:
+ case FIXED_POINT_TYPE:
+ /* Here we just check the bounds. */
+ return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
+ || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
+
+ case ARRAY_TYPE:
+ /* We're already checked the component type (TREE_TYPE), so just check
+ the index type. */
+ return type_contains_placeholder_p (TYPE_DOMAIN (type));
+
+ case RECORD_TYPE:
+ case UNION_TYPE:
+ case QUAL_UNION_TYPE:
+ {
+ tree field;
+
+ for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
+ if (TREE_CODE (field) == FIELD_DECL
+ && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
+ || (TREE_CODE (type) == QUAL_UNION_TYPE
+ && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
+ || type_contains_placeholder_p (TREE_TYPE (field))))
+ return true;
+
+ return false;
+ }
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+bool
+type_contains_placeholder_p (tree type)
+{
+ bool result;
+
+ /* If the contains_placeholder_bits field has been initialized,
+ then we know the answer. */
+ if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
+ return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
+
+ /* Indicate that we've seen this type node, and the answer is false.
+ This is what we want to return if we run into recursion via fields. */
+ TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
+
+ /* Compute the real value. */
+ result = type_contains_placeholder_1 (type);
+
+ /* Store the real value. */
+ TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
+
+ return result;
+}
+
+/* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
+ return a tree with all occurrences of references to F in a
+ PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
+ contains only arithmetic expressions or a CALL_EXPR with a
+ PLACEHOLDER_EXPR occurring only in its arglist. */
+
+tree
+substitute_in_expr (tree exp, tree f, tree r)
+{
+ enum tree_code code = TREE_CODE (exp);
+ tree op0, op1, op2, op3;
+ tree new_tree, inner;
+
+ /* We handle TREE_LIST and COMPONENT_REF separately. */
+ if (code == TREE_LIST)
+ {
+ op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
+ op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
+ if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
+ return exp;
+
+ return tree_cons (TREE_PURPOSE (exp), op1, op0);
+ }
+ else if (code == COMPONENT_REF)
+ {
+ /* If this expression is getting a value from a PLACEHOLDER_EXPR
+ and it is the right field, replace it with R. */
+ for (inner = TREE_OPERAND (exp, 0);
+ REFERENCE_CLASS_P (inner);
+ inner = TREE_OPERAND (inner, 0))
+ ;
+ if (TREE_CODE (inner) == PLACEHOLDER_EXPR
+ && TREE_OPERAND (exp, 1) == f)
+ return r;
+
+ /* If this expression hasn't been completed let, leave it alone. */
+ if (TREE_CODE (inner) == PLACEHOLDER_EXPR && TREE_TYPE (inner) == 0)
+ return exp;
+
+ op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
+ if (op0 == TREE_OPERAND (exp, 0))
+ return exp;
+
+ new_tree = fold_build3 (COMPONENT_REF, TREE_TYPE (exp),
+ op0, TREE_OPERAND (exp, 1), NULL_TREE);
+ }
+ else
+ switch (TREE_CODE_CLASS (code))
+ {
+ case tcc_constant:
+ case tcc_declaration:
+ return exp;
+
+ case tcc_exceptional:
+ case tcc_unary:
+ case tcc_binary:
+ case tcc_comparison:
+ case tcc_expression:
+ case tcc_reference:
+ switch (TREE_CODE_LENGTH (code))
+ {
+ case 0:
+ return exp;
+
+ case 1:
+ op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
+ if (op0 == TREE_OPERAND (exp, 0))
+ return exp;
+
+ new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
+ break;
+
+ case 2:
+ op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
+ op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
+
+ if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
+ return exp;
+
+ new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
+ break;
+
+ case 3:
+ op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
+ op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
+ op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
+
+ if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
+ && op2 == TREE_OPERAND (exp, 2))
+ return exp;
+
+ new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
+ break;
+
+ case 4:
+ op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
+ op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
+ op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
+ op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
+
+ if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
+ && op2 == TREE_OPERAND (exp, 2)
+ && op3 == TREE_OPERAND (exp, 3))
+ return exp;
+
+ new_tree = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ break;
+
+ case tcc_vl_exp:
+ {
+ tree copy = NULL_TREE;
+ int i;
+
+ for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
+ {
+ tree op = TREE_OPERAND (exp, i);
+ tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
+ if (new_op != op)
+ {
+ if (!copy)
+ copy = copy_node (exp);
+ TREE_OPERAND (copy, i) = new_op;
+ }
+ }
+
+ if (copy)
+ new_tree = fold (copy);
+ else
+ return exp;
+ }
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ TREE_READONLY (new_tree) = TREE_READONLY (exp);
+ return new_tree;
+}
+
+/* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
+ for it within OBJ, a tree that is an object or a chain of references. */
+
+tree
+substitute_placeholder_in_expr (tree exp, tree obj)
+{
+ enum tree_code code = TREE_CODE (exp);
+ tree op0, op1, op2, op3;
+
+ /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
+ in the chain of OBJ. */
+ if (code == PLACEHOLDER_EXPR)
+ {
+ tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
+ tree elt;
+
+ for (elt = obj; elt != 0;
+ elt = ((TREE_CODE (elt) == COMPOUND_EXPR
+ || TREE_CODE (elt) == COND_EXPR)
+ ? TREE_OPERAND (elt, 1)
+ : (REFERENCE_CLASS_P (elt)
+ || UNARY_CLASS_P (elt)
+ || BINARY_CLASS_P (elt)
+ || VL_EXP_CLASS_P (elt)
+ || EXPRESSION_CLASS_P (elt))
+ ? TREE_OPERAND (elt, 0) : 0))
+ if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
+ return elt;
+
+ for (elt = obj; elt != 0;
+ elt = ((TREE_CODE (elt) == COMPOUND_EXPR
+ || TREE_CODE (elt) == COND_EXPR)
+ ? TREE_OPERAND (elt, 1)
+ : (REFERENCE_CLASS_P (elt)
+ || UNARY_CLASS_P (elt)
+ || BINARY_CLASS_P (elt)
+ || VL_EXP_CLASS_P (elt)
+ || EXPRESSION_CLASS_P (elt))
+ ? TREE_OPERAND (elt, 0) : 0))
+ if (POINTER_TYPE_P (TREE_TYPE (elt))
+ && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
+ == need_type))
+ return fold_build1 (INDIRECT_REF, need_type, elt);
+
+ /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
+ survives until RTL generation, there will be an error. */
+ return exp;
+ }
+
+ /* TREE_LIST is special because we need to look at TREE_VALUE
+ and TREE_CHAIN, not TREE_OPERANDS. */
+ else if (code == TREE_LIST)
+ {
+ op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
+ op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
+ if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
+ return exp;
+
+ return tree_cons (TREE_PURPOSE (exp), op1, op0);
+ }
+ else
+ switch (TREE_CODE_CLASS (code))
+ {
+ case tcc_constant:
+ case tcc_declaration:
+ return exp;
+
+ case tcc_exceptional:
+ case tcc_unary:
+ case tcc_binary:
+ case tcc_comparison:
+ case tcc_expression:
+ case tcc_reference:
+ case tcc_statement:
+ switch (TREE_CODE_LENGTH (code))
+ {
+ case 0:
+ return exp;
+
+ case 1:
+ op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
+ if (op0 == TREE_OPERAND (exp, 0))
+ return exp;
+ else
+ return fold_build1 (code, TREE_TYPE (exp), op0);
+
+ case 2:
+ op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
+ op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
+
+ if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
+ return exp;
+ else
+ return fold_build2 (code, TREE_TYPE (exp), op0, op1);
+
+ case 3:
+ op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
+ op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
+ op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
+
+ if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
+ && op2 == TREE_OPERAND (exp, 2))
+ return exp;
+ else
+ return fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
+
+ case 4:
+ op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
+ op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
+ op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
+ op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
+
+ if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
+ && op2 == TREE_OPERAND (exp, 2)
+ && op3 == TREE_OPERAND (exp, 3))
+ return exp;
+ else
+ return fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
+
+ default:
+ gcc_unreachable ();
+ }
+ break;
+
+ case tcc_vl_exp:
+ {
+ tree copy = NULL_TREE;
+ int i;
+
+ for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
+ {
+ tree op = TREE_OPERAND (exp, i);
+ tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
+ if (new_op != op)
+ {
+ if (!copy)
+ copy = copy_node (exp);
+ TREE_OPERAND (copy, i) = new_op;
+ }
+ }
+
+ if (copy)
+ return fold (copy);
+ else
+ return exp;
+ }
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Stabilize a reference so that we can use it any number of times
+ without causing its operands to be evaluated more than once.
+ Returns the stabilized reference. This works by means of save_expr,
+ so see the caveats in the comments about save_expr.
+
+ Also allows conversion expressions whose operands are references.
+ Any other kind of expression is returned unchanged. */
+
+tree
+stabilize_reference (tree ref)
+{
+ tree result;
+ enum tree_code code = TREE_CODE (ref);
+
+ switch (code)
+ {
+ case VAR_DECL:
+ case PARM_DECL:
+ case RESULT_DECL:
+ /* No action is needed in this case. */
+ return ref;
+
+ CASE_CONVERT:
+ case FLOAT_EXPR:
+ case FIX_TRUNC_EXPR:
+ result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
+ break;
+
+ case INDIRECT_REF:
+ result = build_nt (INDIRECT_REF,
+ stabilize_reference_1 (TREE_OPERAND (ref, 0)));
+ break;
+
+ case COMPONENT_REF:
+ result = build_nt (COMPONENT_REF,
+ stabilize_reference (TREE_OPERAND (ref, 0)),
+ TREE_OPERAND (ref, 1), NULL_TREE);
+ break;
+
+ case BIT_FIELD_REF:
+ result = build_nt (BIT_FIELD_REF,
+ stabilize_reference (TREE_OPERAND (ref, 0)),
+ stabilize_reference_1 (TREE_OPERAND (ref, 1)),
+ stabilize_reference_1 (TREE_OPERAND (ref, 2)));
+ break;
+
+ case ARRAY_REF:
+ result = build_nt (ARRAY_REF,
+ stabilize_reference (TREE_OPERAND (ref, 0)),
+ stabilize_reference_1 (TREE_OPERAND (ref, 1)),
+ TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
+ break;
+
+ case ARRAY_RANGE_REF:
+ result = build_nt (ARRAY_RANGE_REF,
+ stabilize_reference (TREE_OPERAND (ref, 0)),
+ stabilize_reference_1 (TREE_OPERAND (ref, 1)),
+ TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
+ break;
+
+ case COMPOUND_EXPR:
+ /* We cannot wrap the first expression in a SAVE_EXPR, as then
+ it wouldn't be ignored. This matters when dealing with
+ volatiles. */
+ return stabilize_reference_1 (ref);
+
+ /* If arg isn't a kind of lvalue we recognize, make no change.
+ Caller should recognize the error for an invalid lvalue. */
+ default:
+ return ref;
+
+ case ERROR_MARK:
+ return error_mark_node;
+ }
+
+ TREE_TYPE (result) = TREE_TYPE (ref);
+ TREE_READONLY (result) = TREE_READONLY (ref);
+ TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
+ TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
+
+ return result;
+}
+
+/* Subroutine of stabilize_reference; this is called for subtrees of
+ references. Any expression with side-effects must be put in a SAVE_EXPR
+ to ensure that it is only evaluated once.
+
+ We don't put SAVE_EXPR nodes around everything, because assigning very
+ simple expressions to temporaries causes us to miss good opportunities
+ for optimizations. Among other things, the opportunity to fold in the
+ addition of a constant into an addressing mode often gets lost, e.g.
+ "y[i+1] += x;". In general, we take the approach that we should not make
+ an assignment unless we are forced into it - i.e., that any non-side effect
+ operator should be allowed, and that cse should take care of coalescing
+ multiple utterances of the same expression should that prove fruitful. */
+
+tree
+stabilize_reference_1 (tree e)
+{
+ tree result;
+ enum tree_code code = TREE_CODE (e);
+
+ /* We cannot ignore const expressions because it might be a reference
+ to a const array but whose index contains side-effects. But we can
+ ignore things that are actual constant or that already have been
+ handled by this function. */
+
+ if (tree_invariant_p (e))
+ return e;
+
+ switch (TREE_CODE_CLASS (code))
+ {
+ case tcc_exceptional:
+ case tcc_type:
+ case tcc_declaration:
+ case tcc_comparison:
+ case tcc_statement:
+ case tcc_expression:
+ case tcc_reference:
+ case tcc_vl_exp:
+ /* If the expression has side-effects, then encase it in a SAVE_EXPR
+ so that it will only be evaluated once. */
+ /* The reference (r) and comparison (<) classes could be handled as
+ below, but it is generally faster to only evaluate them once. */
+ if (TREE_SIDE_EFFECTS (e))
+ return save_expr (e);
+ return e;
+
+ case tcc_constant:
+ /* Constants need no processing. In fact, we should never reach
+ here. */
+ return e;
+
+ case tcc_binary:
+ /* Division is slow and tends to be compiled with jumps,
+ especially the division by powers of 2 that is often
+ found inside of an array reference. So do it just once. */
+ if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
+ || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
+ || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
+ || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
+ return save_expr (e);
+ /* Recursively stabilize each operand. */
+ result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
+ stabilize_reference_1 (TREE_OPERAND (e, 1)));
+ break;
+
+ case tcc_unary:
+ /* Recursively stabilize each operand. */
+ result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ TREE_TYPE (result) = TREE_TYPE (e);
+ TREE_READONLY (result) = TREE_READONLY (e);
+ TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
+ TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
+
+ return result;
+}
+
+/* Low-level constructors for expressions. */
+
+/* A helper function for build1 and constant folders. Set TREE_CONSTANT,
+ and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
+
+void
+recompute_tree_invariant_for_addr_expr (tree t)
+{
+ tree node;
+ bool tc = true, se = false;
+
+ /* We started out assuming this address is both invariant and constant, but
+ does not have side effects. Now go down any handled components and see if
+ any of them involve offsets that are either non-constant or non-invariant.
+ Also check for side-effects.
+
+ ??? Note that this code makes no attempt to deal with the case where
+ taking the address of something causes a copy due to misalignment. */
+
+#define UPDATE_FLAGS(NODE) \
+do { tree _node = (NODE); \
+ if (_node && !TREE_CONSTANT (_node)) tc = false; \
+ if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
+
+ for (node = TREE_OPERAND (t, 0); handled_component_p (node);
+ node = TREE_OPERAND (node, 0))
+ {
+ /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
+ array reference (probably made temporarily by the G++ front end),
+ so ignore all the operands. */
+ if ((TREE_CODE (node) == ARRAY_REF
+ || TREE_CODE (node) == ARRAY_RANGE_REF)
+ && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
+ {
+ UPDATE_FLAGS (TREE_OPERAND (node, 1));
+ if (TREE_OPERAND (node, 2))
+ UPDATE_FLAGS (TREE_OPERAND (node, 2));
+ if (TREE_OPERAND (node, 3))
+ UPDATE_FLAGS (TREE_OPERAND (node, 3));
+ }
+ /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
+ FIELD_DECL, apparently. The G++ front end can put something else
+ there, at least temporarily. */
+ else if (TREE_CODE (node) == COMPONENT_REF
+ && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
+ {
+ if (TREE_OPERAND (node, 2))
+ UPDATE_FLAGS (TREE_OPERAND (node, 2));
+ }
+ else if (TREE_CODE (node) == BIT_FIELD_REF)
+ UPDATE_FLAGS (TREE_OPERAND (node, 2));
+ }
+
+ node = lang_hooks.expr_to_decl (node, &tc, &se);
+
+ /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
+ the address, since &(*a)->b is a form of addition. If it's a constant, the
+ address is constant too. If it's a decl, its address is constant if the
+ decl is static. Everything else is not constant and, furthermore,
+ taking the address of a volatile variable is not volatile. */
+ if (TREE_CODE (node) == INDIRECT_REF)
+ UPDATE_FLAGS (TREE_OPERAND (node, 0));
+ else if (CONSTANT_CLASS_P (node))
+ ;
+ else if (DECL_P (node))
+ tc &= (staticp (node) != NULL_TREE);
+ else
+ {
+ tc = false;
+ se |= TREE_SIDE_EFFECTS (node);
+ }
+
+
+ TREE_CONSTANT (t) = tc;
+ TREE_SIDE_EFFECTS (t) = se;
+#undef UPDATE_FLAGS
+}
+
+/* Build an expression of code CODE, data type TYPE, and operands as
+ specified. Expressions and reference nodes can be created this way.
+ Constants, decls, types and misc nodes cannot be.
+
+ We define 5 non-variadic functions, from 0 to 4 arguments. This is
+ enough for all extant tree codes. */
+
+tree
+build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
+{
+ tree t;
+
+ gcc_assert (TREE_CODE_LENGTH (code) == 0);
+
+ t = make_node_stat (code PASS_MEM_STAT);
+ TREE_TYPE (t) = tt;
+
+ return t;
+}
+
+tree
+build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
+{
+ int length = sizeof (struct tree_exp);
+#ifdef GATHER_STATISTICS
+ tree_node_kind kind;
+#endif
+ tree t;
+
+#ifdef GATHER_STATISTICS
+ switch (TREE_CODE_CLASS (code))
+ {
+ case tcc_statement: /* an expression with side effects */
+ kind = s_kind;
+ break;
+ case tcc_reference: /* a reference */
+ kind = r_kind;
+ break;
+ default:
+ kind = e_kind;
+ break;
+ }
+
+ tree_node_counts[(int) kind]++;
+ tree_node_sizes[(int) kind] += length;
+#endif
+
+ gcc_assert (TREE_CODE_LENGTH (code) == 1);
+
+ t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
+
+ memset (t, 0, sizeof (struct tree_common));
+
+ TREE_SET_CODE (t, code);
+
+ TREE_TYPE (t) = type;
+ SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
+ TREE_OPERAND (t, 0) = node;
+ TREE_BLOCK (t) = NULL_TREE;
+ if (node && !TYPE_P (node))
+ {
+ TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
+ TREE_READONLY (t) = TREE_READONLY (node);
+ }
+
+ if (TREE_CODE_CLASS (code) == tcc_statement)
+ TREE_SIDE_EFFECTS (t) = 1;
+ else switch (code)
+ {
+ case VA_ARG_EXPR:
+ /* All of these have side-effects, no matter what their
+ operands are. */
+ TREE_SIDE_EFFECTS (t) = 1;
+ TREE_READONLY (t) = 0;
+ break;
+
+ case MISALIGNED_INDIRECT_REF:
+ case ALIGN_INDIRECT_REF:
+ case INDIRECT_REF:
+ /* Whether a dereference is readonly has nothing to do with whether
+ its operand is readonly. */
+ TREE_READONLY (t) = 0;
+ break;
+
+ case ADDR_EXPR:
+ if (node)
+ recompute_tree_invariant_for_addr_expr (t);
+ break;
+
+ default:
+ if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
+ && node && !TYPE_P (node)
+ && TREE_CONSTANT (node))
+ TREE_CONSTANT (t) = 1;
+ if (TREE_CODE_CLASS (code) == tcc_reference
+ && node && TREE_THIS_VOLATILE (node))
+ TREE_THIS_VOLATILE (t) = 1;
+ break;
+ }
+
+ return t;
+}
+
+#define PROCESS_ARG(N) \
+ do { \
+ TREE_OPERAND (t, N) = arg##N; \
+ if (arg##N &&!TYPE_P (arg##N)) \
+ { \
+ if (TREE_SIDE_EFFECTS (arg##N)) \
+ side_effects = 1; \
+ if (!TREE_READONLY (arg##N)) \
+ read_only = 0; \
+ if (!TREE_CONSTANT (arg##N)) \
+ constant = 0; \
+ } \
+ } while (0)
+
+tree
+build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
+{
+ bool constant, read_only, side_effects;
+ tree t;
+
+ gcc_assert (TREE_CODE_LENGTH (code) == 2);
+
+ if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
+ && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
+ /* When sizetype precision doesn't match that of pointers
+ we need to be able to build explicit extensions or truncations
+ of the offset argument. */
+ && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
+ gcc_assert (TREE_CODE (arg0) == INTEGER_CST
+ && TREE_CODE (arg1) == INTEGER_CST);
+
+ if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
+ gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
+ && INTEGRAL_TYPE_P (TREE_TYPE (arg1))
+ && useless_type_conversion_p (sizetype, TREE_TYPE (arg1)));
+
+ t = make_node_stat (code PASS_MEM_STAT);
+ TREE_TYPE (t) = tt;
+
+ /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
+ result based on those same flags for the arguments. But if the
+ arguments aren't really even `tree' expressions, we shouldn't be trying
+ to do this. */
+
+ /* Expressions without side effects may be constant if their
+ arguments are as well. */
+ constant = (TREE_CODE_CLASS (code) == tcc_comparison
+ || TREE_CODE_CLASS (code) == tcc_binary);
+ read_only = 1;
+ side_effects = TREE_SIDE_EFFECTS (t);
+
+ PROCESS_ARG(0);
+ PROCESS_ARG(1);
+
+ TREE_READONLY (t) = read_only;
+ TREE_CONSTANT (t) = constant;
+ TREE_SIDE_EFFECTS (t) = side_effects;
+ TREE_THIS_VOLATILE (t)
+ = (TREE_CODE_CLASS (code) == tcc_reference
+ && arg0 && TREE_THIS_VOLATILE (arg0));
+
+ return t;
+}
+
+
+tree
+build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
+ tree arg2 MEM_STAT_DECL)
+{
+ bool constant, read_only, side_effects;
+ tree t;
+
+ gcc_assert (TREE_CODE_LENGTH (code) == 3);
+ gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
+
+ t = make_node_stat (code PASS_MEM_STAT);
+ TREE_TYPE (t) = tt;
+
+ /* As a special exception, if COND_EXPR has NULL branches, we
+ assume that it is a gimple statement and always consider
+ it to have side effects. */
+ if (code == COND_EXPR
+ && tt == void_type_node
+ && arg1 == NULL_TREE
+ && arg2 == NULL_TREE)
+ side_effects = true;
+ else
+ side_effects = TREE_SIDE_EFFECTS (t);
+
+ PROCESS_ARG(0);
+ PROCESS_ARG(1);
+ PROCESS_ARG(2);
+
+ TREE_SIDE_EFFECTS (t) = side_effects;
+ TREE_THIS_VOLATILE (t)
+ = (TREE_CODE_CLASS (code) == tcc_reference
+ && arg0 && TREE_THIS_VOLATILE (arg0));
+
+ return t;
+}
+
+tree
+build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
+ tree arg2, tree arg3 MEM_STAT_DECL)
+{
+ bool constant, read_only, side_effects;
+ tree t;
+
+ gcc_assert (TREE_CODE_LENGTH (code) == 4);
+
+ t = make_node_stat (code PASS_MEM_STAT);
+ TREE_TYPE (t) = tt;
+
+ side_effects = TREE_SIDE_EFFECTS (t);
+
+ PROCESS_ARG(0);
+ PROCESS_ARG(1);
+ PROCESS_ARG(2);
+ PROCESS_ARG(3);
+
+ TREE_SIDE_EFFECTS (t) = side_effects;
+ TREE_THIS_VOLATILE (t)
+ = (TREE_CODE_CLASS (code) == tcc_reference
+ && arg0 && TREE_THIS_VOLATILE (arg0));
+
+ return t;
+}
+
+tree
+build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
+ tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
+{
+ bool constant, read_only, side_effects;
+ tree t;
+
+ gcc_assert (TREE_CODE_LENGTH (code) == 5);
+
+ t = make_node_stat (code PASS_MEM_STAT);
+ TREE_TYPE (t) = tt;
+
+ side_effects = TREE_SIDE_EFFECTS (t);
+
+ PROCESS_ARG(0);
+ PROCESS_ARG(1);
+ PROCESS_ARG(2);
+ PROCESS_ARG(3);
+ PROCESS_ARG(4);
+
+ TREE_SIDE_EFFECTS (t) = side_effects;
+ TREE_THIS_VOLATILE (t)
+ = (TREE_CODE_CLASS (code) == tcc_reference
+ && arg0 && TREE_THIS_VOLATILE (arg0));
+
+ return t;
+}
+
+tree
+build7_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
+ tree arg2, tree arg3, tree arg4, tree arg5,
+ tree arg6 MEM_STAT_DECL)
+{
+ bool constant, read_only, side_effects;
+ tree t;
+
+ gcc_assert (code == TARGET_MEM_REF);
+
+ t = make_node_stat (code PASS_MEM_STAT);
+ TREE_TYPE (t) = tt;
+
+ side_effects = TREE_SIDE_EFFECTS (t);
+
+ PROCESS_ARG(0);
+ PROCESS_ARG(1);
+ PROCESS_ARG(2);
+ PROCESS_ARG(3);
+ PROCESS_ARG(4);
+ PROCESS_ARG(5);
+ PROCESS_ARG(6);
+
+ TREE_SIDE_EFFECTS (t) = side_effects;
+ TREE_THIS_VOLATILE (t) = 0;
+
+ return t;
+}
+
+/* Similar except don't specify the TREE_TYPE
+ and leave the TREE_SIDE_EFFECTS as 0.
+ It is permissible for arguments to be null,
+ or even garbage if their values do not matter. */
+
+tree
+build_nt (enum tree_code code, ...)
+{
+ tree t;
+ int length;
+ int i;
+ va_list p;
+
+ gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
+
+ va_start (p, code);
+
+ t = make_node (code);
+ length = TREE_CODE_LENGTH (code);
+
+ for (i = 0; i < length; i++)
+ TREE_OPERAND (t, i) = va_arg (p, tree);
+
+ va_end (p);
+ return t;
+}
+
+/* Similar to build_nt, but for creating a CALL_EXPR object with
+ ARGLIST passed as a list. */
+
+tree
+build_nt_call_list (tree fn, tree arglist)
+{
+ tree t;
+ int i;
+
+ t = build_vl_exp (CALL_EXPR, list_length (arglist) + 3);
+ CALL_EXPR_FN (t) = fn;
+ CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
+ for (i = 0; arglist; arglist = TREE_CHAIN (arglist), i++)
+ CALL_EXPR_ARG (t, i) = TREE_VALUE (arglist);
+ return t;
+}
+
+/* Create a DECL_... node of code CODE, name NAME and data type TYPE.
+ We do NOT enter this node in any sort of symbol table.
+
+ layout_decl is used to set up the decl's storage layout.
+ Other slots are initialized to 0 or null pointers. */
+
+tree
+build_decl_stat (enum tree_code code, tree name, tree type MEM_STAT_DECL)
+{
+ tree t;
+
+ t = make_node_stat (code PASS_MEM_STAT);
+
+/* if (type == error_mark_node)
+ type = integer_type_node; */
+/* That is not done, deliberately, so that having error_mark_node
+ as the type can suppress useless errors in the use of this variable. */
+
+ DECL_NAME (t) = name;
+ TREE_TYPE (t) = type;
+
+ if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
+ layout_decl (t, 0);
+
+ return t;
+}
+
+/* Builds and returns function declaration with NAME and TYPE. */
+
+tree
+build_fn_decl (const char *name, tree type)
+{
+ tree id = get_identifier (name);
+ tree decl = build_decl (FUNCTION_DECL, id, type);
+
+ DECL_EXTERNAL (decl) = 1;
+ TREE_PUBLIC (decl) = 1;
+ DECL_ARTIFICIAL (decl) = 1;
+ TREE_NOTHROW (decl) = 1;
+
+ return decl;
+}
+
+
+/* BLOCK nodes are used to represent the structure of binding contours
+ and declarations, once those contours have been exited and their contents
+ compiled. This information is used for outputting debugging info. */
+
+tree
+build_block (tree vars, tree subblocks, tree supercontext, tree chain)
+{
+ tree block = make_node (BLOCK);
+
+ BLOCK_VARS (block) = vars;
+ BLOCK_SUBBLOCKS (block) = subblocks;
+ BLOCK_SUPERCONTEXT (block) = supercontext;
+ BLOCK_CHAIN (block) = chain;
+ return block;
+}
+
+expanded_location
+expand_location (source_location loc)
+{
+ expanded_location xloc;
+
+ /* If LOC describes a location with a discriminator, extract the
+ discriminator and map it to the real location. */
+ if (min_discriminator_location != UNKNOWN_LOCATION
+ && loc >= min_discriminator_location)
+ loc = map_discriminator_location (loc);
+
+ if (loc == 0)
+ {
+ xloc.file = NULL;
+ xloc.line = 0;
+ xloc.column = 0;
+ xloc.sysp = 0;
+ }
+ else
+ {
+ const struct line_map *map = linemap_lookup (line_table, loc);
+ xloc.file = map->to_file;
+ xloc.line = SOURCE_LINE (map, loc);
+ xloc.column = SOURCE_COLUMN (map, loc);
+ xloc.sysp = map->sysp != 0;
+ };
+ return xloc;
+}
+
+
+/* Source location accessor functions. */
+
+
+void
+set_expr_locus (tree node, source_location *loc)
+{
+ if (loc == NULL)
+ EXPR_CHECK (node)->exp.locus = UNKNOWN_LOCATION;
+ else
+ EXPR_CHECK (node)->exp.locus = *loc;
+}
+
+/* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
+
+ LOC is the location to use in tree T. */
+
+void protected_set_expr_location (tree t, location_t loc)
+{
+ if (t && CAN_HAVE_LOCATION_P (t))
+ SET_EXPR_LOCATION (t, loc);
+}
+
+/* Return a declaration like DDECL except that its DECL_ATTRIBUTES
+ is ATTRIBUTE. */
+
+tree
+build_decl_attribute_variant (tree ddecl, tree attribute)
+{
+ DECL_ATTRIBUTES (ddecl) = attribute;
+ return ddecl;
+}
+
+/* Borrowed from hashtab.c iterative_hash implementation. */
+#define mix(a,b,c) \
+{ \
+ a -= b; a -= c; a ^= (c>>13); \
+ b -= c; b -= a; b ^= (a<< 8); \
+ c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
+ a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
+ b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
+ c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
+ a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
+ b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
+ c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
+}
+
+
+/* Produce good hash value combining VAL and VAL2. */
+hashval_t
+iterative_hash_hashval_t (hashval_t val, hashval_t val2)
+{
+ /* the golden ratio; an arbitrary value. */
+ hashval_t a = 0x9e3779b9;
+
+ mix (a, val, val2);
+ return val2;
+}
+
+/* Produce good hash value combining PTR and VAL2. */
+static inline hashval_t
+iterative_hash_pointer (const void *ptr, hashval_t val2)
+{
+ if (sizeof (ptr) == sizeof (hashval_t))
+ return iterative_hash_hashval_t ((size_t) ptr, val2);
+ else
+ {
+ hashval_t a = (hashval_t) (size_t) ptr;
+ /* Avoid warnings about shifting of more than the width of the type on
+ hosts that won't execute this path. */
+ int zero = 0;
+ hashval_t b = (hashval_t) ((size_t) ptr >> (sizeof (hashval_t) * 8 + zero));
+ mix (a, b, val2);
+ return val2;
+ }
+}
+
+/* Produce good hash value combining VAL and VAL2. */
+static inline hashval_t
+iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
+{
+ if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
+ return iterative_hash_hashval_t (val, val2);
+ else
+ {
+ hashval_t a = (hashval_t) val;
+ /* Avoid warnings about shifting of more than the width of the type on
+ hosts that won't execute this path. */
+ int zero = 0;
+ hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
+ mix (a, b, val2);
+ if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
+ {
+ hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
+ hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
+ mix (a, b, val2);
+ }
+ return val2;
+ }
+}
+
+/* Return a type like TTYPE except that its TYPE_ATTRIBUTE
+ is ATTRIBUTE and its qualifiers are QUALS.
+
+ Record such modified types already made so we don't make duplicates. */
+
+static tree
+build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
+{
+ if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
+ {
+ hashval_t hashcode = 0;
+ tree ntype;
+ enum tree_code code = TREE_CODE (ttype);
+
+ /* Building a distinct copy of a tagged type is inappropriate; it
+ causes breakage in code that expects there to be a one-to-one
+ relationship between a struct and its fields.
+ build_duplicate_type is another solution (as used in
+ handle_transparent_union_attribute), but that doesn't play well
+ with the stronger C++ type identity model. */
+ if (TREE_CODE (ttype) == RECORD_TYPE
+ || TREE_CODE (ttype) == UNION_TYPE
+ || TREE_CODE (ttype) == QUAL_UNION_TYPE
+ || TREE_CODE (ttype) == ENUMERAL_TYPE)
+ {
+ warning (OPT_Wattributes,
+ "ignoring attributes applied to %qT after definition",
+ TYPE_MAIN_VARIANT (ttype));
+ return build_qualified_type (ttype, quals);
+ }
+
+ ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
+ ntype = build_distinct_type_copy (ttype);
+
+ TYPE_ATTRIBUTES (ntype) = attribute;
+
+ hashcode = iterative_hash_object (code, hashcode);
+ if (TREE_TYPE (ntype))
+ hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
+ hashcode);
+ hashcode = attribute_hash_list (attribute, hashcode);
+
+ switch (TREE_CODE (ntype))
+ {
+ case FUNCTION_TYPE:
+ hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
+ break;
+ case ARRAY_TYPE:
+ if (TYPE_DOMAIN (ntype))
+ hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
+ hashcode);
+ break;
+ case INTEGER_TYPE:
+ hashcode = iterative_hash_object
+ (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
+ hashcode = iterative_hash_object
+ (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
+ break;
+ case REAL_TYPE:
+ case FIXED_POINT_TYPE:
+ {
+ unsigned int precision = TYPE_PRECISION (ntype);
+ hashcode = iterative_hash_object (precision, hashcode);
+ }
+ break;
+ default:
+ break;
+ }
+
+ ntype = type_hash_canon (hashcode, ntype);
+
+ /* If the target-dependent attributes make NTYPE different from
+ its canonical type, we will need to use structural equality
+ checks for this type. */
+ if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
+ || !targetm.comp_type_attributes (ntype, ttype))
+ SET_TYPE_STRUCTURAL_EQUALITY (ntype);
+ else if (TYPE_CANONICAL (ntype) == ntype)
+ TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
+
+ ttype = build_qualified_type (ntype, quals);
+ }
+ else if (TYPE_QUALS (ttype) != quals)
+ ttype = build_qualified_type (ttype, quals);
+
+ return ttype;
+}
+
+
+/* Return a type like TTYPE except that its TYPE_ATTRIBUTE
+ is ATTRIBUTE.
+
+ Record such modified types already made so we don't make duplicates. */
+
+tree
+build_type_attribute_variant (tree ttype, tree attribute)
+{
+ return build_type_attribute_qual_variant (ttype, attribute,
+ TYPE_QUALS (ttype));
+}
+
+/* Return nonzero if IDENT is a valid name for attribute ATTR,
+ or zero if not.
+
+ We try both `text' and `__text__', ATTR may be either one. */
+/* ??? It might be a reasonable simplification to require ATTR to be only
+ `text'. One might then also require attribute lists to be stored in
+ their canonicalized form. */
+
+static int
+is_attribute_with_length_p (const char *attr, int attr_len, const_tree ident)
+{
+ int ident_len;
+ const char *p;
+
+ if (TREE_CODE (ident) != IDENTIFIER_NODE)
+ return 0;
+
+ p = IDENTIFIER_POINTER (ident);
+ ident_len = IDENTIFIER_LENGTH (ident);
+
+ if (ident_len == attr_len
+ && strcmp (attr, p) == 0)
+ return 1;
+
+ /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
+ if (attr[0] == '_')
+ {
+ gcc_assert (attr[1] == '_');
+ gcc_assert (attr[attr_len - 2] == '_');
+ gcc_assert (attr[attr_len - 1] == '_');
+ if (ident_len == attr_len - 4
+ && strncmp (attr + 2, p, attr_len - 4) == 0)
+ return 1;
+ }
+ else
+ {
+ if (ident_len == attr_len + 4
+ && p[0] == '_' && p[1] == '_'
+ && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
+ && strncmp (attr, p + 2, attr_len) == 0)
+ return 1;
+ }
+
+ return 0;
+}
+
+/* Return nonzero if IDENT is a valid name for attribute ATTR,
+ or zero if not.
+
+ We try both `text' and `__text__', ATTR may be either one. */
+
+int
+is_attribute_p (const char *attr, const_tree ident)
+{
+ return is_attribute_with_length_p (attr, strlen (attr), ident);
+}
+
+/* Given an attribute name and a list of attributes, return a pointer to the
+ attribute's list element if the attribute is part of the list, or NULL_TREE
+ if not found. If the attribute appears more than once, this only
+ returns the first occurrence; the TREE_CHAIN of the return value should
+ be passed back in if further occurrences are wanted. */
+
+tree
+lookup_attribute (const char *attr_name, tree list)
+{
+ tree l;
+ size_t attr_len = strlen (attr_name);
+
+ for (l = list; l; l = TREE_CHAIN (l))
+ {
+ gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
+ if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
+ return l;
+ }
+ return NULL_TREE;
+}
+
+/* Remove any instances of attribute ATTR_NAME in LIST and return the
+ modified list. */
+
+tree
+remove_attribute (const char *attr_name, tree list)
+{
+ tree *p;
+ size_t attr_len = strlen (attr_name);
+
+ for (p = &list; *p; )
+ {
+ tree l = *p;
+ gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
+ if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
+ *p = TREE_CHAIN (l);
+ else
+ p = &TREE_CHAIN (l);
+ }
+
+ return list;
+}
+
+/* Return an attribute list that is the union of a1 and a2. */
+
+tree
+merge_attributes (tree a1, tree a2)
+{
+ tree attributes;
+
+ /* Either one unset? Take the set one. */
+
+ if ((attributes = a1) == 0)
+ attributes = a2;
+
+ /* One that completely contains the other? Take it. */
+
+ else if (a2 != 0 && ! attribute_list_contained (a1, a2))
+ {
+ if (attribute_list_contained (a2, a1))
+ attributes = a2;
+ else
+ {
+ /* Pick the longest list, and hang on the other list. */
+
+ if (list_length (a1) < list_length (a2))
+ attributes = a2, a2 = a1;
+
+ for (; a2 != 0; a2 = TREE_CHAIN (a2))
+ {
+ tree a;
+ for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
+ attributes);
+ a != NULL_TREE;
+ a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
+ TREE_CHAIN (a)))
+ {
+ if (TREE_VALUE (a) != NULL
+ && TREE_CODE (TREE_VALUE (a)) == TREE_LIST
+ && TREE_VALUE (a2) != NULL
+ && TREE_CODE (TREE_VALUE (a2)) == TREE_LIST)
+ {
+ if (simple_cst_list_equal (TREE_VALUE (a),
+ TREE_VALUE (a2)) == 1)
+ break;
+ }
+ else if (simple_cst_equal (TREE_VALUE (a),
+ TREE_VALUE (a2)) == 1)
+ break;
+ }
+ if (a == NULL_TREE)
+ {
+ a1 = copy_node (a2);
+ TREE_CHAIN (a1) = attributes;
+ attributes = a1;
+ }
+ }
+ }
+ }
+ return attributes;
+}
+
+/* Given types T1 and T2, merge their attributes and return
+ the result. */
+
+tree
+merge_type_attributes (tree t1, tree t2)
+{
+ return merge_attributes (TYPE_ATTRIBUTES (t1),
+ TYPE_ATTRIBUTES (t2));
+}
+
+/* Given decls OLDDECL and NEWDECL, merge their attributes and return
+ the result. */
+
+tree
+merge_decl_attributes (tree olddecl, tree newdecl)
+{
+ return merge_attributes (DECL_ATTRIBUTES (olddecl),
+ DECL_ATTRIBUTES (newdecl));
+}
+
+#if TARGET_DLLIMPORT_DECL_ATTRIBUTES
+
+/* Specialization of merge_decl_attributes for various Windows targets.
+
+ This handles the following situation:
+
+ __declspec (dllimport) int foo;
+ int foo;
+
+ The second instance of `foo' nullifies the dllimport. */
+
+tree
+merge_dllimport_decl_attributes (tree old, tree new_tree)
+{
+ tree a;
+ int delete_dllimport_p = 1;
+
+ /* What we need to do here is remove from `old' dllimport if it doesn't
+ appear in `new'. dllimport behaves like extern: if a declaration is
+ marked dllimport and a definition appears later, then the object
+ is not dllimport'd. We also remove a `new' dllimport if the old list
+ contains dllexport: dllexport always overrides dllimport, regardless
+ of the order of declaration. */
+ if (!VAR_OR_FUNCTION_DECL_P (new_tree))
+ delete_dllimport_p = 0;
+ else if (DECL_DLLIMPORT_P (new_tree)
+ && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
+ {
+ DECL_DLLIMPORT_P (new_tree) = 0;
+ warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
+ "dllimport ignored", new_tree);
+ }
+ else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
+ {
+ /* Warn about overriding a symbol that has already been used, e.g.:
+ extern int __attribute__ ((dllimport)) foo;
+ int* bar () {return &foo;}
+ int foo;
+ */
+ if (TREE_USED (old))
+ {
+ warning (0, "%q+D redeclared without dllimport attribute "
+ "after being referenced with dll linkage", new_tree);
+ /* If we have used a variable's address with dllimport linkage,
+ keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
+ decl may already have had TREE_CONSTANT computed.
+ We still remove the attribute so that assembler code refers
+ to '&foo rather than '_imp__foo'. */
+ if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
+ DECL_DLLIMPORT_P (new_tree) = 1;
+ }
+
+ /* Let an inline definition silently override the external reference,
+ but otherwise warn about attribute inconsistency. */
+ else if (TREE_CODE (new_tree) == VAR_DECL
+ || !DECL_DECLARED_INLINE_P (new_tree))
+ warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
+ "previous dllimport ignored", new_tree);
+ }
+ else
+ delete_dllimport_p = 0;
+
+ a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
+
+ if (delete_dllimport_p)
+ {
+ tree prev, t;
+ const size_t attr_len = strlen ("dllimport");
+
+ /* Scan the list for dllimport and delete it. */
+ for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
+ {
+ if (is_attribute_with_length_p ("dllimport", attr_len,
+ TREE_PURPOSE (t)))
+ {
+ if (prev == NULL_TREE)
+ a = TREE_CHAIN (a);
+ else
+ TREE_CHAIN (prev) = TREE_CHAIN (t);
+ break;
+ }
+ }
+ }
+
+ return a;
+}
+
+/* Handle a "dllimport" or "dllexport" attribute; arguments as in
+ struct attribute_spec.handler. */
+
+tree
+handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
+ bool *no_add_attrs)
+{
+ tree node = *pnode;
+
+ /* These attributes may apply to structure and union types being created,
+ but otherwise should pass to the declaration involved. */
+ if (!DECL_P (node))
+ {
+ if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
+ | (int) ATTR_FLAG_ARRAY_NEXT))
+ {
+ *no_add_attrs = true;
+ return tree_cons (name, args, NULL_TREE);
+ }
+ if (TREE_CODE (node) == RECORD_TYPE
+ || TREE_CODE (node) == UNION_TYPE)
+ {
+ node = TYPE_NAME (node);
+ if (!node)
+ return NULL_TREE;
+ }
+ else
+ {
+ warning (OPT_Wattributes, "%qs attribute ignored",
+ IDENTIFIER_POINTER (name));
+ *no_add_attrs = true;
+ return NULL_TREE;
+ }
+ }
+
+ if (TREE_CODE (node) != FUNCTION_DECL
+ && TREE_CODE (node) != VAR_DECL
+ && TREE_CODE (node) != TYPE_DECL)
+ {
+ *no_add_attrs = true;
+ warning (OPT_Wattributes, "%qs attribute ignored",
+ IDENTIFIER_POINTER (name));
+ return NULL_TREE;
+ }
+
+ if (TREE_CODE (node) == TYPE_DECL
+ && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
+ && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
+ {
+ *no_add_attrs = true;
+ warning (OPT_Wattributes, "%qs attribute ignored",
+ IDENTIFIER_POINTER (name));
+ return NULL_TREE;
+ }
+
+ /* Report error on dllimport ambiguities seen now before they cause
+ any damage. */
+ else if (is_attribute_p ("dllimport", name))
+ {
+ /* Honor any target-specific overrides. */
+ if (!targetm.valid_dllimport_attribute_p (node))
+ *no_add_attrs = true;
+
+ else if (TREE_CODE (node) == FUNCTION_DECL
+ && DECL_DECLARED_INLINE_P (node))
+ {
+ warning (OPT_Wattributes, "inline function %q+D declared as "
+ " dllimport: attribute ignored", node);
+ *no_add_attrs = true;
+ }
+ /* Like MS, treat definition of dllimported variables and
+ non-inlined functions on declaration as syntax errors. */
+ else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
+ {
+ error ("function %q+D definition is marked dllimport", node);
+ *no_add_attrs = true;
+ }
+
+ else if (TREE_CODE (node) == VAR_DECL)
+ {
+ if (DECL_INITIAL (node))
+ {
+ error ("variable %q+D definition is marked dllimport",
+ node);
+ *no_add_attrs = true;
+ }
+
+ /* `extern' needn't be specified with dllimport.
+ Specify `extern' now and hope for the best. Sigh. */
+ DECL_EXTERNAL (node) = 1;
+ /* Also, implicitly give dllimport'd variables declared within
+ a function global scope, unless declared static. */
+ if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
+ TREE_PUBLIC (node) = 1;
+ }
+
+ if (*no_add_attrs == false)
+ DECL_DLLIMPORT_P (node) = 1;
+ }
+
+ /* Report error if symbol is not accessible at global scope. */
+ if (!TREE_PUBLIC (node)
+ && (TREE_CODE (node) == VAR_DECL
+ || TREE_CODE (node) == FUNCTION_DECL))
+ {
+ error ("external linkage required for symbol %q+D because of "
+ "%qs attribute", node, IDENTIFIER_POINTER (name));
+ *no_add_attrs = true;
+ }
+
+ /* A dllexport'd entity must have default visibility so that other
+ program units (shared libraries or the main executable) can see
+ it. A dllimport'd entity must have default visibility so that
+ the linker knows that undefined references within this program
+ unit can be resolved by the dynamic linker. */
+ if (!*no_add_attrs)
+ {
+ if (DECL_VISIBILITY_SPECIFIED (node)
+ && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
+ error ("%qs implies default visibility, but %qD has already "
+ "been declared with a different visibility",
+ IDENTIFIER_POINTER (name), node);
+ DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
+ DECL_VISIBILITY_SPECIFIED (node) = 1;
+ }
+
+ return NULL_TREE;
+}
+
+#endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
+
+/* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
+ of the various TYPE_QUAL values. */
+
+static void
+set_type_quals (tree type, int type_quals)
+{
+ TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
+ TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
+ TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
+}
+
+/* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
+
+bool
+check_qualified_type (const_tree cand, const_tree base, int type_quals)
+{
+ return (TYPE_QUALS (cand) == type_quals
+ && TYPE_NAME (cand) == TYPE_NAME (base)
+ /* Apparently this is needed for Objective-C. */
+ && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
+ && attribute_list_equal (TYPE_ATTRIBUTES (cand),
+ TYPE_ATTRIBUTES (base)));
+}
+
+/* Return a version of the TYPE, qualified as indicated by the
+ TYPE_QUALS, if one exists. If no qualified version exists yet,
+ return NULL_TREE. */
+
+tree
+get_qualified_type (tree type, int type_quals)
+{
+ tree t;
+
+ if (TYPE_QUALS (type) == type_quals)
+ return type;
+
+ /* Search the chain of variants to see if there is already one there just
+ like the one we need to have. If so, use that existing one. We must
+ preserve the TYPE_NAME, since there is code that depends on this. */
+ for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
+ if (check_qualified_type (t, type, type_quals))
+ return t;
+
+ return NULL_TREE;
+}
+
+/* Like get_qualified_type, but creates the type if it does not
+ exist. This function never returns NULL_TREE. */
+
+tree
+build_qualified_type (tree type, int type_quals)
+{
+ tree t;
+
+ /* See if we already have the appropriate qualified variant. */
+ t = get_qualified_type (type, type_quals);
+
+ /* If not, build it. */
+ if (!t)
+ {
+ t = build_variant_type_copy (type);
+ set_type_quals (t, type_quals);
+
+ if (TYPE_STRUCTURAL_EQUALITY_P (type))
+ /* Propagate structural equality. */
+ SET_TYPE_STRUCTURAL_EQUALITY (t);
+ else if (TYPE_CANONICAL (type) != type)
+ /* Build the underlying canonical type, since it is different
+ from TYPE. */
+ TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
+ type_quals);
+ else
+ /* T is its own canonical type. */
+ TYPE_CANONICAL (t) = t;
+
+ }
+
+ return t;
+}
+
+/* Create a new distinct copy of TYPE. The new type is made its own
+ MAIN_VARIANT. If TYPE requires structural equality checks, the
+ resulting type requires structural equality checks; otherwise, its
+ TYPE_CANONICAL points to itself. */
+
+tree
+build_distinct_type_copy (tree type)
+{
+ tree t = copy_node (type);
+
+ TYPE_POINTER_TO (t) = 0;
+ TYPE_REFERENCE_TO (t) = 0;
+
+ /* Set the canonical type either to a new equivalence class, or
+ propagate the need for structural equality checks. */
+ if (TYPE_STRUCTURAL_EQUALITY_P (type))
+ SET_TYPE_STRUCTURAL_EQUALITY (t);
+ else
+ TYPE_CANONICAL (t) = t;
+
+ /* Make it its own variant. */
+ TYPE_MAIN_VARIANT (t) = t;
+ TYPE_NEXT_VARIANT (t) = 0;
+
+ /* Note that it is now possible for TYPE_MIN_VALUE to be a value
+ whose TREE_TYPE is not t. This can also happen in the Ada
+ frontend when using subtypes. */
+
+ return t;
+}
+
+/* Create a new variant of TYPE, equivalent but distinct. This is so
+ the caller can modify it. TYPE_CANONICAL for the return type will
+ be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
+ are considered equal by the language itself (or that both types
+ require structural equality checks). */
+
+tree
+build_variant_type_copy (tree type)
+{
+ tree t, m = TYPE_MAIN_VARIANT (type);
+
+ t = build_distinct_type_copy (type);
+
+ /* Since we're building a variant, assume that it is a non-semantic
+ variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
+ TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
+
+ /* Add the new type to the chain of variants of TYPE. */
+ TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
+ TYPE_NEXT_VARIANT (m) = t;
+ TYPE_MAIN_VARIANT (t) = m;
+
+ return t;
+}
+
+/* Return true if the from tree in both tree maps are equal. */
+
+int
+tree_map_base_eq (const void *va, const void *vb)
+{
+ const struct tree_map_base *const a = (const struct tree_map_base *) va,
+ *const b = (const struct tree_map_base *) vb;
+ return (a->from == b->from);
+}
+
+/* Hash a from tree in a tree_map. */
+
+unsigned int
+tree_map_base_hash (const void *item)
+{
+ return htab_hash_pointer (((const struct tree_map_base *)item)->from);
+}
+
+/* Return true if this tree map structure is marked for garbage collection
+ purposes. We simply return true if the from tree is marked, so that this
+ structure goes away when the from tree goes away. */
+
+int
+tree_map_base_marked_p (const void *p)
+{
+ return ggc_marked_p (((const struct tree_map_base *) p)->from);
+}
+
+unsigned int
+tree_map_hash (const void *item)
+{
+ return (((const struct tree_map *) item)->hash);
+}
+
+/* Return the initialization priority for DECL. */
+
+priority_type
+decl_init_priority_lookup (tree decl)
+{
+ struct tree_priority_map *h;
+ struct tree_map_base in;
+
+ gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
+ in.from = decl;
+ h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
+ return h ? h->init : DEFAULT_INIT_PRIORITY;
+}
+
+/* Return the finalization priority for DECL. */
+
+priority_type
+decl_fini_priority_lookup (tree decl)
+{
+ struct tree_priority_map *h;
+ struct tree_map_base in;
+
+ gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
+ in.from = decl;
+ h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
+ return h ? h->fini : DEFAULT_INIT_PRIORITY;
+}
+
+/* Return the initialization and finalization priority information for
+ DECL. If there is no previous priority information, a freshly
+ allocated structure is returned. */
+
+static struct tree_priority_map *
+decl_priority_info (tree decl)
+{
+ struct tree_priority_map in;
+ struct tree_priority_map *h;
+ void **loc;
+
+ in.base.from = decl;
+ loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
+ h = (struct tree_priority_map *) *loc;
+ if (!h)
+ {
+ h = GGC_CNEW (struct tree_priority_map);
+ *loc = h;
+ h->base.from = decl;
+ h->init = DEFAULT_INIT_PRIORITY;
+ h->fini = DEFAULT_INIT_PRIORITY;
+ }
+
+ return h;
+}
+
+/* Set the initialization priority for DECL to PRIORITY. */
+
+void
+decl_init_priority_insert (tree decl, priority_type priority)
+{
+ struct tree_priority_map *h;
+
+ gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
+ h = decl_priority_info (decl);
+ h->init = priority;
+}
+
+/* Set the finalization priority for DECL to PRIORITY. */
+
+void
+decl_fini_priority_insert (tree decl, priority_type priority)
+{
+ struct tree_priority_map *h;
+
+ gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
+ h = decl_priority_info (decl);
+ h->fini = priority;
+}
+
+/* Look up a restrict qualified base decl for FROM. */
+
+tree
+decl_restrict_base_lookup (tree from)
+{
+ struct tree_map *h;
+ struct tree_map in;
+
+ in.base.from = from;
+ h = (struct tree_map *) htab_find_with_hash (restrict_base_for_decl, &in,
+ htab_hash_pointer (from));
+ return h ? h->to : NULL_TREE;
+}
+
+/* Record the restrict qualified base TO for FROM. */
+
+void
+decl_restrict_base_insert (tree from, tree to)
+{
+ struct tree_map *h;
+ void **loc;
+
+ h = GGC_NEW (struct tree_map);
+ h->hash = htab_hash_pointer (from);
+ h->base.from = from;
+ h->to = to;
+ loc = htab_find_slot_with_hash (restrict_base_for_decl, h, h->hash, INSERT);
+ *(struct tree_map **) loc = h;
+}
+
+/* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
+
+static void
+print_debug_expr_statistics (void)
+{
+ fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
+ (long) htab_size (debug_expr_for_decl),
+ (long) htab_elements (debug_expr_for_decl),
+ htab_collisions (debug_expr_for_decl));
+}
+
+/* Print out the statistics for the DECL_VALUE_EXPR hash table. */
+
+static void
+print_value_expr_statistics (void)
+{
+ fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
+ (long) htab_size (value_expr_for_decl),
+ (long) htab_elements (value_expr_for_decl),
+ htab_collisions (value_expr_for_decl));
+}
+
+/* Print out statistics for the RESTRICT_BASE_FOR_DECL hash table, but
+ don't print anything if the table is empty. */
+
+static void
+print_restrict_base_statistics (void)
+{
+ if (htab_elements (restrict_base_for_decl) != 0)
+ fprintf (stderr,
+ "RESTRICT_BASE hash: size %ld, %ld elements, %f collisions\n",
+ (long) htab_size (restrict_base_for_decl),
+ (long) htab_elements (restrict_base_for_decl),
+ htab_collisions (restrict_base_for_decl));
+}
+
+/* Lookup a debug expression for FROM, and return it if we find one. */
+
+tree
+decl_debug_expr_lookup (tree from)
+{
+ struct tree_map *h, in;
+ in.base.from = from;
+
+ h = (struct tree_map *) htab_find_with_hash (debug_expr_for_decl, &in,
+ htab_hash_pointer (from));
+ if (h)
+ return h->to;
+ return NULL_TREE;
+}
+
+/* Insert a mapping FROM->TO in the debug expression hashtable. */
+
+void
+decl_debug_expr_insert (tree from, tree to)
+{
+ struct tree_map *h;
+ void **loc;
+
+ h = GGC_NEW (struct tree_map);
+ h->hash = htab_hash_pointer (from);
+ h->base.from = from;
+ h->to = to;
+ loc = htab_find_slot_with_hash (debug_expr_for_decl, h, h->hash, INSERT);
+ *(struct tree_map **) loc = h;
+}
+
+/* Lookup a value expression for FROM, and return it if we find one. */
+
+tree
+decl_value_expr_lookup (tree from)
+{
+ struct tree_map *h, in;
+ in.base.from = from;
+
+ h = (struct tree_map *) htab_find_with_hash (value_expr_for_decl, &in,
+ htab_hash_pointer (from));
+ if (h)
+ return h->to;
+ return NULL_TREE;
+}
+
+/* Insert a mapping FROM->TO in the value expression hashtable. */
+
+void
+decl_value_expr_insert (tree from, tree to)
+{
+ struct tree_map *h;
+ void **loc;
+
+ h = GGC_NEW (struct tree_map);
+ h->hash = htab_hash_pointer (from);
+ h->base.from = from;
+ h->to = to;
+ loc = htab_find_slot_with_hash (value_expr_for_decl, h, h->hash, INSERT);
+ *(struct tree_map **) loc = h;
+}
+
+/* Hashing of types so that we don't make duplicates.
+ The entry point is `type_hash_canon'. */
+
+/* Compute a hash code for a list of types (chain of TREE_LIST nodes
+ with types in the TREE_VALUE slots), by adding the hash codes
+ of the individual types. */
+
+static unsigned int
+type_hash_list (const_tree list, hashval_t hashcode)
+{
+ const_tree tail;
+
+ for (tail = list; tail; tail = TREE_CHAIN (tail))
+ if (TREE_VALUE (tail) != error_mark_node)
+ hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
+ hashcode);
+
+ return hashcode;
+}
+
+/* These are the Hashtable callback functions. */
+
+/* Returns true iff the types are equivalent. */
+
+static int
+type_hash_eq (const void *va, const void *vb)
+{
+ const struct type_hash *const a = (const struct type_hash *) va,
+ *const b = (const struct type_hash *) vb;
+
+ /* First test the things that are the same for all types. */
+ if (a->hash != b->hash
+ || TREE_CODE (a->type) != TREE_CODE (b->type)
+ || TREE_TYPE (a->type) != TREE_TYPE (b->type)
+ || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
+ TYPE_ATTRIBUTES (b->type))
+ || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
+ || TYPE_MODE (a->type) != TYPE_MODE (b->type)
+ || (TREE_CODE (a->type) != COMPLEX_TYPE
+ && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
+ return 0;
+
+ switch (TREE_CODE (a->type))
+ {
+ case VOID_TYPE:
+ case COMPLEX_TYPE:
+ case POINTER_TYPE:
+ case REFERENCE_TYPE:
+ return 1;
+
+ case VECTOR_TYPE:
+ return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
+
+ case ENUMERAL_TYPE:
+ if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
+ && !(TYPE_VALUES (a->type)
+ && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
+ && TYPE_VALUES (b->type)
+ && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
+ && type_list_equal (TYPE_VALUES (a->type),
+ TYPE_VALUES (b->type))))
+ return 0;
+
+ /* ... fall through ... */
+
+ case INTEGER_TYPE:
+ case REAL_TYPE:
+ case BOOLEAN_TYPE:
+ return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
+ || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
+ TYPE_MAX_VALUE (b->type)))
+ && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
+ || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
+ TYPE_MIN_VALUE (b->type))));
+
+ case FIXED_POINT_TYPE:
+ return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
+
+ case OFFSET_TYPE:
+ return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
+
+ case METHOD_TYPE:
+ return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
+ && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
+ || (TYPE_ARG_TYPES (a->type)
+ && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
+ && TYPE_ARG_TYPES (b->type)
+ && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
+ && type_list_equal (TYPE_ARG_TYPES (a->type),
+ TYPE_ARG_TYPES (b->type)))));
+
+ case ARRAY_TYPE:
+ return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
+
+ case RECORD_TYPE:
+ case UNION_TYPE:
+ case QUAL_UNION_TYPE:
+ return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
+ || (TYPE_FIELDS (a->type)
+ && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
+ && TYPE_FIELDS (b->type)
+ && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
+ && type_list_equal (TYPE_FIELDS (a->type),
+ TYPE_FIELDS (b->type))));
+
+ case FUNCTION_TYPE:
+ if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
+ || (TYPE_ARG_TYPES (a->type)
+ && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
+ && TYPE_ARG_TYPES (b->type)
+ && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
+ && type_list_equal (TYPE_ARG_TYPES (a->type),
+ TYPE_ARG_TYPES (b->type))))
+ break;
+ return 0;
+
+ default:
+ return 0;
+ }
+
+ if (lang_hooks.types.type_hash_eq != NULL)
+ return lang_hooks.types.type_hash_eq (a->type, b->type);
+
+ return 1;
+}
+
+/* Return the cached hash value. */
+
+static hashval_t
+type_hash_hash (const void *item)
+{
+ return ((const struct type_hash *) item)->hash;
+}
+
+/* Look in the type hash table for a type isomorphic to TYPE.
+ If one is found, return it. Otherwise return 0. */
+
+tree
+type_hash_lookup (hashval_t hashcode, tree type)
+{
+ struct type_hash *h, in;
+
+ /* The TYPE_ALIGN field of a type is set by layout_type(), so we
+ must call that routine before comparing TYPE_ALIGNs. */
+ layout_type (type);
+
+ in.hash = hashcode;
+ in.type = type;
+
+ h = (struct type_hash *) htab_find_with_hash (type_hash_table, &in,
+ hashcode);
+ if (h)
+ return h->type;
+ return NULL_TREE;
+}
+
+/* Add an entry to the type-hash-table
+ for a type TYPE whose hash code is HASHCODE. */
+
+void
+type_hash_add (hashval_t hashcode, tree type)
+{
+ struct type_hash *h;
+ void **loc;
+
+ h = GGC_NEW (struct type_hash);
+ h->hash = hashcode;
+ h->type = type;
+ loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
+ *loc = (void *)h;
+}
+
+/* Given TYPE, and HASHCODE its hash code, return the canonical
+ object for an identical type if one already exists.
+ Otherwise, return TYPE, and record it as the canonical object.
+
+ To use this function, first create a type of the sort you want.
+ Then compute its hash code from the fields of the type that
+ make it different from other similar types.
+ Then call this function and use the value. */
+
+tree
+type_hash_canon (unsigned int hashcode, tree type)
+{
+ tree t1;
+
+ /* The hash table only contains main variants, so ensure that's what we're
+ being passed. */
+ gcc_assert (TYPE_MAIN_VARIANT (type) == type);
+
+ if (!lang_hooks.types.hash_types)
+ return type;
+
+ /* See if the type is in the hash table already. If so, return it.
+ Otherwise, add the type. */
+ t1 = type_hash_lookup (hashcode, type);
+ if (t1 != 0)
+ {
+#ifdef GATHER_STATISTICS
+ tree_node_counts[(int) t_kind]--;
+ tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
+#endif
+ return t1;
+ }
+ else
+ {
+ type_hash_add (hashcode, type);
+ return type;
+ }
+}
+
+/* See if the data pointed to by the type hash table is marked. We consider
+ it marked if the type is marked or if a debug type number or symbol
+ table entry has been made for the type. This reduces the amount of
+ debugging output and eliminates that dependency of the debug output on
+ the number of garbage collections. */
+
+static int
+type_hash_marked_p (const void *p)
+{
+ const_tree const type = ((const struct type_hash *) p)->type;
+
+ return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
+}
+
+static void
+print_type_hash_statistics (void)
+{
+ fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
+ (long) htab_size (type_hash_table),
+ (long) htab_elements (type_hash_table),
+ htab_collisions (type_hash_table));
+}
+
+/* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
+ with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
+ by adding the hash codes of the individual attributes. */
+
+static unsigned int
+attribute_hash_list (const_tree list, hashval_t hashcode)
+{
+ const_tree tail;
+
+ for (tail = list; tail; tail = TREE_CHAIN (tail))
+ /* ??? Do we want to add in TREE_VALUE too? */
+ hashcode = iterative_hash_object
+ (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
+ return hashcode;
+}
+
+/* Given two lists of attributes, return true if list l2 is
+ equivalent to l1. */
+
+int
+attribute_list_equal (const_tree l1, const_tree l2)
+{
+ return attribute_list_contained (l1, l2)
+ && attribute_list_contained (l2, l1);
+}
+
+/* Given two lists of attributes, return true if list L2 is
+ completely contained within L1. */
+/* ??? This would be faster if attribute names were stored in a canonicalized
+ form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
+ must be used to show these elements are equivalent (which they are). */
+/* ??? It's not clear that attributes with arguments will always be handled
+ correctly. */
+
+int
+attribute_list_contained (const_tree l1, const_tree l2)
+{
+ const_tree t1, t2;
+
+ /* First check the obvious, maybe the lists are identical. */
+ if (l1 == l2)
+ return 1;
+
+ /* Maybe the lists are similar. */
+ for (t1 = l1, t2 = l2;
+ t1 != 0 && t2 != 0
+ && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
+ && TREE_VALUE (t1) == TREE_VALUE (t2);
+ t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
+
+ /* Maybe the lists are equal. */
+ if (t1 == 0 && t2 == 0)
+ return 1;
+
+ for (; t2 != 0; t2 = TREE_CHAIN (t2))
+ {
+ const_tree attr;
+ /* This CONST_CAST is okay because lookup_attribute does not
+ modify its argument and the return value is assigned to a
+ const_tree. */
+ for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
+ CONST_CAST_TREE(l1));
+ attr != NULL_TREE;
+ attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
+ TREE_CHAIN (attr)))
+ {
+ if (TREE_VALUE (t2) != NULL
+ && TREE_CODE (TREE_VALUE (t2)) == TREE_LIST
+ && TREE_VALUE (attr) != NULL
+ && TREE_CODE (TREE_VALUE (attr)) == TREE_LIST)
+ {
+ if (simple_cst_list_equal (TREE_VALUE (t2),
+ TREE_VALUE (attr)) == 1)
+ break;
+ }
+ else if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
+ break;
+ }
+
+ if (attr == 0)
+ return 0;
+ }
+
+ return 1;
+}
+
+/* Given two lists of types
+ (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
+ return 1 if the lists contain the same types in the same order.
+ Also, the TREE_PURPOSEs must match. */
+
+int
+type_list_equal (const_tree l1, const_tree l2)
+{
+ const_tree t1, t2;
+
+ for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
+ if (TREE_VALUE (t1) != TREE_VALUE (t2)
+ || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
+ && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
+ && (TREE_TYPE (TREE_PURPOSE (t1))
+ == TREE_TYPE (TREE_PURPOSE (t2))))))
+ return 0;
+
+ return t1 == t2;
+}
+
+/* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
+ given by TYPE. If the argument list accepts variable arguments,
+ then this function counts only the ordinary arguments. */
+
+int
+type_num_arguments (const_tree type)
+{
+ int i = 0;
+ tree t;
+
+ for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
+ /* If the function does not take a variable number of arguments,
+ the last element in the list will have type `void'. */
+ if (VOID_TYPE_P (TREE_VALUE (t)))
+ break;
+ else
+ ++i;
+
+ return i;
+}
+
+/* Nonzero if integer constants T1 and T2
+ represent the same constant value. */
+
+int
+tree_int_cst_equal (const_tree t1, const_tree t2)
+{
+ if (t1 == t2)
+ return 1;
+
+ if (t1 == 0 || t2 == 0)
+ return 0;
+
+ if (TREE_CODE (t1) == INTEGER_CST
+ && TREE_CODE (t2) == INTEGER_CST
+ && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
+ && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
+ return 1;
+
+ return 0;
+}
+
+/* Nonzero if integer constants T1 and T2 represent values that satisfy <.
+ The precise way of comparison depends on their data type. */
+
+int
+tree_int_cst_lt (const_tree t1, const_tree t2)
+{
+ if (t1 == t2)
+ return 0;
+
+ if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
+ {
+ int t1_sgn = tree_int_cst_sgn (t1);
+ int t2_sgn = tree_int_cst_sgn (t2);
+
+ if (t1_sgn < t2_sgn)
+ return 1;
+ else if (t1_sgn > t2_sgn)
+ return 0;
+ /* Otherwise, both are non-negative, so we compare them as
+ unsigned just in case one of them would overflow a signed
+ type. */
+ }
+ else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
+ return INT_CST_LT (t1, t2);
+
+ return INT_CST_LT_UNSIGNED (t1, t2);
+}
+
+/* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
+
+int
+tree_int_cst_compare (const_tree t1, const_tree t2)
+{
+ if (tree_int_cst_lt (t1, t2))
+ return -1;
+ else if (tree_int_cst_lt (t2, t1))
+ return 1;
+ else
+ return 0;
+}
+
+/* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
+ the host. If POS is zero, the value can be represented in a single
+ HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
+ be represented in a single unsigned HOST_WIDE_INT. */
+
+int
+host_integerp (const_tree t, int pos)
+{
+ return (TREE_CODE (t) == INTEGER_CST
+ && ((TREE_INT_CST_HIGH (t) == 0
+ && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
+ || (! pos && TREE_INT_CST_HIGH (t) == -1
+ && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
+ && (!TYPE_UNSIGNED (TREE_TYPE (t))
+ || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
+ && TYPE_IS_SIZETYPE (TREE_TYPE (t)))))
+ || (pos && TREE_INT_CST_HIGH (t) == 0)));
+}
+
+/* Return the HOST_WIDE_INT least significant bits of T if it is an
+ INTEGER_CST and there is no overflow. POS is nonzero if the result must
+ be non-negative. We must be able to satisfy the above conditions. */
+
+HOST_WIDE_INT
+tree_low_cst (const_tree t, int pos)
+{
+ gcc_assert (host_integerp (t, pos));
+ return TREE_INT_CST_LOW (t);
+}
+
+/* Return the most significant bit of the integer constant T. */
+
+int
+tree_int_cst_msb (const_tree t)
+{
+ int prec;
+ HOST_WIDE_INT h;
+ unsigned HOST_WIDE_INT l;
+
+ /* Note that using TYPE_PRECISION here is wrong. We care about the
+ actual bits, not the (arbitrary) range of the type. */
+ prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
+ rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
+ 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
+ return (l & 1) == 1;
+}
+
+/* Return an indication of the sign of the integer constant T.
+ The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
+ Note that -1 will never be returned if T's type is unsigned. */
+
+int
+tree_int_cst_sgn (const_tree t)
+{
+ if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
+ return 0;
+ else if (TYPE_UNSIGNED (TREE_TYPE (t)))
+ return 1;
+ else if (TREE_INT_CST_HIGH (t) < 0)
+ return -1;
+ else
+ return 1;
+}
+
+/* Return the minimum number of bits needed to represent VALUE in a
+ signed or unsigned type, UNSIGNEDP says which. */
+
+unsigned int
+tree_int_cst_min_precision (tree value, bool unsignedp)
+{
+ int log;
+
+ /* If the value is negative, compute its negative minus 1. The latter
+ adjustment is because the absolute value of the largest negative value
+ is one larger than the largest positive value. This is equivalent to
+ a bit-wise negation, so use that operation instead. */
+
+ if (tree_int_cst_sgn (value) < 0)
+ value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
+
+ /* Return the number of bits needed, taking into account the fact
+ that we need one more bit for a signed than unsigned type. */
+
+ if (integer_zerop (value))
+ log = 0;
+ else
+ log = tree_floor_log2 (value);
+
+ return log + 1 + !unsignedp;
+}
+
+/* Compare two constructor-element-type constants. Return 1 if the lists
+ are known to be equal; otherwise return 0. */
+
+int
+simple_cst_list_equal (const_tree l1, const_tree l2)
+{
+ while (l1 != NULL_TREE && l2 != NULL_TREE)
+ {
+ if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
+ return 0;
+
+ l1 = TREE_CHAIN (l1);
+ l2 = TREE_CHAIN (l2);
+ }
+
+ return l1 == l2;
+}
+
+/* Return truthvalue of whether T1 is the same tree structure as T2.
+ Return 1 if they are the same.
+ Return 0 if they are understandably different.
+ Return -1 if either contains tree structure not understood by
+ this function. */
+
+int
+simple_cst_equal (const_tree t1, const_tree t2)
+{
+ enum tree_code code1, code2;
+ int cmp;
+ int i;
+
+ if (t1 == t2)
+ return 1;
+ if (t1 == 0 || t2 == 0)
+ return 0;
+
+ code1 = TREE_CODE (t1);
+ code2 = TREE_CODE (t2);
+
+ if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
+ {
+ if (CONVERT_EXPR_CODE_P (code2)
+ || code2 == NON_LVALUE_EXPR)
+ return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
+ else
+ return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
+ }
+
+ else if (CONVERT_EXPR_CODE_P (code2)
+ || code2 == NON_LVALUE_EXPR)
+ return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
+
+ if (code1 != code2)
+ return 0;
+
+ switch (code1)
+ {
+ case INTEGER_CST:
+ return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
+ && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
+
+ case REAL_CST:
+ return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
+
+ case FIXED_CST:
+ return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
+
+ case STRING_CST:
+ return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
+ && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
+ TREE_STRING_LENGTH (t1)));
+
+ case CONSTRUCTOR:
+ {
+ unsigned HOST_WIDE_INT idx;
+ VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
+ VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
+
+ if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
+ return false;
+
+ for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
+ /* ??? Should we handle also fields here? */
+ if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
+ VEC_index (constructor_elt, v2, idx)->value))
+ return false;
+ return true;
+ }
+
+ case SAVE_EXPR:
+ return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
+
+ case CALL_EXPR:
+ cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
+ if (cmp <= 0)
+ return cmp;
+ if (call_expr_nargs (t1) != call_expr_nargs (t2))
+ return 0;
+ {
+ const_tree arg1, arg2;
+ const_call_expr_arg_iterator iter1, iter2;
+ for (arg1 = first_const_call_expr_arg (t1, &iter1),
+ arg2 = first_const_call_expr_arg (t2, &iter2);
+ arg1 && arg2;
+ arg1 = next_const_call_expr_arg (&iter1),
+ arg2 = next_const_call_expr_arg (&iter2))
+ {
+ cmp = simple_cst_equal (arg1, arg2);
+ if (cmp <= 0)
+ return cmp;
+ }
+ return arg1 == arg2;
+ }
+
+ case TARGET_EXPR:
+ /* Special case: if either target is an unallocated VAR_DECL,
+ it means that it's going to be unified with whatever the
+ TARGET_EXPR is really supposed to initialize, so treat it
+ as being equivalent to anything. */
+ if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
+ && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
+ && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
+ || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
+ && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
+ && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
+ cmp = 1;
+ else
+ cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
+
+ if (cmp <= 0)
+ return cmp;
+
+ return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
+
+ case WITH_CLEANUP_EXPR:
+ cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
+ if (cmp <= 0)
+ return cmp;
+
+ return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
+
+ case COMPONENT_REF:
+ if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
+ return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
+
+ return 0;
+
+ case VAR_DECL:
+ case PARM_DECL:
+ case CONST_DECL:
+ case FUNCTION_DECL:
+ return 0;
+
+ default:
+ break;
+ }
+
+ /* This general rule works for most tree codes. All exceptions should be
+ handled above. If this is a language-specific tree code, we can't
+ trust what might be in the operand, so say we don't know
+ the situation. */
+ if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
+ return -1;
+
+ switch (TREE_CODE_CLASS (code1))
+ {
+ case tcc_unary:
+ case tcc_binary:
+ case tcc_comparison:
+ case tcc_expression:
+ case tcc_reference:
+ case tcc_statement:
+ cmp = 1;
+ for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
+ {
+ cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
+ if (cmp <= 0)
+ return cmp;
+ }
+
+ return cmp;
+
+ default:
+ return -1;
+ }
+}
+
+/* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
+ Return -1, 0, or 1 if the value of T is less than, equal to, or greater
+ than U, respectively. */
+
+int
+compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
+{
+ if (tree_int_cst_sgn (t) < 0)
+ return -1;
+ else if (TREE_INT_CST_HIGH (t) != 0)
+ return 1;
+ else if (TREE_INT_CST_LOW (t) == u)
+ return 0;
+ else if (TREE_INT_CST_LOW (t) < u)
+ return -1;
+ else
+ return 1;
+}
+
+/* Return true if CODE represents an associative tree code. Otherwise
+ return false. */
+bool
+associative_tree_code (enum tree_code code)
+{
+ switch (code)
+ {
+ case BIT_IOR_EXPR:
+ case BIT_AND_EXPR:
+ case BIT_XOR_EXPR:
+ case PLUS_EXPR:
+ case MULT_EXPR:
+ case MIN_EXPR:
+ case MAX_EXPR:
+ return true;
+
+ default:
+ break;
+ }
+ return false;
+}
+
+/* Return true if CODE represents a commutative tree code. Otherwise
+ return false. */
+bool
+commutative_tree_code (enum tree_code code)
+{
+ switch (code)
+ {
+ case PLUS_EXPR:
+ case MULT_EXPR:
+ case MIN_EXPR:
+ case MAX_EXPR:
+ case BIT_IOR_EXPR:
+ case BIT_XOR_EXPR:
+ case BIT_AND_EXPR:
+ case NE_EXPR:
+ case EQ_EXPR:
+ case UNORDERED_EXPR:
+ case ORDERED_EXPR:
+ case UNEQ_EXPR:
+ case LTGT_EXPR:
+ case TRUTH_AND_EXPR:
+ case TRUTH_XOR_EXPR:
+ case TRUTH_OR_EXPR:
+ return true;
+
+ default:
+ break;
+ }
+ return false;
+}
+
+/* Generate a hash value for an expression. This can be used iteratively
+ by passing a previous result as the VAL argument.
+
+ This function is intended to produce the same hash for expressions which
+ would compare equal using operand_equal_p. */
+
+hashval_t
+iterative_hash_expr (const_tree t, hashval_t val)
+{
+ int i;
+ enum tree_code code;
+ char tclass;
+
+ if (t == NULL_TREE)
+ return iterative_hash_pointer (t, val);
+
+ code = TREE_CODE (t);
+
+ switch (code)
+ {
+ /* Alas, constants aren't shared, so we can't rely on pointer
+ identity. */
+ case INTEGER_CST:
+ val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
+ return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
+ case REAL_CST:
+ {
+ unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
+
+ return iterative_hash_hashval_t (val2, val);
+ }
+ case FIXED_CST:
+ {
+ unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
+
+ return iterative_hash_hashval_t (val2, val);
+ }
+ case STRING_CST:
+ return iterative_hash (TREE_STRING_POINTER (t),
+ TREE_STRING_LENGTH (t), val);
+ case COMPLEX_CST:
+ val = iterative_hash_expr (TREE_REALPART (t), val);
+ return iterative_hash_expr (TREE_IMAGPART (t), val);
+ case VECTOR_CST:
+ return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
+
+ case SSA_NAME:
+ /* we can just compare by pointer. */
+ return iterative_hash_pointer (t, val);
+
+ case TREE_LIST:
+ /* A list of expressions, for a CALL_EXPR or as the elements of a
+ VECTOR_CST. */
+ for (; t; t = TREE_CHAIN (t))
+ val = iterative_hash_expr (TREE_VALUE (t), val);
+ return val;
+ case CONSTRUCTOR:
+ {
+ unsigned HOST_WIDE_INT idx;
+ tree field, value;
+ FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
+ {
+ val = iterative_hash_expr (field, val);
+ val = iterative_hash_expr (value, val);
+ }
+ return val;
+ }
+ case FUNCTION_DECL:
+ /* When referring to a built-in FUNCTION_DECL, use the
+ __builtin__ form. Otherwise nodes that compare equal
+ according to operand_equal_p might get different
+ hash codes. */
+ if (DECL_BUILT_IN (t))
+ {
+ val = iterative_hash_pointer (built_in_decls[DECL_FUNCTION_CODE (t)],
+ val);
+ return val;
+ }
+ /* else FALL THROUGH */
+ default:
+ tclass = TREE_CODE_CLASS (code);
+
+ if (tclass == tcc_declaration)
+ {
+ /* DECL's have a unique ID */
+ val = iterative_hash_host_wide_int (DECL_UID (t), val);
+ }
+ else
+ {
+ gcc_assert (IS_EXPR_CODE_CLASS (tclass));
+
+ val = iterative_hash_object (code, val);
+
+ /* Don't hash the type, that can lead to having nodes which
+ compare equal according to operand_equal_p, but which
+ have different hash codes. */
+ if (CONVERT_EXPR_CODE_P (code)
+ || code == NON_LVALUE_EXPR)
+ {
+ /* Make sure to include signness in the hash computation. */
+ val += TYPE_UNSIGNED (TREE_TYPE (t));
+ val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
+ }
+
+ else if (commutative_tree_code (code))
+ {
+ /* It's a commutative expression. We want to hash it the same
+ however it appears. We do this by first hashing both operands
+ and then rehashing based on the order of their independent
+ hashes. */
+ hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
+ hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
+ hashval_t t;
+
+ if (one > two)
+ t = one, one = two, two = t;
+
+ val = iterative_hash_hashval_t (one, val);
+ val = iterative_hash_hashval_t (two, val);
+ }
+ else
+ for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
+ val = iterative_hash_expr (TREE_OPERAND (t, i), val);
+ }
+ return val;
+ break;
+ }
+}
+
+/* Generate a hash value for a pair of expressions. This can be used
+ iteratively by passing a previous result as the VAL argument.
+
+ The same hash value is always returned for a given pair of expressions,
+ regardless of the order in which they are presented. This is useful in
+ hashing the operands of commutative functions. */
+
+hashval_t
+iterative_hash_exprs_commutative (const_tree t1,
+ const_tree t2, hashval_t val)
+{
+ hashval_t one = iterative_hash_expr (t1, 0);
+ hashval_t two = iterative_hash_expr (t2, 0);
+ hashval_t t;
+
+ if (one > two)
+ t = one, one = two, two = t;
+ val = iterative_hash_hashval_t (one, val);
+ val = iterative_hash_hashval_t (two, val);
+
+ return val;
+}
+
+/* Constructors for pointer, array and function types.
+ (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
+ constructed by language-dependent code, not here.) */
+
+/* Construct, lay out and return the type of pointers to TO_TYPE with
+ mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
+ reference all of memory. If such a type has already been
+ constructed, reuse it. */
+
+tree
+build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
+ bool can_alias_all)
+{
+ tree t;
+
+ if (to_type == error_mark_node)
+ return error_mark_node;
+
+ /* If the pointed-to type has the may_alias attribute set, force
+ a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
+ if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
+ can_alias_all = true;
+
+ /* In some cases, languages will have things that aren't a POINTER_TYPE
+ (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
+ In that case, return that type without regard to the rest of our
+ operands.
+
+ ??? This is a kludge, but consistent with the way this function has
+ always operated and there doesn't seem to be a good way to avoid this
+ at the moment. */
+ if (TYPE_POINTER_TO (to_type) != 0
+ && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
+ return TYPE_POINTER_TO (to_type);
+
+ /* First, if we already have a type for pointers to TO_TYPE and it's
+ the proper mode, use it. */
+ for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
+ if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
+ return t;
+
+ t = make_node (POINTER_TYPE);
+
+ TREE_TYPE (t) = to_type;
+ SET_TYPE_MODE (t, mode);
+ TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
+ TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
+ TYPE_POINTER_TO (to_type) = t;
+
+ if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
+ SET_TYPE_STRUCTURAL_EQUALITY (t);
+ else if (TYPE_CANONICAL (to_type) != to_type)
+ TYPE_CANONICAL (t)
+ = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
+ mode, can_alias_all);
+
+ /* Lay out the type. This function has many callers that are concerned
+ with expression-construction, and this simplifies them all. */
+ layout_type (t);
+
+ return t;
+}
+
+/* By default build pointers in ptr_mode. */
+
+tree
+build_pointer_type (tree to_type)
+{
+ return build_pointer_type_for_mode (to_type, ptr_mode, false);
+}
+
+/* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
+
+tree
+build_reference_type_for_mode (tree to_type, enum machine_mode mode,
+ bool can_alias_all)
+{
+ tree t;
+
+ if (to_type == error_mark_node)
+ return error_mark_node;
+
+ /* If the pointed-to type has the may_alias attribute set, force
+ a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
+ if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
+ can_alias_all = true;
+
+ /* In some cases, languages will have things that aren't a REFERENCE_TYPE
+ (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
+ In that case, return that type without regard to the rest of our
+ operands.
+
+ ??? This is a kludge, but consistent with the way this function has
+ always operated and there doesn't seem to be a good way to avoid this
+ at the moment. */
+ if (TYPE_REFERENCE_TO (to_type) != 0
+ && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
+ return TYPE_REFERENCE_TO (to_type);
+
+ /* First, if we already have a type for pointers to TO_TYPE and it's
+ the proper mode, use it. */
+ for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
+ if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
+ return t;
+
+ t = make_node (REFERENCE_TYPE);
+
+ TREE_TYPE (t) = to_type;
+ SET_TYPE_MODE (t, mode);
+ TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
+ TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
+ TYPE_REFERENCE_TO (to_type) = t;
+
+ if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
+ SET_TYPE_STRUCTURAL_EQUALITY (t);
+ else if (TYPE_CANONICAL (to_type) != to_type)
+ TYPE_CANONICAL (t)
+ = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
+ mode, can_alias_all);
+
+ layout_type (t);
+
+ return t;
+}
+
+
+/* Build the node for the type of references-to-TO_TYPE by default
+ in ptr_mode. */
+
+tree
+build_reference_type (tree to_type)
+{
+ return build_reference_type_for_mode (to_type, ptr_mode, false);
+}
+
+/* Build a type that is compatible with t but has no cv quals anywhere
+ in its type, thus
+
+ const char *const *const * -> char ***. */
+
+tree
+build_type_no_quals (tree t)
+{
+ switch (TREE_CODE (t))
+ {
+ case POINTER_TYPE:
+ return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
+ TYPE_MODE (t),
+ TYPE_REF_CAN_ALIAS_ALL (t));
+ case REFERENCE_TYPE:
+ return
+ build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
+ TYPE_MODE (t),
+ TYPE_REF_CAN_ALIAS_ALL (t));
+ default:
+ return TYPE_MAIN_VARIANT (t);
+ }
+}
+
+/* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
+ MAXVAL should be the maximum value in the domain
+ (one less than the length of the array).
+
+ The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
+ We don't enforce this limit, that is up to caller (e.g. language front end).
+ The limit exists because the result is a signed type and we don't handle
+ sizes that use more than one HOST_WIDE_INT. */
+
+tree
+build_index_type (tree maxval)
+{
+ tree itype = make_node (INTEGER_TYPE);
+
+ TREE_TYPE (itype) = sizetype;
+ TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
+ TYPE_MIN_VALUE (itype) = size_zero_node;
+ TYPE_MAX_VALUE (itype) = fold_convert (sizetype, maxval);
+ SET_TYPE_MODE (itype, TYPE_MODE (sizetype));
+ TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
+ TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
+ TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
+ TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
+
+ if (host_integerp (maxval, 1))
+ return type_hash_canon (tree_low_cst (maxval, 1), itype);
+ else
+ {
+ /* Since we cannot hash this type, we need to compare it using
+ structural equality checks. */
+ SET_TYPE_STRUCTURAL_EQUALITY (itype);
+ return itype;
+ }
+}
+
+/* Builds a signed or unsigned integer type of precision PRECISION.
+ Used for C bitfields whose precision does not match that of
+ built-in target types. */
+tree
+build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
+ int unsignedp)
+{
+ tree itype = make_node (INTEGER_TYPE);
+
+ TYPE_PRECISION (itype) = precision;
+
+ if (unsignedp)
+ fixup_unsigned_type (itype);
+ else
+ fixup_signed_type (itype);
+
+ if (host_integerp (TYPE_MAX_VALUE (itype), 1))
+ return type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
+
+ return itype;
+}
+
+/* Create a range of some discrete type TYPE (an INTEGER_TYPE,
+ ENUMERAL_TYPE or BOOLEAN_TYPE), with low bound LOWVAL and
+ high bound HIGHVAL. If TYPE is NULL, sizetype is used. */
+
+tree
+build_range_type (tree type, tree lowval, tree highval)
+{
+ tree itype = make_node (INTEGER_TYPE);
+
+ TREE_TYPE (itype) = type;
+ if (type == NULL_TREE)
+ type = sizetype;
+
+ TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
+ TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
+
+ TYPE_PRECISION (itype) = TYPE_PRECISION (type);
+ SET_TYPE_MODE (itype, TYPE_MODE (type));
+ TYPE_SIZE (itype) = TYPE_SIZE (type);
+ TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
+ TYPE_ALIGN (itype) = TYPE_ALIGN (type);
+ TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
+
+ if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
+ return type_hash_canon (tree_low_cst (highval, 0)
+ - tree_low_cst (lowval, 0),
+ itype);
+ else
+ return itype;
+}
+
+/* Just like build_index_type, but takes lowval and highval instead
+ of just highval (maxval). */
+
+tree
+build_index_2_type (tree lowval, tree highval)
+{
+ return build_range_type (sizetype, lowval, highval);
+}
+
+/* Construct, lay out and return the type of arrays of elements with ELT_TYPE
+ and number of elements specified by the range of values of INDEX_TYPE.
+ If such a type has already been constructed, reuse it. */
+
+tree
+build_array_type (tree elt_type, tree index_type)
+{
+ tree t;
+ hashval_t hashcode = 0;
+
+ if (TREE_CODE (elt_type) == FUNCTION_TYPE)
+ {
+ error ("arrays of functions are not meaningful");
+ elt_type = integer_type_node;
+ }
+
+ t = make_node (ARRAY_TYPE);
+ TREE_TYPE (t) = elt_type;
+ TYPE_DOMAIN (t) = index_type;
+
+ if (index_type == 0)
+ {
+ tree save = t;
+ hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
+ t = type_hash_canon (hashcode, t);
+ if (save == t)
+ layout_type (t);
+
+ if (TYPE_CANONICAL (t) == t)
+ {
+ if (TYPE_STRUCTURAL_EQUALITY_P (elt_type))
+ SET_TYPE_STRUCTURAL_EQUALITY (t);
+ else if (TYPE_CANONICAL (elt_type) != elt_type)
+ TYPE_CANONICAL (t)
+ = build_array_type (TYPE_CANONICAL (elt_type), index_type);
+ }
+
+ return t;
+ }
+
+ hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
+ hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
+ t = type_hash_canon (hashcode, t);
+
+ if (!COMPLETE_TYPE_P (t))
+ layout_type (t);
+
+ if (TYPE_CANONICAL (t) == t)
+ {
+ if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
+ || TYPE_STRUCTURAL_EQUALITY_P (index_type))
+ SET_TYPE_STRUCTURAL_EQUALITY (t);
+ else if (TYPE_CANONICAL (elt_type) != elt_type
+ || TYPE_CANONICAL (index_type) != index_type)
+ TYPE_CANONICAL (t)
+ = build_array_type (TYPE_CANONICAL (elt_type),
+ TYPE_CANONICAL (index_type));
+ }
+
+ return t;
+}
+
+/* Recursively examines the array elements of TYPE, until a non-array
+ element type is found. */
+
+tree
+strip_array_types (tree type)
+{
+ while (TREE_CODE (type) == ARRAY_TYPE)
+ type = TREE_TYPE (type);
+
+ return type;
+}
+
+/* Computes the canonical argument types from the argument type list
+ ARGTYPES.
+
+ Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
+ on entry to this function, or if any of the ARGTYPES are
+ structural.
+
+ Upon return, *ANY_NONCANONICAL_P will be true iff either it was
+ true on entry to this function, or if any of the ARGTYPES are
+ non-canonical.
+
+ Returns a canonical argument list, which may be ARGTYPES when the
+ canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
+ true) or would not differ from ARGTYPES. */
+
+static tree
+maybe_canonicalize_argtypes(tree argtypes,
+ bool *any_structural_p,
+ bool *any_noncanonical_p)
+{
+ tree arg;
+ bool any_noncanonical_argtypes_p = false;
+
+ for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
+ {
+ if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
+ /* Fail gracefully by stating that the type is structural. */
+ *any_structural_p = true;
+ else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
+ *any_structural_p = true;
+ else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
+ || TREE_PURPOSE (arg))
+ /* If the argument has a default argument, we consider it
+ non-canonical even though the type itself is canonical.
+ That way, different variants of function and method types
+ with default arguments will all point to the variant with
+ no defaults as their canonical type. */
+ any_noncanonical_argtypes_p = true;
+ }
+
+ if (*any_structural_p)
+ return argtypes;
+
+ if (any_noncanonical_argtypes_p)
+ {
+ /* Build the canonical list of argument types. */
+ tree canon_argtypes = NULL_TREE;
+ bool is_void = false;
+
+ for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
+ {
+ if (arg == void_list_node)
+ is_void = true;
+ else
+ canon_argtypes = tree_cons (NULL_TREE,
+ TYPE_CANONICAL (TREE_VALUE (arg)),
+ canon_argtypes);
+ }
+
+ canon_argtypes = nreverse (canon_argtypes);
+ if (is_void)
+ canon_argtypes = chainon (canon_argtypes, void_list_node);
+
+ /* There is a non-canonical type. */
+ *any_noncanonical_p = true;
+ return canon_argtypes;
+ }
+
+ /* The canonical argument types are the same as ARGTYPES. */
+ return argtypes;
+}
+
+/* Construct, lay out and return
+ the type of functions returning type VALUE_TYPE
+ given arguments of types ARG_TYPES.
+ ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
+ are data type nodes for the arguments of the function.
+ If such a type has already been constructed, reuse it. */
+
+tree
+build_function_type (tree value_type, tree arg_types)
+{
+ tree t;
+ hashval_t hashcode = 0;
+ bool any_structural_p, any_noncanonical_p;
+ tree canon_argtypes;
+
+ if (TREE_CODE (value_type) == FUNCTION_TYPE)
+ {
+ error ("function return type cannot be function");
+ value_type = integer_type_node;
+ }
+
+ /* Make a node of the sort we want. */
+ t = make_node (FUNCTION_TYPE);
+ TREE_TYPE (t) = value_type;
+ TYPE_ARG_TYPES (t) = arg_types;
+
+ /* If we already have such a type, use the old one. */
+ hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
+ hashcode = type_hash_list (arg_types, hashcode);
+ t = type_hash_canon (hashcode, t);
+
+ /* Set up the canonical type. */
+ any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
+ any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
+ canon_argtypes = maybe_canonicalize_argtypes (arg_types,
+ &any_structural_p,
+ &any_noncanonical_p);
+ if (any_structural_p)
+ SET_TYPE_STRUCTURAL_EQUALITY (t);
+ else if (any_noncanonical_p)
+ TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
+ canon_argtypes);
+
+ if (!COMPLETE_TYPE_P (t))
+ layout_type (t);
+ return t;
+}
+
+/* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP. */
+
+tree
+build_function_type_skip_args (tree orig_type, bitmap args_to_skip)
+{
+ tree new_type = NULL;
+ tree args, new_args = NULL, t;
+ tree new_reversed;
+ int i = 0;
+
+ for (args = TYPE_ARG_TYPES (orig_type); args && args != void_list_node;
+ args = TREE_CHAIN (args), i++)
+ if (!bitmap_bit_p (args_to_skip, i))
+ new_args = tree_cons (NULL_TREE, TREE_VALUE (args), new_args);
+
+ new_reversed = nreverse (new_args);
+ if (args)
+ {
+ if (new_reversed)
+ TREE_CHAIN (new_args) = void_list_node;
+ else
+ new_reversed = void_list_node;
+ }
+
+ /* Use copy_node to preserve as much as possible from original type
+ (debug info, attribute lists etc.)
+ Exception is METHOD_TYPEs must have THIS argument.
+ When we are asked to remove it, we need to build new FUNCTION_TYPE
+ instead. */
+ if (TREE_CODE (orig_type) != METHOD_TYPE
+ || !bitmap_bit_p (args_to_skip, 0))
+ {
+ new_type = copy_node (orig_type);
+ TYPE_ARG_TYPES (new_type) = new_reversed;
+ }
+ else
+ {
+ new_type
+ = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
+ new_reversed));
+ TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
+ }
+
+ /* This is a new type, not a copy of an old type. Need to reassociate
+ variants. We can handle everything except the main variant lazily. */
+ t = TYPE_MAIN_VARIANT (orig_type);
+ if (orig_type != t)
+ {
+ TYPE_MAIN_VARIANT (new_type) = t;
+ TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
+ TYPE_NEXT_VARIANT (t) = new_type;
+ }
+ else
+ {
+ TYPE_MAIN_VARIANT (new_type) = new_type;
+ TYPE_NEXT_VARIANT (new_type) = NULL;
+ }
+ return new_type;
+}
+
+/* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP.
+
+ Arguments from DECL_ARGUMENTS list can't be removed now, since they are
+ linked by TREE_CHAIN directly. It is caller responsibility to eliminate
+ them when they are being duplicated (i.e. copy_arguments_for_versioning). */
+
+tree
+build_function_decl_skip_args (tree orig_decl, bitmap args_to_skip)
+{
+ tree new_decl = copy_node (orig_decl);
+ tree new_type;
+
+ new_type = TREE_TYPE (orig_decl);
+ if (prototype_p (new_type))
+ new_type = build_function_type_skip_args (new_type, args_to_skip);
+ TREE_TYPE (new_decl) = new_type;
+
+ /* For declarations setting DECL_VINDEX (i.e. methods)
+ we expect first argument to be THIS pointer. */
+ if (bitmap_bit_p (args_to_skip, 0))
+ DECL_VINDEX (new_decl) = NULL_TREE;
+ return new_decl;
+}
+
+/* Build a function type. The RETURN_TYPE is the type returned by the
+ function. If VAARGS is set, no void_type_node is appended to the
+ the list. ARGP muse be alway be terminated be a NULL_TREE. */
+
+static tree
+build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
+{
+ tree t, args, last;
+
+ t = va_arg (argp, tree);
+ for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
+ args = tree_cons (NULL_TREE, t, args);
+
+ if (vaargs)
+ {
+ last = args;
+ if (args != NULL_TREE)
+ args = nreverse (args);
+ gcc_assert (args != NULL_TREE && last != void_list_node);
+ }
+ else if (args == NULL_TREE)
+ args = void_list_node;
+ else
+ {
+ last = args;
+ args = nreverse (args);
+ TREE_CHAIN (last) = void_list_node;
+ }
+ args = build_function_type (return_type, args);
+
+ return args;
+}
+
+/* Build a function type. The RETURN_TYPE is the type returned by the
+ function. If additional arguments are provided, they are
+ additional argument types. The list of argument types must always
+ be terminated by NULL_TREE. */
+
+tree
+build_function_type_list (tree return_type, ...)
+{
+ tree args;
+ va_list p;
+
+ va_start (p, return_type);
+ args = build_function_type_list_1 (false, return_type, p);
+ va_end (p);
+ return args;
+}
+
+/* Build a variable argument function type. The RETURN_TYPE is the
+ type returned by the function. If additional arguments are provided,
+ they are additional argument types. The list of argument types must
+ always be terminated by NULL_TREE. */
+
+tree
+build_varargs_function_type_list (tree return_type, ...)
+{
+ tree args;
+ va_list p;
+
+ va_start (p, return_type);
+ args = build_function_type_list_1 (true, return_type, p);
+ va_end (p);
+
+ return args;
+}
+
+/* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
+ and ARGTYPES (a TREE_LIST) are the return type and arguments types
+ for the method. An implicit additional parameter (of type
+ pointer-to-BASETYPE) is added to the ARGTYPES. */
+
+tree
+build_method_type_directly (tree basetype,
+ tree rettype,
+ tree argtypes)
+{
+ tree t;
+ tree ptype;
+ int hashcode = 0;
+ bool any_structural_p, any_noncanonical_p;
+ tree canon_argtypes;
+
+ /* Make a node of the sort we want. */
+ t = make_node (METHOD_TYPE);
+
+ TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
+ TREE_TYPE (t) = rettype;
+ ptype = build_pointer_type (basetype);
+
+ /* The actual arglist for this function includes a "hidden" argument
+ which is "this". Put it into the list of argument types. */
+ argtypes = tree_cons (NULL_TREE, ptype, argtypes);
+ TYPE_ARG_TYPES (t) = argtypes;
+
+ /* If we already have such a type, use the old one. */
+ hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
+ hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
+ hashcode = type_hash_list (argtypes, hashcode);
+ t = type_hash_canon (hashcode, t);
+
+ /* Set up the canonical type. */
+ any_structural_p
+ = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
+ || TYPE_STRUCTURAL_EQUALITY_P (rettype));
+ any_noncanonical_p
+ = (TYPE_CANONICAL (basetype) != basetype
+ || TYPE_CANONICAL (rettype) != rettype);
+ canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
+ &any_structural_p,
+ &any_noncanonical_p);
+ if (any_structural_p)
+ SET_TYPE_STRUCTURAL_EQUALITY (t);
+ else if (any_noncanonical_p)
+ TYPE_CANONICAL (t)
+ = build_method_type_directly (TYPE_CANONICAL (basetype),
+ TYPE_CANONICAL (rettype),
+ canon_argtypes);
+ if (!COMPLETE_TYPE_P (t))
+ layout_type (t);
+
+ return t;
+}
+
+/* Construct, lay out and return the type of methods belonging to class
+ BASETYPE and whose arguments and values are described by TYPE.
+ If that type exists already, reuse it.
+ TYPE must be a FUNCTION_TYPE node. */
+
+tree
+build_method_type (tree basetype, tree type)
+{
+ gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
+
+ return build_method_type_directly (basetype,
+ TREE_TYPE (type),
+ TYPE_ARG_TYPES (type));
+}
+
+/* Construct, lay out and return the type of offsets to a value
+ of type TYPE, within an object of type BASETYPE.
+ If a suitable offset type exists already, reuse it. */
+
+tree
+build_offset_type (tree basetype, tree type)
+{
+ tree t;
+ hashval_t hashcode = 0;
+
+ /* Make a node of the sort we want. */
+ t = make_node (OFFSET_TYPE);
+
+ TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
+ TREE_TYPE (t) = type;
+
+ /* If we already have such a type, use the old one. */
+ hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
+ hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
+ t = type_hash_canon (hashcode, t);
+
+ if (!COMPLETE_TYPE_P (t))
+ layout_type (t);
+
+ if (TYPE_CANONICAL (t) == t)
+ {
+ if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
+ || TYPE_STRUCTURAL_EQUALITY_P (type))
+ SET_TYPE_STRUCTURAL_EQUALITY (t);
+ else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
+ || TYPE_CANONICAL (type) != type)
+ TYPE_CANONICAL (t)
+ = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
+ TYPE_CANONICAL (type));
+ }
+
+ return t;
+}
+
+/* Create a complex type whose components are COMPONENT_TYPE. */
+
+tree
+build_complex_type (tree component_type)
+{
+ tree t;
+ hashval_t hashcode;
+
+ gcc_assert (INTEGRAL_TYPE_P (component_type)
+ || SCALAR_FLOAT_TYPE_P (component_type)
+ || FIXED_POINT_TYPE_P (component_type));
+
+ /* Make a node of the sort we want. */
+ t = make_node (COMPLEX_TYPE);
+
+ TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
+
+ /* If we already have such a type, use the old one. */
+ hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
+ t = type_hash_canon (hashcode, t);
+
+ if (!COMPLETE_TYPE_P (t))
+ layout_type (t);
+
+ if (TYPE_CANONICAL (t) == t)
+ {
+ if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
+ SET_TYPE_STRUCTURAL_EQUALITY (t);
+ else if (TYPE_CANONICAL (component_type) != component_type)
+ TYPE_CANONICAL (t)
+ = build_complex_type (TYPE_CANONICAL (component_type));
+ }
+
+ /* We need to create a name, since complex is a fundamental type. */
+ if (! TYPE_NAME (t))
+ {
+ const char *name;
+ if (component_type == char_type_node)
+ name = "complex char";
+ else if (component_type == signed_char_type_node)
+ name = "complex signed char";
+ else if (component_type == unsigned_char_type_node)
+ name = "complex unsigned char";
+ else if (component_type == short_integer_type_node)
+ name = "complex short int";
+ else if (component_type == short_unsigned_type_node)
+ name = "complex short unsigned int";
+ else if (component_type == integer_type_node)
+ name = "complex int";
+ else if (component_type == unsigned_type_node)
+ name = "complex unsigned int";
+ else if (component_type == long_integer_type_node)
+ name = "complex long int";
+ else if (component_type == long_unsigned_type_node)
+ name = "complex long unsigned int";
+ else if (component_type == long_long_integer_type_node)
+ name = "complex long long int";
+ else if (component_type == long_long_unsigned_type_node)
+ name = "complex long long unsigned int";
+ else
+ name = 0;
+
+ if (name != 0)
+ TYPE_NAME (t) = build_decl (TYPE_DECL, get_identifier (name), t);
+ }
+
+ return build_qualified_type (t, TYPE_QUALS (component_type));
+}
+
+/* Return OP, stripped of any conversions to wider types as much as is safe.
+ Converting the value back to OP's type makes a value equivalent to OP.
+
+ If FOR_TYPE is nonzero, we return a value which, if converted to
+ type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
+
+ OP must have integer, real or enumeral type. Pointers are not allowed!
+
+ There are some cases where the obvious value we could return
+ would regenerate to OP if converted to OP's type,
+ but would not extend like OP to wider types.
+ If FOR_TYPE indicates such extension is contemplated, we eschew such values.
+ For example, if OP is (unsigned short)(signed char)-1,
+ we avoid returning (signed char)-1 if FOR_TYPE is int,
+ even though extending that to an unsigned short would regenerate OP,
+ since the result of extending (signed char)-1 to (int)
+ is different from (int) OP. */
+
+tree
+get_unwidened (tree op, tree for_type)
+{
+ /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
+ tree type = TREE_TYPE (op);
+ unsigned final_prec
+ = TYPE_PRECISION (for_type != 0 ? for_type : type);
+ int uns
+ = (for_type != 0 && for_type != type
+ && final_prec > TYPE_PRECISION (type)
+ && TYPE_UNSIGNED (type));
+ tree win = op;
+
+ while (CONVERT_EXPR_P (op))
+ {
+ int bitschange;
+
+ /* TYPE_PRECISION on vector types has different meaning
+ (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
+ so avoid them here. */
+ if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
+ break;
+
+ bitschange = TYPE_PRECISION (TREE_TYPE (op))
+ - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
+
+ /* Truncations are many-one so cannot be removed.
+ Unless we are later going to truncate down even farther. */
+ if (bitschange < 0
+ && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
+ break;
+
+ /* See what's inside this conversion. If we decide to strip it,
+ we will set WIN. */
+ op = TREE_OPERAND (op, 0);
+
+ /* If we have not stripped any zero-extensions (uns is 0),
+ we can strip any kind of extension.
+ If we have previously stripped a zero-extension,
+ only zero-extensions can safely be stripped.
+ Any extension can be stripped if the bits it would produce
+ are all going to be discarded later by truncating to FOR_TYPE. */
+
+ if (bitschange > 0)
+ {
+ if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
+ win = op;
+ /* TYPE_UNSIGNED says whether this is a zero-extension.
+ Let's avoid computing it if it does not affect WIN
+ and if UNS will not be needed again. */
+ if ((uns
+ || CONVERT_EXPR_P (op))
+ && TYPE_UNSIGNED (TREE_TYPE (op)))
+ {
+ uns = 1;
+ win = op;
+ }
+ }
+ }
+
+ return win;
+}
+
+/* Return OP or a simpler expression for a narrower value
+ which can be sign-extended or zero-extended to give back OP.
+ Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
+ or 0 if the value should be sign-extended. */
+
+tree
+get_narrower (tree op, int *unsignedp_ptr)
+{
+ int uns = 0;
+ int first = 1;
+ tree win = op;
+ bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
+
+ while (TREE_CODE (op) == NOP_EXPR)
+ {
+ int bitschange
+ = (TYPE_PRECISION (TREE_TYPE (op))
+ - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
+
+ /* Truncations are many-one so cannot be removed. */
+ if (bitschange < 0)
+ break;
+
+ /* See what's inside this conversion. If we decide to strip it,
+ we will set WIN. */
+
+ if (bitschange > 0)
+ {
+ op = TREE_OPERAND (op, 0);
+ /* An extension: the outermost one can be stripped,
+ but remember whether it is zero or sign extension. */
+ if (first)
+ uns = TYPE_UNSIGNED (TREE_TYPE (op));
+ /* Otherwise, if a sign extension has been stripped,
+ only sign extensions can now be stripped;
+ if a zero extension has been stripped, only zero-extensions. */
+ else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
+ break;
+ first = 0;
+ }
+ else /* bitschange == 0 */
+ {
+ /* A change in nominal type can always be stripped, but we must
+ preserve the unsignedness. */
+ if (first)
+ uns = TYPE_UNSIGNED (TREE_TYPE (op));
+ first = 0;
+ op = TREE_OPERAND (op, 0);
+ /* Keep trying to narrow, but don't assign op to win if it
+ would turn an integral type into something else. */
+ if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
+ continue;
+ }
+
+ win = op;
+ }
+
+ if (TREE_CODE (op) == COMPONENT_REF
+ /* Since type_for_size always gives an integer type. */
+ && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
+ && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
+ /* Ensure field is laid out already. */
+ && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
+ && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
+ {
+ unsigned HOST_WIDE_INT innerprec
+ = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
+ int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
+ || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
+ tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
+
+ /* We can get this structure field in a narrower type that fits it,
+ but the resulting extension to its nominal type (a fullword type)
+ must satisfy the same conditions as for other extensions.
+
+ Do this only for fields that are aligned (not bit-fields),
+ because when bit-field insns will be used there is no
+ advantage in doing this. */
+
+ if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
+ && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
+ && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
+ && type != 0)
+ {
+ if (first)
+ uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
+ win = fold_convert (type, op);
+ }
+ }
+
+ *unsignedp_ptr = uns;
+ return win;
+}
+
+/* Nonzero if integer constant C has a value that is permissible
+ for type TYPE (an INTEGER_TYPE). */
+
+int
+int_fits_type_p (const_tree c, const_tree type)
+{
+ tree type_low_bound, type_high_bound;
+ bool ok_for_low_bound, ok_for_high_bound, unsc;
+ double_int dc, dd;
+
+ dc = tree_to_double_int (c);
+ unsc = TYPE_UNSIGNED (TREE_TYPE (c));
+
+ if (TREE_CODE (TREE_TYPE (c)) == INTEGER_TYPE
+ && TYPE_IS_SIZETYPE (TREE_TYPE (c))
+ && unsc)
+ /* So c is an unsigned integer whose type is sizetype and type is not.
+ sizetype'd integers are sign extended even though they are
+ unsigned. If the integer value fits in the lower end word of c,
+ and if the higher end word has all its bits set to 1, that
+ means the higher end bits are set to 1 only for sign extension.
+ So let's convert c into an equivalent zero extended unsigned
+ integer. */
+ dc = double_int_zext (dc, TYPE_PRECISION (TREE_TYPE (c)));
+
+retry:
+ type_low_bound = TYPE_MIN_VALUE (type);
+ type_high_bound = TYPE_MAX_VALUE (type);
+
+ /* If at least one bound of the type is a constant integer, we can check
+ ourselves and maybe make a decision. If no such decision is possible, but
+ this type is a subtype, try checking against that. Otherwise, use
+ fit_double_type, which checks against the precision.
+
+ Compute the status for each possibly constant bound, and return if we see
+ one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
+ for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
+ for "constant known to fit". */
+
+ /* Check if c >= type_low_bound. */
+ if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
+ {
+ dd = tree_to_double_int (type_low_bound);
+ if (TREE_CODE (type) == INTEGER_TYPE
+ && TYPE_IS_SIZETYPE (type)
+ && TYPE_UNSIGNED (type))
+ dd = double_int_zext (dd, TYPE_PRECISION (type));
+ if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_low_bound)))
+ {
+ int c_neg = (!unsc && double_int_negative_p (dc));
+ int t_neg = (unsc && double_int_negative_p (dd));
+
+ if (c_neg && !t_neg)
+ return 0;
+ if ((c_neg || !t_neg) && double_int_ucmp (dc, dd) < 0)
+ return 0;
+ }
+ else if (double_int_cmp (dc, dd, unsc) < 0)
+ return 0;
+ ok_for_low_bound = true;
+ }
+ else
+ ok_for_low_bound = false;
+
+ /* Check if c <= type_high_bound. */
+ if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
+ {
+ dd = tree_to_double_int (type_high_bound);
+ if (TREE_CODE (type) == INTEGER_TYPE
+ && TYPE_IS_SIZETYPE (type)
+ && TYPE_UNSIGNED (type))
+ dd = double_int_zext (dd, TYPE_PRECISION (type));
+ if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_high_bound)))
+ {
+ int c_neg = (!unsc && double_int_negative_p (dc));
+ int t_neg = (unsc && double_int_negative_p (dd));
+
+ if (t_neg && !c_neg)
+ return 0;
+ if ((t_neg || !c_neg) && double_int_ucmp (dc, dd) > 0)
+ return 0;
+ }
+ else if (double_int_cmp (dc, dd, unsc) > 0)
+ return 0;
+ ok_for_high_bound = true;
+ }
+ else
+ ok_for_high_bound = false;
+
+ /* If the constant fits both bounds, the result is known. */
+ if (ok_for_low_bound && ok_for_high_bound)
+ return 1;
+
+ /* Perform some generic filtering which may allow making a decision
+ even if the bounds are not constant. First, negative integers
+ never fit in unsigned types, */
+ if (TYPE_UNSIGNED (type) && !unsc && double_int_negative_p (dc))
+ return 0;
+
+ /* Second, narrower types always fit in wider ones. */
+ if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
+ return 1;
+
+ /* Third, unsigned integers with top bit set never fit signed types. */
+ if (! TYPE_UNSIGNED (type) && unsc)
+ {
+ int prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (c))) - 1;
+ if (prec < HOST_BITS_PER_WIDE_INT)
+ {
+ if (((((unsigned HOST_WIDE_INT) 1) << prec) & dc.low) != 0)
+ return 0;
+ }
+ else if (((((unsigned HOST_WIDE_INT) 1)
+ << (prec - HOST_BITS_PER_WIDE_INT)) & dc.high) != 0)
+ return 0;
+ }
+
+ /* If we haven't been able to decide at this point, there nothing more we
+ can check ourselves here. Look at the base type if we have one and it
+ has the same precision. */
+ if (TREE_CODE (type) == INTEGER_TYPE
+ && TREE_TYPE (type) != 0
+ && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
+ {
+ type = TREE_TYPE (type);
+ goto retry;
+ }
+
+ /* Or to fit_double_type, if nothing else. */
+ return !fit_double_type (dc.low, dc.high, &dc.low, &dc.high, type);
+}
+
+/* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
+ bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
+ represented (assuming two's-complement arithmetic) within the bit
+ precision of the type are returned instead. */
+
+void
+get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
+{
+ if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
+ && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
+ mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)),
+ TYPE_UNSIGNED (type));
+ else
+ {
+ if (TYPE_UNSIGNED (type))
+ mpz_set_ui (min, 0);
+ else
+ {
+ double_int mn;
+ mn = double_int_mask (TYPE_PRECISION (type) - 1);
+ mn = double_int_sext (double_int_add (mn, double_int_one),
+ TYPE_PRECISION (type));
+ mpz_set_double_int (min, mn, false);
+ }
+ }
+
+ if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
+ && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
+ mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)),
+ TYPE_UNSIGNED (type));
+ else
+ {
+ if (TYPE_UNSIGNED (type))
+ mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)),
+ true);
+ else
+ mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type) - 1),
+ true);
+ }
+}
+
+/* Return true if VAR is an automatic variable defined in function FN. */
+
+bool
+auto_var_in_fn_p (const_tree var, const_tree fn)
+{
+ return (DECL_P (var) && DECL_CONTEXT (var) == fn
+ && (((TREE_CODE (var) == VAR_DECL || TREE_CODE (var) == PARM_DECL)
+ && ! TREE_STATIC (var))
+ || TREE_CODE (var) == LABEL_DECL
+ || TREE_CODE (var) == RESULT_DECL));
+}
+
+/* Subprogram of following function. Called by walk_tree.
+
+ Return *TP if it is an automatic variable or parameter of the
+ function passed in as DATA. */
+
+static tree
+find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
+{
+ tree fn = (tree) data;
+
+ if (TYPE_P (*tp))
+ *walk_subtrees = 0;
+
+ else if (DECL_P (*tp)
+ && auto_var_in_fn_p (*tp, fn))
+ return *tp;
+
+ return NULL_TREE;
+}
+
+/* Returns true if T is, contains, or refers to a type with variable
+ size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
+ arguments, but not the return type. If FN is nonzero, only return
+ true if a modifier of the type or position of FN is a variable or
+ parameter inside FN.
+
+ This concept is more general than that of C99 'variably modified types':
+ in C99, a struct type is never variably modified because a VLA may not
+ appear as a structure member. However, in GNU C code like:
+
+ struct S { int i[f()]; };
+
+ is valid, and other languages may define similar constructs. */
+
+bool
+variably_modified_type_p (tree type, tree fn)
+{
+ tree t;
+
+/* Test if T is either variable (if FN is zero) or an expression containing
+ a variable in FN. */
+#define RETURN_TRUE_IF_VAR(T) \
+ do { tree _t = (T); \
+ if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
+ && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
+ return true; } while (0)
+
+ if (type == error_mark_node)
+ return false;
+
+ /* If TYPE itself has variable size, it is variably modified. */
+ RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
+ RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
+
+ switch (TREE_CODE (type))
+ {
+ case POINTER_TYPE:
+ case REFERENCE_TYPE:
+ case VECTOR_TYPE:
+ if (variably_modified_type_p (TREE_TYPE (type), fn))
+ return true;
+ break;
+
+ case FUNCTION_TYPE:
+ case METHOD_TYPE:
+ /* If TYPE is a function type, it is variably modified if the
+ return type is variably modified. */
+ if (variably_modified_type_p (TREE_TYPE (type), fn))
+ return true;
+ break;
+
+ case INTEGER_TYPE:
+ case REAL_TYPE:
+ case FIXED_POINT_TYPE:
+ case ENUMERAL_TYPE:
+ case BOOLEAN_TYPE:
+ /* Scalar types are variably modified if their end points
+ aren't constant. */
+ RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
+ RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
+ break;
+
+ case RECORD_TYPE:
+ case UNION_TYPE:
+ case QUAL_UNION_TYPE:
+ /* We can't see if any of the fields are variably-modified by the
+ definition we normally use, since that would produce infinite
+ recursion via pointers. */
+ /* This is variably modified if some field's type is. */
+ for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
+ if (TREE_CODE (t) == FIELD_DECL)
+ {
+ RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
+ RETURN_TRUE_IF_VAR (DECL_SIZE (t));
+ RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
+
+ if (TREE_CODE (type) == QUAL_UNION_TYPE)
+ RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
+ }
+ break;
+
+ case ARRAY_TYPE:
+ /* Do not call ourselves to avoid infinite recursion. This is
+ variably modified if the element type is. */
+ RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
+ RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
+ break;
+
+ default:
+ break;
+ }
+
+ /* The current language may have other cases to check, but in general,
+ all other types are not variably modified. */
+ return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
+
+#undef RETURN_TRUE_IF_VAR
+}
+
+/* Given a DECL or TYPE, return the scope in which it was declared, or
+ NULL_TREE if there is no containing scope. */
+
+tree
+get_containing_scope (const_tree t)
+{
+ return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
+}
+
+/* Return the innermost context enclosing DECL that is
+ a FUNCTION_DECL, or zero if none. */
+
+tree
+decl_function_context (const_tree decl)
+{
+ tree context;
+
+ if (TREE_CODE (decl) == ERROR_MARK)
+ return 0;
+
+ /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
+ where we look up the function at runtime. Such functions always take
+ a first argument of type 'pointer to real context'.
+
+ C++ should really be fixed to use DECL_CONTEXT for the real context,
+ and use something else for the "virtual context". */
+ else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
+ context
+ = TYPE_MAIN_VARIANT
+ (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
+ else
+ context = DECL_CONTEXT (decl);
+
+ while (context && TREE_CODE (context) != FUNCTION_DECL)
+ {
+ if (TREE_CODE (context) == BLOCK)
+ context = BLOCK_SUPERCONTEXT (context);
+ else
+ context = get_containing_scope (context);
+ }
+
+ return context;
+}
+
+/* Return the innermost context enclosing DECL that is
+ a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
+ TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
+
+tree
+decl_type_context (const_tree decl)
+{
+ tree context = DECL_CONTEXT (decl);
+
+ while (context)
+ switch (TREE_CODE (context))
+ {
+ case NAMESPACE_DECL:
+ case TRANSLATION_UNIT_DECL:
+ return NULL_TREE;
+
+ case RECORD_TYPE:
+ case UNION_TYPE:
+ case QUAL_UNION_TYPE:
+ return context;
+
+ case TYPE_DECL:
+ case FUNCTION_DECL:
+ context = DECL_CONTEXT (context);
+ break;
+
+ case BLOCK:
+ context = BLOCK_SUPERCONTEXT (context);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ return NULL_TREE;
+}
+
+/* CALL is a CALL_EXPR. Return the declaration for the function
+ called, or NULL_TREE if the called function cannot be
+ determined. */
+
+tree
+get_callee_fndecl (const_tree call)
+{
+ tree addr;
+
+ if (call == error_mark_node)
+ return error_mark_node;
+
+ /* It's invalid to call this function with anything but a
+ CALL_EXPR. */
+ gcc_assert (TREE_CODE (call) == CALL_EXPR);
+
+ /* The first operand to the CALL is the address of the function
+ called. */
+ addr = CALL_EXPR_FN (call);
+
+ STRIP_NOPS (addr);
+
+ /* If this is a readonly function pointer, extract its initial value. */
+ if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
+ && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
+ && DECL_INITIAL (addr))
+ addr = DECL_INITIAL (addr);
+
+ /* If the address is just `&f' for some function `f', then we know
+ that `f' is being called. */
+ if (TREE_CODE (addr) == ADDR_EXPR
+ && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
+ return TREE_OPERAND (addr, 0);
+
+ /* We couldn't figure out what was being called. */
+ return NULL_TREE;
+}
+
+/* Print debugging information about tree nodes generated during the compile,
+ and any language-specific information. */
+
+void
+dump_tree_statistics (void)
+{
+#ifdef GATHER_STATISTICS
+ int i;
+ int total_nodes, total_bytes;
+#endif
+
+ fprintf (stderr, "\n??? tree nodes created\n\n");
+#ifdef GATHER_STATISTICS
+ fprintf (stderr, "Kind Nodes Bytes\n");
+ fprintf (stderr, "---------------------------------------\n");
+ total_nodes = total_bytes = 0;
+ for (i = 0; i < (int) all_kinds; i++)
+ {
+ fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
+ tree_node_counts[i], tree_node_sizes[i]);
+ total_nodes += tree_node_counts[i];
+ total_bytes += tree_node_sizes[i];
+ }
+ fprintf (stderr, "---------------------------------------\n");
+ fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
+ fprintf (stderr, "---------------------------------------\n");
+ ssanames_print_statistics ();
+ phinodes_print_statistics ();
+#else
+ fprintf (stderr, "(No per-node statistics)\n");
+#endif
+ print_type_hash_statistics ();
+ print_debug_expr_statistics ();
+ print_value_expr_statistics ();
+ print_restrict_base_statistics ();
+ lang_hooks.print_statistics ();
+}
+
+#define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
+
+/* Generate a crc32 of a byte. */
+
+unsigned
+crc32_byte (unsigned chksum, char byte)
+{
+ unsigned value = (unsigned) byte << 24;
+ unsigned ix;
+
+ for (ix = 8; ix--; value <<= 1)
+ {
+ unsigned feedback;
+
+ feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
+ chksum <<= 1;
+ chksum ^= feedback;
+ }
+ return chksum;
+}
+
+
+/* Generate a crc32 of a string. */
+
+unsigned
+crc32_string (unsigned chksum, const char *string)
+{
+ do
+ {
+ chksum = crc32_byte (chksum, *string);
+ }
+ while (*string++);
+ return chksum;
+}
+
+/* P is a string that will be used in a symbol. Mask out any characters
+ that are not valid in that context. */
+
+void
+clean_symbol_name (char *p)
+{
+ for (; *p; p++)
+ if (! (ISALNUM (*p)
+#ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
+ || *p == '$'
+#endif
+#ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
+ || *p == '.'
+#endif
+ ))
+ *p = '_';
+}
+
+/* Generate a name for a special-purpose function.
+ The generated name may need to be unique across the whole link.
+ Changes to this function may also require corresponding changes to
+ xstrdup_mask_random.
+ TYPE is some string to identify the purpose of this function to the
+ linker or collect2; it must start with an uppercase letter,
+ one of:
+ I - for constructors
+ D - for destructors
+ N - for C++ anonymous namespaces
+ F - for DWARF unwind frame information. */
+
+tree
+get_file_function_name (const char *type)
+{
+ char *buf;
+ const char *p;
+ char *q;
+
+ /* If we already have a name we know to be unique, just use that. */
+ if (first_global_object_name)
+ p = q = ASTRDUP (first_global_object_name);
+ /* If the target is handling the constructors/destructors, they
+ will be local to this file and the name is only necessary for
+ debugging purposes. */
+ else if ((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
+ {
+ const char *file = main_input_filename;
+ if (! file)
+ file = input_filename;
+ /* Just use the file's basename, because the full pathname
+ might be quite long. */
+ p = strrchr (file, '/');
+ if (p)
+ p++;
+ else
+ p = file;
+ p = q = ASTRDUP (p);
+ }
+ else
+ {
+ /* Otherwise, the name must be unique across the entire link.
+ We don't have anything that we know to be unique to this translation
+ unit, so use what we do have and throw in some randomness. */
+ unsigned len;
+ const char *name = weak_global_object_name;
+ const char *file = main_input_filename;
+
+ if (! name)
+ name = "";
+ if (! file)
+ file = input_filename;
+
+ len = strlen (file);
+ q = (char *) alloca (9 * 2 + len + 1);
+ memcpy (q, file, len + 1);
+
+ sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
+ crc32_string (0, get_random_seed (false)));
+
+ p = q;
+ }
+
+ clean_symbol_name (q);
+ buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
+ + strlen (type));
+
+ /* Set up the name of the file-level functions we may need.
+ Use a global object (which is already required to be unique over
+ the program) rather than the file name (which imposes extra
+ constraints). */
+ sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
+
+ return get_identifier (buf);
+}
+
+#if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
+
+/* Complain that the tree code of NODE does not match the expected 0
+ terminated list of trailing codes. The trailing code list can be
+ empty, for a more vague error message. FILE, LINE, and FUNCTION
+ are of the caller. */
+
+void
+tree_check_failed (const_tree node, const char *file,
+ int line, const char *function, ...)
+{
+ va_list args;
+ const char *buffer;
+ unsigned length = 0;
+ int code;
+
+ va_start (args, function);
+ while ((code = va_arg (args, int)))
+ length += 4 + strlen (tree_code_name[code]);
+ va_end (args);
+ if (length)
+ {
+ char *tmp;
+ va_start (args, function);
+ length += strlen ("expected ");
+ buffer = tmp = (char *) alloca (length);
+ length = 0;
+ while ((code = va_arg (args, int)))
+ {
+ const char *prefix = length ? " or " : "expected ";
+
+ strcpy (tmp + length, prefix);
+ length += strlen (prefix);
+ strcpy (tmp + length, tree_code_name[code]);
+ length += strlen (tree_code_name[code]);
+ }
+ va_end (args);
+ }
+ else
+ buffer = "unexpected node";
+
+ internal_error ("tree check: %s, have %s in %s, at %s:%d",
+ buffer, tree_code_name[TREE_CODE (node)],
+ function, trim_filename (file), line);
+}
+
+/* Complain that the tree code of NODE does match the expected 0
+ terminated list of trailing codes. FILE, LINE, and FUNCTION are of
+ the caller. */
+
+void
+tree_not_check_failed (const_tree node, const char *file,
+ int line, const char *function, ...)
+{
+ va_list args;
+ char *buffer;
+ unsigned length = 0;
+ int code;
+
+ va_start (args, function);
+ while ((code = va_arg (args, int)))
+ length += 4 + strlen (tree_code_name[code]);
+ va_end (args);
+ va_start (args, function);
+ buffer = (char *) alloca (length);
+ length = 0;
+ while ((code = va_arg (args, int)))
+ {
+ if (length)
+ {
+ strcpy (buffer + length, " or ");
+ length += 4;
+ }
+ strcpy (buffer + length, tree_code_name[code]);
+ length += strlen (tree_code_name[code]);
+ }
+ va_end (args);
+
+ internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
+ buffer, tree_code_name[TREE_CODE (node)],
+ function, trim_filename (file), line);
+}
+
+/* Similar to tree_check_failed, except that we check for a class of tree
+ code, given in CL. */
+
+void
+tree_class_check_failed (const_tree node, const enum tree_code_class cl,
+ const char *file, int line, const char *function)
+{
+ internal_error
+ ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
+ TREE_CODE_CLASS_STRING (cl),
+ TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
+ tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
+}
+
+/* Similar to tree_check_failed, except that instead of specifying a
+ dozen codes, use the knowledge that they're all sequential. */
+
+void
+tree_range_check_failed (const_tree node, const char *file, int line,
+ const char *function, enum tree_code c1,
+ enum tree_code c2)
+{
+ char *buffer;
+ unsigned length = 0;
+ enum tree_code c;
+
+ for (c = c1; c <= c2; ++c)
+ length += 4 + strlen (tree_code_name[c]);
+
+ length += strlen ("expected ");
+ buffer = (char *) alloca (length);
+ length = 0;
+
+ for (c = c1; c <= c2; ++c)
+ {
+ const char *prefix = length ? " or " : "expected ";
+
+ strcpy (buffer + length, prefix);
+ length += strlen (prefix);
+ strcpy (buffer + length, tree_code_name[c]);
+ length += strlen (tree_code_name[c]);
+ }
+
+ internal_error ("tree check: %s, have %s in %s, at %s:%d",
+ buffer, tree_code_name[TREE_CODE (node)],
+ function, trim_filename (file), line);
+}
+
+
+/* Similar to tree_check_failed, except that we check that a tree does
+ not have the specified code, given in CL. */
+
+void
+tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
+ const char *file, int line, const char *function)
+{
+ internal_error
+ ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
+ TREE_CODE_CLASS_STRING (cl),
+ TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
+ tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
+}
+
+
+/* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
+
+void
+omp_clause_check_failed (const_tree node, const char *file, int line,
+ const char *function, enum omp_clause_code code)
+{
+ internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
+ omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
+ function, trim_filename (file), line);
+}
+
+
+/* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
+
+void
+omp_clause_range_check_failed (const_tree node, const char *file, int line,
+ const char *function, enum omp_clause_code c1,
+ enum omp_clause_code c2)
+{
+ char *buffer;
+ unsigned length = 0;
+ enum omp_clause_code c;
+
+ for (c = c1; c <= c2; ++c)
+ length += 4 + strlen (omp_clause_code_name[c]);
+
+ length += strlen ("expected ");
+ buffer = (char *) alloca (length);
+ length = 0;
+
+ for (c = c1; c <= c2; ++c)
+ {
+ const char *prefix = length ? " or " : "expected ";
+
+ strcpy (buffer + length, prefix);
+ length += strlen (prefix);
+ strcpy (buffer + length, omp_clause_code_name[c]);
+ length += strlen (omp_clause_code_name[c]);
+ }
+
+ internal_error ("tree check: %s, have %s in %s, at %s:%d",
+ buffer, omp_clause_code_name[TREE_CODE (node)],
+ function, trim_filename (file), line);
+}
+
+
+#undef DEFTREESTRUCT
+#define DEFTREESTRUCT(VAL, NAME) NAME,
+
+static const char *ts_enum_names[] = {
+#include "treestruct.def"
+};
+#undef DEFTREESTRUCT
+
+#define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
+
+/* Similar to tree_class_check_failed, except that we check for
+ whether CODE contains the tree structure identified by EN. */
+
+void
+tree_contains_struct_check_failed (const_tree node,
+ const enum tree_node_structure_enum en,
+ const char *file, int line,
+ const char *function)
+{
+ internal_error
+ ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
+ TS_ENUM_NAME(en),
+ tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
+}
+
+
+/* Similar to above, except that the check is for the bounds of a TREE_VEC's
+ (dynamically sized) vector. */
+
+void
+tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
+ const char *function)
+{
+ internal_error
+ ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
+ idx + 1, len, function, trim_filename (file), line);
+}
+
+/* Similar to above, except that the check is for the bounds of the operand
+ vector of an expression node EXP. */
+
+void
+tree_operand_check_failed (int idx, const_tree exp, const char *file,
+ int line, const char *function)
+{
+ int code = TREE_CODE (exp);
+ internal_error
+ ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
+ idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp),
+ function, trim_filename (file), line);
+}
+
+/* Similar to above, except that the check is for the number of
+ operands of an OMP_CLAUSE node. */
+
+void
+omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
+ int line, const char *function)
+{
+ internal_error
+ ("tree check: accessed operand %d of omp_clause %s with %d operands "
+ "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
+ omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
+ trim_filename (file), line);
+}
+#endif /* ENABLE_TREE_CHECKING */
+
+/* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
+ and mapped to the machine mode MODE. Initialize its fields and build
+ the information necessary for debugging output. */
+
+static tree
+make_vector_type (tree innertype, int nunits, enum machine_mode mode)
+{
+ tree t;
+ hashval_t hashcode = 0;
+
+ /* Build a main variant, based on the main variant of the inner type, then
+ use it to build the variant we return. */
+ if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
+ && TYPE_MAIN_VARIANT (innertype) != innertype)
+ return build_type_attribute_qual_variant (
+ make_vector_type (TYPE_MAIN_VARIANT (innertype), nunits, mode),
+ TYPE_ATTRIBUTES (innertype),
+ TYPE_QUALS (innertype));
+
+ t = make_node (VECTOR_TYPE);
+ TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
+ SET_TYPE_VECTOR_SUBPARTS (t, nunits);
+ SET_TYPE_MODE (t, mode);
+ TYPE_READONLY (t) = TYPE_READONLY (innertype);
+ TYPE_VOLATILE (t) = TYPE_VOLATILE (innertype);
+
+ if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
+ SET_TYPE_STRUCTURAL_EQUALITY (t);
+ else if (TYPE_CANONICAL (innertype) != innertype
+ || mode != VOIDmode)
+ TYPE_CANONICAL (t)
+ = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
+
+ layout_type (t);
+
+ {
+ tree index = build_int_cst (NULL_TREE, nunits - 1);
+ tree array = build_array_type (innertype, build_index_type (index));
+ tree rt = make_node (RECORD_TYPE);
+
+ TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
+ DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
+ layout_type (rt);
+ TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
+ /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
+ the representation type, and we want to find that die when looking up
+ the vector type. This is most easily achieved by making the TYPE_UID
+ numbers equal. */
+ TYPE_UID (rt) = TYPE_UID (t);
+ }
+
+ hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
+ hashcode = iterative_hash_host_wide_int (mode, hashcode);
+ hashcode = iterative_hash_object (TYPE_HASH (innertype), hashcode);
+ return type_hash_canon (hashcode, t);
+}
+
+static tree
+make_or_reuse_type (unsigned size, int unsignedp)
+{
+ if (size == INT_TYPE_SIZE)
+ return unsignedp ? unsigned_type_node : integer_type_node;
+ if (size == CHAR_TYPE_SIZE)
+ return unsignedp ? unsigned_char_type_node : signed_char_type_node;
+ if (size == SHORT_TYPE_SIZE)
+ return unsignedp ? short_unsigned_type_node : short_integer_type_node;
+ if (size == LONG_TYPE_SIZE)
+ return unsignedp ? long_unsigned_type_node : long_integer_type_node;
+ if (size == LONG_LONG_TYPE_SIZE)
+ return (unsignedp ? long_long_unsigned_type_node
+ : long_long_integer_type_node);
+
+ if (unsignedp)
+ return make_unsigned_type (size);
+ else
+ return make_signed_type (size);
+}
+
+/* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
+
+static tree
+make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
+{
+ if (satp)
+ {
+ if (size == SHORT_FRACT_TYPE_SIZE)
+ return unsignedp ? sat_unsigned_short_fract_type_node
+ : sat_short_fract_type_node;
+ if (size == FRACT_TYPE_SIZE)
+ return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
+ if (size == LONG_FRACT_TYPE_SIZE)
+ return unsignedp ? sat_unsigned_long_fract_type_node
+ : sat_long_fract_type_node;
+ if (size == LONG_LONG_FRACT_TYPE_SIZE)
+ return unsignedp ? sat_unsigned_long_long_fract_type_node
+ : sat_long_long_fract_type_node;
+ }
+ else
+ {
+ if (size == SHORT_FRACT_TYPE_SIZE)
+ return unsignedp ? unsigned_short_fract_type_node
+ : short_fract_type_node;
+ if (size == FRACT_TYPE_SIZE)
+ return unsignedp ? unsigned_fract_type_node : fract_type_node;
+ if (size == LONG_FRACT_TYPE_SIZE)
+ return unsignedp ? unsigned_long_fract_type_node
+ : long_fract_type_node;
+ if (size == LONG_LONG_FRACT_TYPE_SIZE)
+ return unsignedp ? unsigned_long_long_fract_type_node
+ : long_long_fract_type_node;
+ }
+
+ return make_fract_type (size, unsignedp, satp);
+}
+
+/* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
+
+static tree
+make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
+{
+ if (satp)
+ {
+ if (size == SHORT_ACCUM_TYPE_SIZE)
+ return unsignedp ? sat_unsigned_short_accum_type_node
+ : sat_short_accum_type_node;
+ if (size == ACCUM_TYPE_SIZE)
+ return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
+ if (size == LONG_ACCUM_TYPE_SIZE)
+ return unsignedp ? sat_unsigned_long_accum_type_node
+ : sat_long_accum_type_node;
+ if (size == LONG_LONG_ACCUM_TYPE_SIZE)
+ return unsignedp ? sat_unsigned_long_long_accum_type_node
+ : sat_long_long_accum_type_node;
+ }
+ else
+ {
+ if (size == SHORT_ACCUM_TYPE_SIZE)
+ return unsignedp ? unsigned_short_accum_type_node
+ : short_accum_type_node;
+ if (size == ACCUM_TYPE_SIZE)
+ return unsignedp ? unsigned_accum_type_node : accum_type_node;
+ if (size == LONG_ACCUM_TYPE_SIZE)
+ return unsignedp ? unsigned_long_accum_type_node
+ : long_accum_type_node;
+ if (size == LONG_LONG_ACCUM_TYPE_SIZE)
+ return unsignedp ? unsigned_long_long_accum_type_node
+ : long_long_accum_type_node;
+ }
+
+ return make_accum_type (size, unsignedp, satp);
+}
+
+/* Create nodes for all integer types (and error_mark_node) using the sizes
+ of C datatypes. The caller should call set_sizetype soon after calling
+ this function to select one of the types as sizetype. */
+
+void
+build_common_tree_nodes (bool signed_char, bool signed_sizetype)
+{
+ error_mark_node = make_node (ERROR_MARK);
+ TREE_TYPE (error_mark_node) = error_mark_node;
+
+ initialize_sizetypes (signed_sizetype);
+
+ /* Define both `signed char' and `unsigned char'. */
+ signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
+ TYPE_STRING_FLAG (signed_char_type_node) = 1;
+ unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
+ TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
+
+ /* Define `char', which is like either `signed char' or `unsigned char'
+ but not the same as either. */
+ char_type_node
+ = (signed_char
+ ? make_signed_type (CHAR_TYPE_SIZE)
+ : make_unsigned_type (CHAR_TYPE_SIZE));
+ TYPE_STRING_FLAG (char_type_node) = 1;
+
+ short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
+ short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
+ integer_type_node = make_signed_type (INT_TYPE_SIZE);
+ unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
+ long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
+ long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
+ long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
+ long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
+
+ /* Define a boolean type. This type only represents boolean values but
+ may be larger than char depending on the value of BOOL_TYPE_SIZE.
+ Front ends which want to override this size (i.e. Java) can redefine
+ boolean_type_node before calling build_common_tree_nodes_2. */
+ boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
+ TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
+ TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
+ TYPE_PRECISION (boolean_type_node) = 1;
+
+ /* Fill in the rest of the sized types. Reuse existing type nodes
+ when possible. */
+ intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
+ intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
+ intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
+ intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
+ intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
+
+ unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
+ unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
+ unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
+ unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
+ unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
+
+ access_public_node = get_identifier ("public");
+ access_protected_node = get_identifier ("protected");
+ access_private_node = get_identifier ("private");
+}
+
+/* Call this function after calling build_common_tree_nodes and set_sizetype.
+ It will create several other common tree nodes. */
+
+void
+build_common_tree_nodes_2 (int short_double)
+{
+ /* Define these next since types below may used them. */
+ integer_zero_node = build_int_cst (NULL_TREE, 0);
+ integer_one_node = build_int_cst (NULL_TREE, 1);
+ integer_minus_one_node = build_int_cst (NULL_TREE, -1);
+
+ size_zero_node = size_int (0);
+ size_one_node = size_int (1);
+ bitsize_zero_node = bitsize_int (0);
+ bitsize_one_node = bitsize_int (1);
+ bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
+
+ boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
+ boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
+
+ void_type_node = make_node (VOID_TYPE);
+ layout_type (void_type_node);
+
+ /* We are not going to have real types in C with less than byte alignment,
+ so we might as well not have any types that claim to have it. */
+ TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
+ TYPE_USER_ALIGN (void_type_node) = 0;
+
+ null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
+ layout_type (TREE_TYPE (null_pointer_node));
+
+ ptr_type_node = build_pointer_type (void_type_node);
+ const_ptr_type_node
+ = build_pointer_type (build_type_variant (void_type_node, 1, 0));
+ fileptr_type_node = ptr_type_node;
+
+ float_type_node = make_node (REAL_TYPE);
+ TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
+ layout_type (float_type_node);
+
+ double_type_node = make_node (REAL_TYPE);
+ if (short_double)
+ TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
+ else
+ TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
+ layout_type (double_type_node);
+
+ long_double_type_node = make_node (REAL_TYPE);
+ TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
+ layout_type (long_double_type_node);
+
+ float_ptr_type_node = build_pointer_type (float_type_node);
+ double_ptr_type_node = build_pointer_type (double_type_node);
+ long_double_ptr_type_node = build_pointer_type (long_double_type_node);
+ integer_ptr_type_node = build_pointer_type (integer_type_node);
+
+ /* Fixed size integer types. */
+ uint32_type_node = build_nonstandard_integer_type (32, true);
+ uint64_type_node = build_nonstandard_integer_type (64, true);
+
+ /* Decimal float types. */
+ dfloat32_type_node = make_node (REAL_TYPE);
+ TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
+ layout_type (dfloat32_type_node);
+ SET_TYPE_MODE (dfloat32_type_node, SDmode);
+ dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
+
+ dfloat64_type_node = make_node (REAL_TYPE);
+ TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
+ layout_type (dfloat64_type_node);
+ SET_TYPE_MODE (dfloat64_type_node, DDmode);
+ dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
+
+ dfloat128_type_node = make_node (REAL_TYPE);
+ TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
+ layout_type (dfloat128_type_node);
+ SET_TYPE_MODE (dfloat128_type_node, TDmode);
+ dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
+
+ complex_integer_type_node = build_complex_type (integer_type_node);
+ complex_float_type_node = build_complex_type (float_type_node);
+ complex_double_type_node = build_complex_type (double_type_node);
+ complex_long_double_type_node = build_complex_type (long_double_type_node);
+
+/* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
+#define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
+ sat_ ## KIND ## _type_node = \
+ make_sat_signed_ ## KIND ## _type (SIZE); \
+ sat_unsigned_ ## KIND ## _type_node = \
+ make_sat_unsigned_ ## KIND ## _type (SIZE); \
+ KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
+ unsigned_ ## KIND ## _type_node = \
+ make_unsigned_ ## KIND ## _type (SIZE);
+
+#define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
+ sat_ ## WIDTH ## KIND ## _type_node = \
+ make_sat_signed_ ## KIND ## _type (SIZE); \
+ sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
+ make_sat_unsigned_ ## KIND ## _type (SIZE); \
+ WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
+ unsigned_ ## WIDTH ## KIND ## _type_node = \
+ make_unsigned_ ## KIND ## _type (SIZE);
+
+/* Make fixed-point type nodes based on four different widths. */
+#define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
+ MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
+ MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
+ MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
+ MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
+
+/* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
+#define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
+ NAME ## _type_node = \
+ make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
+ u ## NAME ## _type_node = \
+ make_or_reuse_unsigned_ ## KIND ## _type \
+ (GET_MODE_BITSIZE (U ## MODE ## mode)); \
+ sat_ ## NAME ## _type_node = \
+ make_or_reuse_sat_signed_ ## KIND ## _type \
+ (GET_MODE_BITSIZE (MODE ## mode)); \
+ sat_u ## NAME ## _type_node = \
+ make_or_reuse_sat_unsigned_ ## KIND ## _type \
+ (GET_MODE_BITSIZE (U ## MODE ## mode));
+
+ /* Fixed-point type and mode nodes. */
+ MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
+ MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
+ MAKE_FIXED_MODE_NODE (fract, qq, QQ)
+ MAKE_FIXED_MODE_NODE (fract, hq, HQ)
+ MAKE_FIXED_MODE_NODE (fract, sq, SQ)
+ MAKE_FIXED_MODE_NODE (fract, dq, DQ)
+ MAKE_FIXED_MODE_NODE (fract, tq, TQ)
+ MAKE_FIXED_MODE_NODE (accum, ha, HA)
+ MAKE_FIXED_MODE_NODE (accum, sa, SA)
+ MAKE_FIXED_MODE_NODE (accum, da, DA)
+ MAKE_FIXED_MODE_NODE (accum, ta, TA)
+
+ {
+ tree t = targetm.build_builtin_va_list ();
+
+ /* Many back-ends define record types without setting TYPE_NAME.
+ If we copied the record type here, we'd keep the original
+ record type without a name. This breaks name mangling. So,
+ don't copy record types and let c_common_nodes_and_builtins()
+ declare the type to be __builtin_va_list. */
+ if (TREE_CODE (t) != RECORD_TYPE)
+ t = build_variant_type_copy (t);
+
+ va_list_type_node = t;
+ }
+}
+
+/* A subroutine of build_common_builtin_nodes. Define a builtin function. */
+
+static void
+local_define_builtin (const char *name, tree type, enum built_in_function code,
+ const char *library_name, int ecf_flags)
+{
+ tree decl;
+
+ decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
+ library_name, NULL_TREE);
+ if (ecf_flags & ECF_CONST)
+ TREE_READONLY (decl) = 1;
+ if (ecf_flags & ECF_PURE)
+ DECL_PURE_P (decl) = 1;
+ if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
+ DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
+ if (ecf_flags & ECF_NORETURN)
+ TREE_THIS_VOLATILE (decl) = 1;
+ if (ecf_flags & ECF_NOTHROW)
+ TREE_NOTHROW (decl) = 1;
+ if (ecf_flags & ECF_MALLOC)
+ DECL_IS_MALLOC (decl) = 1;
+
+ built_in_decls[code] = decl;
+ implicit_built_in_decls[code] = decl;
+}
+
+/* Call this function after instantiating all builtins that the language
+ front end cares about. This will build the rest of the builtins that
+ are relied upon by the tree optimizers and the middle-end. */
+
+void
+build_common_builtin_nodes (void)
+{
+ tree tmp, ftype;
+
+ if (built_in_decls[BUILT_IN_MEMCPY] == NULL
+ || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
+ {
+ tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
+ tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
+ tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
+ ftype = build_function_type (ptr_type_node, tmp);
+
+ if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
+ local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
+ "memcpy", ECF_NOTHROW);
+ if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
+ local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
+ "memmove", ECF_NOTHROW);
+ }
+
+ if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
+ {
+ tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
+ tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
+ tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
+ ftype = build_function_type (integer_type_node, tmp);
+ local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
+ "memcmp", ECF_PURE | ECF_NOTHROW);
+ }
+
+ if (built_in_decls[BUILT_IN_MEMSET] == NULL)
+ {
+ tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
+ tmp = tree_cons (NULL_TREE, integer_type_node, tmp);
+ tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
+ ftype = build_function_type (ptr_type_node, tmp);
+ local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
+ "memset", ECF_NOTHROW);
+ }
+
+ if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
+ {
+ tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
+ ftype = build_function_type (ptr_type_node, tmp);
+ local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
+ "alloca", ECF_NOTHROW | ECF_MALLOC);
+ }
+
+ tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
+ tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
+ tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
+ ftype = build_function_type (void_type_node, tmp);
+ local_define_builtin ("__builtin_init_trampoline", ftype,
+ BUILT_IN_INIT_TRAMPOLINE,
+ "__builtin_init_trampoline", ECF_NOTHROW);
+
+ tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
+ ftype = build_function_type (ptr_type_node, tmp);
+ local_define_builtin ("__builtin_adjust_trampoline", ftype,
+ BUILT_IN_ADJUST_TRAMPOLINE,
+ "__builtin_adjust_trampoline",
+ ECF_CONST | ECF_NOTHROW);
+
+ tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
+ tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
+ ftype = build_function_type (void_type_node, tmp);
+ local_define_builtin ("__builtin_nonlocal_goto", ftype,
+ BUILT_IN_NONLOCAL_GOTO,
+ "__builtin_nonlocal_goto",
+ ECF_NORETURN | ECF_NOTHROW);
+
+ tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
+ tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
+ ftype = build_function_type (void_type_node, tmp);
+ local_define_builtin ("__builtin_setjmp_setup", ftype,
+ BUILT_IN_SETJMP_SETUP,
+ "__builtin_setjmp_setup", ECF_NOTHROW);
+
+ tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
+ ftype = build_function_type (ptr_type_node, tmp);
+ local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
+ BUILT_IN_SETJMP_DISPATCHER,
+ "__builtin_setjmp_dispatcher",
+ ECF_PURE | ECF_NOTHROW);
+
+ tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
+ ftype = build_function_type (void_type_node, tmp);
+ local_define_builtin ("__builtin_setjmp_receiver", ftype,
+ BUILT_IN_SETJMP_RECEIVER,
+ "__builtin_setjmp_receiver", ECF_NOTHROW);
+
+ ftype = build_function_type (ptr_type_node, void_list_node);
+ local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
+ "__builtin_stack_save", ECF_NOTHROW);
+
+ tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
+ ftype = build_function_type (void_type_node, tmp);
+ local_define_builtin ("__builtin_stack_restore", ftype,
+ BUILT_IN_STACK_RESTORE,
+ "__builtin_stack_restore", ECF_NOTHROW);
+
+ ftype = build_function_type (void_type_node, void_list_node);
+ local_define_builtin ("__builtin_profile_func_enter", ftype,
+ BUILT_IN_PROFILE_FUNC_ENTER, "profile_func_enter", 0);
+ local_define_builtin ("__builtin_profile_func_exit", ftype,
+ BUILT_IN_PROFILE_FUNC_EXIT, "profile_func_exit", 0);
+
+ /* Complex multiplication and division. These are handled as builtins
+ rather than optabs because emit_library_call_value doesn't support
+ complex. Further, we can do slightly better with folding these
+ beasties if the real and complex parts of the arguments are separate. */
+ {
+ enum machine_mode mode;
+
+ for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
+ {
+ char mode_name_buf[4], *q;
+ const char *p;
+ enum built_in_function mcode, dcode;
+ tree type, inner_type;
+
+ type = lang_hooks.types.type_for_mode (mode, 0);
+ if (type == NULL)
+ continue;
+ inner_type = TREE_TYPE (type);
+
+ tmp = tree_cons (NULL_TREE, inner_type, void_list_node);
+ tmp = tree_cons (NULL_TREE, inner_type, tmp);
+ tmp = tree_cons (NULL_TREE, inner_type, tmp);
+ tmp = tree_cons (NULL_TREE, inner_type, tmp);
+ ftype = build_function_type (type, tmp);
+
+ mcode = BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
+ dcode = BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
+
+ for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
+ *q = TOLOWER (*p);
+ *q = '\0';
+
+ built_in_names[mcode] = concat ("__mul", mode_name_buf, "3", NULL);
+ local_define_builtin (built_in_names[mcode], ftype, mcode,
+ built_in_names[mcode], ECF_CONST | ECF_NOTHROW);
+
+ built_in_names[dcode] = concat ("__div", mode_name_buf, "3", NULL);
+ local_define_builtin (built_in_names[dcode], ftype, dcode,
+ built_in_names[dcode], ECF_CONST | ECF_NOTHROW);
+ }
+ }
+}
+
+/* HACK. GROSS. This is absolutely disgusting. I wish there was a
+ better way.
+
+ If we requested a pointer to a vector, build up the pointers that
+ we stripped off while looking for the inner type. Similarly for
+ return values from functions.
+
+ The argument TYPE is the top of the chain, and BOTTOM is the
+ new type which we will point to. */
+
+tree
+reconstruct_complex_type (tree type, tree bottom)
+{
+ tree inner, outer;
+
+ if (TREE_CODE (type) == POINTER_TYPE)
+ {
+ inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
+ outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
+ TYPE_REF_CAN_ALIAS_ALL (type));
+ }
+ else if (TREE_CODE (type) == REFERENCE_TYPE)
+ {
+ inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
+ outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
+ TYPE_REF_CAN_ALIAS_ALL (type));
+ }
+ else if (TREE_CODE (type) == ARRAY_TYPE)
+ {
+ inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
+ outer = build_array_type (inner, TYPE_DOMAIN (type));
+ }
+ else if (TREE_CODE (type) == FUNCTION_TYPE)
+ {
+ inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
+ outer = build_function_type (inner, TYPE_ARG_TYPES (type));
+ }
+ else if (TREE_CODE (type) == METHOD_TYPE)
+ {
+ inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
+ /* The build_method_type_directly() routine prepends 'this' to argument list,
+ so we must compensate by getting rid of it. */
+ outer
+ = build_method_type_directly
+ (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
+ inner,
+ TREE_CHAIN (TYPE_ARG_TYPES (type)));
+ }
+ else if (TREE_CODE (type) == OFFSET_TYPE)
+ {
+ inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
+ outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
+ }
+ else
+ return bottom;
+
+ return build_qualified_type (outer, TYPE_QUALS (type));
+}
+
+/* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
+ the inner type. */
+tree
+build_vector_type_for_mode (tree innertype, enum machine_mode mode)
+{
+ int nunits;
+
+ switch (GET_MODE_CLASS (mode))
+ {
+ case MODE_VECTOR_INT:
+ case MODE_VECTOR_FLOAT:
+ case MODE_VECTOR_FRACT:
+ case MODE_VECTOR_UFRACT:
+ case MODE_VECTOR_ACCUM:
+ case MODE_VECTOR_UACCUM:
+ nunits = GET_MODE_NUNITS (mode);
+ break;
+
+ case MODE_INT:
+ /* Check that there are no leftover bits. */
+ gcc_assert (GET_MODE_BITSIZE (mode)
+ % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
+
+ nunits = GET_MODE_BITSIZE (mode)
+ / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ return make_vector_type (innertype, nunits, mode);
+}
+
+/* Similarly, but takes the inner type and number of units, which must be
+ a power of two. */
+
+tree
+build_vector_type (tree innertype, int nunits)
+{
+ return make_vector_type (innertype, nunits, VOIDmode);
+}
+
+
+/* Build RESX_EXPR with given REGION_NUMBER. */
+tree
+build_resx (int region_number)
+{
+ tree t;
+ t = build1 (RESX_EXPR, void_type_node,
+ build_int_cst (NULL_TREE, region_number));
+ return t;
+}
+
+/* Given an initializer INIT, return TRUE if INIT is zero or some
+ aggregate of zeros. Otherwise return FALSE. */
+bool
+initializer_zerop (const_tree init)
+{
+ tree elt;
+
+ STRIP_NOPS (init);
+
+ switch (TREE_CODE (init))
+ {
+ case INTEGER_CST:
+ return integer_zerop (init);
+
+ case REAL_CST:
+ /* ??? Note that this is not correct for C4X float formats. There,
+ a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
+ negative exponent. */
+ return real_zerop (init)
+ && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
+
+ case FIXED_CST:
+ return fixed_zerop (init);
+
+ case COMPLEX_CST:
+ return integer_zerop (init)
+ || (real_zerop (init)
+ && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
+ && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
+
+ case VECTOR_CST:
+ for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
+ if (!initializer_zerop (TREE_VALUE (elt)))
+ return false;
+ return true;
+
+ case CONSTRUCTOR:
+ {
+ unsigned HOST_WIDE_INT idx;
+
+ FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
+ if (!initializer_zerop (elt))
+ return false;
+ return true;
+ }
+
+ default:
+ return false;
+ }
+}
+
+/* Build an empty statement. */
+
+tree
+build_empty_stmt (void)
+{
+ return build1 (NOP_EXPR, void_type_node, size_zero_node);
+}
+
+
+/* Build an OpenMP clause with code CODE. */
+
+tree
+build_omp_clause (enum omp_clause_code code)
+{
+ tree t;
+ int size, length;
+
+ length = omp_clause_num_ops[code];
+ size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
+
+ t = GGC_NEWVAR (union tree_node, size);
+ memset (t, 0, size);
+ TREE_SET_CODE (t, OMP_CLAUSE);
+ OMP_CLAUSE_SET_CODE (t, code);
+
+#ifdef GATHER_STATISTICS
+ tree_node_counts[(int) omp_clause_kind]++;
+ tree_node_sizes[(int) omp_clause_kind] += size;
+#endif
+
+ return t;
+}
+
+/* Set various status flags when building a CALL_EXPR object T. */
+
+static void
+process_call_operands (tree t)
+{
+ bool side_effects;
+
+ side_effects = TREE_SIDE_EFFECTS (t);
+ if (!side_effects)
+ {
+ int i, n;
+ n = TREE_OPERAND_LENGTH (t);
+ for (i = 1; i < n; i++)
+ {
+ tree op = TREE_OPERAND (t, i);
+ if (op && TREE_SIDE_EFFECTS (op))
+ {
+ side_effects = 1;
+ break;
+ }
+ }
+ }
+ if (!side_effects)
+ {
+ int i;
+
+ /* Calls have side-effects, except those to const or
+ pure functions. */
+ i = call_expr_flags (t);
+ if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
+ side_effects = 1;
+ }
+ TREE_SIDE_EFFECTS (t) = side_effects;
+}
+
+/* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
+ includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
+ Except for the CODE and operand count field, other storage for the
+ object is initialized to zeros. */
+
+tree
+build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
+{
+ tree t;
+ int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
+
+ gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
+ gcc_assert (len >= 1);
+
+#ifdef GATHER_STATISTICS
+ tree_node_counts[(int) e_kind]++;
+ tree_node_sizes[(int) e_kind] += length;
+#endif
+
+ t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
+
+ memset (t, 0, length);
+
+ TREE_SET_CODE (t, code);
+
+ /* Can't use TREE_OPERAND to store the length because if checking is
+ enabled, it will try to check the length before we store it. :-P */
+ t->exp.operands[0] = build_int_cst (sizetype, len);
+
+ return t;
+}
+
+
+/* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE
+ and FN and a null static chain slot. ARGLIST is a TREE_LIST of the
+ arguments. */
+
+tree
+build_call_list (tree return_type, tree fn, tree arglist)
+{
+ tree t;
+ int i;
+
+ t = build_vl_exp (CALL_EXPR, list_length (arglist) + 3);
+ TREE_TYPE (t) = return_type;
+ CALL_EXPR_FN (t) = fn;
+ CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
+ for (i = 0; arglist; arglist = TREE_CHAIN (arglist), i++)
+ CALL_EXPR_ARG (t, i) = TREE_VALUE (arglist);
+ process_call_operands (t);
+ return t;
+}
+
+/* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
+ FN and a null static chain slot. NARGS is the number of call arguments
+ which are specified as "..." arguments. */
+
+tree
+build_call_nary (tree return_type, tree fn, int nargs, ...)
+{
+ tree ret;
+ va_list args;
+ va_start (args, nargs);
+ ret = build_call_valist (return_type, fn, nargs, args);
+ va_end (args);
+ return ret;
+}
+
+/* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
+ FN and a null static chain slot. NARGS is the number of call arguments
+ which are specified as a va_list ARGS. */
+
+tree
+build_call_valist (tree return_type, tree fn, int nargs, va_list args)
+{
+ tree t;
+ int i;
+
+ t = build_vl_exp (CALL_EXPR, nargs + 3);
+ TREE_TYPE (t) = return_type;
+ CALL_EXPR_FN (t) = fn;
+ CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
+ for (i = 0; i < nargs; i++)
+ CALL_EXPR_ARG (t, i) = va_arg (args, tree);
+ process_call_operands (t);
+ return t;
+}
+
+/* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
+ FN and a null static chain slot. NARGS is the number of call arguments
+ which are specified as a tree array ARGS. */
+
+tree
+build_call_array (tree return_type, tree fn, int nargs, tree *args)
+{
+ tree t;
+ int i;
+
+ t = build_vl_exp (CALL_EXPR, nargs + 3);
+ TREE_TYPE (t) = return_type;
+ CALL_EXPR_FN (t) = fn;
+ CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
+ for (i = 0; i < nargs; i++)
+ CALL_EXPR_ARG (t, i) = args[i];
+ process_call_operands (t);
+ return t;
+}
+
+
+/* Returns true if it is possible to prove that the index of
+ an array access REF (an ARRAY_REF expression) falls into the
+ array bounds. */
+
+bool
+in_array_bounds_p (tree ref)
+{
+ tree idx = TREE_OPERAND (ref, 1);
+ tree min, max;
+
+ if (TREE_CODE (idx) != INTEGER_CST)
+ return false;
+
+ min = array_ref_low_bound (ref);
+ max = array_ref_up_bound (ref);
+ if (!min
+ || !max
+ || TREE_CODE (min) != INTEGER_CST
+ || TREE_CODE (max) != INTEGER_CST)
+ return false;
+
+ if (tree_int_cst_lt (idx, min)
+ || tree_int_cst_lt (max, idx))
+ return false;
+
+ return true;
+}
+
+/* Returns true if it is possible to prove that the range of
+ an array access REF (an ARRAY_RANGE_REF expression) falls
+ into the array bounds. */
+
+bool
+range_in_array_bounds_p (tree ref)
+{
+ tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
+ tree range_min, range_max, min, max;
+
+ range_min = TYPE_MIN_VALUE (domain_type);
+ range_max = TYPE_MAX_VALUE (domain_type);
+ if (!range_min
+ || !range_max
+ || TREE_CODE (range_min) != INTEGER_CST
+ || TREE_CODE (range_max) != INTEGER_CST)
+ return false;
+
+ min = array_ref_low_bound (ref);
+ max = array_ref_up_bound (ref);
+ if (!min
+ || !max
+ || TREE_CODE (min) != INTEGER_CST
+ || TREE_CODE (max) != INTEGER_CST)
+ return false;
+
+ if (tree_int_cst_lt (range_min, min)
+ || tree_int_cst_lt (max, range_max))
+ return false;
+
+ return true;
+}
+
+/* Return true if T (assumed to be a DECL) must be assigned a memory
+ location. */
+
+bool
+needs_to_live_in_memory (const_tree t)
+{
+ if (TREE_CODE (t) == SSA_NAME)
+ t = SSA_NAME_VAR (t);
+
+ return (TREE_ADDRESSABLE (t)
+ || is_global_var (t)
+ || (TREE_CODE (t) == RESULT_DECL
+ && aggregate_value_p (t, current_function_decl)));
+}
+
+/* There are situations in which a language considers record types
+ compatible which have different field lists. Decide if two fields
+ are compatible. It is assumed that the parent records are compatible. */
+
+bool
+fields_compatible_p (const_tree f1, const_tree f2)
+{
+ if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
+ DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
+ return false;
+
+ if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
+ DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
+ return false;
+
+ if (!types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
+ return false;
+
+ return true;
+}
+
+/* Locate within RECORD a field that is compatible with ORIG_FIELD. */
+
+tree
+find_compatible_field (tree record, tree orig_field)
+{
+ tree f;
+
+ for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
+ if (TREE_CODE (f) == FIELD_DECL
+ && fields_compatible_p (f, orig_field))
+ return f;
+
+ /* ??? Why isn't this on the main fields list? */
+ f = TYPE_VFIELD (record);
+ if (f && TREE_CODE (f) == FIELD_DECL
+ && fields_compatible_p (f, orig_field))
+ return f;
+
+ /* ??? We should abort here, but Java appears to do Bad Things
+ with inherited fields. */
+ return orig_field;
+}
+
+/* Return value of a constant X and sign-extend it. */
+
+HOST_WIDE_INT
+int_cst_value (const_tree x)
+{
+ unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
+ unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
+
+ /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
+ gcc_assert (TREE_INT_CST_HIGH (x) == 0
+ || TREE_INT_CST_HIGH (x) == -1);
+
+ if (bits < HOST_BITS_PER_WIDE_INT)
+ {
+ bool negative = ((val >> (bits - 1)) & 1) != 0;
+ if (negative)
+ val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
+ else
+ val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
+ }
+
+ return val;
+}
+
+/* If TYPE is an integral type, return an equivalent type which is
+ unsigned iff UNSIGNEDP is true. If TYPE is not an integral type,
+ return TYPE itself. */
+
+tree
+signed_or_unsigned_type_for (int unsignedp, tree type)
+{
+ tree t = type;
+ if (POINTER_TYPE_P (type))
+ t = size_type_node;
+
+ if (!INTEGRAL_TYPE_P (t) || TYPE_UNSIGNED (t) == unsignedp)
+ return t;
+
+ return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
+}
+
+/* Returns unsigned variant of TYPE. */
+
+tree
+unsigned_type_for (tree type)
+{
+ return signed_or_unsigned_type_for (1, type);
+}
+
+/* Returns signed variant of TYPE. */
+
+tree
+signed_type_for (tree type)
+{
+ return signed_or_unsigned_type_for (0, type);
+}
+
+/* Returns the largest value obtainable by casting something in INNER type to
+ OUTER type. */
+
+tree
+upper_bound_in_type (tree outer, tree inner)
+{
+ unsigned HOST_WIDE_INT lo, hi;
+ unsigned int det = 0;
+ unsigned oprec = TYPE_PRECISION (outer);
+ unsigned iprec = TYPE_PRECISION (inner);
+ unsigned prec;
+
+ /* Compute a unique number for every combination. */
+ det |= (oprec > iprec) ? 4 : 0;
+ det |= TYPE_UNSIGNED (outer) ? 2 : 0;
+ det |= TYPE_UNSIGNED (inner) ? 1 : 0;
+
+ /* Determine the exponent to use. */
+ switch (det)
+ {
+ case 0:
+ case 1:
+ /* oprec <= iprec, outer: signed, inner: don't care. */
+ prec = oprec - 1;
+ break;
+ case 2:
+ case 3:
+ /* oprec <= iprec, outer: unsigned, inner: don't care. */
+ prec = oprec;
+ break;
+ case 4:
+ /* oprec > iprec, outer: signed, inner: signed. */
+ prec = iprec - 1;
+ break;
+ case 5:
+ /* oprec > iprec, outer: signed, inner: unsigned. */
+ prec = iprec;
+ break;
+ case 6:
+ /* oprec > iprec, outer: unsigned, inner: signed. */
+ prec = oprec;
+ break;
+ case 7:
+ /* oprec > iprec, outer: unsigned, inner: unsigned. */
+ prec = iprec;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ /* Compute 2^^prec - 1. */
+ if (prec <= HOST_BITS_PER_WIDE_INT)
+ {
+ hi = 0;
+ lo = ((~(unsigned HOST_WIDE_INT) 0)
+ >> (HOST_BITS_PER_WIDE_INT - prec));
+ }
+ else
+ {
+ hi = ((~(unsigned HOST_WIDE_INT) 0)
+ >> (2 * HOST_BITS_PER_WIDE_INT - prec));
+ lo = ~(unsigned HOST_WIDE_INT) 0;
+ }
+
+ return build_int_cst_wide (outer, lo, hi);
+}
+
+/* Returns the smallest value obtainable by casting something in INNER type to
+ OUTER type. */
+
+tree
+lower_bound_in_type (tree outer, tree inner)
+{
+ unsigned HOST_WIDE_INT lo, hi;
+ unsigned oprec = TYPE_PRECISION (outer);
+ unsigned iprec = TYPE_PRECISION (inner);
+
+ /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
+ and obtain 0. */
+ if (TYPE_UNSIGNED (outer)
+ /* If we are widening something of an unsigned type, OUTER type
+ contains all values of INNER type. In particular, both INNER
+ and OUTER types have zero in common. */
+ || (oprec > iprec && TYPE_UNSIGNED (inner)))
+ lo = hi = 0;
+ else
+ {
+ /* If we are widening a signed type to another signed type, we
+ want to obtain -2^^(iprec-1). If we are keeping the
+ precision or narrowing to a signed type, we want to obtain
+ -2^(oprec-1). */
+ unsigned prec = oprec > iprec ? iprec : oprec;
+
+ if (prec <= HOST_BITS_PER_WIDE_INT)
+ {
+ hi = ~(unsigned HOST_WIDE_INT) 0;
+ lo = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
+ }
+ else
+ {
+ hi = ((~(unsigned HOST_WIDE_INT) 0)
+ << (prec - HOST_BITS_PER_WIDE_INT - 1));
+ lo = 0;
+ }
+ }
+
+ return build_int_cst_wide (outer, lo, hi);
+}
+
+/* Return nonzero if two operands that are suitable for PHI nodes are
+ necessarily equal. Specifically, both ARG0 and ARG1 must be either
+ SSA_NAME or invariant. Note that this is strictly an optimization.
+ That is, callers of this function can directly call operand_equal_p
+ and get the same result, only slower. */
+
+int
+operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
+{
+ if (arg0 == arg1)
+ return 1;
+ if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
+ return 0;
+ return operand_equal_p (arg0, arg1, 0);
+}
+
+/* Returns number of zeros at the end of binary representation of X.
+
+ ??? Use ffs if available? */
+
+tree
+num_ending_zeros (const_tree x)
+{
+ unsigned HOST_WIDE_INT fr, nfr;
+ unsigned num, abits;
+ tree type = TREE_TYPE (x);
+
+ if (TREE_INT_CST_LOW (x) == 0)
+ {
+ num = HOST_BITS_PER_WIDE_INT;
+ fr = TREE_INT_CST_HIGH (x);
+ }
+ else
+ {
+ num = 0;
+ fr = TREE_INT_CST_LOW (x);
+ }
+
+ for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
+ {
+ nfr = fr >> abits;
+ if (nfr << abits == fr)
+ {
+ num += abits;
+ fr = nfr;
+ }
+ }
+
+ if (num > TYPE_PRECISION (type))
+ num = TYPE_PRECISION (type);
+
+ return build_int_cst_type (type, num);
+}
+
+
+#define WALK_SUBTREE(NODE) \
+ do \
+ { \
+ result = walk_tree_1 (&(NODE), func, data, pset, lh); \
+ if (result) \
+ return result; \
+ } \
+ while (0)
+
+/* This is a subroutine of walk_tree that walks field of TYPE that are to
+ be walked whenever a type is seen in the tree. Rest of operands and return
+ value are as for walk_tree. */
+
+static tree
+walk_type_fields (tree type, walk_tree_fn func, void *data,
+ struct pointer_set_t *pset, walk_tree_lh lh)
+{
+ tree result = NULL_TREE;
+
+ switch (TREE_CODE (type))
+ {
+ case POINTER_TYPE:
+ case REFERENCE_TYPE:
+ /* We have to worry about mutually recursive pointers. These can't
+ be written in C. They can in Ada. It's pathological, but
+ there's an ACATS test (c38102a) that checks it. Deal with this
+ by checking if we're pointing to another pointer, that one
+ points to another pointer, that one does too, and we have no htab.
+ If so, get a hash table. We check three levels deep to avoid
+ the cost of the hash table if we don't need one. */
+ if (POINTER_TYPE_P (TREE_TYPE (type))
+ && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
+ && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
+ && !pset)
+ {
+ result = walk_tree_without_duplicates (&TREE_TYPE (type),
+ func, data);
+ if (result)
+ return result;
+
+ break;
+ }
+
+ /* ... fall through ... */
+
+ case COMPLEX_TYPE:
+ WALK_SUBTREE (TREE_TYPE (type));
+ break;
+
+ case METHOD_TYPE:
+ WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
+
+ /* Fall through. */
+
+ case FUNCTION_TYPE:
+ WALK_SUBTREE (TREE_TYPE (type));
+ {
+ tree arg;
+
+ /* We never want to walk into default arguments. */
+ for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
+ WALK_SUBTREE (TREE_VALUE (arg));
+ }
+ break;
+
+ case ARRAY_TYPE:
+ /* Don't follow this nodes's type if a pointer for fear that
+ we'll have infinite recursion. If we have a PSET, then we
+ need not fear. */
+ if (pset
+ || (!POINTER_TYPE_P (TREE_TYPE (type))
+ && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
+ WALK_SUBTREE (TREE_TYPE (type));
+ WALK_SUBTREE (TYPE_DOMAIN (type));
+ break;
+
+ case OFFSET_TYPE:
+ WALK_SUBTREE (TREE_TYPE (type));
+ WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
+ break;
+
+ default:
+ break;
+ }
+
+ return NULL_TREE;
+}
+
+/* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
+ called with the DATA and the address of each sub-tree. If FUNC returns a
+ non-NULL value, the traversal is stopped, and the value returned by FUNC
+ is returned. If PSET is non-NULL it is used to record the nodes visited,
+ and to avoid visiting a node more than once. */
+
+tree
+walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
+ struct pointer_set_t *pset, walk_tree_lh lh)
+{
+ enum tree_code code;
+ int walk_subtrees;
+ tree result;
+
+#define WALK_SUBTREE_TAIL(NODE) \
+ do \
+ { \
+ tp = & (NODE); \
+ goto tail_recurse; \
+ } \
+ while (0)
+
+ tail_recurse:
+ /* Skip empty subtrees. */
+ if (!*tp)
+ return NULL_TREE;
+
+ /* Don't walk the same tree twice, if the user has requested
+ that we avoid doing so. */
+ if (pset && pointer_set_insert (pset, *tp))
+ return NULL_TREE;
+
+ /* Call the function. */
+ walk_subtrees = 1;
+ result = (*func) (tp, &walk_subtrees, data);
+
+ /* If we found something, return it. */
+ if (result)
+ return result;
+
+ code = TREE_CODE (*tp);
+
+ /* Even if we didn't, FUNC may have decided that there was nothing
+ interesting below this point in the tree. */
+ if (!walk_subtrees)
+ {
+ /* But we still need to check our siblings. */
+ if (code == TREE_LIST)
+ WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
+ else if (code == OMP_CLAUSE)
+ WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
+ else
+ return NULL_TREE;
+ }
+
+ if (lh)
+ {
+ result = (*lh) (tp, &walk_subtrees, func, data, pset);
+ if (result || !walk_subtrees)
+ return result;
+ }
+
+ switch (code)
+ {
+ case ERROR_MARK:
+ case IDENTIFIER_NODE:
+ case INTEGER_CST:
+ case REAL_CST:
+ case FIXED_CST:
+ case VECTOR_CST:
+ case STRING_CST:
+ case BLOCK:
+ case PLACEHOLDER_EXPR:
+ case SSA_NAME:
+ case FIELD_DECL:
+ case RESULT_DECL:
+ /* None of these have subtrees other than those already walked
+ above. */
+ break;
+
+ case TREE_LIST:
+ WALK_SUBTREE (TREE_VALUE (*tp));
+ WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
+ break;
+
+ case TREE_VEC:
+ {
+ int len = TREE_VEC_LENGTH (*tp);
+
+ if (len == 0)
+ break;
+
+ /* Walk all elements but the first. */
+ while (--len)
+ WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
+
+ /* Now walk the first one as a tail call. */
+ WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
+ }
+
+ case COMPLEX_CST:
+ WALK_SUBTREE (TREE_REALPART (*tp));
+ WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
+
+ case CONSTRUCTOR:
+ {
+ unsigned HOST_WIDE_INT idx;
+ constructor_elt *ce;
+
+ for (idx = 0;
+ VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
+ idx++)
+ WALK_SUBTREE (ce->value);
+ }
+ break;
+
+ case SAVE_EXPR:
+ WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
+
+ case BIND_EXPR:
+ {
+ tree decl;
+ for (decl = BIND_EXPR_VARS (*tp); decl; decl = TREE_CHAIN (decl))
+ {
+ /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
+ into declarations that are just mentioned, rather than
+ declared; they don't really belong to this part of the tree.
+ And, we can see cycles: the initializer for a declaration
+ can refer to the declaration itself. */
+ WALK_SUBTREE (DECL_INITIAL (decl));
+ WALK_SUBTREE (DECL_SIZE (decl));
+ WALK_SUBTREE (DECL_SIZE_UNIT (decl));
+ }
+ WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
+ }
+
+ case STATEMENT_LIST:
+ {
+ tree_stmt_iterator i;
+ for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
+ WALK_SUBTREE (*tsi_stmt_ptr (i));
+ }
+ break;
+
+ case OMP_CLAUSE:
+ switch (OMP_CLAUSE_CODE (*tp))
+ {
+ case OMP_CLAUSE_PRIVATE:
+ case OMP_CLAUSE_SHARED:
+ case OMP_CLAUSE_FIRSTPRIVATE:
+ case OMP_CLAUSE_COPYIN:
+ case OMP_CLAUSE_COPYPRIVATE:
+ case OMP_CLAUSE_IF:
+ case OMP_CLAUSE_NUM_THREADS:
+ case OMP_CLAUSE_SCHEDULE:
+ WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
+ /* FALLTHRU */
+
+ case OMP_CLAUSE_NOWAIT:
+ case OMP_CLAUSE_ORDERED:
+ case OMP_CLAUSE_DEFAULT:
+ case OMP_CLAUSE_UNTIED:
+ WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
+
+ case OMP_CLAUSE_LASTPRIVATE:
+ WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
+ WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
+ WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
+
+ case OMP_CLAUSE_COLLAPSE:
+ {
+ int i;
+ for (i = 0; i < 3; i++)
+ WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
+ WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
+ }
+
+ case OMP_CLAUSE_REDUCTION:
+ {
+ int i;
+ for (i = 0; i < 4; i++)
+ WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
+ WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
+ }
+
+ default:
+ gcc_unreachable ();
+ }
+ break;
+
+ case TARGET_EXPR:
+ {
+ int i, len;
+
+ /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
+ But, we only want to walk once. */
+ len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
+ for (i = 0; i < len; ++i)
+ WALK_SUBTREE (TREE_OPERAND (*tp, i));
+ WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
+ }
+
+ case CHANGE_DYNAMIC_TYPE_EXPR:
+ WALK_SUBTREE (CHANGE_DYNAMIC_TYPE_NEW_TYPE (*tp));
+ WALK_SUBTREE_TAIL (CHANGE_DYNAMIC_TYPE_LOCATION (*tp));
+
+ case DECL_EXPR:
+ /* If this is a TYPE_DECL, walk into the fields of the type that it's
+ defining. We only want to walk into these fields of a type in this
+ case and not in the general case of a mere reference to the type.
+
+ The criterion is as follows: if the field can be an expression, it
+ must be walked only here. This should be in keeping with the fields
+ that are directly gimplified in gimplify_type_sizes in order for the
+ mark/copy-if-shared/unmark machinery of the gimplifier to work with
+ variable-sized types.
+
+ Note that DECLs get walked as part of processing the BIND_EXPR. */
+ if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
+ {
+ tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
+ if (TREE_CODE (*type_p) == ERROR_MARK)
+ return NULL_TREE;
+
+ /* Call the function for the type. See if it returns anything or
+ doesn't want us to continue. If we are to continue, walk both
+ the normal fields and those for the declaration case. */
+ result = (*func) (type_p, &walk_subtrees, data);
+ if (result || !walk_subtrees)
+ return result;
+
+ result = walk_type_fields (*type_p, func, data, pset, lh);
+ if (result)
+ return result;
+
+ /* If this is a record type, also walk the fields. */
+ if (TREE_CODE (*type_p) == RECORD_TYPE
+ || TREE_CODE (*type_p) == UNION_TYPE
+ || TREE_CODE (*type_p) == QUAL_UNION_TYPE)
+ {
+ tree field;
+
+ for (field = TYPE_FIELDS (*type_p); field;
+ field = TREE_CHAIN (field))
+ {
+ /* We'd like to look at the type of the field, but we can
+ easily get infinite recursion. So assume it's pointed
+ to elsewhere in the tree. Also, ignore things that
+ aren't fields. */
+ if (TREE_CODE (field) != FIELD_DECL)
+ continue;
+
+ WALK_SUBTREE (DECL_FIELD_OFFSET (field));
+ WALK_SUBTREE (DECL_SIZE (field));
+ WALK_SUBTREE (DECL_SIZE_UNIT (field));
+ if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
+ WALK_SUBTREE (DECL_QUALIFIER (field));
+ }
+ }
+
+ /* Same for scalar types. */
+ else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
+ || TREE_CODE (*type_p) == ENUMERAL_TYPE
+ || TREE_CODE (*type_p) == INTEGER_TYPE
+ || TREE_CODE (*type_p) == FIXED_POINT_TYPE
+ || TREE_CODE (*type_p) == REAL_TYPE)
+ {
+ WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
+ WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
+ }
+
+ WALK_SUBTREE (TYPE_SIZE (*type_p));
+ WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
+ }
+ /* FALLTHRU */
+
+ default:
+ if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
+ {
+ int i, len;
+
+ /* Walk over all the sub-trees of this operand. */
+ len = TREE_OPERAND_LENGTH (*tp);
+
+ /* Go through the subtrees. We need to do this in forward order so
+ that the scope of a FOR_EXPR is handled properly. */
+ if (len)
+ {
+ for (i = 0; i < len - 1; ++i)
+ WALK_SUBTREE (TREE_OPERAND (*tp, i));
+ WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
+ }
+ }
+ /* If this is a type, walk the needed fields in the type. */
+ else if (TYPE_P (*tp))
+ return walk_type_fields (*tp, func, data, pset, lh);
+ break;
+ }
+
+ /* We didn't find what we were looking for. */
+ return NULL_TREE;
+
+#undef WALK_SUBTREE_TAIL
+}
+#undef WALK_SUBTREE
+
+/* Like walk_tree, but does not walk duplicate nodes more than once. */
+
+tree
+walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
+ walk_tree_lh lh)
+{
+ tree result;
+ struct pointer_set_t *pset;
+
+ pset = pointer_set_create ();
+ result = walk_tree_1 (tp, func, data, pset, lh);
+ pointer_set_destroy (pset);
+ return result;
+}
+
+
+tree *
+tree_block (tree t)
+{
+ char const c = TREE_CODE_CLASS (TREE_CODE (t));
+
+ if (IS_EXPR_CODE_CLASS (c))
+ return &t->exp.block;
+ gcc_unreachable ();
+ return NULL;
+}
+
+/* Build and return a TREE_LIST of arguments in the CALL_EXPR exp.
+ FIXME: don't use this function. It exists for compatibility with
+ the old representation of CALL_EXPRs where a list was used to hold the
+ arguments. Places that currently extract the arglist from a CALL_EXPR
+ ought to be rewritten to use the CALL_EXPR itself. */
+tree
+call_expr_arglist (tree exp)
+{
+ tree arglist = NULL_TREE;
+ int i;
+ for (i = call_expr_nargs (exp) - 1; i >= 0; i--)
+ arglist = tree_cons (NULL_TREE, CALL_EXPR_ARG (exp, i), arglist);
+ return arglist;
+}
+
+
+/* Create a nameless artificial label and put it in the current function
+ context. Returns the newly created label. */
+
+tree
+create_artificial_label (void)
+{
+ tree lab = build_decl (LABEL_DECL, NULL_TREE, void_type_node);
+
+ DECL_ARTIFICIAL (lab) = 1;
+ DECL_IGNORED_P (lab) = 1;
+ DECL_CONTEXT (lab) = current_function_decl;
+ return lab;
+}
+
+/* Given a tree, try to return a useful variable name that we can use
+ to prefix a temporary that is being assigned the value of the tree.
+ I.E. given <temp> = &A, return A. */
+
+const char *
+get_name (tree t)
+{
+ tree stripped_decl;
+
+ stripped_decl = t;
+ STRIP_NOPS (stripped_decl);
+ if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
+ return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
+ else
+ {
+ switch (TREE_CODE (stripped_decl))
+ {
+ case ADDR_EXPR:
+ return get_name (TREE_OPERAND (stripped_decl, 0));
+ default:
+ return NULL;
+ }
+ }
+}
+
+/* Return true if TYPE has a variable argument list. */
+
+bool
+stdarg_p (tree fntype)
+{
+ function_args_iterator args_iter;
+ tree n = NULL_TREE, t;
+
+ if (!fntype)
+ return false;
+
+ FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
+ {
+ n = t;
+ }
+
+ return n != NULL_TREE && n != void_type_node;
+}
+
+/* Return true if TYPE has a prototype. */
+
+bool
+prototype_p (tree fntype)
+{
+ tree t;
+
+ gcc_assert (fntype != NULL_TREE);
+
+ t = TYPE_ARG_TYPES (fntype);
+ return (t != NULL_TREE);
+}
+
+/* Return the number of arguments that a function has. */
+
+int
+function_args_count (tree fntype)
+{
+ function_args_iterator args_iter;
+ tree t;
+ int num = 0;
+
+ if (fntype)
+ {
+ FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
+ {
+ num++;
+ }
+ }
+
+ return num;
+}
+
+/* If BLOCK is inlined from an __attribute__((__artificial__))
+ routine, return pointer to location from where it has been
+ called. */
+location_t *
+block_nonartificial_location (tree block)
+{
+ location_t *ret = NULL;
+
+ while (block && TREE_CODE (block) == BLOCK
+ && BLOCK_ABSTRACT_ORIGIN (block))
+ {
+ tree ao = BLOCK_ABSTRACT_ORIGIN (block);
+
+ while (TREE_CODE (ao) == BLOCK
+ && BLOCK_ABSTRACT_ORIGIN (ao)
+ && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
+ ao = BLOCK_ABSTRACT_ORIGIN (ao);
+
+ if (TREE_CODE (ao) == FUNCTION_DECL)
+ {
+ /* If AO is an artificial inline, point RET to the
+ call site locus at which it has been inlined and continue
+ the loop, in case AO's caller is also an artificial
+ inline. */
+ if (DECL_DECLARED_INLINE_P (ao)
+ && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
+ ret = &BLOCK_SOURCE_LOCATION (block);
+ else
+ break;
+ }
+ else if (TREE_CODE (ao) != BLOCK)
+ break;
+
+ block = BLOCK_SUPERCONTEXT (block);
+ }
+ return ret;
+}
+
+
+/* If EXP is inlined from an __attribute__((__artificial__))
+ function, return the location of the original call expression. */
+
+location_t
+tree_nonartificial_location (tree exp)
+{
+ location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
+
+ if (loc)
+ return *loc;
+ else
+ return EXPR_LOCATION (exp);
+}
+
+
+/* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
+ nodes. */
+
+/* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
+
+static hashval_t
+cl_option_hash_hash (const void *x)
+{
+ const_tree const t = (const_tree) x;
+ const char *p;
+ size_t i;
+ size_t len = 0;
+ hashval_t hash = 0;
+
+ if (TREE_CODE (t) == OPTIMIZATION_NODE)
+ {
+ p = (const char *)TREE_OPTIMIZATION (t);
+ len = sizeof (struct cl_optimization);
+ }
+
+ else if (TREE_CODE (t) == TARGET_OPTION_NODE)
+ {
+ p = (const char *)TREE_TARGET_OPTION (t);
+ len = sizeof (struct cl_target_option);
+ }
+
+ else
+ gcc_unreachable ();
+
+ /* assume most opt flags are just 0/1, some are 2-3, and a few might be
+ something else. */
+ for (i = 0; i < len; i++)
+ if (p[i])
+ hash = (hash << 4) ^ ((i << 2) | p[i]);
+
+ return hash;
+}
+
+/* Return nonzero if the value represented by *X (an OPTIMIZATION or
+ TARGET_OPTION tree node) is the same as that given by *Y, which is the
+ same. */
+
+static int
+cl_option_hash_eq (const void *x, const void *y)
+{
+ const_tree const xt = (const_tree) x;
+ const_tree const yt = (const_tree) y;
+ const char *xp;
+ const char *yp;
+ size_t len;
+
+ if (TREE_CODE (xt) != TREE_CODE (yt))
+ return 0;
+
+ if (TREE_CODE (xt) == OPTIMIZATION_NODE)
+ {
+ xp = (const char *)TREE_OPTIMIZATION (xt);
+ yp = (const char *)TREE_OPTIMIZATION (yt);
+ len = sizeof (struct cl_optimization);
+ }
+
+ else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
+ {
+ xp = (const char *)TREE_TARGET_OPTION (xt);
+ yp = (const char *)TREE_TARGET_OPTION (yt);
+ len = sizeof (struct cl_target_option);
+ }
+
+ else
+ gcc_unreachable ();
+
+ return (memcmp (xp, yp, len) == 0);
+}
+
+/* Build an OPTIMIZATION_NODE based on the current options. */
+
+tree
+build_optimization_node (void)
+{
+ tree t;
+ void **slot;
+
+ /* Use the cache of optimization nodes. */
+
+ cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node));
+
+ slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT);
+ t = (tree) *slot;
+ if (!t)
+ {
+ /* Insert this one into the hash table. */
+ t = cl_optimization_node;
+ *slot = t;
+
+ /* Make a new node for next time round. */
+ cl_optimization_node = make_node (OPTIMIZATION_NODE);
+ }
+
+ return t;
+}
+
+/* Build a TARGET_OPTION_NODE based on the current options. */
+
+tree
+build_target_option_node (void)
+{
+ tree t;
+ void **slot;
+
+ /* Use the cache of optimization nodes. */
+
+ cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node));
+
+ slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT);
+ t = (tree) *slot;
+ if (!t)
+ {
+ /* Insert this one into the hash table. */
+ t = cl_target_option_node;
+ *slot = t;
+
+ /* Make a new node for next time round. */
+ cl_target_option_node = make_node (TARGET_OPTION_NODE);
+ }
+
+ return t;
+}
+
+/* Determine the "ultimate origin" of a block. The block may be an inlined
+ instance of an inlined instance of a block which is local to an inline
+ function, so we have to trace all of the way back through the origin chain
+ to find out what sort of node actually served as the original seed for the
+ given block. */
+
+tree
+block_ultimate_origin (const_tree block)
+{
+ tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
+
+ /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
+ nodes in the function to point to themselves; ignore that if
+ we're trying to output the abstract instance of this function. */
+ if (BLOCK_ABSTRACT (block) && immediate_origin == block)
+ return NULL_TREE;
+
+ if (immediate_origin == NULL_TREE)
+ return NULL_TREE;
+ else
+ {
+ tree ret_val;
+ tree lookahead = immediate_origin;
+
+ do
+ {
+ ret_val = lookahead;
+ lookahead = (TREE_CODE (ret_val) == BLOCK
+ ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
+ }
+ while (lookahead != NULL && lookahead != ret_val);
+
+ /* The block's abstract origin chain may not be the *ultimate* origin of
+ the block. It could lead to a DECL that has an abstract origin set.
+ If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
+ will give us if it has one). Note that DECL's abstract origins are
+ supposed to be the most distant ancestor (or so decl_ultimate_origin
+ claims), so we don't need to loop following the DECL origins. */
+ if (DECL_P (ret_val))
+ return DECL_ORIGIN (ret_val);
+
+ return ret_val;
+ }
+}
+
+#include "gt-tree.h"