aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.0/gcc/tree-loop-distribution.c
diff options
context:
space:
mode:
authorJing Yu <jingyu@google.com>2009-11-05 15:11:04 -0800
committerJing Yu <jingyu@google.com>2009-11-05 15:11:04 -0800
commitdf62c1c110e8532b995b23540b7e3695729c0779 (patch)
treedbbd4cbdb50ac38011e058a2533ee4c3168b0205 /gcc-4.4.0/gcc/tree-loop-distribution.c
parent8d401cf711539af5a2f78d12447341d774892618 (diff)
downloadtoolchain_gcc-df62c1c110e8532b995b23540b7e3695729c0779.tar.gz
toolchain_gcc-df62c1c110e8532b995b23540b7e3695729c0779.tar.bz2
toolchain_gcc-df62c1c110e8532b995b23540b7e3695729c0779.zip
Check in gcc sources for prebuilt toolchains in Eclair.
Diffstat (limited to 'gcc-4.4.0/gcc/tree-loop-distribution.c')
-rw-r--r--gcc-4.4.0/gcc/tree-loop-distribution.c1273
1 files changed, 1273 insertions, 0 deletions
diff --git a/gcc-4.4.0/gcc/tree-loop-distribution.c b/gcc-4.4.0/gcc/tree-loop-distribution.c
new file mode 100644
index 000000000..219d17e70
--- /dev/null
+++ b/gcc-4.4.0/gcc/tree-loop-distribution.c
@@ -0,0 +1,1273 @@
+/* Loop distribution.
+ Copyright (C) 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
+ Contributed by Georges-Andre Silber <Georges-Andre.Silber@ensmp.fr>
+ and Sebastian Pop <sebastian.pop@amd.com>.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it
+under the terms of the GNU General Public License as published by the
+Free Software Foundation; either version 3, or (at your option) any
+later version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT
+ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+/* This pass performs loop distribution: for example, the loop
+
+ |DO I = 2, N
+ | A(I) = B(I) + C
+ | D(I) = A(I-1)*E
+ |ENDDO
+
+ is transformed to
+
+ |DOALL I = 2, N
+ | A(I) = B(I) + C
+ |ENDDO
+ |
+ |DOALL I = 2, N
+ | D(I) = A(I-1)*E
+ |ENDDO
+
+ This pass uses an RDG, Reduced Dependence Graph built on top of the
+ data dependence relations. The RDG is then topologically sorted to
+ obtain a map of information producers/consumers based on which it
+ generates the new loops. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "ggc.h"
+#include "tree.h"
+#include "target.h"
+
+#include "rtl.h"
+#include "basic-block.h"
+#include "diagnostic.h"
+#include "tree-flow.h"
+#include "tree-dump.h"
+#include "timevar.h"
+#include "cfgloop.h"
+#include "expr.h"
+#include "optabs.h"
+#include "tree-chrec.h"
+#include "tree-data-ref.h"
+#include "tree-scalar-evolution.h"
+#include "tree-pass.h"
+#include "lambda.h"
+#include "langhooks.h"
+#include "tree-vectorizer.h"
+
+/* If bit I is not set, it means that this node represents an
+ operation that has already been performed, and that should not be
+ performed again. This is the subgraph of remaining important
+ computations that is passed to the DFS algorithm for avoiding to
+ include several times the same stores in different loops. */
+static bitmap remaining_stmts;
+
+/* A node of the RDG is marked in this bitmap when it has as a
+ predecessor a node that writes to memory. */
+static bitmap upstream_mem_writes;
+
+/* TODOs we need to run after the pass. */
+static unsigned int todo;
+
+/* Update the PHI nodes of NEW_LOOP. NEW_LOOP is a duplicate of
+ ORIG_LOOP. */
+
+static void
+update_phis_for_loop_copy (struct loop *orig_loop, struct loop *new_loop)
+{
+ tree new_ssa_name;
+ gimple_stmt_iterator si_new, si_orig;
+ edge orig_loop_latch = loop_latch_edge (orig_loop);
+ edge orig_entry_e = loop_preheader_edge (orig_loop);
+ edge new_loop_entry_e = loop_preheader_edge (new_loop);
+
+ /* Scan the phis in the headers of the old and new loops
+ (they are organized in exactly the same order). */
+ for (si_new = gsi_start_phis (new_loop->header),
+ si_orig = gsi_start_phis (orig_loop->header);
+ !gsi_end_p (si_new) && !gsi_end_p (si_orig);
+ gsi_next (&si_new), gsi_next (&si_orig))
+ {
+ tree def;
+ gimple phi_new = gsi_stmt (si_new);
+ gimple phi_orig = gsi_stmt (si_orig);
+
+ /* Add the first phi argument for the phi in NEW_LOOP (the one
+ associated with the entry of NEW_LOOP) */
+ def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_entry_e);
+ add_phi_arg (phi_new, def, new_loop_entry_e);
+
+ /* Add the second phi argument for the phi in NEW_LOOP (the one
+ associated with the latch of NEW_LOOP) */
+ def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_loop_latch);
+
+ if (TREE_CODE (def) == SSA_NAME)
+ {
+ new_ssa_name = get_current_def (def);
+
+ if (!new_ssa_name)
+ /* This only happens if there are no definitions inside the
+ loop. Use the phi_result in this case. */
+ new_ssa_name = PHI_RESULT (phi_new);
+ }
+ else
+ /* Could be an integer. */
+ new_ssa_name = def;
+
+ add_phi_arg (phi_new, new_ssa_name, loop_latch_edge (new_loop));
+ }
+}
+
+/* Return a copy of LOOP placed before LOOP. */
+
+static struct loop *
+copy_loop_before (struct loop *loop)
+{
+ struct loop *res;
+ edge preheader = loop_preheader_edge (loop);
+
+ if (!single_exit (loop))
+ return NULL;
+
+ initialize_original_copy_tables ();
+ res = slpeel_tree_duplicate_loop_to_edge_cfg (loop, preheader);
+ free_original_copy_tables ();
+
+ if (!res)
+ return NULL;
+
+ update_phis_for_loop_copy (loop, res);
+ rename_variables_in_loop (res);
+
+ return res;
+}
+
+/* Creates an empty basic block after LOOP. */
+
+static void
+create_bb_after_loop (struct loop *loop)
+{
+ edge exit = single_exit (loop);
+
+ if (!exit)
+ return;
+
+ split_edge (exit);
+}
+
+/* Generate code for PARTITION from the code in LOOP. The loop is
+ copied when COPY_P is true. All the statements not flagged in the
+ PARTITION bitmap are removed from the loop or from its copy. The
+ statements are indexed in sequence inside a basic block, and the
+ basic blocks of a loop are taken in dom order. Returns true when
+ the code gen succeeded. */
+
+static bool
+generate_loops_for_partition (struct loop *loop, bitmap partition, bool copy_p)
+{
+ unsigned i, x;
+ gimple_stmt_iterator bsi;
+ basic_block *bbs;
+
+ if (copy_p)
+ {
+ loop = copy_loop_before (loop);
+ create_preheader (loop, CP_SIMPLE_PREHEADERS);
+ create_bb_after_loop (loop);
+ }
+
+ if (loop == NULL)
+ return false;
+
+ /* Remove stmts not in the PARTITION bitmap. The order in which we
+ visit the phi nodes and the statements is exactly as in
+ stmts_from_loop. */
+ bbs = get_loop_body_in_dom_order (loop);
+
+ for (x = 0, i = 0; i < loop->num_nodes; i++)
+ {
+ basic_block bb = bbs[i];
+
+ for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi);)
+ if (!bitmap_bit_p (partition, x++))
+ remove_phi_node (&bsi, true);
+ else
+ gsi_next (&bsi);
+
+ for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi);)
+ if (gimple_code (gsi_stmt (bsi)) != GIMPLE_LABEL
+ && !bitmap_bit_p (partition, x++))
+ gsi_remove (&bsi, false);
+ else
+ gsi_next (&bsi);
+
+ mark_virtual_ops_in_bb (bb);
+ }
+
+ free (bbs);
+ return true;
+}
+
+/* Build size argument. */
+
+static inline tree
+build_size_arg (tree nb_iter, tree op, gimple_seq* stmt_list)
+{
+ tree nb_bytes;
+ gimple_seq stmts = NULL;
+
+ nb_bytes = fold_build2 (MULT_EXPR, TREE_TYPE (nb_iter),
+ nb_iter, TYPE_SIZE_UNIT (TREE_TYPE (op)));
+ nb_bytes = force_gimple_operand (nb_bytes, &stmts, true, NULL);
+ gimple_seq_add_seq (stmt_list, stmts);
+
+ return nb_bytes;
+}
+
+/* Generate a call to memset. Return true when the operation succeeded. */
+
+static bool
+generate_memset_zero (gimple stmt, tree op0, tree nb_iter,
+ gimple_stmt_iterator bsi)
+{
+ tree t, addr_base;
+ tree nb_bytes = NULL;
+ bool res = false;
+ gimple_seq stmts = NULL, stmt_list = NULL;
+ gimple fn_call;
+ tree mem, fndecl, fntype, fn;
+ gimple_stmt_iterator i;
+ ssa_op_iter iter;
+ struct data_reference *dr = XCNEW (struct data_reference);
+
+ DR_STMT (dr) = stmt;
+ DR_REF (dr) = op0;
+ if (!dr_analyze_innermost (dr))
+ goto end;
+
+ /* Test for a positive stride, iterating over every element. */
+ if (integer_zerop (fold_build2 (MINUS_EXPR, integer_type_node, DR_STEP (dr),
+ TYPE_SIZE_UNIT (TREE_TYPE (op0)))))
+ {
+ tree offset = fold_convert (sizetype,
+ size_binop (PLUS_EXPR,
+ DR_OFFSET (dr),
+ DR_INIT (dr)));
+ addr_base = fold_build2 (POINTER_PLUS_EXPR,
+ TREE_TYPE (DR_BASE_ADDRESS (dr)),
+ DR_BASE_ADDRESS (dr), offset);
+ }
+
+ /* Test for a negative stride, iterating over every element. */
+ else if (integer_zerop (fold_build2 (PLUS_EXPR, integer_type_node,
+ TYPE_SIZE_UNIT (TREE_TYPE (op0)),
+ DR_STEP (dr))))
+ {
+ nb_bytes = build_size_arg (nb_iter, op0, &stmt_list);
+ addr_base = size_binop (PLUS_EXPR, DR_OFFSET (dr), DR_INIT (dr));
+ addr_base = fold_build2 (MINUS_EXPR, sizetype, addr_base, nb_bytes);
+ addr_base = force_gimple_operand (addr_base, &stmts, true, NULL);
+ gimple_seq_add_seq (&stmt_list, stmts);
+
+ addr_base = fold_build2 (POINTER_PLUS_EXPR,
+ TREE_TYPE (DR_BASE_ADDRESS (dr)),
+ DR_BASE_ADDRESS (dr), addr_base);
+ }
+ else
+ goto end;
+
+ mem = force_gimple_operand (addr_base, &stmts, true, NULL);
+ gimple_seq_add_seq (&stmt_list, stmts);
+
+ fndecl = implicit_built_in_decls [BUILT_IN_MEMSET];
+ fntype = TREE_TYPE (fndecl);
+ fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
+
+ if (!nb_bytes)
+ nb_bytes = build_size_arg (nb_iter, op0, &stmt_list);
+ fn_call = gimple_build_call (fn, 3, mem, integer_zero_node, nb_bytes);
+ gimple_seq_add_stmt (&stmt_list, fn_call);
+
+ for (i = gsi_start (stmt_list); !gsi_end_p (i); gsi_next (&i))
+ {
+ gimple s = gsi_stmt (i);
+ update_stmt_if_modified (s);
+
+ FOR_EACH_SSA_TREE_OPERAND (t, s, iter, SSA_OP_VIRTUAL_DEFS)
+ {
+ if (TREE_CODE (t) == SSA_NAME)
+ t = SSA_NAME_VAR (t);
+ mark_sym_for_renaming (t);
+ }
+ }
+
+ /* Mark also the uses of the VDEFS of STMT to be renamed. */
+ FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, SSA_OP_VIRTUAL_DEFS)
+ {
+ if (TREE_CODE (t) == SSA_NAME)
+ {
+ gimple s;
+ imm_use_iterator imm_iter;
+
+ FOR_EACH_IMM_USE_STMT (s, imm_iter, t)
+ update_stmt (s);
+
+ t = SSA_NAME_VAR (t);
+ }
+ mark_sym_for_renaming (t);
+ }
+
+ gsi_insert_seq_after (&bsi, stmt_list, GSI_CONTINUE_LINKING);
+ res = true;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "generated memset zero\n");
+
+ todo |= TODO_rebuild_alias;
+
+ end:
+ free_data_ref (dr);
+ return res;
+}
+
+/* Propagate phis in BB b to their uses and remove them. */
+
+static void
+prop_phis (basic_block b)
+{
+ gimple_stmt_iterator psi;
+ gimple_seq phis = phi_nodes (b);
+
+ for (psi = gsi_start (phis); !gsi_end_p (psi); )
+ {
+ gimple phi = gsi_stmt (psi);
+ tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
+
+ gcc_assert (gimple_phi_num_args (phi) == 1);
+
+ if (!is_gimple_reg (def))
+ {
+ imm_use_iterator iter;
+ use_operand_p use_p;
+ gimple stmt;
+
+ FOR_EACH_IMM_USE_STMT (stmt, iter, def)
+ FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
+ SET_USE (use_p, use);
+ }
+ else
+ replace_uses_by (def, use);
+
+ remove_phi_node (&psi, true);
+ }
+}
+
+/* Tries to generate a builtin function for the instructions of LOOP
+ pointed to by the bits set in PARTITION. Returns true when the
+ operation succeeded. */
+
+static bool
+generate_builtin (struct loop *loop, bitmap partition, bool copy_p)
+{
+ bool res = false;
+ unsigned i, x = 0;
+ basic_block *bbs;
+ gimple write = NULL;
+ tree op0, op1;
+ gimple_stmt_iterator bsi;
+ tree nb_iter = number_of_exit_cond_executions (loop);
+
+ if (!nb_iter || nb_iter == chrec_dont_know)
+ return false;
+
+ bbs = get_loop_body_in_dom_order (loop);
+
+ for (i = 0; i < loop->num_nodes; i++)
+ {
+ basic_block bb = bbs[i];
+
+ for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
+ x++;
+
+ for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
+ {
+ gimple stmt = gsi_stmt (bsi);
+
+ if (bitmap_bit_p (partition, x++)
+ && is_gimple_assign (stmt)
+ && !is_gimple_reg (gimple_assign_lhs (stmt)))
+ {
+ /* Don't generate the builtins when there are more than
+ one memory write. */
+ if (write != NULL)
+ goto end;
+
+ write = stmt;
+ }
+ }
+ }
+
+ if (!write)
+ goto end;
+
+ op0 = gimple_assign_lhs (write);
+ op1 = gimple_assign_rhs1 (write);
+
+ if (!(TREE_CODE (op0) == ARRAY_REF
+ || TREE_CODE (op0) == INDIRECT_REF))
+ goto end;
+
+ /* The new statements will be placed before LOOP. */
+ bsi = gsi_last_bb (loop_preheader_edge (loop)->src);
+
+ if (gimple_assign_rhs_code (write) == INTEGER_CST
+ && (integer_zerop (op1) || real_zerop (op1)))
+ res = generate_memset_zero (write, op0, nb_iter, bsi);
+
+ /* If this is the last partition for which we generate code, we have
+ to destroy the loop. */
+ if (res && !copy_p)
+ {
+ unsigned nbbs = loop->num_nodes;
+ basic_block src = loop_preheader_edge (loop)->src;
+ basic_block dest = single_exit (loop)->dest;
+ prop_phis (dest);
+ make_edge (src, dest, EDGE_FALLTHRU);
+ cancel_loop_tree (loop);
+
+ for (i = 0; i < nbbs; i++)
+ delete_basic_block (bbs[i]);
+
+ set_immediate_dominator (CDI_DOMINATORS, dest,
+ recompute_dominator (CDI_DOMINATORS, dest));
+ }
+
+ end:
+ free (bbs);
+ return res;
+}
+
+/* Generates code for PARTITION. For simple loops, this function can
+ generate a built-in. */
+
+static bool
+generate_code_for_partition (struct loop *loop, bitmap partition, bool copy_p)
+{
+ if (generate_builtin (loop, partition, copy_p))
+ return true;
+
+ return generate_loops_for_partition (loop, partition, copy_p);
+}
+
+
+/* Returns true if the node V of RDG cannot be recomputed. */
+
+static bool
+rdg_cannot_recompute_vertex_p (struct graph *rdg, int v)
+{
+ if (RDG_MEM_WRITE_STMT (rdg, v))
+ return true;
+
+ return false;
+}
+
+/* Returns true when the vertex V has already been generated in the
+ current partition (V is in PROCESSED), or when V belongs to another
+ partition and cannot be recomputed (V is not in REMAINING_STMTS). */
+
+static inline bool
+already_processed_vertex_p (bitmap processed, int v)
+{
+ return (bitmap_bit_p (processed, v)
+ || !bitmap_bit_p (remaining_stmts, v));
+}
+
+/* Returns NULL when there is no anti-dependence among the successors
+ of vertex V, otherwise returns the edge with the anti-dep. */
+
+static struct graph_edge *
+has_anti_dependence (struct vertex *v)
+{
+ struct graph_edge *e;
+
+ if (v->succ)
+ for (e = v->succ; e; e = e->succ_next)
+ if (RDGE_TYPE (e) == anti_dd)
+ return e;
+
+ return NULL;
+}
+
+/* Returns true when V has an anti-dependence edge among its successors. */
+
+static bool
+predecessor_has_mem_write (struct graph *rdg, struct vertex *v)
+{
+ struct graph_edge *e;
+
+ if (v->pred)
+ for (e = v->pred; e; e = e->pred_next)
+ if (bitmap_bit_p (upstream_mem_writes, e->src)
+ /* Don't consider flow channels: a write to memory followed
+ by a read from memory. These channels allow the split of
+ the RDG in different partitions. */
+ && !RDG_MEM_WRITE_STMT (rdg, e->src))
+ return true;
+
+ return false;
+}
+
+/* Initializes the upstream_mem_writes bitmap following the
+ information from RDG. */
+
+static void
+mark_nodes_having_upstream_mem_writes (struct graph *rdg)
+{
+ int v, x;
+ bitmap seen = BITMAP_ALLOC (NULL);
+
+ for (v = rdg->n_vertices - 1; v >= 0; v--)
+ if (!bitmap_bit_p (seen, v))
+ {
+ unsigned i;
+ VEC (int, heap) *nodes = VEC_alloc (int, heap, 3);
+ bool has_upstream_mem_write_p = false;
+
+ graphds_dfs (rdg, &v, 1, &nodes, false, NULL);
+
+ for (i = 0; VEC_iterate (int, nodes, i, x); i++)
+ {
+ if (bitmap_bit_p (seen, x))
+ continue;
+
+ bitmap_set_bit (seen, x);
+
+ if (RDG_MEM_WRITE_STMT (rdg, x)
+ || predecessor_has_mem_write (rdg, &(rdg->vertices[x]))
+ /* In anti dependences the read should occur before
+ the write, this is why both the read and the write
+ should be placed in the same partition. */
+ || has_anti_dependence (&(rdg->vertices[x])))
+ {
+ has_upstream_mem_write_p = true;
+ bitmap_set_bit (upstream_mem_writes, x);
+ }
+ }
+
+ VEC_free (int, heap, nodes);
+ }
+}
+
+/* Returns true when vertex u has a memory write node as a predecessor
+ in RDG. */
+
+static bool
+has_upstream_mem_writes (int u)
+{
+ return bitmap_bit_p (upstream_mem_writes, u);
+}
+
+static void rdg_flag_vertex_and_dependent (struct graph *, int, bitmap, bitmap,
+ bitmap, bool *);
+
+/* Flag all the uses of U. */
+
+static void
+rdg_flag_all_uses (struct graph *rdg, int u, bitmap partition, bitmap loops,
+ bitmap processed, bool *part_has_writes)
+{
+ struct graph_edge *e;
+
+ for (e = rdg->vertices[u].succ; e; e = e->succ_next)
+ if (!bitmap_bit_p (processed, e->dest))
+ {
+ rdg_flag_vertex_and_dependent (rdg, e->dest, partition, loops,
+ processed, part_has_writes);
+ rdg_flag_all_uses (rdg, e->dest, partition, loops, processed,
+ part_has_writes);
+ }
+}
+
+/* Flag the uses of U stopping following the information from
+ upstream_mem_writes. */
+
+static void
+rdg_flag_uses (struct graph *rdg, int u, bitmap partition, bitmap loops,
+ bitmap processed, bool *part_has_writes)
+{
+ ssa_op_iter iter;
+ use_operand_p use_p;
+ struct vertex *x = &(rdg->vertices[u]);
+ gimple stmt = RDGV_STMT (x);
+ struct graph_edge *anti_dep = has_anti_dependence (x);
+
+ /* Keep in the same partition the destination of an antidependence,
+ because this is a store to the exact same location. Putting this
+ in another partition is bad for cache locality. */
+ if (anti_dep)
+ {
+ int v = anti_dep->dest;
+
+ if (!already_processed_vertex_p (processed, v))
+ rdg_flag_vertex_and_dependent (rdg, v, partition, loops,
+ processed, part_has_writes);
+ }
+
+ if (gimple_code (stmt) != GIMPLE_PHI)
+ {
+ FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_VIRTUAL_USES)
+ {
+ tree use = USE_FROM_PTR (use_p);
+
+ if (TREE_CODE (use) == SSA_NAME)
+ {
+ gimple def_stmt = SSA_NAME_DEF_STMT (use);
+ int v = rdg_vertex_for_stmt (rdg, def_stmt);
+
+ if (v >= 0
+ && !already_processed_vertex_p (processed, v))
+ rdg_flag_vertex_and_dependent (rdg, v, partition, loops,
+ processed, part_has_writes);
+ }
+ }
+ }
+
+ if (is_gimple_assign (stmt) && has_upstream_mem_writes (u))
+ {
+ tree op0 = gimple_assign_lhs (stmt);
+
+ /* Scalar channels don't have enough space for transmitting data
+ between tasks, unless we add more storage by privatizing. */
+ if (is_gimple_reg (op0))
+ {
+ use_operand_p use_p;
+ imm_use_iterator iter;
+
+ FOR_EACH_IMM_USE_FAST (use_p, iter, op0)
+ {
+ int v = rdg_vertex_for_stmt (rdg, USE_STMT (use_p));
+
+ if (!already_processed_vertex_p (processed, v))
+ rdg_flag_vertex_and_dependent (rdg, v, partition, loops,
+ processed, part_has_writes);
+ }
+ }
+ }
+}
+
+/* Flag V from RDG as part of PARTITION, and also flag its loop number
+ in LOOPS. */
+
+static void
+rdg_flag_vertex (struct graph *rdg, int v, bitmap partition, bitmap loops,
+ bool *part_has_writes)
+{
+ struct loop *loop;
+
+ if (bitmap_bit_p (partition, v))
+ return;
+
+ loop = loop_containing_stmt (RDG_STMT (rdg, v));
+ bitmap_set_bit (loops, loop->num);
+ bitmap_set_bit (partition, v);
+
+ if (rdg_cannot_recompute_vertex_p (rdg, v))
+ {
+ *part_has_writes = true;
+ bitmap_clear_bit (remaining_stmts, v);
+ }
+}
+
+/* Flag in the bitmap PARTITION the vertex V and all its predecessors.
+ Also flag their loop number in LOOPS. */
+
+static void
+rdg_flag_vertex_and_dependent (struct graph *rdg, int v, bitmap partition,
+ bitmap loops, bitmap processed,
+ bool *part_has_writes)
+{
+ unsigned i;
+ VEC (int, heap) *nodes = VEC_alloc (int, heap, 3);
+ int x;
+
+ bitmap_set_bit (processed, v);
+ rdg_flag_uses (rdg, v, partition, loops, processed, part_has_writes);
+ graphds_dfs (rdg, &v, 1, &nodes, false, remaining_stmts);
+ rdg_flag_vertex (rdg, v, partition, loops, part_has_writes);
+
+ for (i = 0; VEC_iterate (int, nodes, i, x); i++)
+ if (!already_processed_vertex_p (processed, x))
+ rdg_flag_vertex_and_dependent (rdg, x, partition, loops, processed,
+ part_has_writes);
+
+ VEC_free (int, heap, nodes);
+}
+
+/* Initialize CONDS with all the condition statements from the basic
+ blocks of LOOP. */
+
+static void
+collect_condition_stmts (struct loop *loop, VEC (gimple, heap) **conds)
+{
+ unsigned i;
+ edge e;
+ VEC (edge, heap) *exits = get_loop_exit_edges (loop);
+
+ for (i = 0; VEC_iterate (edge, exits, i, e); i++)
+ {
+ gimple cond = last_stmt (e->src);
+
+ if (cond)
+ VEC_safe_push (gimple, heap, *conds, cond);
+ }
+
+ VEC_free (edge, heap, exits);
+}
+
+/* Add to PARTITION all the exit condition statements for LOOPS
+ together with all their dependent statements determined from
+ RDG. */
+
+static void
+rdg_flag_loop_exits (struct graph *rdg, bitmap loops, bitmap partition,
+ bitmap processed, bool *part_has_writes)
+{
+ unsigned i;
+ bitmap_iterator bi;
+ VEC (gimple, heap) *conds = VEC_alloc (gimple, heap, 3);
+
+ EXECUTE_IF_SET_IN_BITMAP (loops, 0, i, bi)
+ collect_condition_stmts (get_loop (i), &conds);
+
+ while (!VEC_empty (gimple, conds))
+ {
+ gimple cond = VEC_pop (gimple, conds);
+ int v = rdg_vertex_for_stmt (rdg, cond);
+ bitmap new_loops = BITMAP_ALLOC (NULL);
+
+ if (!already_processed_vertex_p (processed, v))
+ rdg_flag_vertex_and_dependent (rdg, v, partition, new_loops, processed,
+ part_has_writes);
+
+ EXECUTE_IF_SET_IN_BITMAP (new_loops, 0, i, bi)
+ if (!bitmap_bit_p (loops, i))
+ {
+ bitmap_set_bit (loops, i);
+ collect_condition_stmts (get_loop (i), &conds);
+ }
+
+ BITMAP_FREE (new_loops);
+ }
+}
+
+/* Flag all the nodes of RDG containing memory accesses that could
+ potentially belong to arrays already accessed in the current
+ PARTITION. */
+
+static void
+rdg_flag_similar_memory_accesses (struct graph *rdg, bitmap partition,
+ bitmap loops, bitmap processed,
+ VEC (int, heap) **other_stores)
+{
+ bool foo;
+ unsigned i, n;
+ int j, k, kk;
+ bitmap_iterator ii;
+ struct graph_edge *e;
+
+ EXECUTE_IF_SET_IN_BITMAP (partition, 0, i, ii)
+ if (RDG_MEM_WRITE_STMT (rdg, i)
+ || RDG_MEM_READS_STMT (rdg, i))
+ {
+ for (j = 0; j < rdg->n_vertices; j++)
+ if (!bitmap_bit_p (processed, j)
+ && (RDG_MEM_WRITE_STMT (rdg, j)
+ || RDG_MEM_READS_STMT (rdg, j))
+ && rdg_has_similar_memory_accesses (rdg, i, j))
+ {
+ /* Flag first the node J itself, and all the nodes that
+ are needed to compute J. */
+ rdg_flag_vertex_and_dependent (rdg, j, partition, loops,
+ processed, &foo);
+
+ /* When J is a read, we want to coalesce in the same
+ PARTITION all the nodes that are using J: this is
+ needed for better cache locality. */
+ rdg_flag_all_uses (rdg, j, partition, loops, processed, &foo);
+
+ /* Remove from OTHER_STORES the vertex that we flagged. */
+ if (RDG_MEM_WRITE_STMT (rdg, j))
+ for (k = 0; VEC_iterate (int, *other_stores, k, kk); k++)
+ if (kk == j)
+ {
+ VEC_unordered_remove (int, *other_stores, k);
+ break;
+ }
+ }
+
+ /* If the node I has two uses, then keep these together in the
+ same PARTITION. */
+ for (n = 0, e = rdg->vertices[i].succ; e; e = e->succ_next, n++);
+
+ if (n > 1)
+ rdg_flag_all_uses (rdg, i, partition, loops, processed, &foo);
+ }
+}
+
+/* Returns a bitmap in which all the statements needed for computing
+ the strongly connected component C of the RDG are flagged, also
+ including the loop exit conditions. */
+
+static bitmap
+build_rdg_partition_for_component (struct graph *rdg, rdgc c,
+ bool *part_has_writes,
+ VEC (int, heap) **other_stores)
+{
+ int i, v;
+ bitmap partition = BITMAP_ALLOC (NULL);
+ bitmap loops = BITMAP_ALLOC (NULL);
+ bitmap processed = BITMAP_ALLOC (NULL);
+
+ for (i = 0; VEC_iterate (int, c->vertices, i, v); i++)
+ if (!already_processed_vertex_p (processed, v))
+ rdg_flag_vertex_and_dependent (rdg, v, partition, loops, processed,
+ part_has_writes);
+
+ /* Also iterate on the array of stores not in the starting vertices,
+ and determine those vertices that have some memory affinity with
+ the current nodes in the component: these are stores to the same
+ arrays, i.e. we're taking care of cache locality. */
+ rdg_flag_similar_memory_accesses (rdg, partition, loops, processed,
+ other_stores);
+
+ rdg_flag_loop_exits (rdg, loops, partition, processed, part_has_writes);
+
+ BITMAP_FREE (processed);
+ BITMAP_FREE (loops);
+ return partition;
+}
+
+/* Free memory for COMPONENTS. */
+
+static void
+free_rdg_components (VEC (rdgc, heap) *components)
+{
+ int i;
+ rdgc x;
+
+ for (i = 0; VEC_iterate (rdgc, components, i, x); i++)
+ {
+ VEC_free (int, heap, x->vertices);
+ free (x);
+ }
+}
+
+/* Build the COMPONENTS vector with the strongly connected components
+ of RDG in which the STARTING_VERTICES occur. */
+
+static void
+rdg_build_components (struct graph *rdg, VEC (int, heap) *starting_vertices,
+ VEC (rdgc, heap) **components)
+{
+ int i, v;
+ bitmap saved_components = BITMAP_ALLOC (NULL);
+ int n_components = graphds_scc (rdg, NULL);
+ VEC (int, heap) **all_components = XNEWVEC (VEC (int, heap) *, n_components);
+
+ for (i = 0; i < n_components; i++)
+ all_components[i] = VEC_alloc (int, heap, 3);
+
+ for (i = 0; i < rdg->n_vertices; i++)
+ VEC_safe_push (int, heap, all_components[rdg->vertices[i].component], i);
+
+ for (i = 0; VEC_iterate (int, starting_vertices, i, v); i++)
+ {
+ int c = rdg->vertices[v].component;
+
+ if (!bitmap_bit_p (saved_components, c))
+ {
+ rdgc x = XCNEW (struct rdg_component);
+ x->num = c;
+ x->vertices = all_components[c];
+
+ VEC_safe_push (rdgc, heap, *components, x);
+ bitmap_set_bit (saved_components, c);
+ }
+ }
+
+ for (i = 0; i < n_components; i++)
+ if (!bitmap_bit_p (saved_components, i))
+ VEC_free (int, heap, all_components[i]);
+
+ free (all_components);
+ BITMAP_FREE (saved_components);
+}
+
+/* Aggregate several components into a useful partition that is
+ registered in the PARTITIONS vector. Partitions will be
+ distributed in different loops. */
+
+static void
+rdg_build_partitions (struct graph *rdg, VEC (rdgc, heap) *components,
+ VEC (int, heap) **other_stores,
+ VEC (bitmap, heap) **partitions, bitmap processed)
+{
+ int i;
+ rdgc x;
+ bitmap partition = BITMAP_ALLOC (NULL);
+
+ for (i = 0; VEC_iterate (rdgc, components, i, x); i++)
+ {
+ bitmap np;
+ bool part_has_writes = false;
+ int v = VEC_index (int, x->vertices, 0);
+
+ if (bitmap_bit_p (processed, v))
+ continue;
+
+ np = build_rdg_partition_for_component (rdg, x, &part_has_writes,
+ other_stores);
+ bitmap_ior_into (partition, np);
+ bitmap_ior_into (processed, np);
+ BITMAP_FREE (np);
+
+ if (part_has_writes)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "ldist useful partition:\n");
+ dump_bitmap (dump_file, partition);
+ }
+
+ VEC_safe_push (bitmap, heap, *partitions, partition);
+ partition = BITMAP_ALLOC (NULL);
+ }
+ }
+
+ /* Add the nodes from the RDG that were not marked as processed, and
+ that are used outside the current loop. These are scalar
+ computations that are not yet part of previous partitions. */
+ for (i = 0; i < rdg->n_vertices; i++)
+ if (!bitmap_bit_p (processed, i)
+ && rdg_defs_used_in_other_loops_p (rdg, i))
+ VEC_safe_push (int, heap, *other_stores, i);
+
+ /* If there are still statements left in the OTHER_STORES array,
+ create other components and partitions with these stores and
+ their dependences. */
+ if (VEC_length (int, *other_stores) > 0)
+ {
+ VEC (rdgc, heap) *comps = VEC_alloc (rdgc, heap, 3);
+ VEC (int, heap) *foo = VEC_alloc (int, heap, 3);
+
+ rdg_build_components (rdg, *other_stores, &comps);
+ rdg_build_partitions (rdg, comps, &foo, partitions, processed);
+
+ VEC_free (int, heap, foo);
+ free_rdg_components (comps);
+ }
+
+ /* If there is something left in the last partition, save it. */
+ if (bitmap_count_bits (partition) > 0)
+ VEC_safe_push (bitmap, heap, *partitions, partition);
+ else
+ BITMAP_FREE (partition);
+}
+
+/* Dump to FILE the PARTITIONS. */
+
+static void
+dump_rdg_partitions (FILE *file, VEC (bitmap, heap) *partitions)
+{
+ int i;
+ bitmap partition;
+
+ for (i = 0; VEC_iterate (bitmap, partitions, i, partition); i++)
+ debug_bitmap_file (file, partition);
+}
+
+/* Debug PARTITIONS. */
+extern void debug_rdg_partitions (VEC (bitmap, heap) *);
+
+void
+debug_rdg_partitions (VEC (bitmap, heap) *partitions)
+{
+ dump_rdg_partitions (stderr, partitions);
+}
+
+/* Returns the number of read and write operations in the RDG. */
+
+static int
+number_of_rw_in_rdg (struct graph *rdg)
+{
+ int i, res = 0;
+
+ for (i = 0; i < rdg->n_vertices; i++)
+ {
+ if (RDG_MEM_WRITE_STMT (rdg, i))
+ ++res;
+
+ if (RDG_MEM_READS_STMT (rdg, i))
+ ++res;
+ }
+
+ return res;
+}
+
+/* Returns the number of read and write operations in a PARTITION of
+ the RDG. */
+
+static int
+number_of_rw_in_partition (struct graph *rdg, bitmap partition)
+{
+ int res = 0;
+ unsigned i;
+ bitmap_iterator ii;
+
+ EXECUTE_IF_SET_IN_BITMAP (partition, 0, i, ii)
+ {
+ if (RDG_MEM_WRITE_STMT (rdg, i))
+ ++res;
+
+ if (RDG_MEM_READS_STMT (rdg, i))
+ ++res;
+ }
+
+ return res;
+}
+
+/* Returns true when one of the PARTITIONS contains all the read or
+ write operations of RDG. */
+
+static bool
+partition_contains_all_rw (struct graph *rdg, VEC (bitmap, heap) *partitions)
+{
+ int i;
+ bitmap partition;
+ int nrw = number_of_rw_in_rdg (rdg);
+
+ for (i = 0; VEC_iterate (bitmap, partitions, i, partition); i++)
+ if (nrw == number_of_rw_in_partition (rdg, partition))
+ return true;
+
+ return false;
+}
+
+/* Generate code from STARTING_VERTICES in RDG. Returns the number of
+ distributed loops. */
+
+static int
+ldist_gen (struct loop *loop, struct graph *rdg,
+ VEC (int, heap) *starting_vertices)
+{
+ int i, nbp;
+ VEC (rdgc, heap) *components = VEC_alloc (rdgc, heap, 3);
+ VEC (bitmap, heap) *partitions = VEC_alloc (bitmap, heap, 3);
+ VEC (int, heap) *other_stores = VEC_alloc (int, heap, 3);
+ bitmap partition, processed = BITMAP_ALLOC (NULL);
+
+ remaining_stmts = BITMAP_ALLOC (NULL);
+ upstream_mem_writes = BITMAP_ALLOC (NULL);
+
+ for (i = 0; i < rdg->n_vertices; i++)
+ {
+ bitmap_set_bit (remaining_stmts, i);
+
+ /* Save in OTHER_STORES all the memory writes that are not in
+ STARTING_VERTICES. */
+ if (RDG_MEM_WRITE_STMT (rdg, i))
+ {
+ int v;
+ unsigned j;
+ bool found = false;
+
+ for (j = 0; VEC_iterate (int, starting_vertices, j, v); j++)
+ if (i == v)
+ {
+ found = true;
+ break;
+ }
+
+ if (!found)
+ VEC_safe_push (int, heap, other_stores, i);
+ }
+ }
+
+ mark_nodes_having_upstream_mem_writes (rdg);
+ rdg_build_components (rdg, starting_vertices, &components);
+ rdg_build_partitions (rdg, components, &other_stores, &partitions,
+ processed);
+ BITMAP_FREE (processed);
+ nbp = VEC_length (bitmap, partitions);
+
+ if (nbp <= 1
+ || partition_contains_all_rw (rdg, partitions))
+ goto ldist_done;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ dump_rdg_partitions (dump_file, partitions);
+
+ for (i = 0; VEC_iterate (bitmap, partitions, i, partition); i++)
+ if (!generate_code_for_partition (loop, partition, i < nbp - 1))
+ goto ldist_done;
+
+ rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
+ update_ssa (TODO_update_ssa_only_virtuals | TODO_update_ssa);
+
+ ldist_done:
+
+ BITMAP_FREE (remaining_stmts);
+ BITMAP_FREE (upstream_mem_writes);
+
+ for (i = 0; VEC_iterate (bitmap, partitions, i, partition); i++)
+ BITMAP_FREE (partition);
+
+ VEC_free (int, heap, other_stores);
+ VEC_free (bitmap, heap, partitions);
+ free_rdg_components (components);
+ return nbp;
+}
+
+/* Distributes the code from LOOP in such a way that producer
+ statements are placed before consumer statements. When STMTS is
+ NULL, performs the maximal distribution, if STMTS is not NULL,
+ tries to separate only these statements from the LOOP's body.
+ Returns the number of distributed loops. */
+
+static int
+distribute_loop (struct loop *loop, VEC (gimple, heap) *stmts)
+{
+ bool res = false;
+ struct graph *rdg;
+ gimple s;
+ unsigned i;
+ VEC (int, heap) *vertices;
+
+ if (loop->num_nodes > 2)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ "FIXME: Loop %d not distributed: it has more than two basic blocks.\n",
+ loop->num);
+
+ return res;
+ }
+
+ rdg = build_rdg (loop);
+
+ if (!rdg)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ "FIXME: Loop %d not distributed: failed to build the RDG.\n",
+ loop->num);
+
+ return res;
+ }
+
+ vertices = VEC_alloc (int, heap, 3);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ dump_rdg (dump_file, rdg);
+
+ for (i = 0; VEC_iterate (gimple, stmts, i, s); i++)
+ {
+ int v = rdg_vertex_for_stmt (rdg, s);
+
+ if (v >= 0)
+ {
+ VEC_safe_push (int, heap, vertices, v);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ "ldist asked to generate code for vertex %d\n", v);
+ }
+ }
+
+ res = ldist_gen (loop, rdg, vertices);
+ VEC_free (int, heap, vertices);
+ free_rdg (rdg);
+
+ return res;
+}
+
+/* Distribute all loops in the current function. */
+
+static unsigned int
+tree_loop_distribution (void)
+{
+ struct loop *loop;
+ loop_iterator li;
+ int nb_generated_loops = 0;
+
+ todo = 0;
+
+ FOR_EACH_LOOP (li, loop, 0)
+ {
+ VEC (gimple, heap) *work_list = VEC_alloc (gimple, heap, 3);
+
+ /* With the following working list, we're asking distribute_loop
+ to separate the stores of the loop: when dependences allow,
+ it will end on having one store per loop. */
+ stores_from_loop (loop, &work_list);
+
+ /* A simple heuristic for cache locality is to not split stores
+ to the same array. Without this call, an unrolled loop would
+ be split into as many loops as unroll factor, each loop
+ storing in the same array. */
+ remove_similar_memory_refs (&work_list);
+
+ nb_generated_loops = distribute_loop (loop, work_list);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ if (nb_generated_loops > 1)
+ fprintf (dump_file, "Loop %d distributed: split to %d loops.\n",
+ loop->num, nb_generated_loops);
+ else
+ fprintf (dump_file, "Loop %d is the same.\n", loop->num);
+ }
+
+ verify_loop_structure ();
+
+ VEC_free (gimple, heap, work_list);
+ }
+
+ return todo;
+}
+
+static bool
+gate_tree_loop_distribution (void)
+{
+ return flag_tree_loop_distribution != 0;
+}
+
+struct gimple_opt_pass pass_loop_distribution =
+{
+ {
+ GIMPLE_PASS,
+ "ldist", /* name */
+ gate_tree_loop_distribution, /* gate */
+ tree_loop_distribution, /* execute */
+ NULL, /* sub */
+ NULL, /* next */
+ 0, /* static_pass_number */
+ TV_TREE_LOOP_DISTRIBUTION, /* tv_id */
+ PROP_cfg | PROP_ssa, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ TODO_dump_func | TODO_verify_loops /* todo_flags_finish */
+ }
+};