aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.3.1/libgcc/config/libbid/bid64_to_uint64.c
diff options
context:
space:
mode:
authorDan Albert <danalbert@google.com>2015-06-17 11:09:54 -0700
committerDan Albert <danalbert@google.com>2015-06-17 14:15:22 -0700
commitf378ebf14df0952eae870c9865bab8326aa8f137 (patch)
tree31794503eb2a8c64ea5f313b93100f1163afcffb /gcc-4.3.1/libgcc/config/libbid/bid64_to_uint64.c
parent2c58169824949d3a597d9fa81931e001ef9b1bd0 (diff)
downloadtoolchain_gcc-f378ebf14df0952eae870c9865bab8326aa8f137.tar.gz
toolchain_gcc-f378ebf14df0952eae870c9865bab8326aa8f137.tar.bz2
toolchain_gcc-f378ebf14df0952eae870c9865bab8326aa8f137.zip
Delete old versions of GCC.
Change-Id: I710f125d905290e1024cbd67f48299861790c66c
Diffstat (limited to 'gcc-4.3.1/libgcc/config/libbid/bid64_to_uint64.c')
-rw-r--r--gcc-4.3.1/libgcc/config/libbid/bid64_to_uint64.c2278
1 files changed, 0 insertions, 2278 deletions
diff --git a/gcc-4.3.1/libgcc/config/libbid/bid64_to_uint64.c b/gcc-4.3.1/libgcc/config/libbid/bid64_to_uint64.c
deleted file mode 100644
index 7b1d31f8d..000000000
--- a/gcc-4.3.1/libgcc/config/libbid/bid64_to_uint64.c
+++ /dev/null
@@ -1,2278 +0,0 @@
-/* Copyright (C) 2007 Free Software Foundation, Inc.
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 2, or (at your option) any later
-version.
-
-In addition to the permissions in the GNU General Public License, the
-Free Software Foundation gives you unlimited permission to link the
-compiled version of this file into combinations with other programs,
-and to distribute those combinations without any restriction coming
-from the use of this file. (The General Public License restrictions
-do apply in other respects; for example, they cover modification of
-the file, and distribution when not linked into a combine
-executable.)
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING. If not, write to the Free
-Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
-02110-1301, USA. */
-
-#include "bid_internal.h"
-
-/*****************************************************************************
- * BID64_to_uint64_rnint
- ****************************************************************************/
-
-#if DECIMAL_CALL_BY_REFERENCE
-void
-bid64_to_uint64_rnint (UINT64 * pres, UINT64 * px
- _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
- _EXC_INFO_PARAM) {
- UINT64 x = *px;
-#else
-UINT64
-bid64_to_uint64_rnint (UINT64 x
- _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
- _EXC_INFO_PARAM) {
-#endif
- UINT64 res;
- UINT64 x_sign;
- UINT64 x_exp;
- int exp; // unbiased exponent
- // Note: C1 represents x_significand (UINT64)
- BID_UI64DOUBLE tmp1;
- unsigned int x_nr_bits;
- int q, ind, shift;
- UINT64 C1;
- UINT128 C;
- UINT64 Cstar; // C* represents up to 16 decimal digits ~ 54 bits
- UINT128 fstar;
- UINT128 P128;
-
- // check for NaN or Infinity
- if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) {
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- }
- // unpack x
- x_sign = x & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
- // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
- if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
- x_exp = (x & MASK_BINARY_EXPONENT2) >> 51; // biased
- C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
- if (C1 > 9999999999999999ull) { // non-canonical
- x_exp = 0;
- C1 = 0;
- }
- } else {
- x_exp = (x & MASK_BINARY_EXPONENT1) >> 53; // biased
- C1 = x & MASK_BINARY_SIG1;
- }
-
- // check for zeros (possibly from non-canonical values)
- if (C1 == 0x0ull) {
- // x is 0
- res = 0x0000000000000000ull;
- BID_RETURN (res);
- }
- // x is not special and is not zero
-
- // q = nr. of decimal digits in x (1 <= q <= 54)
- // determine first the nr. of bits in x
- if (C1 >= 0x0020000000000000ull) { // x >= 2^53
- // split the 64-bit value in two 32-bit halves to avoid rounding errors
- if (C1 >= 0x0000000100000000ull) { // x >= 2^32
- tmp1.d = (double) (C1 >> 32); // exact conversion
- x_nr_bits =
- 33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
- } else { // x < 2^32
- tmp1.d = (double) C1; // exact conversion
- x_nr_bits =
- 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
- }
- } else { // if x < 2^53
- tmp1.d = (double) C1; // exact conversion
- x_nr_bits =
- 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
- }
- q = nr_digits[x_nr_bits - 1].digits;
- if (q == 0) {
- q = nr_digits[x_nr_bits - 1].digits1;
- if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
- q++;
- }
- exp = x_exp - 398; // unbiased exponent
-
- if ((q + exp) > 20) { // x >= 10^20 ~= 2^66.45... (cannot fit in 64 bits)
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- } else if ((q + exp) == 20) { // x = c(0)c(1)...c(19).c(20)...c(q-1)
- // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
- // so x rounded to an integer may or may not fit in an unsigned 64-bit int
- // the cases that do not fit are identified here; the ones that fit
- // fall through and will be handled with other cases further,
- // under '1 <= q + exp <= 20'
- if (x_sign) { // if n < 0 and q + exp = 20 then x is much less than -1/2
- // => set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- } else { // if n > 0 and q + exp = 20
- // if n >= 2^64 - 1/2 then n is too large
- // <=> c(0)c(1)...c(19).c(20)...c(q-1) >= 2^64-1/2
- // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^20 >= 2^64-1/2
- // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^21 >= 5*(2^65-1)
- // <=> C * 10^(21-q) >= 0x9fffffffffffffffb, 1<=q<=16
- if (q == 1) {
- // C * 10^20 >= 0x9fffffffffffffffb
- __mul_128x64_to_128 (C, C1, ten2k128[0]); // 10^20 * C
- if (C.w[1] > 0x09 ||
- (C.w[1] == 0x09 && C.w[0] >= 0xfffffffffffffffbull)) {
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- }
- // else cases that can be rounded to a 64-bit int fall through
- // to '1 <= q + exp <= 20'
- } else { // if (2 <= q <= 16) => 5 <= 21 - q <= 19
- // Note: C * 10^(21-q) has 20 or 21 digits; 0x9fffffffffffffffb
- // has 21 digits
- __mul_64x64_to_128MACH (C, C1, ten2k64[21 - q]);
- if (C.w[1] > 0x09 ||
- (C.w[1] == 0x09 && C.w[0] >= 0xfffffffffffffffbull)) {
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- }
- // else cases that can be rounded to a 64-bit int fall through
- // to '1 <= q + exp <= 20'
- }
- }
- }
- // n is not too large to be converted to int64 if -1/2 <= n < 2^64 - 1/2
- // Note: some of the cases tested for above fall through to this point
- if ((q + exp) < 0) { // n = +/-0.0...c(0)c(1)...c(q-1)
- // return 0
- res = 0x0000000000000000ull;
- BID_RETURN (res);
- } else if ((q + exp) == 0) { // n = +/-0.c(0)c(1)...c(q-1)
- // if 0.c(0)c(1)...c(q-1) <= 0.5 <=> c(0)c(1)...c(q-1) <= 5 * 10^(q-1)
- // res = 0
- // else if x > 0
- // res = +1
- // else // if x < 0
- // invalid exc
- ind = q - 1; // 0 <= ind <= 15
- if (C1 <= midpoint64[ind]) {
- res = 0x0000000000000000ull; // return 0
- } else if (!x_sign) { // n > 0
- res = 0x0000000000000001ull; // return +1
- } else { // if n < 0
- res = 0x8000000000000000ull;
- *pfpsf |= INVALID_EXCEPTION;
- BID_RETURN (res);
- }
- } else { // if (1 <= q + exp <= 20, 1 <= q <= 16, -15 <= exp <= 19)
- // x <= -1 or 1 <= x < 2^64-1/2 so if positive x can be rounded
- // to nearest to a 64-bit unsigned signed integer
- if (x_sign) { // x <= -1
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- }
- // 1 <= x < 2^64-1/2 so x can be rounded
- // to nearest to a 64-bit unsigned integer
- if (exp < 0) { // 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 20
- ind = -exp; // 1 <= ind <= 15; ind is a synonym for 'x'
- // chop off ind digits from the lower part of C1
- // C1 = C1 + 1/2 * 10^ind where the result C1 fits in 64 bits
- C1 = C1 + midpoint64[ind - 1];
- // calculate C* and f*
- // C* is actually floor(C*) in this case
- // C* and f* need shifting and masking, as shown by
- // shiftright128[] and maskhigh128[]
- // 1 <= x <= 15
- // kx = 10^(-x) = ten2mk64[ind - 1]
- // C* = (C1 + 1/2 * 10^x) * 10^(-x)
- // the approximation of 10^(-x) was rounded up to 54 bits
- __mul_64x64_to_128MACH (P128, C1, ten2mk64[ind - 1]);
- Cstar = P128.w[1];
- fstar.w[1] = P128.w[1] & maskhigh128[ind - 1];
- fstar.w[0] = P128.w[0];
- // the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind].w[0], e.g.
- // if x=1, T*=ten2mk128trunc[0].w[0]=0x1999999999999999
- // if (0 < f* < 10^(-x)) then the result is a midpoint
- // if floor(C*) is even then C* = floor(C*) - logical right
- // shift; C* has p decimal digits, correct by Prop. 1)
- // else if floor(C*) is odd C* = floor(C*)-1 (logical right
- // shift; C* has p decimal digits, correct by Pr. 1)
- // else
- // C* = floor(C*) (logical right shift; C has p decimal digits,
- // correct by Property 1)
- // n = C* * 10^(e+x)
-
- // shift right C* by Ex-64 = shiftright128[ind]
- shift = shiftright128[ind - 1]; // 0 <= shift <= 39
- Cstar = Cstar >> shift;
-
- // if the result was a midpoint it was rounded away from zero, so
- // it will need a correction
- // check for midpoints
- if ((fstar.w[1] == 0) && fstar.w[0] &&
- (fstar.w[0] <= ten2mk128trunc[ind - 1].w[1])) {
- // ten2mk128trunc[ind -1].w[1] is identical to
- // ten2mk128[ind -1].w[1]
- // the result is a midpoint; round to nearest
- if (Cstar & 0x01) { // Cstar is odd; MP in [EVEN, ODD]
- // if floor(C*) is odd C = floor(C*) - 1; the result >= 1
- Cstar--; // Cstar is now even
- } // else MP in [ODD, EVEN]
- }
- res = Cstar; // the result is positive
- } else if (exp == 0) {
- // 1 <= q <= 10
- // res = +C (exact)
- res = C1; // the result is positive
- } else { // if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10
- // res = +C * 10^exp (exact)
- res = C1 * ten2k64[exp]; // the result is positive
- }
- }
- BID_RETURN (res);
-}
-
-/*****************************************************************************
- * BID64_to_uint64_xrnint
- ****************************************************************************/
-
-#if DECIMAL_CALL_BY_REFERENCE
-void
-bid64_to_uint64_xrnint (UINT64 * pres, UINT64 * px
- _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
- _EXC_INFO_PARAM) {
- UINT64 x = *px;
-#else
-UINT64
-bid64_to_uint64_xrnint (UINT64 x
- _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
- _EXC_INFO_PARAM) {
-#endif
- UINT64 res;
- UINT64 x_sign;
- UINT64 x_exp;
- int exp; // unbiased exponent
- // Note: C1 represents x_significand (UINT64)
- UINT64 tmp64;
- BID_UI64DOUBLE tmp1;
- unsigned int x_nr_bits;
- int q, ind, shift;
- UINT64 C1;
- UINT128 C;
- UINT64 Cstar; // C* represents up to 16 decimal digits ~ 54 bits
- UINT128 fstar;
- UINT128 P128;
-
- // check for NaN or Infinity
- if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) {
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- }
- // unpack x
- x_sign = x & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
- // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
- if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
- x_exp = (x & MASK_BINARY_EXPONENT2) >> 51; // biased
- C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
- if (C1 > 9999999999999999ull) { // non-canonical
- x_exp = 0;
- C1 = 0;
- }
- } else {
- x_exp = (x & MASK_BINARY_EXPONENT1) >> 53; // biased
- C1 = x & MASK_BINARY_SIG1;
- }
-
- // check for zeros (possibly from non-canonical values)
- if (C1 == 0x0ull) {
- // x is 0
- res = 0x0000000000000000ull;
- BID_RETURN (res);
- }
- // x is not special and is not zero
-
- // q = nr. of decimal digits in x (1 <= q <= 54)
- // determine first the nr. of bits in x
- if (C1 >= 0x0020000000000000ull) { // x >= 2^53
- // split the 64-bit value in two 32-bit halves to avoid rounding errors
- if (C1 >= 0x0000000100000000ull) { // x >= 2^32
- tmp1.d = (double) (C1 >> 32); // exact conversion
- x_nr_bits =
- 33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
- } else { // x < 2^32
- tmp1.d = (double) C1; // exact conversion
- x_nr_bits =
- 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
- }
- } else { // if x < 2^53
- tmp1.d = (double) C1; // exact conversion
- x_nr_bits =
- 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
- }
- q = nr_digits[x_nr_bits - 1].digits;
- if (q == 0) {
- q = nr_digits[x_nr_bits - 1].digits1;
- if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
- q++;
- }
- exp = x_exp - 398; // unbiased exponent
-
- if ((q + exp) > 20) { // x >= 10^20 ~= 2^66.45... (cannot fit in 64 bits)
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- } else if ((q + exp) == 20) { // x = c(0)c(1)...c(19).c(20)...c(q-1)
- // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
- // so x rounded to an integer may or may not fit in an unsigned 64-bit int
- // the cases that do not fit are identified here; the ones that fit
- // fall through and will be handled with other cases further,
- // under '1 <= q + exp <= 20'
- if (x_sign) { // if n < 0 and q + exp = 20 then x is much less than -1/2
- // => set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- } else { // if n > 0 and q + exp = 20
- // if n >= 2^64 - 1/2 then n is too large
- // <=> c(0)c(1)...c(19).c(20)...c(q-1) >= 2^64-1/2
- // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^20 >= 2^64-1/2
- // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^21 >= 5*(2^65-1)
- // <=> C * 10^(21-q) >= 0x9fffffffffffffffb, 1<=q<=16
- if (q == 1) {
- // C * 10^20 >= 0x9fffffffffffffffb
- __mul_128x64_to_128 (C, C1, ten2k128[0]); // 10^20 * C
- if (C.w[1] > 0x09 ||
- (C.w[1] == 0x09 && C.w[0] >= 0xfffffffffffffffbull)) {
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- }
- // else cases that can be rounded to a 64-bit int fall through
- // to '1 <= q + exp <= 20'
- } else { // if (2 <= q <= 16) => 5 <= 21 - q <= 19
- // Note: C * 10^(21-q) has 20 or 21 digits; 0x9fffffffffffffffb
- // has 21 digits
- __mul_64x64_to_128MACH (C, C1, ten2k64[21 - q]);
- if (C.w[1] > 0x09 ||
- (C.w[1] == 0x09 && C.w[0] >= 0xfffffffffffffffbull)) {
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- }
- // else cases that can be rounded to a 64-bit int fall through
- // to '1 <= q + exp <= 20'
- }
- }
- }
- // n is not too large to be converted to int64 if -1/2 <= n < 2^64 - 1/2
- // Note: some of the cases tested for above fall through to this point
- if ((q + exp) < 0) { // n = +/-0.0...c(0)c(1)...c(q-1)
- // set inexact flag
- *pfpsf |= INEXACT_EXCEPTION;
- // return 0
- res = 0x0000000000000000ull;
- BID_RETURN (res);
- } else if ((q + exp) == 0) { // n = +/-0.c(0)c(1)...c(q-1)
- // if 0.c(0)c(1)...c(q-1) <= 0.5 <=> c(0)c(1)...c(q-1) <= 5 * 10^(q-1)
- // res = 0
- // else if x > 0
- // res = +1
- // else // if x < 0
- // invalid exc
- ind = q - 1; // 0 <= ind <= 15
- if (C1 <= midpoint64[ind]) {
- res = 0x0000000000000000ull; // return 0
- } else if (!x_sign) { // n > 0
- res = 0x0000000000000001ull; // return +1
- } else { // if n < 0
- res = 0x8000000000000000ull;
- *pfpsf |= INVALID_EXCEPTION;
- BID_RETURN (res);
- }
- // set inexact flag
- *pfpsf |= INEXACT_EXCEPTION;
- } else { // if (1 <= q + exp <= 20, 1 <= q <= 16, -15 <= exp <= 19)
- // x <= -1 or 1 <= x < 2^64-1/2 so if positive x can be rounded
- // to nearest to a 64-bit unsigned signed integer
- if (x_sign) { // x <= -1
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- }
- // 1 <= x < 2^64-1/2 so x can be rounded
- // to nearest to a 64-bit unsigned integer
- if (exp < 0) { // 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 20
- ind = -exp; // 1 <= ind <= 15; ind is a synonym for 'x'
- // chop off ind digits from the lower part of C1
- // C1 = C1 + 1/2 * 10^ind where the result C1 fits in 64 bits
- C1 = C1 + midpoint64[ind - 1];
- // calculate C* and f*
- // C* is actually floor(C*) in this case
- // C* and f* need shifting and masking, as shown by
- // shiftright128[] and maskhigh128[]
- // 1 <= x <= 15
- // kx = 10^(-x) = ten2mk64[ind - 1]
- // C* = (C1 + 1/2 * 10^x) * 10^(-x)
- // the approximation of 10^(-x) was rounded up to 54 bits
- __mul_64x64_to_128MACH (P128, C1, ten2mk64[ind - 1]);
- Cstar = P128.w[1];
- fstar.w[1] = P128.w[1] & maskhigh128[ind - 1];
- fstar.w[0] = P128.w[0];
- // the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind].w[0], e.g.
- // if x=1, T*=ten2mk128trunc[0].w[0]=0x1999999999999999
- // if (0 < f* < 10^(-x)) then the result is a midpoint
- // if floor(C*) is even then C* = floor(C*) - logical right
- // shift; C* has p decimal digits, correct by Prop. 1)
- // else if floor(C*) is odd C* = floor(C*)-1 (logical right
- // shift; C* has p decimal digits, correct by Pr. 1)
- // else
- // C* = floor(C*) (logical right shift; C has p decimal digits,
- // correct by Property 1)
- // n = C* * 10^(e+x)
-
- // shift right C* by Ex-64 = shiftright128[ind]
- shift = shiftright128[ind - 1]; // 0 <= shift <= 39
- Cstar = Cstar >> shift;
- // determine inexactness of the rounding of C*
- // if (0 < f* - 1/2 < 10^(-x)) then
- // the result is exact
- // else // if (f* - 1/2 > T*) then
- // the result is inexact
- if (ind - 1 <= 2) { // fstar.w[1] is 0
- if (fstar.w[0] > 0x8000000000000000ull) {
- // f* > 1/2 and the result may be exact
- tmp64 = fstar.w[0] - 0x8000000000000000ull; // f* - 1/2
- if ((tmp64 > ten2mk128trunc[ind - 1].w[1])) {
- // ten2mk128trunc[ind -1].w[1] is identical to
- // ten2mk128[ind -1].w[1]
- // set the inexact flag
- *pfpsf |= INEXACT_EXCEPTION;
- } // else the result is exact
- } else { // the result is inexact; f2* <= 1/2
- // set the inexact flag
- *pfpsf |= INEXACT_EXCEPTION;
- }
- } else { // if 3 <= ind - 1 <= 14
- if (fstar.w[1] > onehalf128[ind - 1] ||
- (fstar.w[1] == onehalf128[ind - 1] && fstar.w[0])) {
- // f2* > 1/2 and the result may be exact
- // Calculate f2* - 1/2
- tmp64 = fstar.w[1] - onehalf128[ind - 1];
- if (tmp64 || fstar.w[0] > ten2mk128trunc[ind - 1].w[1]) {
- // ten2mk128trunc[ind -1].w[1] is identical to
- // ten2mk128[ind -1].w[1]
- // set the inexact flag
- *pfpsf |= INEXACT_EXCEPTION;
- } // else the result is exact
- } else { // the result is inexact; f2* <= 1/2
- // set the inexact flag
- *pfpsf |= INEXACT_EXCEPTION;
- }
- }
-
- // if the result was a midpoint it was rounded away from zero, so
- // it will need a correction
- // check for midpoints
- if ((fstar.w[1] == 0) && fstar.w[0] &&
- (fstar.w[0] <= ten2mk128trunc[ind - 1].w[1])) {
- // ten2mk128trunc[ind -1].w[1] is identical to
- // ten2mk128[ind -1].w[1]
- // the result is a midpoint; round to nearest
- if (Cstar & 0x01) { // Cstar is odd; MP in [EVEN, ODD]
- // if floor(C*) is odd C = floor(C*) - 1; the result >= 1
- Cstar--; // Cstar is now even
- } // else MP in [ODD, EVEN]
- }
- res = Cstar; // the result is positive
- } else if (exp == 0) {
- // 1 <= q <= 10
- // res = +C (exact)
- res = C1; // the result is positive
- } else { // if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10
- // res = +C * 10^exp (exact)
- res = C1 * ten2k64[exp]; // the result is positive
- }
- }
- BID_RETURN (res);
-}
-
-/*****************************************************************************
- * BID64_to_uint64_floor
- ****************************************************************************/
-
-#if DECIMAL_CALL_BY_REFERENCE
-void
-bid64_to_uint64_floor (UINT64 * pres, UINT64 * px
- _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
- _EXC_INFO_PARAM) {
- UINT64 x = *px;
-#else
-UINT64
-bid64_to_uint64_floor (UINT64 x
- _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
- _EXC_INFO_PARAM) {
-#endif
- UINT64 res;
- UINT64 x_sign;
- UINT64 x_exp;
- int exp; // unbiased exponent
- // Note: C1 represents x_significand (UINT64)
- BID_UI64DOUBLE tmp1;
- unsigned int x_nr_bits;
- int q, ind, shift;
- UINT64 C1;
- UINT128 C;
- UINT64 Cstar; // C* represents up to 16 decimal digits ~ 54 bits
- UINT128 P128;
-
- // check for NaN or Infinity
- if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) {
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- }
- // unpack x
- x_sign = x & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
- // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
- if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
- x_exp = (x & MASK_BINARY_EXPONENT2) >> 51; // biased
- C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
- if (C1 > 9999999999999999ull) { // non-canonical
- x_exp = 0;
- C1 = 0;
- }
- } else {
- x_exp = (x & MASK_BINARY_EXPONENT1) >> 53; // biased
- C1 = x & MASK_BINARY_SIG1;
- }
-
- // check for zeros (possibly from non-canonical values)
- if (C1 == 0x0ull) {
- // x is 0
- res = 0x0000000000000000ull;
- BID_RETURN (res);
- }
- // x is not special and is not zero
-
- if (x_sign) { // if n < 0 the conversion is invalid
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- }
- // q = nr. of decimal digits in x (1 <= q <= 54)
- // determine first the nr. of bits in x
- if (C1 >= 0x0020000000000000ull) { // x >= 2^53
- // split the 64-bit value in two 32-bit halves to avoid rounding errors
- if (C1 >= 0x0000000100000000ull) { // x >= 2^32
- tmp1.d = (double) (C1 >> 32); // exact conversion
- x_nr_bits =
- 33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
- } else { // x < 2^32
- tmp1.d = (double) C1; // exact conversion
- x_nr_bits =
- 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
- }
- } else { // if x < 2^53
- tmp1.d = (double) C1; // exact conversion
- x_nr_bits =
- 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
- }
- q = nr_digits[x_nr_bits - 1].digits;
- if (q == 0) {
- q = nr_digits[x_nr_bits - 1].digits1;
- if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
- q++;
- }
- exp = x_exp - 398; // unbiased exponent
-
- if ((q + exp) > 20) { // x >= 10^20 ~= 2^66.45... (cannot fit in 64 bits)
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- } else if ((q + exp) == 20) { // x = c(0)c(1)...c(19).c(20)...c(q-1)
- // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
- // so x rounded to an integer may or may not fit in an unsigned 64-bit int
- // the cases that do not fit are identified here; the ones that fit
- // fall through and will be handled with other cases further,
- // under '1 <= q + exp <= 20'
- // n > 0 and q + exp = 20
- // if n >= 2^64 then n is too large
- // <=> c(0)c(1)...c(19).c(20)...c(q-1) >= 2^64
- // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^20 >= 2^64
- // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^21 >= 5*(2^65)
- // <=> C * 10^(21-q) >= 0xa0000000000000000, 1<=q<=16
- if (q == 1) {
- // C * 10^20 >= 0xa0000000000000000
- __mul_128x64_to_128 (C, C1, ten2k128[0]); // 10^20 * C
- if (C.w[1] >= 0x0a) {
- // actually C.w[1] == 0x0a && C.w[0] >= 0x0000000000000000ull) {
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- }
- // else cases that can be rounded to a 64-bit int fall through
- // to '1 <= q + exp <= 20'
- } else { // if (2 <= q <= 16) => 5 <= 21 - q <= 19
- // Note: C * 10^(21-q) has 20 or 21 digits; 0xa0000000000000000
- // has 21 digits
- __mul_64x64_to_128MACH (C, C1, ten2k64[21 - q]);
- if (C.w[1] >= 0x0a) {
- // actually C.w[1] == 0x0a && C.w[0] >= 0x0000000000000000ull) {
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- }
- // else cases that can be rounded to a 64-bit int fall through
- // to '1 <= q + exp <= 20'
- }
- }
- // n is not too large to be converted to int64 if -1 < n < 2^64
- // Note: some of the cases tested for above fall through to this point
- if ((q + exp) <= 0) { // n = +0.[0...0]c(0)c(1)...c(q-1)
- // return 0
- res = 0x0000000000000000ull;
- BID_RETURN (res);
- } else { // if (1 <= q + exp <= 20, 1 <= q <= 16, -15 <= exp <= 19)
- // 1 <= x < 2^64 so x can be rounded
- // to nearest to a 64-bit unsigned signed integer
- if (exp < 0) { // 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 20
- ind = -exp; // 1 <= ind <= 15; ind is a synonym for 'x'
- // chop off ind digits from the lower part of C1
- // C1 fits in 64 bits
- // calculate C* and f*
- // C* is actually floor(C*) in this case
- // C* and f* need shifting and masking, as shown by
- // shiftright128[] and maskhigh128[]
- // 1 <= x <= 15
- // kx = 10^(-x) = ten2mk64[ind - 1]
- // C* = C1 * 10^(-x)
- // the approximation of 10^(-x) was rounded up to 54 bits
- __mul_64x64_to_128MACH (P128, C1, ten2mk64[ind - 1]);
- Cstar = P128.w[1];
- // the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind].w[0], e.g.
- // if x=1, T*=ten2mk128trunc[0].w[0]=0x1999999999999999
- // C* = floor(C*) (logical right shift; C has p decimal digits,
- // correct by Property 1)
- // n = C* * 10^(e+x)
-
- // shift right C* by Ex-64 = shiftright128[ind]
- shift = shiftright128[ind - 1]; // 0 <= shift <= 39
- Cstar = Cstar >> shift;
- res = Cstar; // the result is positive
- } else if (exp == 0) {
- // 1 <= q <= 10
- // res = +C (exact)
- res = C1; // the result is positive
- } else { // if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10
- // res = +C * 10^exp (exact)
- res = C1 * ten2k64[exp]; // the result is positive
- }
- }
- BID_RETURN (res);
-}
-
-/*****************************************************************************
- * BID64_to_uint64_xfloor
- ****************************************************************************/
-
-#if DECIMAL_CALL_BY_REFERENCE
-void
-bid64_to_uint64_xfloor (UINT64 * pres, UINT64 * px
- _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
- _EXC_INFO_PARAM) {
- UINT64 x = *px;
-#else
-UINT64
-bid64_to_uint64_xfloor (UINT64 x
- _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
- _EXC_INFO_PARAM) {
-#endif
- UINT64 res;
- UINT64 x_sign;
- UINT64 x_exp;
- int exp; // unbiased exponent
- // Note: C1 represents x_significand (UINT64)
- BID_UI64DOUBLE tmp1;
- unsigned int x_nr_bits;
- int q, ind, shift;
- UINT64 C1;
- UINT128 C;
- UINT64 Cstar; // C* represents up to 16 decimal digits ~ 54 bits
- UINT128 fstar;
- UINT128 P128;
-
- // check for NaN or Infinity
- if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) {
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- }
- // unpack x
- x_sign = x & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
- // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
- if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
- x_exp = (x & MASK_BINARY_EXPONENT2) >> 51; // biased
- C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
- if (C1 > 9999999999999999ull) { // non-canonical
- x_exp = 0;
- C1 = 0;
- }
- } else {
- x_exp = (x & MASK_BINARY_EXPONENT1) >> 53; // biased
- C1 = x & MASK_BINARY_SIG1;
- }
-
- // check for zeros (possibly from non-canonical values)
- if (C1 == 0x0ull) {
- // x is 0
- res = 0x0000000000000000ull;
- BID_RETURN (res);
- }
- // x is not special and is not zero
-
- if (x_sign) { // if n < 0 the conversion is invalid
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- }
- // q = nr. of decimal digits in x (1 <= q <= 54)
- // determine first the nr. of bits in x
- if (C1 >= 0x0020000000000000ull) { // x >= 2^53
- // split the 64-bit value in two 32-bit halves to avoid rounding errors
- if (C1 >= 0x0000000100000000ull) { // x >= 2^32
- tmp1.d = (double) (C1 >> 32); // exact conversion
- x_nr_bits =
- 33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
- } else { // x < 2^32
- tmp1.d = (double) C1; // exact conversion
- x_nr_bits =
- 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
- }
- } else { // if x < 2^53
- tmp1.d = (double) C1; // exact conversion
- x_nr_bits =
- 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
- }
- q = nr_digits[x_nr_bits - 1].digits;
- if (q == 0) {
- q = nr_digits[x_nr_bits - 1].digits1;
- if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
- q++;
- }
- exp = x_exp - 398; // unbiased exponent
-
- if ((q + exp) > 20) { // x >= 10^20 ~= 2^66.45... (cannot fit in 64 bits)
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- } else if ((q + exp) == 20) { // x = c(0)c(1)...c(19).c(20)...c(q-1)
- // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
- // so x rounded to an integer may or may not fit in an unsigned 64-bit int
- // the cases that do not fit are identified here; the ones that fit
- // fall through and will be handled with other cases further,
- // under '1 <= q + exp <= 20'
- // n > 0 and q + exp = 20
- // if n >= 2^64 then n is too large
- // <=> c(0)c(1)...c(19).c(20)...c(q-1) >= 2^64
- // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^20 >= 2^64
- // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^21 >= 5*(2^65)
- // <=> C * 10^(21-q) >= 0xa0000000000000000, 1<=q<=16
- if (q == 1) {
- // C * 10^20 >= 0xa0000000000000000
- __mul_128x64_to_128 (C, C1, ten2k128[0]); // 10^20 * C
- if (C.w[1] >= 0x0a) {
- // actually C.w[1] == 0x0a && C.w[0] >= 0x0000000000000000ull) {
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- }
- // else cases that can be rounded to a 64-bit int fall through
- // to '1 <= q + exp <= 20'
- } else { // if (2 <= q <= 16) => 5 <= 21 - q <= 19
- // Note: C * 10^(21-q) has 20 or 21 digits; 0xa0000000000000000
- // has 21 digits
- __mul_64x64_to_128MACH (C, C1, ten2k64[21 - q]);
- if (C.w[1] >= 0x0a) {
- // actually C.w[1] == 0x0a && C.w[0] >= 0x0000000000000000ull) {
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- }
- // else cases that can be rounded to a 64-bit int fall through
- // to '1 <= q + exp <= 20'
- }
- }
- // n is not too large to be converted to int64 if -1 < n < 2^64
- // Note: some of the cases tested for above fall through to this point
- if ((q + exp) <= 0) { // n = +0.[0...0]c(0)c(1)...c(q-1)
- // set inexact flag
- *pfpsf |= INEXACT_EXCEPTION;
- // return 0
- res = 0x0000000000000000ull;
- BID_RETURN (res);
- } else { // if (1 <= q + exp <= 20, 1 <= q <= 16, -15 <= exp <= 19)
- // 1 <= x < 2^64 so x can be rounded
- // to nearest to a 64-bit unsigned signed integer
- if (exp < 0) { // 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 20
- ind = -exp; // 1 <= ind <= 15; ind is a synonym for 'x'
- // chop off ind digits from the lower part of C1
- // C1 fits in 64 bits
- // calculate C* and f*
- // C* is actually floor(C*) in this case
- // C* and f* need shifting and masking, as shown by
- // shiftright128[] and maskhigh128[]
- // 1 <= x <= 15
- // kx = 10^(-x) = ten2mk64[ind - 1]
- // C* = C1 * 10^(-x)
- // the approximation of 10^(-x) was rounded up to 54 bits
- __mul_64x64_to_128MACH (P128, C1, ten2mk64[ind - 1]);
- Cstar = P128.w[1];
- fstar.w[1] = P128.w[1] & maskhigh128[ind - 1];
- fstar.w[0] = P128.w[0];
- // the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind].w[0], e.g.
- // if x=1, T*=ten2mk128trunc[0].w[0]=0x1999999999999999
- // C* = floor(C*) (logical right shift; C has p decimal digits,
- // correct by Property 1)
- // n = C* * 10^(e+x)
-
- // shift right C* by Ex-64 = shiftright128[ind]
- shift = shiftright128[ind - 1]; // 0 <= shift <= 39
- Cstar = Cstar >> shift;
- // determine inexactness of the rounding of C*
- // if (0 < f* < 10^(-x)) then
- // the result is exact
- // else // if (f* > T*) then
- // the result is inexact
- if (ind - 1 <= 2) { // fstar.w[1] is 0
- if (fstar.w[0] > ten2mk128trunc[ind - 1].w[1]) {
- // ten2mk128trunc[ind -1].w[1] is identical to
- // ten2mk128[ind -1].w[1]
- // set the inexact flag
- *pfpsf |= INEXACT_EXCEPTION;
- } // else the result is exact
- } else { // if 3 <= ind - 1 <= 14
- if (fstar.w[1] || fstar.w[0] > ten2mk128trunc[ind - 1].w[1]) {
- // ten2mk128trunc[ind -1].w[1] is identical to
- // ten2mk128[ind -1].w[1]
- // set the inexact flag
- *pfpsf |= INEXACT_EXCEPTION;
- } // else the result is exact
- }
-
- res = Cstar; // the result is positive
- } else if (exp == 0) {
- // 1 <= q <= 10
- // res = +C (exact)
- res = C1; // the result is positive
- } else { // if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10
- // res = +C * 10^exp (exact)
- res = C1 * ten2k64[exp]; // the result is positive
- }
- }
- BID_RETURN (res);
-}
-
-/*****************************************************************************
- * BID64_to_uint64_ceil
- ****************************************************************************/
-
-#if DECIMAL_CALL_BY_REFERENCE
-void
-bid64_to_uint64_ceil (UINT64 * pres, UINT64 * px
- _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
- _EXC_INFO_PARAM) {
- UINT64 x = *px;
-#else
-UINT64
-bid64_to_uint64_ceil (UINT64 x
- _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
- _EXC_INFO_PARAM) {
-#endif
- UINT64 res;
- UINT64 x_sign;
- UINT64 x_exp;
- int exp; // unbiased exponent
- // Note: C1 represents x_significand (UINT64)
- BID_UI64DOUBLE tmp1;
- unsigned int x_nr_bits;
- int q, ind, shift;
- UINT64 C1;
- UINT128 C;
- UINT64 Cstar; // C* represents up to 16 decimal digits ~ 54 bits
- UINT128 fstar;
- UINT128 P128;
-
- // check for NaN or Infinity
- if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) {
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- }
- // unpack x
- x_sign = x & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
- // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
- if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
- x_exp = (x & MASK_BINARY_EXPONENT2) >> 51; // biased
- C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
- if (C1 > 9999999999999999ull) { // non-canonical
- x_exp = 0;
- C1 = 0;
- }
- } else {
- x_exp = (x & MASK_BINARY_EXPONENT1) >> 53; // biased
- C1 = x & MASK_BINARY_SIG1;
- }
-
- // check for zeros (possibly from non-canonical values)
- if (C1 == 0x0ull) {
- // x is 0
- res = 0x0000000000000000ull;
- BID_RETURN (res);
- }
- // x is not special and is not zero
-
- // q = nr. of decimal digits in x (1 <= q <= 54)
- // determine first the nr. of bits in x
- if (C1 >= 0x0020000000000000ull) { // x >= 2^53
- // split the 64-bit value in two 32-bit halves to avoid rounding errors
- if (C1 >= 0x0000000100000000ull) { // x >= 2^32
- tmp1.d = (double) (C1 >> 32); // exact conversion
- x_nr_bits =
- 33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
- } else { // x < 2^32
- tmp1.d = (double) C1; // exact conversion
- x_nr_bits =
- 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
- }
- } else { // if x < 2^53
- tmp1.d = (double) C1; // exact conversion
- x_nr_bits =
- 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
- }
- q = nr_digits[x_nr_bits - 1].digits;
- if (q == 0) {
- q = nr_digits[x_nr_bits - 1].digits1;
- if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
- q++;
- }
- exp = x_exp - 398; // unbiased exponent
-
- if ((q + exp) > 20) { // x >= 10^20 ~= 2^66.45... (cannot fit in 64 bits)
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- } else if ((q + exp) == 20) { // x = c(0)c(1)...c(19).c(20)...c(q-1)
- // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
- // so x rounded to an integer may or may not fit in an unsigned 64-bit int
- // the cases that do not fit are identified here; the ones that fit
- // fall through and will be handled with other cases further,
- // under '1 <= q + exp <= 20'
- if (x_sign) { // if n < 0 and q + exp = 20 then x is much less than -1
- // => set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- } else { // if n > 0 and q + exp = 20
- // if n > 2^64 - 1 then n is too large
- // <=> c(0)c(1)...c(19).c(20)...c(q-1) > 2^64 - 1
- // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^20 > 2^64 - 1
- // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^21 >= 5*(2^65 - 2)
- // <=> C * 10^(21-q) > 0x9fffffffffffffff6, 1<=q<=16
- if (q == 1) {
- // C * 10^20 > 0x9fffffffffffffff6
- __mul_128x64_to_128 (C, C1, ten2k128[0]); // 10^20 * C
- if (C.w[1] > 0x09 ||
- (C.w[1] == 0x09 && C.w[0] > 0xfffffffffffffff6ull)) {
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- }
- // else cases that can be rounded to a 64-bit int fall through
- // to '1 <= q + exp <= 20'
- } else { // if (2 <= q <= 16) => 5 <= 21 - q <= 19
- // Note: C * 10^(21-q) has 20 or 21 digits; 0x9fffffffffffffff6
- // has 21 digits
- __mul_64x64_to_128MACH (C, C1, ten2k64[21 - q]);
- if (C.w[1] > 0x09 ||
- (C.w[1] == 0x09 && C.w[0] > 0xfffffffffffffff6ull)) {
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- }
- // else cases that can be rounded to a 64-bit int fall through
- // to '1 <= q + exp <= 20'
- }
- }
- }
- // n is not too large to be converted to int64 if -1 < n < 2^64
- // Note: some of the cases tested for above fall through to this point
- if ((q + exp) <= 0) { // n = +/-0.[0...0]c(0)c(1)...c(q-1)
- // return 0 or 1
- if (x_sign)
- res = 0x0000000000000000ull;
- else
- res = 0x0000000000000001ull;
- BID_RETURN (res);
- } else { // if (1 <= q + exp <= 20, 1 <= q <= 16, -15 <= exp <= 19)
- // x <= -1 or 1 <= x <= 2^64 - 1 so if positive x can be rounded
- // to nearest to a 64-bit unsigned signed integer
- if (x_sign) { // x <= -1
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- }
- // 1 <= x <= 2^64 - 1 so x can be rounded
- // to nearest to a 64-bit unsigned integer
- if (exp < 0) { // 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 20
- ind = -exp; // 1 <= ind <= 15; ind is a synonym for 'x'
- // chop off ind digits from the lower part of C1
- // C1 fits in 64 bits
- // calculate C* and f*
- // C* is actually floor(C*) in this case
- // C* and f* need shifting and masking, as shown by
- // shiftright128[] and maskhigh128[]
- // 1 <= x <= 15
- // kx = 10^(-x) = ten2mk64[ind - 1]
- // C* = C1 * 10^(-x)
- // the approximation of 10^(-x) was rounded up to 54 bits
- __mul_64x64_to_128MACH (P128, C1, ten2mk64[ind - 1]);
- Cstar = P128.w[1];
- fstar.w[1] = P128.w[1] & maskhigh128[ind - 1];
- fstar.w[0] = P128.w[0];
- // the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind].w[0], e.g.
- // if x=1, T*=ten2mk128trunc[0].w[0]=0x1999999999999999
- // C* = floor(C*) (logical right shift; C has p decimal digits,
- // correct by Property 1)
- // n = C* * 10^(e+x)
-
- // shift right C* by Ex-64 = shiftright128[ind]
- shift = shiftright128[ind - 1]; // 0 <= shift <= 39
- Cstar = Cstar >> shift;
- // determine inexactness of the rounding of C*
- // if (0 < f* < 10^(-x)) then
- // the result is exact
- // else // if (f* > T*) then
- // the result is inexact
- if (ind - 1 <= 2) { // fstar.w[1] is 0
- if (fstar.w[0] > ten2mk128trunc[ind - 1].w[1]) {
- // ten2mk128trunc[ind -1].w[1] is identical to
- // ten2mk128[ind -1].w[1]
- Cstar++;
- } // else the result is exact
- } else { // if 3 <= ind - 1 <= 14
- if (fstar.w[1] || fstar.w[0] > ten2mk128trunc[ind - 1].w[1]) {
- // ten2mk128trunc[ind -1].w[1] is identical to
- // ten2mk128[ind -1].w[1]
- Cstar++;
- } // else the result is exact
- }
-
- res = Cstar; // the result is positive
- } else if (exp == 0) {
- // 1 <= q <= 10
- // res = +C (exact)
- res = C1; // the result is positive
- } else { // if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10
- // res = +C * 10^exp (exact)
- res = C1 * ten2k64[exp]; // the result is positive
- }
- }
- BID_RETURN (res);
-}
-
-/*****************************************************************************
- * BID64_to_uint64_xceil
- ****************************************************************************/
-
-#if DECIMAL_CALL_BY_REFERENCE
-void
-bid64_to_uint64_xceil (UINT64 * pres, UINT64 * px
- _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
- _EXC_INFO_PARAM) {
- UINT64 x = *px;
-#else
-UINT64
-bid64_to_uint64_xceil (UINT64 x
- _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
- _EXC_INFO_PARAM) {
-#endif
- UINT64 res;
- UINT64 x_sign;
- UINT64 x_exp;
- int exp; // unbiased exponent
- // Note: C1 represents x_significand (UINT64)
- BID_UI64DOUBLE tmp1;
- unsigned int x_nr_bits;
- int q, ind, shift;
- UINT64 C1;
- UINT128 C;
- UINT64 Cstar; // C* represents up to 16 decimal digits ~ 54 bits
- UINT128 fstar;
- UINT128 P128;
-
- // check for NaN or Infinity
- if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) {
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- }
- // unpack x
- x_sign = x & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
- // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
- if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
- x_exp = (x & MASK_BINARY_EXPONENT2) >> 51; // biased
- C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
- if (C1 > 9999999999999999ull) { // non-canonical
- x_exp = 0;
- C1 = 0;
- }
- } else {
- x_exp = (x & MASK_BINARY_EXPONENT1) >> 53; // biased
- C1 = x & MASK_BINARY_SIG1;
- }
-
- // check for zeros (possibly from non-canonical values)
- if (C1 == 0x0ull) {
- // x is 0
- res = 0x0000000000000000ull;
- BID_RETURN (res);
- }
- // x is not special and is not zero
-
- // q = nr. of decimal digits in x (1 <= q <= 54)
- // determine first the nr. of bits in x
- if (C1 >= 0x0020000000000000ull) { // x >= 2^53
- // split the 64-bit value in two 32-bit halves to avoid rounding errors
- if (C1 >= 0x0000000100000000ull) { // x >= 2^32
- tmp1.d = (double) (C1 >> 32); // exact conversion
- x_nr_bits =
- 33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
- } else { // x < 2^32
- tmp1.d = (double) C1; // exact conversion
- x_nr_bits =
- 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
- }
- } else { // if x < 2^53
- tmp1.d = (double) C1; // exact conversion
- x_nr_bits =
- 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
- }
- q = nr_digits[x_nr_bits - 1].digits;
- if (q == 0) {
- q = nr_digits[x_nr_bits - 1].digits1;
- if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
- q++;
- }
- exp = x_exp - 398; // unbiased exponent
-
- if ((q + exp) > 20) { // x >= 10^20 ~= 2^66.45... (cannot fit in 64 bits)
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- } else if ((q + exp) == 20) { // x = c(0)c(1)...c(19).c(20)...c(q-1)
- // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
- // so x rounded to an integer may or may not fit in an unsigned 64-bit int
- // the cases that do not fit are identified here; the ones that fit
- // fall through and will be handled with other cases further,
- // under '1 <= q + exp <= 20'
- if (x_sign) { // if n < 0 and q + exp = 20 then x is much less than -1
- // => set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- } else { // if n > 0 and q + exp = 20
- // if n > 2^64 - 1 then n is too large
- // <=> c(0)c(1)...c(19).c(20)...c(q-1) > 2^64 - 1
- // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^20 > 2^64 - 1
- // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^21 >= 5*(2^65 - 2)
- // <=> C * 10^(21-q) > 0x9fffffffffffffff6, 1<=q<=16
- if (q == 1) {
- // C * 10^20 > 0x9fffffffffffffff6
- __mul_128x64_to_128 (C, C1, ten2k128[0]); // 10^20 * C
- if (C.w[1] > 0x09 ||
- (C.w[1] == 0x09 && C.w[0] > 0xfffffffffffffff6ull)) {
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- }
- // else cases that can be rounded to a 64-bit int fall through
- // to '1 <= q + exp <= 20'
- } else { // if (2 <= q <= 16) => 5 <= 21 - q <= 19
- // Note: C * 10^(21-q) has 20 or 21 digits; 0x9fffffffffffffff6
- // has 21 digits
- __mul_64x64_to_128MACH (C, C1, ten2k64[21 - q]);
- if (C.w[1] > 0x09 ||
- (C.w[1] == 0x09 && C.w[0] > 0xfffffffffffffff6ull)) {
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- }
- // else cases that can be rounded to a 64-bit int fall through
- // to '1 <= q + exp <= 20'
- }
- }
- }
- // n is not too large to be converted to int64 if -1 < n < 2^64
- // Note: some of the cases tested for above fall through to this point
- if ((q + exp) <= 0) { // n = +/-0.[0...0]c(0)c(1)...c(q-1)
- // set inexact flag
- *pfpsf |= INEXACT_EXCEPTION;
- // return 0 or 1
- if (x_sign)
- res = 0x0000000000000000ull;
- else
- res = 0x0000000000000001ull;
- BID_RETURN (res);
- } else { // if (1 <= q + exp <= 20, 1 <= q <= 16, -15 <= exp <= 19)
- // x <= -1 or 1 <= x <= 2^64 - 1 so if positive x can be rounded
- // to nearest to a 64-bit unsigned signed integer
- if (x_sign) { // x <= -1
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- }
- // 1 <= x <= 2^64 - 1 so x can be rounded
- // to nearest to a 64-bit unsigned integer
- if (exp < 0) { // 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 20
- ind = -exp; // 1 <= ind <= 15; ind is a synonym for 'x'
- // chop off ind digits from the lower part of C1
- // C1 fits in 64 bits
- // calculate C* and f*
- // C* is actually floor(C*) in this case
- // C* and f* need shifting and masking, as shown by
- // shiftright128[] and maskhigh128[]
- // 1 <= x <= 15
- // kx = 10^(-x) = ten2mk64[ind - 1]
- // C* = C1 * 10^(-x)
- // the approximation of 10^(-x) was rounded up to 54 bits
- __mul_64x64_to_128MACH (P128, C1, ten2mk64[ind - 1]);
- Cstar = P128.w[1];
- fstar.w[1] = P128.w[1] & maskhigh128[ind - 1];
- fstar.w[0] = P128.w[0];
- // the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind].w[0], e.g.
- // if x=1, T*=ten2mk128trunc[0].w[0]=0x1999999999999999
- // C* = floor(C*) (logical right shift; C has p decimal digits,
- // correct by Property 1)
- // n = C* * 10^(e+x)
-
- // shift right C* by Ex-64 = shiftright128[ind]
- shift = shiftright128[ind - 1]; // 0 <= shift <= 39
- Cstar = Cstar >> shift;
- // determine inexactness of the rounding of C*
- // if (0 < f* < 10^(-x)) then
- // the result is exact
- // else // if (f* > T*) then
- // the result is inexact
- if (ind - 1 <= 2) { // fstar.w[1] is 0
- if (fstar.w[0] > ten2mk128trunc[ind - 1].w[1]) {
- // ten2mk128trunc[ind -1].w[1] is identical to
- // ten2mk128[ind -1].w[1]
- Cstar++;
- // set the inexact flag
- *pfpsf |= INEXACT_EXCEPTION;
- } // else the result is exact
- } else { // if 3 <= ind - 1 <= 14
- if (fstar.w[1] || fstar.w[0] > ten2mk128trunc[ind - 1].w[1]) {
- // ten2mk128trunc[ind -1].w[1] is identical to
- // ten2mk128[ind -1].w[1]
- Cstar++;
- // set the inexact flag
- *pfpsf |= INEXACT_EXCEPTION;
- } // else the result is exact
- }
-
- res = Cstar; // the result is positive
- } else if (exp == 0) {
- // 1 <= q <= 10
- // res = +C (exact)
- res = C1; // the result is positive
- } else { // if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10
- // res = +C * 10^exp (exact)
- res = C1 * ten2k64[exp]; // the result is positive
- }
- }
- BID_RETURN (res);
-}
-
-/*****************************************************************************
- * BID64_to_uint64_int
- ****************************************************************************/
-
-#if DECIMAL_CALL_BY_REFERENCE
-void
-bid64_to_uint64_int (UINT64 * pres, UINT64 * px
- _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM)
-{
- UINT64 x = *px;
-#else
-UINT64
-bid64_to_uint64_int (UINT64 x
- _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM)
-{
-#endif
- UINT64 res;
- UINT64 x_sign;
- UINT64 x_exp;
- int exp; // unbiased exponent
- // Note: C1 represents x_significand (UINT64)
- BID_UI64DOUBLE tmp1;
- unsigned int x_nr_bits;
- int q, ind, shift;
- UINT64 C1;
- UINT128 C;
- UINT64 Cstar; // C* represents up to 16 decimal digits ~ 54 bits
- UINT128 P128;
-
- // check for NaN or Infinity
- if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) {
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- }
- // unpack x
- x_sign = x & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
- // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
- if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
- x_exp = (x & MASK_BINARY_EXPONENT2) >> 51; // biased
- C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
- if (C1 > 9999999999999999ull) { // non-canonical
- x_exp = 0;
- C1 = 0;
- }
- } else {
- x_exp = (x & MASK_BINARY_EXPONENT1) >> 53; // biased
- C1 = x & MASK_BINARY_SIG1;
- }
-
- // check for zeros (possibly from non-canonical values)
- if (C1 == 0x0ull) {
- // x is 0
- res = 0x0000000000000000ull;
- BID_RETURN (res);
- }
- // x is not special and is not zero
-
- // q = nr. of decimal digits in x (1 <= q <= 54)
- // determine first the nr. of bits in x
- if (C1 >= 0x0020000000000000ull) { // x >= 2^53
- // split the 64-bit value in two 32-bit halves to avoid rounding errors
- if (C1 >= 0x0000000100000000ull) { // x >= 2^32
- tmp1.d = (double) (C1 >> 32); // exact conversion
- x_nr_bits =
- 33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
- } else { // x < 2^32
- tmp1.d = (double) C1; // exact conversion
- x_nr_bits =
- 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
- }
- } else { // if x < 2^53
- tmp1.d = (double) C1; // exact conversion
- x_nr_bits =
- 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
- }
- q = nr_digits[x_nr_bits - 1].digits;
- if (q == 0) {
- q = nr_digits[x_nr_bits - 1].digits1;
- if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
- q++;
- }
- exp = x_exp - 398; // unbiased exponent
-
- if ((q + exp) > 20) { // x >= 10^20 ~= 2^66.45... (cannot fit in 64 bits)
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- } else if ((q + exp) == 20) { // x = c(0)c(1)...c(19).c(20)...c(q-1)
- // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
- // so x rounded to an integer may or may not fit in an unsigned 64-bit int
- // the cases that do not fit are identified here; the ones that fit
- // fall through and will be handled with other cases further,
- // under '1 <= q + exp <= 20'
- if (x_sign) { // if n < 0 and q + exp = 20 then x is much less than -1
- // => set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- } else { // if n > 0 and q + exp = 20
- // if n >= 2^64 then n is too large
- // <=> c(0)c(1)...c(19).c(20)...c(q-1) >= 2^64
- // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^20 >= 2^64
- // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^21 >= 5*(2^65)
- // <=> C * 10^(21-q) >= 0xa0000000000000000, 1<=q<=16
- if (q == 1) {
- // C * 10^20 >= 0xa0000000000000000
- __mul_128x64_to_128 (C, C1, ten2k128[0]); // 10^20 * C
- if (C.w[1] >= 0x0a) {
- // actually C.w[1] == 0x0a && C.w[0] >= 0x0000000000000000ull) {
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- }
- // else cases that can be rounded to a 64-bit int fall through
- // to '1 <= q + exp <= 20'
- } else { // if (2 <= q <= 16) => 5 <= 21 - q <= 19
- // Note: C * 10^(21-q) has 20 or 21 digits; 0xa0000000000000000
- // has 21 digits
- __mul_64x64_to_128MACH (C, C1, ten2k64[21 - q]);
- if (C.w[1] >= 0x0a) {
- // actually C.w[1] == 0x0a && C.w[0] >= 0x0000000000000000ull) {
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- }
- // else cases that can be rounded to a 64-bit int fall through
- // to '1 <= q + exp <= 20'
- }
- }
- }
- // n is not too large to be converted to int64 if -1 < n < 2^64
- // Note: some of the cases tested for above fall through to this point
- if ((q + exp) <= 0) { // n = +/-0.[0...0]c(0)c(1)...c(q-1)
- // return 0
- res = 0x0000000000000000ull;
- BID_RETURN (res);
- } else { // if (1 <= q + exp <= 20, 1 <= q <= 16, -15 <= exp <= 19)
- // x <= -1 or 1 <= x < 2^64 so if positive x can be rounded
- // to nearest to a 64-bit unsigned signed integer
- if (x_sign) { // x <= -1
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- }
- // 1 <= x < 2^64 so x can be rounded
- // to nearest to a 64-bit unsigned integer
- if (exp < 0) { // 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 20
- ind = -exp; // 1 <= ind <= 15; ind is a synonym for 'x'
- // chop off ind digits from the lower part of C1
- // C1 fits in 64 bits
- // calculate C* and f*
- // C* is actually floor(C*) in this case
- // C* and f* need shifting and masking, as shown by
- // shiftright128[] and maskhigh128[]
- // 1 <= x <= 15
- // kx = 10^(-x) = ten2mk64[ind - 1]
- // C* = C1 * 10^(-x)
- // the approximation of 10^(-x) was rounded up to 54 bits
- __mul_64x64_to_128MACH (P128, C1, ten2mk64[ind - 1]);
- Cstar = P128.w[1];
- // the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind].w[0], e.g.
- // if x=1, T*=ten2mk128trunc[0].w[0]=0x1999999999999999
- // C* = floor(C*) (logical right shift; C has p decimal digits,
- // correct by Property 1)
- // n = C* * 10^(e+x)
-
- // shift right C* by Ex-64 = shiftright128[ind]
- shift = shiftright128[ind - 1]; // 0 <= shift <= 39
- Cstar = Cstar >> shift;
- res = Cstar; // the result is positive
- } else if (exp == 0) {
- // 1 <= q <= 10
- // res = +C (exact)
- res = C1; // the result is positive
- } else { // if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10
- // res = +C * 10^exp (exact)
- res = C1 * ten2k64[exp]; // the result is positive
- }
- }
- BID_RETURN (res);
-}
-
-/*****************************************************************************
- * BID64_to_uint64_xint
- ****************************************************************************/
-
-#if DECIMAL_CALL_BY_REFERENCE
-void
-bid64_to_uint64_xint (UINT64 * pres, UINT64 * px
- _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
- _EXC_INFO_PARAM) {
- UINT64 x = *px;
-#else
-UINT64
-bid64_to_uint64_xint (UINT64 x
- _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
- _EXC_INFO_PARAM) {
-#endif
- UINT64 res;
- UINT64 x_sign;
- UINT64 x_exp;
- int exp; // unbiased exponent
- // Note: C1 represents x_significand (UINT64)
- BID_UI64DOUBLE tmp1;
- unsigned int x_nr_bits;
- int q, ind, shift;
- UINT64 C1;
- UINT128 C;
- UINT64 Cstar; // C* represents up to 16 decimal digits ~ 54 bits
- UINT128 fstar;
- UINT128 P128;
-
- // check for NaN or Infinity
- if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) {
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- }
- // unpack x
- x_sign = x & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
- // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
- if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
- x_exp = (x & MASK_BINARY_EXPONENT2) >> 51; // biased
- C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
- if (C1 > 9999999999999999ull) { // non-canonical
- x_exp = 0;
- C1 = 0;
- }
- } else {
- x_exp = (x & MASK_BINARY_EXPONENT1) >> 53; // biased
- C1 = x & MASK_BINARY_SIG1;
- }
-
- // check for zeros (possibly from non-canonical values)
- if (C1 == 0x0ull) {
- // x is 0
- res = 0x0000000000000000ull;
- BID_RETURN (res);
- }
- // x is not special and is not zero
-
- // q = nr. of decimal digits in x (1 <= q <= 54)
- // determine first the nr. of bits in x
- if (C1 >= 0x0020000000000000ull) { // x >= 2^53
- // split the 64-bit value in two 32-bit halves to avoid rounding errors
- if (C1 >= 0x0000000100000000ull) { // x >= 2^32
- tmp1.d = (double) (C1 >> 32); // exact conversion
- x_nr_bits =
- 33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
- } else { // x < 2^32
- tmp1.d = (double) C1; // exact conversion
- x_nr_bits =
- 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
- }
- } else { // if x < 2^53
- tmp1.d = (double) C1; // exact conversion
- x_nr_bits =
- 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
- }
- q = nr_digits[x_nr_bits - 1].digits;
- if (q == 0) {
- q = nr_digits[x_nr_bits - 1].digits1;
- if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
- q++;
- }
- exp = x_exp - 398; // unbiased exponent
-
- if ((q + exp) > 20) { // x >= 10^20 ~= 2^66.45... (cannot fit in 64 bits)
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- } else if ((q + exp) == 20) { // x = c(0)c(1)...c(19).c(20)...c(q-1)
- // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
- // so x rounded to an integer may or may not fit in an unsigned 64-bit int
- // the cases that do not fit are identified here; the ones that fit
- // fall through and will be handled with other cases further,
- // under '1 <= q + exp <= 20'
- if (x_sign) { // if n < 0 and q + exp = 20 then x is much less than -1
- // => set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- } else { // if n > 0 and q + exp = 20
- // if n >= 2^64 then n is too large
- // <=> c(0)c(1)...c(19).c(20)...c(q-1) >= 2^64
- // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^20 >= 2^64
- // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^21 >= 5*(2^65)
- // <=> C * 10^(21-q) >= 0xa0000000000000000, 1<=q<=16
- if (q == 1) {
- // C * 10^20 >= 0xa0000000000000000
- __mul_128x64_to_128 (C, C1, ten2k128[0]); // 10^20 * C
- if (C.w[1] >= 0x0a) {
- // actually C.w[1] == 0x0a && C.w[0] >= 0x0000000000000000ull) {
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- }
- // else cases that can be rounded to a 64-bit int fall through
- // to '1 <= q + exp <= 20'
- } else { // if (2 <= q <= 16) => 5 <= 21 - q <= 19
- // Note: C * 10^(21-q) has 20 or 21 digits; 0xa0000000000000000
- // has 21 digits
- __mul_64x64_to_128MACH (C, C1, ten2k64[21 - q]);
- if (C.w[1] >= 0x0a) {
- // actually C.w[1] == 0x0a && C.w[0] >= 0x0000000000000000ull) {
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- }
- // else cases that can be rounded to a 64-bit int fall through
- // to '1 <= q + exp <= 20'
- }
- }
- }
- // n is not too large to be converted to int64 if -1 < n < 2^64
- // Note: some of the cases tested for above fall through to this point
- if ((q + exp) <= 0) { // n = +/-0.[0...0]c(0)c(1)...c(q-1)
- // set inexact flag
- *pfpsf |= INEXACT_EXCEPTION;
- // return 0
- res = 0x0000000000000000ull;
- BID_RETURN (res);
- } else { // if (1 <= q + exp <= 20, 1 <= q <= 16, -15 <= exp <= 19)
- // x <= -1 or 1 <= x < 2^64 so if positive x can be rounded
- // to nearest to a 64-bit unsigned signed integer
- if (x_sign) { // x <= -1
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- }
- // 1 <= x < 2^64 so x can be rounded
- // to nearest to a 64-bit unsigned integer
- if (exp < 0) { // 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 20
- ind = -exp; // 1 <= ind <= 15; ind is a synonym for 'x'
- // chop off ind digits from the lower part of C1
- // C1 fits in 64 bits
- // calculate C* and f*
- // C* is actually floor(C*) in this case
- // C* and f* need shifting and masking, as shown by
- // shiftright128[] and maskhigh128[]
- // 1 <= x <= 15
- // kx = 10^(-x) = ten2mk64[ind - 1]
- // C* = C1 * 10^(-x)
- // the approximation of 10^(-x) was rounded up to 54 bits
- __mul_64x64_to_128MACH (P128, C1, ten2mk64[ind - 1]);
- Cstar = P128.w[1];
- fstar.w[1] = P128.w[1] & maskhigh128[ind - 1];
- fstar.w[0] = P128.w[0];
- // the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind].w[0], e.g.
- // if x=1, T*=ten2mk128trunc[0].w[0]=0x1999999999999999
- // C* = floor(C*) (logical right shift; C has p decimal digits,
- // correct by Property 1)
- // n = C* * 10^(e+x)
-
- // shift right C* by Ex-64 = shiftright128[ind]
- shift = shiftright128[ind - 1]; // 0 <= shift <= 39
- Cstar = Cstar >> shift;
- // determine inexactness of the rounding of C*
- // if (0 < f* < 10^(-x)) then
- // the result is exact
- // else // if (f* > T*) then
- // the result is inexact
- if (ind - 1 <= 2) { // fstar.w[1] is 0
- if (fstar.w[0] > ten2mk128trunc[ind - 1].w[1]) {
- // ten2mk128trunc[ind -1].w[1] is identical to
- // ten2mk128[ind -1].w[1]
- // set the inexact flag
- *pfpsf |= INEXACT_EXCEPTION;
- } // else the result is exact
- } else { // if 3 <= ind - 1 <= 14
- if (fstar.w[1] || fstar.w[0] > ten2mk128trunc[ind - 1].w[1]) {
- // ten2mk128trunc[ind -1].w[1] is identical to
- // ten2mk128[ind -1].w[1]
- // set the inexact flag
- *pfpsf |= INEXACT_EXCEPTION;
- } // else the result is exact
- }
-
- res = Cstar; // the result is positive
- } else if (exp == 0) {
- // 1 <= q <= 10
- // res = +C (exact)
- res = C1; // the result is positive
- } else { // if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10
- // res = +C * 10^exp (exact)
- res = C1 * ten2k64[exp]; // the result is positive
- }
- }
- BID_RETURN (res);
-}
-
-/*****************************************************************************
- * BID64_to_uint64_rninta
- ****************************************************************************/
-
-#if DECIMAL_CALL_BY_REFERENCE
-void
-bid64_to_uint64_rninta (UINT64 * pres, UINT64 * px
- _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
- _EXC_INFO_PARAM) {
- UINT64 x = *px;
-#else
-UINT64
-bid64_to_uint64_rninta (UINT64 x
- _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
- _EXC_INFO_PARAM) {
-#endif
- UINT64 res;
- UINT64 x_sign;
- UINT64 x_exp;
- int exp; // unbiased exponent
- // Note: C1 represents x_significand (UINT64)
- BID_UI64DOUBLE tmp1;
- unsigned int x_nr_bits;
- int q, ind, shift;
- UINT64 C1;
- UINT128 C;
- UINT64 Cstar; // C* represents up to 16 decimal digits ~ 54 bits
- UINT128 P128;
-
- // check for NaN or Infinity
- if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) {
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- }
- // unpack x
- x_sign = x & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
- // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
- if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
- x_exp = (x & MASK_BINARY_EXPONENT2) >> 51; // biased
- C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
- if (C1 > 9999999999999999ull) { // non-canonical
- x_exp = 0;
- C1 = 0;
- }
- } else {
- x_exp = (x & MASK_BINARY_EXPONENT1) >> 53; // biased
- C1 = x & MASK_BINARY_SIG1;
- }
-
- // check for zeros (possibly from non-canonical values)
- if (C1 == 0x0ull) {
- // x is 0
- res = 0x0000000000000000ull;
- BID_RETURN (res);
- }
- // x is not special and is not zero
-
- // q = nr. of decimal digits in x (1 <= q <= 54)
- // determine first the nr. of bits in x
- if (C1 >= 0x0020000000000000ull) { // x >= 2^53
- // split the 64-bit value in two 32-bit halves to avoid rounding errors
- if (C1 >= 0x0000000100000000ull) { // x >= 2^32
- tmp1.d = (double) (C1 >> 32); // exact conversion
- x_nr_bits =
- 33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
- } else { // x < 2^32
- tmp1.d = (double) C1; // exact conversion
- x_nr_bits =
- 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
- }
- } else { // if x < 2^53
- tmp1.d = (double) C1; // exact conversion
- x_nr_bits =
- 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
- }
- q = nr_digits[x_nr_bits - 1].digits;
- if (q == 0) {
- q = nr_digits[x_nr_bits - 1].digits1;
- if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
- q++;
- }
- exp = x_exp - 398; // unbiased exponent
-
- if ((q + exp) > 20) { // x >= 10^20 ~= 2^66.45... (cannot fit in 64 bits)
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- } else if ((q + exp) == 20) { // x = c(0)c(1)...c(19).c(20)...c(q-1)
- // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
- // so x rounded to an integer may or may not fit in an unsigned 64-bit int
- // the cases that do not fit are identified here; the ones that fit
- // fall through and will be handled with other cases further,
- // under '1 <= q + exp <= 20'
- if (x_sign) { // if n < 0 and q + exp = 20 then x is much less than -1/2
- // => set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- } else { // if n > 0 and q + exp = 20
- // if n >= 2^64 - 1/2 then n is too large
- // <=> c(0)c(1)...c(19).c(20)...c(q-1) >= 2^64-1/2
- // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^20 >= 2^64-1/2
- // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^21 >= 5*(2^65-1)
- // <=> C * 10^(21-q) >= 0x9fffffffffffffffb, 1<=q<=16
- if (q == 1) {
- // C * 10^20 >= 0x9fffffffffffffffb
- __mul_128x64_to_128 (C, C1, ten2k128[0]); // 10^20 * C
- if (C.w[1] > 0x09 ||
- (C.w[1] == 0x09 && C.w[0] >= 0xfffffffffffffffbull)) {
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- }
- // else cases that can be rounded to a 64-bit int fall through
- // to '1 <= q + exp <= 20'
- } else { // if (2 <= q <= 16) => 5 <= 21 - q <= 19
- // Note: C * 10^(21-q) has 20 or 21 digits; 0x9fffffffffffffffb
- // has 21 digits
- __mul_64x64_to_128MACH (C, C1, ten2k64[21 - q]);
- if (C.w[1] > 0x09 ||
- (C.w[1] == 0x09 && C.w[0] >= 0xfffffffffffffffbull)) {
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- }
- // else cases that can be rounded to a 64-bit int fall through
- // to '1 <= q + exp <= 20'
- }
- }
- }
- // n is not too large to be converted to int64 if -1/2 <= n < 2^64 - 1/2
- // Note: some of the cases tested for above fall through to this point
- if ((q + exp) < 0) { // n = +/-0.0...c(0)c(1)...c(q-1)
- // return 0
- res = 0x0000000000000000ull;
- BID_RETURN (res);
- } else if ((q + exp) == 0) { // n = +/-0.c(0)c(1)...c(q-1)
- // if 0.c(0)c(1)...c(q-1) < 0.5 <=> c(0)c(1)...c(q-1) < 5 * 10^(q-1)
- // res = 0
- // else if x > 0
- // res = +1
- // else // if x < 0
- // invalid exc
- ind = q - 1; // 0 <= ind <= 15
- if (C1 < midpoint64[ind]) {
- res = 0x0000000000000000ull; // return 0
- } else if (!x_sign) { // n > 0
- res = 0x0000000000000001ull; // return +1
- } else { // if n < 0
- res = 0x8000000000000000ull;
- *pfpsf |= INVALID_EXCEPTION;
- BID_RETURN (res);
- }
- } else { // if (1 <= q + exp <= 20, 1 <= q <= 16, -15 <= exp <= 19)
- // x <= -1 or 1 <= x < 2^64-1/2 so if positive x can be rounded
- // to nearest to a 64-bit unsigned signed integer
- if (x_sign) { // x <= -1
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- }
- // 1 <= x < 2^64-1/2 so x can be rounded
- // to nearest to a 64-bit unsigned integer
- if (exp < 0) { // 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 20
- ind = -exp; // 1 <= ind <= 15; ind is a synonym for 'x'
- // chop off ind digits from the lower part of C1
- // C1 = C1 + 1/2 * 10^ind where the result C1 fits in 64 bits
- C1 = C1 + midpoint64[ind - 1];
- // calculate C* and f*
- // C* is actually floor(C*) in this case
- // C* and f* need shifting and masking, as shown by
- // shiftright128[] and maskhigh128[]
- // 1 <= x <= 15
- // kx = 10^(-x) = ten2mk64[ind - 1]
- // C* = (C1 + 1/2 * 10^x) * 10^(-x)
- // the approximation of 10^(-x) was rounded up to 54 bits
- __mul_64x64_to_128MACH (P128, C1, ten2mk64[ind - 1]);
- Cstar = P128.w[1];
- // the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind].w[0], e.g.
- // if x=1, T*=ten2mk128trunc[0].w[0]=0x1999999999999999
- // if (0 < f* < 10^(-x)) then the result is a midpoint
- // if floor(C*) is even then C* = floor(C*) - logical right
- // shift; C* has p decimal digits, correct by Prop. 1)
- // else if floor(C*) is odd C* = floor(C*)-1 (logical right
- // shift; C* has p decimal digits, correct by Pr. 1)
- // else
- // C* = floor(C*) (logical right shift; C has p decimal digits,
- // correct by Property 1)
- // n = C* * 10^(e+x)
-
- // shift right C* by Ex-64 = shiftright128[ind]
- shift = shiftright128[ind - 1]; // 0 <= shift <= 39
- Cstar = Cstar >> shift;
-
- // if the result was a midpoint it was rounded away from zero
- res = Cstar; // the result is positive
- } else if (exp == 0) {
- // 1 <= q <= 10
- // res = +C (exact)
- res = C1; // the result is positive
- } else { // if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10
- // res = +C * 10^exp (exact)
- res = C1 * ten2k64[exp]; // the result is positive
- }
- }
- BID_RETURN (res);
-}
-
-/*****************************************************************************
- * BID64_to_uint64_xrninta
- ****************************************************************************/
-
-#if DECIMAL_CALL_BY_REFERENCE
-void
-bid64_to_uint64_xrninta (UINT64 * pres, UINT64 * px
- _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
- _EXC_INFO_PARAM) {
- UINT64 x = *px;
-#else
-UINT64
-bid64_to_uint64_xrninta (UINT64 x
- _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
- _EXC_INFO_PARAM) {
-#endif
- UINT64 res;
- UINT64 x_sign;
- UINT64 x_exp;
- int exp; // unbiased exponent
- // Note: C1 represents x_significand (UINT64)
- UINT64 tmp64;
- BID_UI64DOUBLE tmp1;
- unsigned int x_nr_bits;
- int q, ind, shift;
- UINT64 C1;
- UINT128 C;
- UINT64 Cstar; // C* represents up to 16 decimal digits ~ 54 bits
- UINT128 fstar;
- UINT128 P128;
-
- // check for NaN or Infinity
- if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) {
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- }
- // unpack x
- x_sign = x & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
- // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
- if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
- x_exp = (x & MASK_BINARY_EXPONENT2) >> 51; // biased
- C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
- if (C1 > 9999999999999999ull) { // non-canonical
- x_exp = 0;
- C1 = 0;
- }
- } else {
- x_exp = (x & MASK_BINARY_EXPONENT1) >> 53; // biased
- C1 = x & MASK_BINARY_SIG1;
- }
-
- // check for zeros (possibly from non-canonical values)
- if (C1 == 0x0ull) {
- // x is 0
- res = 0x0000000000000000ull;
- BID_RETURN (res);
- }
- // x is not special and is not zero
-
- // q = nr. of decimal digits in x (1 <= q <= 54)
- // determine first the nr. of bits in x
- if (C1 >= 0x0020000000000000ull) { // x >= 2^53
- // split the 64-bit value in two 32-bit halves to avoid rounding errors
- if (C1 >= 0x0000000100000000ull) { // x >= 2^32
- tmp1.d = (double) (C1 >> 32); // exact conversion
- x_nr_bits =
- 33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
- } else { // x < 2^32
- tmp1.d = (double) C1; // exact conversion
- x_nr_bits =
- 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
- }
- } else { // if x < 2^53
- tmp1.d = (double) C1; // exact conversion
- x_nr_bits =
- 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
- }
- q = nr_digits[x_nr_bits - 1].digits;
- if (q == 0) {
- q = nr_digits[x_nr_bits - 1].digits1;
- if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
- q++;
- }
- exp = x_exp - 398; // unbiased exponent
-
- if ((q + exp) > 20) { // x >= 10^20 ~= 2^66.45... (cannot fit in 64 bits)
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- } else if ((q + exp) == 20) { // x = c(0)c(1)...c(19).c(20)...c(q-1)
- // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
- // so x rounded to an integer may or may not fit in an unsigned 64-bit int
- // the cases that do not fit are identified here; the ones that fit
- // fall through and will be handled with other cases further,
- // under '1 <= q + exp <= 20'
- if (x_sign) { // if n < 0 and q + exp = 20 then x is much less than -1/2
- // => set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- } else { // if n > 0 and q + exp = 20
- // if n >= 2^64 - 1/2 then n is too large
- // <=> c(0)c(1)...c(19).c(20)...c(q-1) >= 2^64-1/2
- // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^20 >= 2^64-1/2
- // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^21 >= 5*(2^65-1)
- // <=> C * 10^(21-q) >= 0x9fffffffffffffffb, 1<=q<=16
- if (q == 1) {
- // C * 10^20 >= 0x9fffffffffffffffb
- __mul_128x64_to_128 (C, C1, ten2k128[0]); // 10^20 * C
- if (C.w[1] > 0x09 ||
- (C.w[1] == 0x09 && C.w[0] >= 0xfffffffffffffffbull)) {
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- }
- // else cases that can be rounded to a 64-bit int fall through
- // to '1 <= q + exp <= 20'
- } else { // if (2 <= q <= 16) => 5 <= 21 - q <= 19
- // Note: C * 10^(21-q) has 20 or 21 digits; 0x9fffffffffffffffb
- // has 21 digits
- __mul_64x64_to_128MACH (C, C1, ten2k64[21 - q]);
- if (C.w[1] > 0x09 ||
- (C.w[1] == 0x09 && C.w[0] >= 0xfffffffffffffffbull)) {
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- }
- // else cases that can be rounded to a 64-bit int fall through
- // to '1 <= q + exp <= 20'
- }
- }
- }
- // n is not too large to be converted to int64 if -1/2 <= n < 2^64 - 1/2
- // Note: some of the cases tested for above fall through to this point
- if ((q + exp) < 0) { // n = +/-0.0...c(0)c(1)...c(q-1)
- // set inexact flag
- *pfpsf |= INEXACT_EXCEPTION;
- // return 0
- res = 0x0000000000000000ull;
- BID_RETURN (res);
- } else if ((q + exp) == 0) { // n = +/-0.c(0)c(1)...c(q-1)
- // if 0.c(0)c(1)...c(q-1) < 0.5 <=> c(0)c(1)...c(q-1) < 5 * 10^(q-1)
- // res = 0
- // else if x > 0
- // res = +1
- // else // if x < 0
- // invalid exc
- ind = q - 1; // 0 <= ind <= 15
- if (C1 < midpoint64[ind]) {
- res = 0x0000000000000000ull; // return 0
- } else if (!x_sign) { // n > 0
- res = 0x0000000000000001ull; // return +1
- } else { // if n < 0
- res = 0x8000000000000000ull;
- *pfpsf |= INVALID_EXCEPTION;
- BID_RETURN (res);
- }
- // set inexact flag
- *pfpsf |= INEXACT_EXCEPTION;
- } else { // if (1 <= q + exp <= 20, 1 <= q <= 16, -15 <= exp <= 19)
- // x <= -1 or 1 <= x < 2^64-1/2 so if positive x can be rounded
- // to nearest to a 64-bit unsigned signed integer
- if (x_sign) { // x <= -1
- // set invalid flag
- *pfpsf |= INVALID_EXCEPTION;
- // return Integer Indefinite
- res = 0x8000000000000000ull;
- BID_RETURN (res);
- }
- // 1 <= x < 2^64-1/2 so x can be rounded
- // to nearest to a 64-bit unsigned integer
- if (exp < 0) { // 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 20
- ind = -exp; // 1 <= ind <= 15; ind is a synonym for 'x'
- // chop off ind digits from the lower part of C1
- // C1 = C1 + 1/2 * 10^ind where the result C1 fits in 64 bits
- C1 = C1 + midpoint64[ind - 1];
- // calculate C* and f*
- // C* is actually floor(C*) in this case
- // C* and f* need shifting and masking, as shown by
- // shiftright128[] and maskhigh128[]
- // 1 <= x <= 15
- // kx = 10^(-x) = ten2mk64[ind - 1]
- // C* = (C1 + 1/2 * 10^x) * 10^(-x)
- // the approximation of 10^(-x) was rounded up to 54 bits
- __mul_64x64_to_128MACH (P128, C1, ten2mk64[ind - 1]);
- Cstar = P128.w[1];
- fstar.w[1] = P128.w[1] & maskhigh128[ind - 1];
- fstar.w[0] = P128.w[0];
- // the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind].w[0], e.g.
- // if x=1, T*=ten2mk128trunc[0].w[0]=0x1999999999999999
- // if (0 < f* < 10^(-x)) then the result is a midpoint
- // if floor(C*) is even then C* = floor(C*) - logical right
- // shift; C* has p decimal digits, correct by Prop. 1)
- // else if floor(C*) is odd C* = floor(C*)-1 (logical right
- // shift; C* has p decimal digits, correct by Pr. 1)
- // else
- // C* = floor(C*) (logical right shift; C has p decimal digits,
- // correct by Property 1)
- // n = C* * 10^(e+x)
-
- // shift right C* by Ex-64 = shiftright128[ind]
- shift = shiftright128[ind - 1]; // 0 <= shift <= 39
- Cstar = Cstar >> shift;
- // determine inexactness of the rounding of C*
- // if (0 < f* - 1/2 < 10^(-x)) then
- // the result is exact
- // else // if (f* - 1/2 > T*) then
- // the result is inexact
- if (ind - 1 <= 2) { // fstar.w[1] is 0
- if (fstar.w[0] > 0x8000000000000000ull) {
- // f* > 1/2 and the result may be exact
- tmp64 = fstar.w[0] - 0x8000000000000000ull; // f* - 1/2
- if ((tmp64 > ten2mk128trunc[ind - 1].w[1])) {
- // ten2mk128trunc[ind -1].w[1] is identical to
- // ten2mk128[ind -1].w[1]
- // set the inexact flag
- *pfpsf |= INEXACT_EXCEPTION;
- } // else the result is exact
- } else { // the result is inexact; f2* <= 1/2
- // set the inexact flag
- *pfpsf |= INEXACT_EXCEPTION;
- }
- } else { // if 3 <= ind - 1 <= 14
- if (fstar.w[1] > onehalf128[ind - 1] ||
- (fstar.w[1] == onehalf128[ind - 1] && fstar.w[0])) {
- // f2* > 1/2 and the result may be exact
- // Calculate f2* - 1/2
- tmp64 = fstar.w[1] - onehalf128[ind - 1];
- if (tmp64 || fstar.w[0] > ten2mk128trunc[ind - 1].w[1]) {
- // ten2mk128trunc[ind -1].w[1] is identical to
- // ten2mk128[ind -1].w[1]
- // set the inexact flag
- *pfpsf |= INEXACT_EXCEPTION;
- } // else the result is exact
- } else { // the result is inexact; f2* <= 1/2
- // set the inexact flag
- *pfpsf |= INEXACT_EXCEPTION;
- }
- }
-
- // if the result was a midpoint it was rounded away from zero
- res = Cstar; // the result is positive
- } else if (exp == 0) {
- // 1 <= q <= 10
- // res = +C (exact)
- res = C1; // the result is positive
- } else { // if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10
- // res = +C * 10^exp (exact)
- res = C1 * ten2k64[exp]; // the result is positive
- }
- }
- BID_RETURN (res);
-}