aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1/libgfortran/intrinsics/pack_generic.c
diff options
context:
space:
mode:
authorJing Yu <jingyu@google.com>2009-11-05 15:11:04 -0800
committerJing Yu <jingyu@google.com>2009-11-05 15:11:04 -0800
commitdf62c1c110e8532b995b23540b7e3695729c0779 (patch)
treedbbd4cbdb50ac38011e058a2533ee4c3168b0205 /gcc-4.2.1/libgfortran/intrinsics/pack_generic.c
parent8d401cf711539af5a2f78d12447341d774892618 (diff)
downloadtoolchain_gcc-df62c1c110e8532b995b23540b7e3695729c0779.tar.gz
toolchain_gcc-df62c1c110e8532b995b23540b7e3695729c0779.tar.bz2
toolchain_gcc-df62c1c110e8532b995b23540b7e3695729c0779.zip
Check in gcc sources for prebuilt toolchains in Eclair.
Diffstat (limited to 'gcc-4.2.1/libgfortran/intrinsics/pack_generic.c')
-rw-r--r--gcc-4.2.1/libgfortran/intrinsics/pack_generic.c481
1 files changed, 481 insertions, 0 deletions
diff --git a/gcc-4.2.1/libgfortran/intrinsics/pack_generic.c b/gcc-4.2.1/libgfortran/intrinsics/pack_generic.c
new file mode 100644
index 000000000..06e70844b
--- /dev/null
+++ b/gcc-4.2.1/libgfortran/intrinsics/pack_generic.c
@@ -0,0 +1,481 @@
+/* Generic implementation of the PACK intrinsic
+ Copyright (C) 2002, 2004, 2005, 2006 Free Software Foundation, Inc.
+ Contributed by Paul Brook <paul@nowt.org>
+
+This file is part of the GNU Fortran 95 runtime library (libgfortran).
+
+Libgfortran is free software; you can redistribute it and/or
+modify it under the terms of the GNU General Public
+License as published by the Free Software Foundation; either
+version 2 of the License, or (at your option) any later version.
+
+In addition to the permissions in the GNU General Public License, the
+Free Software Foundation gives you unlimited permission to link the
+compiled version of this file into combinations with other programs,
+and to distribute those combinations without any restriction coming
+from the use of this file. (The General Public License restrictions
+do apply in other respects; for example, they cover modification of
+the file, and distribution when not linked into a combine
+executable.)
+
+Ligbfortran is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public
+License along with libgfortran; see the file COPYING. If not,
+write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
+Boston, MA 02110-1301, USA. */
+
+#include "config.h"
+#include <stdlib.h>
+#include <assert.h>
+#include <string.h>
+#include "libgfortran.h"
+
+/* PACK is specified as follows:
+
+ 13.14.80 PACK (ARRAY, MASK, [VECTOR])
+
+ Description: Pack an array into an array of rank one under the
+ control of a mask.
+
+ Class: Transformational function.
+
+ Arguments:
+ ARRAY may be of any type. It shall not be scalar.
+ MASK shall be of type LOGICAL. It shall be conformable with ARRAY.
+ VECTOR (optional) shall be of the same type and type parameters
+ as ARRAY. VECTOR shall have at least as many elements as
+ there are true elements in MASK. If MASK is a scalar
+ with the value true, VECTOR shall have at least as many
+ elements as there are in ARRAY.
+
+ Result Characteristics: The result is an array of rank one with the
+ same type and type parameters as ARRAY. If VECTOR is present, the
+ result size is that of VECTOR; otherwise, the result size is the
+ number /t/ of true elements in MASK unless MASK is scalar with the
+ value true, in which case the result size is the size of ARRAY.
+
+ Result Value: Element /i/ of the result is the element of ARRAY
+ that corresponds to the /i/th true element of MASK, taking elements
+ in array element order, for /i/ = 1, 2, ..., /t/. If VECTOR is
+ present and has size /n/ > /t/, element /i/ of the result has the
+ value VECTOR(/i/), for /i/ = /t/ + 1, ..., /n/.
+
+ Examples: The nonzero elements of an array M with the value
+ | 0 0 0 |
+ | 9 0 0 | may be "gathered" by the function PACK. The result of
+ | 0 0 7 |
+ PACK (M, MASK = M.NE.0) is [9,7] and the result of PACK (M, M.NE.0,
+ VECTOR = (/ 2,4,6,8,10,12 /)) is [9,7,6,8,10,12].
+
+There are two variants of the PACK intrinsic: one, where MASK is
+array valued, and the other one where MASK is scalar. */
+
+static void
+pack_internal (gfc_array_char *ret, const gfc_array_char *array,
+ const gfc_array_l4 *mask, const gfc_array_char *vector,
+ index_type size)
+{
+ /* r.* indicates the return array. */
+ index_type rstride0;
+ char *rptr;
+ /* s.* indicates the source array. */
+ index_type sstride[GFC_MAX_DIMENSIONS];
+ index_type sstride0;
+ const char *sptr;
+ /* m.* indicates the mask array. */
+ index_type mstride[GFC_MAX_DIMENSIONS];
+ index_type mstride0;
+ const GFC_LOGICAL_4 *mptr;
+
+ index_type count[GFC_MAX_DIMENSIONS];
+ index_type extent[GFC_MAX_DIMENSIONS];
+ int zero_sized;
+ index_type n;
+ index_type dim;
+ index_type nelem;
+
+ dim = GFC_DESCRIPTOR_RANK (array);
+ zero_sized = 0;
+ for (n = 0; n < dim; n++)
+ {
+ count[n] = 0;
+ extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
+ if (extent[n] <= 0)
+ zero_sized = 1;
+ sstride[n] = array->dim[n].stride * size;
+ mstride[n] = mask->dim[n].stride;
+ }
+ if (sstride[0] == 0)
+ sstride[0] = size;
+ if (mstride[0] == 0)
+ mstride[0] = 1;
+
+ sptr = array->data;
+ mptr = mask->data;
+
+ /* Use the same loop for both logical types. */
+ if (GFC_DESCRIPTOR_SIZE (mask) != 4)
+ {
+ if (GFC_DESCRIPTOR_SIZE (mask) != 8)
+ runtime_error ("Funny sized logical array");
+ for (n = 0; n < dim; n++)
+ mstride[n] <<= 1;
+ mptr = GFOR_POINTER_L8_TO_L4 (mptr);
+ }
+
+ if (ret->data == NULL)
+ {
+ /* Allocate the memory for the result. */
+ int total;
+
+ if (vector != NULL)
+ {
+ /* The return array will have as many
+ elements as there are in VECTOR. */
+ total = vector->dim[0].ubound + 1 - vector->dim[0].lbound;
+ }
+ else
+ {
+ /* We have to count the true elements in MASK. */
+
+ /* TODO: We could speed up pack easily in the case of only
+ few .TRUE. entries in MASK, by keeping track of where we
+ would be in the source array during the initial traversal
+ of MASK, and caching the pointers to those elements. Then,
+ supposed the number of elements is small enough, we would
+ only have to traverse the list, and copy those elements
+ into the result array. In the case of datatypes which fit
+ in one of the integer types we could also cache the
+ value instead of a pointer to it.
+ This approach might be bad from the point of view of
+ cache behavior in the case where our cache is not big
+ enough to hold all elements that have to be copied. */
+
+ const GFC_LOGICAL_4 *m = mptr;
+
+ total = 0;
+ if (zero_sized)
+ m = NULL;
+
+ while (m)
+ {
+ /* Test this element. */
+ if (*m)
+ total++;
+
+ /* Advance to the next element. */
+ m += mstride[0];
+ count[0]++;
+ n = 0;
+ while (count[n] == extent[n])
+ {
+ /* When we get to the end of a dimension, reset it
+ and increment the next dimension. */
+ count[n] = 0;
+ /* We could precalculate this product, but this is a
+ less frequently used path so probably not worth
+ it. */
+ m -= mstride[n] * extent[n];
+ n++;
+ if (n >= dim)
+ {
+ /* Break out of the loop. */
+ m = NULL;
+ break;
+ }
+ else
+ {
+ count[n]++;
+ m += mstride[n];
+ }
+ }
+ }
+ }
+
+ /* Setup the array descriptor. */
+ ret->dim[0].lbound = 0;
+ ret->dim[0].ubound = total - 1;
+ ret->dim[0].stride = 1;
+
+ ret->offset = 0;
+ if (total == 0)
+ {
+ /* In this case, nothing remains to be done. */
+ ret->data = internal_malloc_size (1);
+ return;
+ }
+ else
+ ret->data = internal_malloc_size (size * total);
+ }
+
+ rstride0 = ret->dim[0].stride * size;
+ if (rstride0 == 0)
+ rstride0 = size;
+ sstride0 = sstride[0];
+ mstride0 = mstride[0];
+ rptr = ret->data;
+
+ while (sptr && mptr)
+ {
+ /* Test this element. */
+ if (*mptr)
+ {
+ /* Add it. */
+ memcpy (rptr, sptr, size);
+ rptr += rstride0;
+ }
+ /* Advance to the next element. */
+ sptr += sstride0;
+ mptr += mstride0;
+ count[0]++;
+ n = 0;
+ while (count[n] == extent[n])
+ {
+ /* When we get to the end of a dimension, reset it and increment
+ the next dimension. */
+ count[n] = 0;
+ /* We could precalculate these products, but this is a less
+ frequently used path so probably not worth it. */
+ sptr -= sstride[n] * extent[n];
+ mptr -= mstride[n] * extent[n];
+ n++;
+ if (n >= dim)
+ {
+ /* Break out of the loop. */
+ sptr = NULL;
+ break;
+ }
+ else
+ {
+ count[n]++;
+ sptr += sstride[n];
+ mptr += mstride[n];
+ }
+ }
+ }
+
+ /* Add any remaining elements from VECTOR. */
+ if (vector)
+ {
+ n = vector->dim[0].ubound + 1 - vector->dim[0].lbound;
+ nelem = ((rptr - ret->data) / rstride0);
+ if (n > nelem)
+ {
+ sstride0 = vector->dim[0].stride * size;
+ if (sstride0 == 0)
+ sstride0 = size;
+
+ sptr = vector->data + sstride0 * nelem;
+ n -= nelem;
+ while (n--)
+ {
+ memcpy (rptr, sptr, size);
+ rptr += rstride0;
+ sptr += sstride0;
+ }
+ }
+ }
+}
+
+extern void pack (gfc_array_char *, const gfc_array_char *,
+ const gfc_array_l4 *, const gfc_array_char *);
+export_proto(pack);
+
+void
+pack (gfc_array_char *ret, const gfc_array_char *array,
+ const gfc_array_l4 *mask, const gfc_array_char *vector)
+{
+ pack_internal (ret, array, mask, vector, GFC_DESCRIPTOR_SIZE (array));
+}
+
+extern void pack_char (gfc_array_char *, GFC_INTEGER_4, const gfc_array_char *,
+ const gfc_array_l4 *, const gfc_array_char *,
+ GFC_INTEGER_4, GFC_INTEGER_4);
+export_proto(pack_char);
+
+void
+pack_char (gfc_array_char *ret,
+ GFC_INTEGER_4 ret_length __attribute__((unused)),
+ const gfc_array_char *array, const gfc_array_l4 *mask,
+ const gfc_array_char *vector, GFC_INTEGER_4 array_length,
+ GFC_INTEGER_4 vector_length __attribute__((unused)))
+{
+ pack_internal (ret, array, mask, vector, array_length);
+}
+
+static void
+pack_s_internal (gfc_array_char *ret, const gfc_array_char *array,
+ const GFC_LOGICAL_4 *mask, const gfc_array_char *vector,
+ index_type size)
+{
+ /* r.* indicates the return array. */
+ index_type rstride0;
+ char *rptr;
+ /* s.* indicates the source array. */
+ index_type sstride[GFC_MAX_DIMENSIONS];
+ index_type sstride0;
+ const char *sptr;
+
+ index_type count[GFC_MAX_DIMENSIONS];
+ index_type extent[GFC_MAX_DIMENSIONS];
+ index_type n;
+ index_type dim;
+ index_type ssize;
+ index_type nelem;
+
+ dim = GFC_DESCRIPTOR_RANK (array);
+ ssize = 1;
+ for (n = 0; n < dim; n++)
+ {
+ count[n] = 0;
+ extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
+ sstride[n] = array->dim[n].stride * size;
+ ssize *= extent[n];
+ }
+ if (sstride[0] == 0)
+ sstride[0] = size;
+
+ sstride0 = sstride[0];
+ sptr = array->data;
+
+ if (ret->data == NULL)
+ {
+ /* Allocate the memory for the result. */
+ int total;
+
+ if (vector != NULL)
+ {
+ /* The return array will have as many elements as there are
+ in vector. */
+ total = vector->dim[0].ubound + 1 - vector->dim[0].lbound;
+ }
+ else
+ {
+ if (*mask)
+ {
+ /* The result array will have as many elements as the input
+ array. */
+ total = extent[0];
+ for (n = 1; n < dim; n++)
+ total *= extent[n];
+ }
+ else
+ /* The result array will be empty. */
+ total = 0;
+ }
+
+ /* Setup the array descriptor. */
+ ret->dim[0].lbound = 0;
+ ret->dim[0].ubound = total - 1;
+ ret->dim[0].stride = 1;
+ ret->offset = 0;
+
+ if (total == 0)
+ {
+ ret->data = internal_malloc_size (1);
+ return;
+ }
+ else
+ ret->data = internal_malloc_size (size * total);
+ }
+
+ rstride0 = ret->dim[0].stride * size;
+ if (rstride0 == 0)
+ rstride0 = size;
+ rptr = ret->data;
+
+ /* The remaining possibilities are now:
+ If MASK is .TRUE., we have to copy the source array into the
+ result array. We then have to fill it up with elements from VECTOR.
+ If MASK is .FALSE., we have to copy VECTOR into the result
+ array. If VECTOR were not present we would have already returned. */
+
+ if (*mask && ssize != 0)
+ {
+ while (sptr)
+ {
+ /* Add this element. */
+ memcpy (rptr, sptr, size);
+ rptr += rstride0;
+
+ /* Advance to the next element. */
+ sptr += sstride0;
+ count[0]++;
+ n = 0;
+ while (count[n] == extent[n])
+ {
+ /* When we get to the end of a dimension, reset it and
+ increment the next dimension. */
+ count[n] = 0;
+ /* We could precalculate these products, but this is a
+ less frequently used path so probably not worth it. */
+ sptr -= sstride[n] * extent[n];
+ n++;
+ if (n >= dim)
+ {
+ /* Break out of the loop. */
+ sptr = NULL;
+ break;
+ }
+ else
+ {
+ count[n]++;
+ sptr += sstride[n];
+ }
+ }
+ }
+ }
+
+ /* Add any remaining elements from VECTOR. */
+ if (vector)
+ {
+ n = vector->dim[0].ubound + 1 - vector->dim[0].lbound;
+ nelem = ((rptr - ret->data) / rstride0);
+ if (n > nelem)
+ {
+ sstride0 = vector->dim[0].stride * size;
+ if (sstride0 == 0)
+ sstride0 = size;
+
+ sptr = vector->data + sstride0 * nelem;
+ n -= nelem;
+ while (n--)
+ {
+ memcpy (rptr, sptr, size);
+ rptr += rstride0;
+ sptr += sstride0;
+ }
+ }
+ }
+}
+
+extern void pack_s (gfc_array_char *ret, const gfc_array_char *array,
+ const GFC_LOGICAL_4 *, const gfc_array_char *);
+export_proto(pack_s);
+
+void
+pack_s (gfc_array_char *ret, const gfc_array_char *array,
+ const GFC_LOGICAL_4 *mask, const gfc_array_char *vector)
+{
+ pack_s_internal (ret, array, mask, vector, GFC_DESCRIPTOR_SIZE (array));
+}
+
+extern void pack_s_char (gfc_array_char *ret, GFC_INTEGER_4,
+ const gfc_array_char *array, const GFC_LOGICAL_4 *,
+ const gfc_array_char *, GFC_INTEGER_4,
+ GFC_INTEGER_4);
+export_proto(pack_s_char);
+
+void
+pack_s_char (gfc_array_char *ret,
+ GFC_INTEGER_4 ret_length __attribute__((unused)),
+ const gfc_array_char *array, const GFC_LOGICAL_4 *mask,
+ const gfc_array_char *vector, GFC_INTEGER_4 array_length,
+ GFC_INTEGER_4 vector_length __attribute__((unused)))
+{
+ pack_s_internal (ret, array, mask, vector, array_length);
+}