aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1/gcc/fortran/arith.c
diff options
context:
space:
mode:
authorJing Yu <jingyu@google.com>2009-11-05 15:11:04 -0800
committerJing Yu <jingyu@google.com>2009-11-05 15:11:04 -0800
commitdf62c1c110e8532b995b23540b7e3695729c0779 (patch)
treedbbd4cbdb50ac38011e058a2533ee4c3168b0205 /gcc-4.2.1/gcc/fortran/arith.c
parent8d401cf711539af5a2f78d12447341d774892618 (diff)
downloadtoolchain_gcc-df62c1c110e8532b995b23540b7e3695729c0779.tar.gz
toolchain_gcc-df62c1c110e8532b995b23540b7e3695729c0779.tar.bz2
toolchain_gcc-df62c1c110e8532b995b23540b7e3695729c0779.zip
Check in gcc sources for prebuilt toolchains in Eclair.
Diffstat (limited to 'gcc-4.2.1/gcc/fortran/arith.c')
-rw-r--r--gcc-4.2.1/gcc/fortran/arith.c2532
1 files changed, 2532 insertions, 0 deletions
diff --git a/gcc-4.2.1/gcc/fortran/arith.c b/gcc-4.2.1/gcc/fortran/arith.c
new file mode 100644
index 000000000..97ee72503
--- /dev/null
+++ b/gcc-4.2.1/gcc/fortran/arith.c
@@ -0,0 +1,2532 @@
+/* Compiler arithmetic
+ Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006
+ Free Software Foundation, Inc.
+ Contributed by Andy Vaught
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 2, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING. If not, write to the Free
+Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301, USA. */
+
+/* Since target arithmetic must be done on the host, there has to
+ be some way of evaluating arithmetic expressions as the host
+ would evaluate them. We use the GNU MP library and the MPFR
+ library to do arithmetic, and this file provides the interface. */
+
+#include "config.h"
+#include "system.h"
+#include "flags.h"
+#include "gfortran.h"
+#include "arith.h"
+
+/* MPFR does not have a direct replacement for mpz_set_f() from GMP.
+ It's easily implemented with a few calls though. */
+
+void
+gfc_mpfr_to_mpz (mpz_t z, mpfr_t x)
+{
+ mp_exp_t e;
+
+ e = mpfr_get_z_exp (z, x);
+ /* MPFR 2.0.1 (included with GMP 4.1) has a bug whereby mpfr_get_z_exp
+ may set the sign of z incorrectly. Work around that here. */
+ if (mpfr_sgn (x) != mpz_sgn (z))
+ mpz_neg (z, z);
+
+ if (e > 0)
+ mpz_mul_2exp (z, z, e);
+ else
+ mpz_tdiv_q_2exp (z, z, -e);
+}
+
+
+/* Set the model number precision by the requested KIND. */
+
+void
+gfc_set_model_kind (int kind)
+{
+ int index = gfc_validate_kind (BT_REAL, kind, false);
+ int base2prec;
+
+ base2prec = gfc_real_kinds[index].digits;
+ if (gfc_real_kinds[index].radix != 2)
+ base2prec *= gfc_real_kinds[index].radix / 2;
+ mpfr_set_default_prec (base2prec);
+}
+
+
+/* Set the model number precision from mpfr_t x. */
+
+void
+gfc_set_model (mpfr_t x)
+{
+ mpfr_set_default_prec (mpfr_get_prec (x));
+}
+
+#if defined(GFC_MPFR_TOO_OLD)
+/* Calculate atan2 (y, x)
+
+atan2(y, x) = atan(y/x) if x > 0,
+ sign(y)*(pi - atan(|y/x|)) if x < 0,
+ 0 if x = 0 && y == 0,
+ sign(y)*pi/2 if x = 0 && y != 0.
+*/
+
+void
+arctangent2 (mpfr_t y, mpfr_t x, mpfr_t result)
+{
+ int i;
+ mpfr_t t;
+
+ gfc_set_model (y);
+ mpfr_init (t);
+
+ i = mpfr_sgn (x);
+
+ if (i > 0)
+ {
+ mpfr_div (t, y, x, GFC_RND_MODE);
+ mpfr_atan (result, t, GFC_RND_MODE);
+ }
+ else if (i < 0)
+ {
+ mpfr_const_pi (result, GFC_RND_MODE);
+ mpfr_div (t, y, x, GFC_RND_MODE);
+ mpfr_abs (t, t, GFC_RND_MODE);
+ mpfr_atan (t, t, GFC_RND_MODE);
+ mpfr_sub (result, result, t, GFC_RND_MODE);
+ if (mpfr_sgn (y) < 0)
+ mpfr_neg (result, result, GFC_RND_MODE);
+ }
+ else
+ {
+ if (mpfr_sgn (y) == 0)
+ mpfr_set_ui (result, 0, GFC_RND_MODE);
+ else
+ {
+ mpfr_const_pi (result, GFC_RND_MODE);
+ mpfr_div_ui (result, result, 2, GFC_RND_MODE);
+ if (mpfr_sgn (y) < 0)
+ mpfr_neg (result, result, GFC_RND_MODE);
+ }
+ }
+
+ mpfr_clear (t);
+}
+#endif
+
+/* Given an arithmetic error code, return a pointer to a string that
+ explains the error. */
+
+static const char *
+gfc_arith_error (arith code)
+{
+ const char *p;
+
+ switch (code)
+ {
+ case ARITH_OK:
+ p = _("Arithmetic OK at %L");
+ break;
+ case ARITH_OVERFLOW:
+ p = _("Arithmetic overflow at %L");
+ break;
+ case ARITH_UNDERFLOW:
+ p = _("Arithmetic underflow at %L");
+ break;
+ case ARITH_NAN:
+ p = _("Arithmetic NaN at %L");
+ break;
+ case ARITH_DIV0:
+ p = _("Division by zero at %L");
+ break;
+ case ARITH_INCOMMENSURATE:
+ p = _("Array operands are incommensurate at %L");
+ break;
+ case ARITH_ASYMMETRIC:
+ p =
+ _("Integer outside symmetric range implied by Standard Fortran at %L");
+ break;
+ default:
+ gfc_internal_error ("gfc_arith_error(): Bad error code");
+ }
+
+ return p;
+}
+
+
+/* Get things ready to do math. */
+
+void
+gfc_arith_init_1 (void)
+{
+ gfc_integer_info *int_info;
+ gfc_real_info *real_info;
+ mpfr_t a, b, c;
+ mpz_t r;
+ int i;
+
+ mpfr_set_default_prec (128);
+ mpfr_init (a);
+ mpz_init (r);
+
+ /* Convert the minimum and maximum values for each kind into their
+ GNU MP representation. */
+ for (int_info = gfc_integer_kinds; int_info->kind != 0; int_info++)
+ {
+ /* Huge */
+ mpz_set_ui (r, int_info->radix);
+ mpz_pow_ui (r, r, int_info->digits);
+
+ mpz_init (int_info->huge);
+ mpz_sub_ui (int_info->huge, r, 1);
+
+ /* These are the numbers that are actually representable by the
+ target. For bases other than two, this needs to be changed. */
+ if (int_info->radix != 2)
+ gfc_internal_error ("Fix min_int calculation");
+
+ /* See PRs 13490 and 17912, related to integer ranges.
+ The pedantic_min_int exists for range checking when a program
+ is compiled with -pedantic, and reflects the belief that
+ Standard Fortran requires integers to be symmetrical, i.e.
+ every negative integer must have a representable positive
+ absolute value, and vice versa. */
+
+ mpz_init (int_info->pedantic_min_int);
+ mpz_neg (int_info->pedantic_min_int, int_info->huge);
+
+ mpz_init (int_info->min_int);
+ mpz_sub_ui (int_info->min_int, int_info->pedantic_min_int, 1);
+
+ /* Range */
+ mpfr_set_z (a, int_info->huge, GFC_RND_MODE);
+ mpfr_log10 (a, a, GFC_RND_MODE);
+ mpfr_trunc (a, a);
+ gfc_mpfr_to_mpz (r, a);
+ int_info->range = mpz_get_si (r);
+ }
+
+ mpfr_clear (a);
+
+ for (real_info = gfc_real_kinds; real_info->kind != 0; real_info++)
+ {
+ gfc_set_model_kind (real_info->kind);
+
+ mpfr_init (a);
+ mpfr_init (b);
+ mpfr_init (c);
+
+ /* huge(x) = (1 - b**(-p)) * b**(emax-1) * b */
+ /* a = 1 - b**(-p) */
+ mpfr_set_ui (a, 1, GFC_RND_MODE);
+ mpfr_set_ui (b, real_info->radix, GFC_RND_MODE);
+ mpfr_pow_si (b, b, -real_info->digits, GFC_RND_MODE);
+ mpfr_sub (a, a, b, GFC_RND_MODE);
+
+ /* c = b**(emax-1) */
+ mpfr_set_ui (b, real_info->radix, GFC_RND_MODE);
+ mpfr_pow_ui (c, b, real_info->max_exponent - 1, GFC_RND_MODE);
+
+ /* a = a * c = (1 - b**(-p)) * b**(emax-1) */
+ mpfr_mul (a, a, c, GFC_RND_MODE);
+
+ /* a = (1 - b**(-p)) * b**(emax-1) * b */
+ mpfr_mul_ui (a, a, real_info->radix, GFC_RND_MODE);
+
+ mpfr_init (real_info->huge);
+ mpfr_set (real_info->huge, a, GFC_RND_MODE);
+
+ /* tiny(x) = b**(emin-1) */
+ mpfr_set_ui (b, real_info->radix, GFC_RND_MODE);
+ mpfr_pow_si (b, b, real_info->min_exponent - 1, GFC_RND_MODE);
+
+ mpfr_init (real_info->tiny);
+ mpfr_set (real_info->tiny, b, GFC_RND_MODE);
+
+ /* subnormal (x) = b**(emin - digit) */
+ mpfr_set_ui (b, real_info->radix, GFC_RND_MODE);
+ mpfr_pow_si (b, b, real_info->min_exponent - real_info->digits,
+ GFC_RND_MODE);
+
+ mpfr_init (real_info->subnormal);
+ mpfr_set (real_info->subnormal, b, GFC_RND_MODE);
+
+ /* epsilon(x) = b**(1-p) */
+ mpfr_set_ui (b, real_info->radix, GFC_RND_MODE);
+ mpfr_pow_si (b, b, 1 - real_info->digits, GFC_RND_MODE);
+
+ mpfr_init (real_info->epsilon);
+ mpfr_set (real_info->epsilon, b, GFC_RND_MODE);
+
+ /* range(x) = int(min(log10(huge(x)), -log10(tiny)) */
+ mpfr_log10 (a, real_info->huge, GFC_RND_MODE);
+ mpfr_log10 (b, real_info->tiny, GFC_RND_MODE);
+ mpfr_neg (b, b, GFC_RND_MODE);
+
+ /* a = min(a, b) */
+ if (mpfr_cmp (a, b) > 0)
+ mpfr_set (a, b, GFC_RND_MODE);
+
+ mpfr_trunc (a, a);
+ gfc_mpfr_to_mpz (r, a);
+ real_info->range = mpz_get_si (r);
+
+ /* precision(x) = int((p - 1) * log10(b)) + k */
+ mpfr_set_ui (a, real_info->radix, GFC_RND_MODE);
+ mpfr_log10 (a, a, GFC_RND_MODE);
+
+ mpfr_mul_ui (a, a, real_info->digits - 1, GFC_RND_MODE);
+ mpfr_trunc (a, a);
+ gfc_mpfr_to_mpz (r, a);
+ real_info->precision = mpz_get_si (r);
+
+ /* If the radix is an integral power of 10, add one to the precision. */
+ for (i = 10; i <= real_info->radix; i *= 10)
+ if (i == real_info->radix)
+ real_info->precision++;
+
+ mpfr_clear (a);
+ mpfr_clear (b);
+ mpfr_clear (c);
+ }
+
+ mpz_clear (r);
+}
+
+
+/* Clean up, get rid of numeric constants. */
+
+void
+gfc_arith_done_1 (void)
+{
+ gfc_integer_info *ip;
+ gfc_real_info *rp;
+
+ for (ip = gfc_integer_kinds; ip->kind; ip++)
+ {
+ mpz_clear (ip->min_int);
+ mpz_clear (ip->pedantic_min_int);
+ mpz_clear (ip->huge);
+ }
+
+ for (rp = gfc_real_kinds; rp->kind; rp++)
+ {
+ mpfr_clear (rp->epsilon);
+ mpfr_clear (rp->huge);
+ mpfr_clear (rp->tiny);
+ mpfr_clear (rp->subnormal);
+ }
+}
+
+
+/* Given an integer and a kind, make sure that the integer lies within
+ the range of the kind. Returns ARITH_OK, ARITH_ASYMMETRIC or
+ ARITH_OVERFLOW. */
+
+arith
+gfc_check_integer_range (mpz_t p, int kind)
+{
+ arith result;
+ int i;
+
+ i = gfc_validate_kind (BT_INTEGER, kind, false);
+ result = ARITH_OK;
+
+ if (pedantic)
+ {
+ if (mpz_cmp (p, gfc_integer_kinds[i].pedantic_min_int) < 0)
+ result = ARITH_ASYMMETRIC;
+ }
+
+
+ if (gfc_option.flag_range_check == 0)
+ return result;
+
+ if (mpz_cmp (p, gfc_integer_kinds[i].min_int) < 0
+ || mpz_cmp (p, gfc_integer_kinds[i].huge) > 0)
+ result = ARITH_OVERFLOW;
+
+ return result;
+}
+
+
+/* Given a real and a kind, make sure that the real lies within the
+ range of the kind. Returns ARITH_OK, ARITH_OVERFLOW or
+ ARITH_UNDERFLOW. */
+
+static arith
+gfc_check_real_range (mpfr_t p, int kind)
+{
+ arith retval;
+ mpfr_t q;
+ int i;
+
+ i = gfc_validate_kind (BT_REAL, kind, false);
+
+ gfc_set_model (p);
+ mpfr_init (q);
+ mpfr_abs (q, p, GFC_RND_MODE);
+
+ if (mpfr_inf_p (p))
+ {
+ if (gfc_option.flag_range_check == 0)
+ retval = ARITH_OK;
+ else
+ retval = ARITH_OVERFLOW;
+ }
+ else if (mpfr_nan_p (p))
+ {
+ if (gfc_option.flag_range_check == 0)
+ retval = ARITH_OK;
+ else
+ retval = ARITH_NAN;
+ }
+ else if (mpfr_sgn (q) == 0)
+ retval = ARITH_OK;
+ else if (mpfr_cmp (q, gfc_real_kinds[i].huge) > 0)
+ {
+ if (gfc_option.flag_range_check == 0)
+ retval = ARITH_OK;
+ else
+ retval = ARITH_OVERFLOW;
+ }
+ else if (mpfr_cmp (q, gfc_real_kinds[i].subnormal) < 0)
+ {
+ if (gfc_option.flag_range_check == 0)
+ retval = ARITH_OK;
+ else
+ retval = ARITH_UNDERFLOW;
+ }
+ else if (mpfr_cmp (q, gfc_real_kinds[i].tiny) < 0)
+ {
+#if defined(GFC_MPFR_TOO_OLD)
+ /* MPFR operates on a number with a given precision and enormous
+ exponential range. To represent subnormal numbers, the exponent is
+ allowed to become smaller than emin, but always retains the full
+ precision. This code resets unused bits to 0 to alleviate
+ rounding problems. Note, a future version of MPFR will have a
+ mpfr_subnormalize() function, which handles this truncation in a
+ more efficient and robust way. */
+
+ int j, k;
+ char *bin, *s;
+ mp_exp_t e;
+
+ bin = mpfr_get_str (NULL, &e, gfc_real_kinds[i].radix, 0, q, GMP_RNDN);
+ k = gfc_real_kinds[i].digits - (gfc_real_kinds[i].min_exponent - e);
+ for (j = k; j < gfc_real_kinds[i].digits; j++)
+ bin[j] = '0';
+ /* Need space for '0.', bin, 'E', and e */
+ s = (char *) gfc_getmem (strlen(bin) + 10);
+ sprintf (s, "0.%sE%d", bin, (int) e);
+ mpfr_set_str (q, s, gfc_real_kinds[i].radix, GMP_RNDN);
+
+ gfc_free (s);
+ gfc_free (bin);
+#else
+ mp_exp_t emin, emax;
+ int en;
+
+ /* Save current values of emin and emax. */
+ emin = mpfr_get_emin ();
+ emax = mpfr_get_emax ();
+
+ /* Set emin and emax for the current model number. */
+ en = gfc_real_kinds[i].min_exponent - gfc_real_kinds[i].digits + 1;
+ mpfr_set_emin ((mp_exp_t) en);
+ mpfr_set_emax ((mp_exp_t) gfc_real_kinds[i].max_exponent);
+ mpfr_subnormalize (q, 0, GFC_RND_MODE);
+
+ /* Reset emin and emax. */
+ mpfr_set_emin (emin);
+ mpfr_set_emax (emax);
+#endif
+
+ /* Copy sign if needed. */
+ if (mpfr_sgn (p) < 0)
+ mpfr_neg (p, q, GMP_RNDN);
+ else
+ mpfr_set (p, q, GMP_RNDN);
+
+ retval = ARITH_OK;
+ }
+ else
+ retval = ARITH_OK;
+
+ mpfr_clear (q);
+
+ return retval;
+}
+
+
+/* Function to return a constant expression node of a given type and kind. */
+
+gfc_expr *
+gfc_constant_result (bt type, int kind, locus * where)
+{
+ gfc_expr *result;
+
+ if (!where)
+ gfc_internal_error
+ ("gfc_constant_result(): locus 'where' cannot be NULL");
+
+ result = gfc_get_expr ();
+
+ result->expr_type = EXPR_CONSTANT;
+ result->ts.type = type;
+ result->ts.kind = kind;
+ result->where = *where;
+
+ switch (type)
+ {
+ case BT_INTEGER:
+ mpz_init (result->value.integer);
+ break;
+
+ case BT_REAL:
+ gfc_set_model_kind (kind);
+ mpfr_init (result->value.real);
+ break;
+
+ case BT_COMPLEX:
+ gfc_set_model_kind (kind);
+ mpfr_init (result->value.complex.r);
+ mpfr_init (result->value.complex.i);
+ break;
+
+ default:
+ break;
+ }
+
+ return result;
+}
+
+
+/* Low-level arithmetic functions. All of these subroutines assume
+ that all operands are of the same type and return an operand of the
+ same type. The other thing about these subroutines is that they
+ can fail in various ways -- overflow, underflow, division by zero,
+ zero raised to the zero, etc. */
+
+static arith
+gfc_arith_not (gfc_expr * op1, gfc_expr ** resultp)
+{
+ gfc_expr *result;
+
+ result = gfc_constant_result (BT_LOGICAL, op1->ts.kind, &op1->where);
+ result->value.logical = !op1->value.logical;
+ *resultp = result;
+
+ return ARITH_OK;
+}
+
+
+static arith
+gfc_arith_and (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp)
+{
+ gfc_expr *result;
+
+ result = gfc_constant_result (BT_LOGICAL, gfc_kind_max (op1, op2),
+ &op1->where);
+ result->value.logical = op1->value.logical && op2->value.logical;
+ *resultp = result;
+
+ return ARITH_OK;
+}
+
+
+static arith
+gfc_arith_or (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp)
+{
+ gfc_expr *result;
+
+ result = gfc_constant_result (BT_LOGICAL, gfc_kind_max (op1, op2),
+ &op1->where);
+ result->value.logical = op1->value.logical || op2->value.logical;
+ *resultp = result;
+
+ return ARITH_OK;
+}
+
+
+static arith
+gfc_arith_eqv (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp)
+{
+ gfc_expr *result;
+
+ result = gfc_constant_result (BT_LOGICAL, gfc_kind_max (op1, op2),
+ &op1->where);
+ result->value.logical = op1->value.logical == op2->value.logical;
+ *resultp = result;
+
+ return ARITH_OK;
+}
+
+
+static arith
+gfc_arith_neqv (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp)
+{
+ gfc_expr *result;
+
+ result = gfc_constant_result (BT_LOGICAL, gfc_kind_max (op1, op2),
+ &op1->where);
+ result->value.logical = op1->value.logical != op2->value.logical;
+ *resultp = result;
+
+ return ARITH_OK;
+}
+
+
+/* Make sure a constant numeric expression is within the range for
+ its type and kind. Note that there's also a gfc_check_range(),
+ but that one deals with the intrinsic RANGE function. */
+
+arith
+gfc_range_check (gfc_expr * e)
+{
+ arith rc;
+
+ switch (e->ts.type)
+ {
+ case BT_INTEGER:
+ rc = gfc_check_integer_range (e->value.integer, e->ts.kind);
+ break;
+
+ case BT_REAL:
+ rc = gfc_check_real_range (e->value.real, e->ts.kind);
+ if (rc == ARITH_UNDERFLOW)
+ mpfr_set_ui (e->value.real, 0, GFC_RND_MODE);
+ if (rc == ARITH_OVERFLOW)
+ mpfr_set_inf (e->value.real, mpfr_sgn (e->value.real));
+ if (rc == ARITH_NAN)
+ mpfr_set_nan (e->value.real);
+ break;
+
+ case BT_COMPLEX:
+ rc = gfc_check_real_range (e->value.complex.r, e->ts.kind);
+ if (rc == ARITH_UNDERFLOW)
+ mpfr_set_ui (e->value.complex.r, 0, GFC_RND_MODE);
+ if (rc == ARITH_OVERFLOW)
+ mpfr_set_inf (e->value.complex.r, mpfr_sgn (e->value.complex.r));
+ if (rc == ARITH_NAN)
+ mpfr_set_nan (e->value.complex.r);
+
+ rc = gfc_check_real_range (e->value.complex.i, e->ts.kind);
+ if (rc == ARITH_UNDERFLOW)
+ mpfr_set_ui (e->value.complex.i, 0, GFC_RND_MODE);
+ if (rc == ARITH_OVERFLOW)
+ mpfr_set_inf (e->value.complex.i, mpfr_sgn (e->value.complex.i));
+ if (rc == ARITH_NAN)
+ mpfr_set_nan (e->value.complex.i);
+ break;
+
+ default:
+ gfc_internal_error ("gfc_range_check(): Bad type");
+ }
+
+ return rc;
+}
+
+
+/* Several of the following routines use the same set of statements to
+ check the validity of the result. Encapsulate the checking here. */
+
+static arith
+check_result (arith rc, gfc_expr * x, gfc_expr * r, gfc_expr ** rp)
+{
+ arith val = rc;
+
+ if (val == ARITH_UNDERFLOW)
+ {
+ if (gfc_option.warn_underflow)
+ gfc_warning (gfc_arith_error (val), &x->where);
+ val = ARITH_OK;
+ }
+
+ if (val == ARITH_ASYMMETRIC)
+ {
+ gfc_warning (gfc_arith_error (val), &x->where);
+ val = ARITH_OK;
+ }
+
+ if (val != ARITH_OK)
+ gfc_free_expr (r);
+ else
+ *rp = r;
+
+ return val;
+}
+
+
+/* It may seem silly to have a subroutine that actually computes the
+ unary plus of a constant, but it prevents us from making exceptions
+ in the code elsewhere. */
+
+static arith
+gfc_arith_uplus (gfc_expr * op1, gfc_expr ** resultp)
+{
+ *resultp = gfc_copy_expr (op1);
+ return ARITH_OK;
+}
+
+
+static arith
+gfc_arith_uminus (gfc_expr * op1, gfc_expr ** resultp)
+{
+ gfc_expr *result;
+ arith rc;
+
+ result = gfc_constant_result (op1->ts.type, op1->ts.kind, &op1->where);
+
+ switch (op1->ts.type)
+ {
+ case BT_INTEGER:
+ mpz_neg (result->value.integer, op1->value.integer);
+ break;
+
+ case BT_REAL:
+ mpfr_neg (result->value.real, op1->value.real, GFC_RND_MODE);
+ break;
+
+ case BT_COMPLEX:
+ mpfr_neg (result->value.complex.r, op1->value.complex.r, GFC_RND_MODE);
+ mpfr_neg (result->value.complex.i, op1->value.complex.i, GFC_RND_MODE);
+ break;
+
+ default:
+ gfc_internal_error ("gfc_arith_uminus(): Bad basic type");
+ }
+
+ rc = gfc_range_check (result);
+
+ return check_result (rc, op1, result, resultp);
+}
+
+
+static arith
+gfc_arith_plus (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp)
+{
+ gfc_expr *result;
+ arith rc;
+
+ result = gfc_constant_result (op1->ts.type, op1->ts.kind, &op1->where);
+
+ switch (op1->ts.type)
+ {
+ case BT_INTEGER:
+ mpz_add (result->value.integer, op1->value.integer, op2->value.integer);
+ break;
+
+ case BT_REAL:
+ mpfr_add (result->value.real, op1->value.real, op2->value.real,
+ GFC_RND_MODE);
+ break;
+
+ case BT_COMPLEX:
+ mpfr_add (result->value.complex.r, op1->value.complex.r,
+ op2->value.complex.r, GFC_RND_MODE);
+
+ mpfr_add (result->value.complex.i, op1->value.complex.i,
+ op2->value.complex.i, GFC_RND_MODE);
+ break;
+
+ default:
+ gfc_internal_error ("gfc_arith_plus(): Bad basic type");
+ }
+
+ rc = gfc_range_check (result);
+
+ return check_result (rc, op1, result, resultp);
+}
+
+
+static arith
+gfc_arith_minus (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp)
+{
+ gfc_expr *result;
+ arith rc;
+
+ result = gfc_constant_result (op1->ts.type, op1->ts.kind, &op1->where);
+
+ switch (op1->ts.type)
+ {
+ case BT_INTEGER:
+ mpz_sub (result->value.integer, op1->value.integer, op2->value.integer);
+ break;
+
+ case BT_REAL:
+ mpfr_sub (result->value.real, op1->value.real, op2->value.real,
+ GFC_RND_MODE);
+ break;
+
+ case BT_COMPLEX:
+ mpfr_sub (result->value.complex.r, op1->value.complex.r,
+ op2->value.complex.r, GFC_RND_MODE);
+
+ mpfr_sub (result->value.complex.i, op1->value.complex.i,
+ op2->value.complex.i, GFC_RND_MODE);
+ break;
+
+ default:
+ gfc_internal_error ("gfc_arith_minus(): Bad basic type");
+ }
+
+ rc = gfc_range_check (result);
+
+ return check_result (rc, op1, result, resultp);
+}
+
+
+static arith
+gfc_arith_times (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp)
+{
+ gfc_expr *result;
+ mpfr_t x, y;
+ arith rc;
+
+ result = gfc_constant_result (op1->ts.type, op1->ts.kind, &op1->where);
+
+ switch (op1->ts.type)
+ {
+ case BT_INTEGER:
+ mpz_mul (result->value.integer, op1->value.integer, op2->value.integer);
+ break;
+
+ case BT_REAL:
+ mpfr_mul (result->value.real, op1->value.real, op2->value.real,
+ GFC_RND_MODE);
+ break;
+
+ case BT_COMPLEX:
+ gfc_set_model (op1->value.complex.r);
+ mpfr_init (x);
+ mpfr_init (y);
+
+ mpfr_mul (x, op1->value.complex.r, op2->value.complex.r, GFC_RND_MODE);
+ mpfr_mul (y, op1->value.complex.i, op2->value.complex.i, GFC_RND_MODE);
+ mpfr_sub (result->value.complex.r, x, y, GFC_RND_MODE);
+
+ mpfr_mul (x, op1->value.complex.r, op2->value.complex.i, GFC_RND_MODE);
+ mpfr_mul (y, op1->value.complex.i, op2->value.complex.r, GFC_RND_MODE);
+ mpfr_add (result->value.complex.i, x, y, GFC_RND_MODE);
+
+ mpfr_clear (x);
+ mpfr_clear (y);
+ break;
+
+ default:
+ gfc_internal_error ("gfc_arith_times(): Bad basic type");
+ }
+
+ rc = gfc_range_check (result);
+
+ return check_result (rc, op1, result, resultp);
+}
+
+
+static arith
+gfc_arith_divide (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp)
+{
+ gfc_expr *result;
+ mpfr_t x, y, div;
+ arith rc;
+
+ rc = ARITH_OK;
+
+ result = gfc_constant_result (op1->ts.type, op1->ts.kind, &op1->where);
+
+ switch (op1->ts.type)
+ {
+ case BT_INTEGER:
+ if (mpz_sgn (op2->value.integer) == 0)
+ {
+ rc = ARITH_DIV0;
+ break;
+ }
+
+ mpz_tdiv_q (result->value.integer, op1->value.integer,
+ op2->value.integer);
+ break;
+
+ case BT_REAL:
+ if (mpfr_sgn (op2->value.real) == 0
+ && gfc_option.flag_range_check == 1)
+ {
+ rc = ARITH_DIV0;
+ break;
+ }
+
+ mpfr_div (result->value.real, op1->value.real, op2->value.real,
+ GFC_RND_MODE);
+ break;
+
+ case BT_COMPLEX:
+ if (mpfr_sgn (op2->value.complex.r) == 0
+ && mpfr_sgn (op2->value.complex.i) == 0
+ && gfc_option.flag_range_check == 1)
+ {
+ rc = ARITH_DIV0;
+ break;
+ }
+
+ gfc_set_model (op1->value.complex.r);
+ mpfr_init (x);
+ mpfr_init (y);
+ mpfr_init (div);
+
+ mpfr_mul (x, op2->value.complex.r, op2->value.complex.r, GFC_RND_MODE);
+ mpfr_mul (y, op2->value.complex.i, op2->value.complex.i, GFC_RND_MODE);
+ mpfr_add (div, x, y, GFC_RND_MODE);
+
+ mpfr_mul (x, op1->value.complex.r, op2->value.complex.r, GFC_RND_MODE);
+ mpfr_mul (y, op1->value.complex.i, op2->value.complex.i, GFC_RND_MODE);
+ mpfr_add (result->value.complex.r, x, y, GFC_RND_MODE);
+ mpfr_div (result->value.complex.r, result->value.complex.r, div,
+ GFC_RND_MODE);
+
+ mpfr_mul (x, op1->value.complex.i, op2->value.complex.r, GFC_RND_MODE);
+ mpfr_mul (y, op1->value.complex.r, op2->value.complex.i, GFC_RND_MODE);
+ mpfr_sub (result->value.complex.i, x, y, GFC_RND_MODE);
+ mpfr_div (result->value.complex.i, result->value.complex.i, div,
+ GFC_RND_MODE);
+
+ mpfr_clear (x);
+ mpfr_clear (y);
+ mpfr_clear (div);
+ break;
+
+ default:
+ gfc_internal_error ("gfc_arith_divide(): Bad basic type");
+ }
+
+ if (rc == ARITH_OK)
+ rc = gfc_range_check (result);
+
+ return check_result (rc, op1, result, resultp);
+}
+
+
+/* Compute the reciprocal of a complex number (guaranteed nonzero). */
+
+static void
+complex_reciprocal (gfc_expr * op)
+{
+ mpfr_t mod, a, re, im;
+
+ gfc_set_model (op->value.complex.r);
+ mpfr_init (mod);
+ mpfr_init (a);
+ mpfr_init (re);
+ mpfr_init (im);
+
+ mpfr_mul (mod, op->value.complex.r, op->value.complex.r, GFC_RND_MODE);
+ mpfr_mul (a, op->value.complex.i, op->value.complex.i, GFC_RND_MODE);
+ mpfr_add (mod, mod, a, GFC_RND_MODE);
+
+ mpfr_div (re, op->value.complex.r, mod, GFC_RND_MODE);
+
+ mpfr_neg (im, op->value.complex.i, GFC_RND_MODE);
+ mpfr_div (im, im, mod, GFC_RND_MODE);
+
+ mpfr_set (op->value.complex.r, re, GFC_RND_MODE);
+ mpfr_set (op->value.complex.i, im, GFC_RND_MODE);
+
+ mpfr_clear (re);
+ mpfr_clear (im);
+ mpfr_clear (mod);
+ mpfr_clear (a);
+}
+
+
+/* Raise a complex number to positive power. */
+
+static void
+complex_pow_ui (gfc_expr * base, int power, gfc_expr * result)
+{
+ mpfr_t re, im, a;
+
+ gfc_set_model (base->value.complex.r);
+ mpfr_init (re);
+ mpfr_init (im);
+ mpfr_init (a);
+
+ mpfr_set_ui (result->value.complex.r, 1, GFC_RND_MODE);
+ mpfr_set_ui (result->value.complex.i, 0, GFC_RND_MODE);
+
+ for (; power > 0; power--)
+ {
+ mpfr_mul (re, base->value.complex.r, result->value.complex.r,
+ GFC_RND_MODE);
+ mpfr_mul (a, base->value.complex.i, result->value.complex.i,
+ GFC_RND_MODE);
+ mpfr_sub (re, re, a, GFC_RND_MODE);
+
+ mpfr_mul (im, base->value.complex.r, result->value.complex.i,
+ GFC_RND_MODE);
+ mpfr_mul (a, base->value.complex.i, result->value.complex.r,
+ GFC_RND_MODE);
+ mpfr_add (im, im, a, GFC_RND_MODE);
+
+ mpfr_set (result->value.complex.r, re, GFC_RND_MODE);
+ mpfr_set (result->value.complex.i, im, GFC_RND_MODE);
+ }
+
+ mpfr_clear (re);
+ mpfr_clear (im);
+ mpfr_clear (a);
+}
+
+
+/* Raise a number to an integer power. */
+
+static arith
+gfc_arith_power (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp)
+{
+ int power, apower;
+ gfc_expr *result;
+ mpz_t unity_z;
+ mpfr_t unity_f;
+ arith rc;
+
+ rc = ARITH_OK;
+
+ if (gfc_extract_int (op2, &power) != NULL)
+ gfc_internal_error ("gfc_arith_power(): Bad exponent");
+
+ result = gfc_constant_result (op1->ts.type, op1->ts.kind, &op1->where);
+
+ if (power == 0)
+ {
+ /* Handle something to the zeroth power. Since we're dealing
+ with integral exponents, there is no ambiguity in the
+ limiting procedure used to determine the value of 0**0. */
+ switch (op1->ts.type)
+ {
+ case BT_INTEGER:
+ mpz_set_ui (result->value.integer, 1);
+ break;
+
+ case BT_REAL:
+ mpfr_set_ui (result->value.real, 1, GFC_RND_MODE);
+ break;
+
+ case BT_COMPLEX:
+ mpfr_set_ui (result->value.complex.r, 1, GFC_RND_MODE);
+ mpfr_set_ui (result->value.complex.i, 0, GFC_RND_MODE);
+ break;
+
+ default:
+ gfc_internal_error ("gfc_arith_power(): Bad base");
+ }
+ }
+ else
+ {
+ apower = power;
+ if (power < 0)
+ apower = -power;
+
+ switch (op1->ts.type)
+ {
+ case BT_INTEGER:
+ mpz_pow_ui (result->value.integer, op1->value.integer, apower);
+
+ if (power < 0)
+ {
+ mpz_init_set_ui (unity_z, 1);
+ mpz_tdiv_q (result->value.integer, unity_z,
+ result->value.integer);
+ mpz_clear (unity_z);
+ }
+ break;
+
+ case BT_REAL:
+ mpfr_pow_ui (result->value.real, op1->value.real, apower,
+ GFC_RND_MODE);
+
+ if (power < 0)
+ {
+ gfc_set_model (op1->value.real);
+ mpfr_init (unity_f);
+ mpfr_set_ui (unity_f, 1, GFC_RND_MODE);
+ mpfr_div (result->value.real, unity_f, result->value.real,
+ GFC_RND_MODE);
+ mpfr_clear (unity_f);
+ }
+ break;
+
+ case BT_COMPLEX:
+ complex_pow_ui (op1, apower, result);
+ if (power < 0)
+ complex_reciprocal (result);
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ if (rc == ARITH_OK)
+ rc = gfc_range_check (result);
+
+ return check_result (rc, op1, result, resultp);
+}
+
+
+/* Concatenate two string constants. */
+
+static arith
+gfc_arith_concat (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp)
+{
+ gfc_expr *result;
+ int len;
+
+ result = gfc_constant_result (BT_CHARACTER, gfc_default_character_kind,
+ &op1->where);
+
+ len = op1->value.character.length + op2->value.character.length;
+
+ result->value.character.string = gfc_getmem (len + 1);
+ result->value.character.length = len;
+
+ memcpy (result->value.character.string, op1->value.character.string,
+ op1->value.character.length);
+
+ memcpy (result->value.character.string + op1->value.character.length,
+ op2->value.character.string, op2->value.character.length);
+
+ result->value.character.string[len] = '\0';
+
+ *resultp = result;
+
+ return ARITH_OK;
+}
+
+
+/* Comparison operators. Assumes that the two expression nodes
+ contain two constants of the same type. */
+
+int
+gfc_compare_expr (gfc_expr * op1, gfc_expr * op2)
+{
+ int rc;
+
+ switch (op1->ts.type)
+ {
+ case BT_INTEGER:
+ rc = mpz_cmp (op1->value.integer, op2->value.integer);
+ break;
+
+ case BT_REAL:
+ rc = mpfr_cmp (op1->value.real, op2->value.real);
+ break;
+
+ case BT_CHARACTER:
+ rc = gfc_compare_string (op1, op2);
+ break;
+
+ case BT_LOGICAL:
+ rc = ((!op1->value.logical && op2->value.logical)
+ || (op1->value.logical && !op2->value.logical));
+ break;
+
+ default:
+ gfc_internal_error ("gfc_compare_expr(): Bad basic type");
+ }
+
+ return rc;
+}
+
+
+/* Compare a pair of complex numbers. Naturally, this is only for
+ equality and nonequality. */
+
+static int
+compare_complex (gfc_expr * op1, gfc_expr * op2)
+{
+ return (mpfr_cmp (op1->value.complex.r, op2->value.complex.r) == 0
+ && mpfr_cmp (op1->value.complex.i, op2->value.complex.i) == 0);
+}
+
+
+/* Given two constant strings and the inverse collating sequence, compare the
+ strings. We return -1 for a < b, 0 for a == b and 1 for a > b.
+ We use the processor's default collating sequence. */
+
+int
+gfc_compare_string (gfc_expr *a, gfc_expr *b)
+{
+ int len, alen, blen, i, ac, bc;
+
+ alen = a->value.character.length;
+ blen = b->value.character.length;
+
+ len = (alen > blen) ? alen : blen;
+
+ for (i = 0; i < len; i++)
+ {
+ /* We cast to unsigned char because default char, if it is signed,
+ would lead to ac < 0 for string[i] > 127. */
+ ac = (unsigned char) ((i < alen) ? a->value.character.string[i] : ' ');
+ bc = (unsigned char) ((i < blen) ? b->value.character.string[i] : ' ');
+
+ if (ac < bc)
+ return -1;
+ if (ac > bc)
+ return 1;
+ }
+
+ /* Strings are equal */
+
+ return 0;
+}
+
+
+/* Specific comparison subroutines. */
+
+static arith
+gfc_arith_eq (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp)
+{
+ gfc_expr *result;
+
+ result = gfc_constant_result (BT_LOGICAL, gfc_default_logical_kind,
+ &op1->where);
+ result->value.logical = (op1->ts.type == BT_COMPLEX) ?
+ compare_complex (op1, op2) : (gfc_compare_expr (op1, op2) == 0);
+
+ *resultp = result;
+ return ARITH_OK;
+}
+
+
+static arith
+gfc_arith_ne (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp)
+{
+ gfc_expr *result;
+
+ result = gfc_constant_result (BT_LOGICAL, gfc_default_logical_kind,
+ &op1->where);
+ result->value.logical = (op1->ts.type == BT_COMPLEX) ?
+ !compare_complex (op1, op2) : (gfc_compare_expr (op1, op2) != 0);
+
+ *resultp = result;
+ return ARITH_OK;
+}
+
+
+static arith
+gfc_arith_gt (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp)
+{
+ gfc_expr *result;
+
+ result = gfc_constant_result (BT_LOGICAL, gfc_default_logical_kind,
+ &op1->where);
+ result->value.logical = (gfc_compare_expr (op1, op2) > 0);
+ *resultp = result;
+
+ return ARITH_OK;
+}
+
+
+static arith
+gfc_arith_ge (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp)
+{
+ gfc_expr *result;
+
+ result = gfc_constant_result (BT_LOGICAL, gfc_default_logical_kind,
+ &op1->where);
+ result->value.logical = (gfc_compare_expr (op1, op2) >= 0);
+ *resultp = result;
+
+ return ARITH_OK;
+}
+
+
+static arith
+gfc_arith_lt (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp)
+{
+ gfc_expr *result;
+
+ result = gfc_constant_result (BT_LOGICAL, gfc_default_logical_kind,
+ &op1->where);
+ result->value.logical = (gfc_compare_expr (op1, op2) < 0);
+ *resultp = result;
+
+ return ARITH_OK;
+}
+
+
+static arith
+gfc_arith_le (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp)
+{
+ gfc_expr *result;
+
+ result = gfc_constant_result (BT_LOGICAL, gfc_default_logical_kind,
+ &op1->where);
+ result->value.logical = (gfc_compare_expr (op1, op2) <= 0);
+ *resultp = result;
+
+ return ARITH_OK;
+}
+
+
+static arith
+reduce_unary (arith (*eval) (gfc_expr *, gfc_expr **), gfc_expr * op,
+ gfc_expr ** result)
+{
+ gfc_constructor *c, *head;
+ gfc_expr *r;
+ arith rc;
+
+ if (op->expr_type == EXPR_CONSTANT)
+ return eval (op, result);
+
+ rc = ARITH_OK;
+ head = gfc_copy_constructor (op->value.constructor);
+
+ for (c = head; c; c = c->next)
+ {
+ rc = eval (c->expr, &r);
+ if (rc != ARITH_OK)
+ break;
+
+ gfc_replace_expr (c->expr, r);
+ }
+
+ if (rc != ARITH_OK)
+ gfc_free_constructor (head);
+ else
+ {
+ r = gfc_get_expr ();
+ r->expr_type = EXPR_ARRAY;
+ r->value.constructor = head;
+ r->shape = gfc_copy_shape (op->shape, op->rank);
+
+ r->ts = head->expr->ts;
+ r->where = op->where;
+ r->rank = op->rank;
+
+ *result = r;
+ }
+
+ return rc;
+}
+
+
+static arith
+reduce_binary_ac (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
+ gfc_expr * op1, gfc_expr * op2,
+ gfc_expr ** result)
+{
+ gfc_constructor *c, *head;
+ gfc_expr *r;
+ arith rc;
+
+ head = gfc_copy_constructor (op1->value.constructor);
+ rc = ARITH_OK;
+
+ for (c = head; c; c = c->next)
+ {
+ rc = eval (c->expr, op2, &r);
+ if (rc != ARITH_OK)
+ break;
+
+ gfc_replace_expr (c->expr, r);
+ }
+
+ if (rc != ARITH_OK)
+ gfc_free_constructor (head);
+ else
+ {
+ r = gfc_get_expr ();
+ r->expr_type = EXPR_ARRAY;
+ r->value.constructor = head;
+ r->shape = gfc_copy_shape (op1->shape, op1->rank);
+
+ r->ts = head->expr->ts;
+ r->where = op1->where;
+ r->rank = op1->rank;
+
+ *result = r;
+ }
+
+ return rc;
+}
+
+
+static arith
+reduce_binary_ca (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
+ gfc_expr * op1, gfc_expr * op2,
+ gfc_expr ** result)
+{
+ gfc_constructor *c, *head;
+ gfc_expr *r;
+ arith rc;
+
+ head = gfc_copy_constructor (op2->value.constructor);
+ rc = ARITH_OK;
+
+ for (c = head; c; c = c->next)
+ {
+ rc = eval (op1, c->expr, &r);
+ if (rc != ARITH_OK)
+ break;
+
+ gfc_replace_expr (c->expr, r);
+ }
+
+ if (rc != ARITH_OK)
+ gfc_free_constructor (head);
+ else
+ {
+ r = gfc_get_expr ();
+ r->expr_type = EXPR_ARRAY;
+ r->value.constructor = head;
+ r->shape = gfc_copy_shape (op2->shape, op2->rank);
+
+ r->ts = head->expr->ts;
+ r->where = op2->where;
+ r->rank = op2->rank;
+
+ *result = r;
+ }
+
+ return rc;
+}
+
+
+static arith
+reduce_binary_aa (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
+ gfc_expr * op1, gfc_expr * op2,
+ gfc_expr ** result)
+{
+ gfc_constructor *c, *d, *head;
+ gfc_expr *r;
+ arith rc;
+
+ head = gfc_copy_constructor (op1->value.constructor);
+
+ rc = ARITH_OK;
+ d = op2->value.constructor;
+
+ if (gfc_check_conformance ("Elemental binary operation", op1, op2)
+ != SUCCESS)
+ rc = ARITH_INCOMMENSURATE;
+ else
+ {
+
+ for (c = head; c; c = c->next, d = d->next)
+ {
+ if (d == NULL)
+ {
+ rc = ARITH_INCOMMENSURATE;
+ break;
+ }
+
+ rc = eval (c->expr, d->expr, &r);
+ if (rc != ARITH_OK)
+ break;
+
+ gfc_replace_expr (c->expr, r);
+ }
+
+ if (d != NULL)
+ rc = ARITH_INCOMMENSURATE;
+ }
+
+ if (rc != ARITH_OK)
+ gfc_free_constructor (head);
+ else
+ {
+ r = gfc_get_expr ();
+ r->expr_type = EXPR_ARRAY;
+ r->value.constructor = head;
+ r->shape = gfc_copy_shape (op1->shape, op1->rank);
+
+ r->ts = head->expr->ts;
+ r->where = op1->where;
+ r->rank = op1->rank;
+
+ *result = r;
+ }
+
+ return rc;
+}
+
+
+static arith
+reduce_binary (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
+ gfc_expr * op1, gfc_expr * op2,
+ gfc_expr ** result)
+{
+ if (op1->expr_type == EXPR_CONSTANT && op2->expr_type == EXPR_CONSTANT)
+ return eval (op1, op2, result);
+
+ if (op1->expr_type == EXPR_CONSTANT && op2->expr_type == EXPR_ARRAY)
+ return reduce_binary_ca (eval, op1, op2, result);
+
+ if (op1->expr_type == EXPR_ARRAY && op2->expr_type == EXPR_CONSTANT)
+ return reduce_binary_ac (eval, op1, op2, result);
+
+ return reduce_binary_aa (eval, op1, op2, result);
+}
+
+
+typedef union
+{
+ arith (*f2)(gfc_expr *, gfc_expr **);
+ arith (*f3)(gfc_expr *, gfc_expr *, gfc_expr **);
+}
+eval_f;
+
+/* High level arithmetic subroutines. These subroutines go into
+ eval_intrinsic(), which can do one of several things to its
+ operands. If the operands are incompatible with the intrinsic
+ operation, we return a node pointing to the operands and hope that
+ an operator interface is found during resolution.
+
+ If the operands are compatible and are constants, then we try doing
+ the arithmetic. We also handle the cases where either or both
+ operands are array constructors. */
+
+static gfc_expr *
+eval_intrinsic (gfc_intrinsic_op operator,
+ eval_f eval, gfc_expr * op1, gfc_expr * op2)
+{
+ gfc_expr temp, *result;
+ int unary;
+ arith rc;
+
+ gfc_clear_ts (&temp.ts);
+
+ switch (operator)
+ {
+ /* Logical unary */
+ case INTRINSIC_NOT:
+ if (op1->ts.type != BT_LOGICAL)
+ goto runtime;
+
+ temp.ts.type = BT_LOGICAL;
+ temp.ts.kind = gfc_default_logical_kind;
+
+ unary = 1;
+ break;
+
+ /* Logical binary operators */
+ case INTRINSIC_OR:
+ case INTRINSIC_AND:
+ case INTRINSIC_NEQV:
+ case INTRINSIC_EQV:
+ if (op1->ts.type != BT_LOGICAL || op2->ts.type != BT_LOGICAL)
+ goto runtime;
+
+ temp.ts.type = BT_LOGICAL;
+ temp.ts.kind = gfc_default_logical_kind;
+
+ unary = 0;
+ break;
+
+ /* Numeric unary */
+ case INTRINSIC_UPLUS:
+ case INTRINSIC_UMINUS:
+ if (!gfc_numeric_ts (&op1->ts))
+ goto runtime;
+
+ temp.ts = op1->ts;
+
+ unary = 1;
+ break;
+
+ case INTRINSIC_PARENTHESES:
+ temp.ts = op1->ts;
+
+ unary = 1;
+ break;
+
+ /* Additional restrictions for ordering relations. */
+ case INTRINSIC_GE:
+ case INTRINSIC_LT:
+ case INTRINSIC_LE:
+ case INTRINSIC_GT:
+ if (op1->ts.type == BT_COMPLEX || op2->ts.type == BT_COMPLEX)
+ {
+ temp.ts.type = BT_LOGICAL;
+ temp.ts.kind = gfc_default_logical_kind;
+ goto runtime;
+ }
+
+ /* Fall through */
+ case INTRINSIC_EQ:
+ case INTRINSIC_NE:
+ if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER)
+ {
+ unary = 0;
+ temp.ts.type = BT_LOGICAL;
+ temp.ts.kind = gfc_default_logical_kind;
+ break;
+ }
+
+ /* Fall through */
+ /* Numeric binary */
+ case INTRINSIC_PLUS:
+ case INTRINSIC_MINUS:
+ case INTRINSIC_TIMES:
+ case INTRINSIC_DIVIDE:
+ case INTRINSIC_POWER:
+ if (!gfc_numeric_ts (&op1->ts) || !gfc_numeric_ts (&op2->ts))
+ goto runtime;
+
+ /* Insert any necessary type conversions to make the operands
+ compatible. */
+
+ temp.expr_type = EXPR_OP;
+ gfc_clear_ts (&temp.ts);
+ temp.value.op.operator = operator;
+
+ temp.value.op.op1 = op1;
+ temp.value.op.op2 = op2;
+
+ gfc_type_convert_binary (&temp);
+
+ if (operator == INTRINSIC_EQ || operator == INTRINSIC_NE
+ || operator == INTRINSIC_GE || operator == INTRINSIC_GT
+ || operator == INTRINSIC_LE || operator == INTRINSIC_LT)
+ {
+ temp.ts.type = BT_LOGICAL;
+ temp.ts.kind = gfc_default_logical_kind;
+ }
+
+ unary = 0;
+ break;
+
+ /* Character binary */
+ case INTRINSIC_CONCAT:
+ if (op1->ts.type != BT_CHARACTER || op2->ts.type != BT_CHARACTER)
+ goto runtime;
+
+ temp.ts.type = BT_CHARACTER;
+ temp.ts.kind = gfc_default_character_kind;
+
+ unary = 0;
+ break;
+
+ case INTRINSIC_USER:
+ goto runtime;
+
+ default:
+ gfc_internal_error ("eval_intrinsic(): Bad operator");
+ }
+
+ /* Try to combine the operators. */
+ if (operator == INTRINSIC_POWER && op2->ts.type != BT_INTEGER)
+ goto runtime;
+
+ if (op1->from_H
+ || (op1->expr_type != EXPR_CONSTANT
+ && (op1->expr_type != EXPR_ARRAY
+ || !gfc_is_constant_expr (op1)
+ || !gfc_expanded_ac (op1))))
+ goto runtime;
+
+ if (op2 != NULL
+ && (op2->from_H
+ || (op2->expr_type != EXPR_CONSTANT
+ && (op2->expr_type != EXPR_ARRAY
+ || !gfc_is_constant_expr (op2)
+ || !gfc_expanded_ac (op2)))))
+ goto runtime;
+
+ if (unary)
+ rc = reduce_unary (eval.f2, op1, &result);
+ else
+ rc = reduce_binary (eval.f3, op1, op2, &result);
+
+ if (rc != ARITH_OK)
+ { /* Something went wrong. */
+ gfc_error (gfc_arith_error (rc), &op1->where);
+ return NULL;
+ }
+
+ gfc_free_expr (op1);
+ gfc_free_expr (op2);
+ return result;
+
+runtime:
+ /* Create a run-time expression. */
+ result = gfc_get_expr ();
+ result->ts = temp.ts;
+
+ result->expr_type = EXPR_OP;
+ result->value.op.operator = operator;
+
+ result->value.op.op1 = op1;
+ result->value.op.op2 = op2;
+
+ result->where = op1->where;
+
+ return result;
+}
+
+
+/* Modify type of expression for zero size array. */
+
+static gfc_expr *
+eval_type_intrinsic0 (gfc_intrinsic_op operator, gfc_expr * op)
+{
+ if (op == NULL)
+ gfc_internal_error ("eval_type_intrinsic0(): op NULL");
+
+ switch (operator)
+ {
+ case INTRINSIC_GE:
+ case INTRINSIC_LT:
+ case INTRINSIC_LE:
+ case INTRINSIC_GT:
+ case INTRINSIC_EQ:
+ case INTRINSIC_NE:
+ op->ts.type = BT_LOGICAL;
+ op->ts.kind = gfc_default_logical_kind;
+ break;
+
+ default:
+ break;
+ }
+
+ return op;
+}
+
+
+/* Return nonzero if the expression is a zero size array. */
+
+static int
+gfc_zero_size_array (gfc_expr * e)
+{
+ if (e->expr_type != EXPR_ARRAY)
+ return 0;
+
+ return e->value.constructor == NULL;
+}
+
+
+/* Reduce a binary expression where at least one of the operands
+ involves a zero-length array. Returns NULL if neither of the
+ operands is a zero-length array. */
+
+static gfc_expr *
+reduce_binary0 (gfc_expr * op1, gfc_expr * op2)
+{
+ if (gfc_zero_size_array (op1))
+ {
+ gfc_free_expr (op2);
+ return op1;
+ }
+
+ if (gfc_zero_size_array (op2))
+ {
+ gfc_free_expr (op1);
+ return op2;
+ }
+
+ return NULL;
+}
+
+
+static gfc_expr *
+eval_intrinsic_f2 (gfc_intrinsic_op operator,
+ arith (*eval) (gfc_expr *, gfc_expr **),
+ gfc_expr * op1, gfc_expr * op2)
+{
+ gfc_expr *result;
+ eval_f f;
+
+ if (op2 == NULL)
+ {
+ if (gfc_zero_size_array (op1))
+ return eval_type_intrinsic0 (operator, op1);
+ }
+ else
+ {
+ result = reduce_binary0 (op1, op2);
+ if (result != NULL)
+ return eval_type_intrinsic0 (operator, result);
+ }
+
+ f.f2 = eval;
+ return eval_intrinsic (operator, f, op1, op2);
+}
+
+
+static gfc_expr *
+eval_intrinsic_f3 (gfc_intrinsic_op operator,
+ arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
+ gfc_expr * op1, gfc_expr * op2)
+{
+ gfc_expr *result;
+ eval_f f;
+
+ result = reduce_binary0 (op1, op2);
+ if (result != NULL)
+ return eval_type_intrinsic0(operator, result);
+
+ f.f3 = eval;
+ return eval_intrinsic (operator, f, op1, op2);
+}
+
+
+gfc_expr *
+gfc_uplus (gfc_expr * op)
+{
+ return eval_intrinsic_f2 (INTRINSIC_UPLUS, gfc_arith_uplus, op, NULL);
+}
+
+
+gfc_expr *
+gfc_uminus (gfc_expr * op)
+{
+ return eval_intrinsic_f2 (INTRINSIC_UMINUS, gfc_arith_uminus, op, NULL);
+}
+
+
+gfc_expr *
+gfc_add (gfc_expr * op1, gfc_expr * op2)
+{
+ return eval_intrinsic_f3 (INTRINSIC_PLUS, gfc_arith_plus, op1, op2);
+}
+
+
+gfc_expr *
+gfc_subtract (gfc_expr * op1, gfc_expr * op2)
+{
+ return eval_intrinsic_f3 (INTRINSIC_MINUS, gfc_arith_minus, op1, op2);
+}
+
+
+gfc_expr *
+gfc_multiply (gfc_expr * op1, gfc_expr * op2)
+{
+ return eval_intrinsic_f3 (INTRINSIC_TIMES, gfc_arith_times, op1, op2);
+}
+
+
+gfc_expr *
+gfc_divide (gfc_expr * op1, gfc_expr * op2)
+{
+ return eval_intrinsic_f3 (INTRINSIC_DIVIDE, gfc_arith_divide, op1, op2);
+}
+
+
+gfc_expr *
+gfc_power (gfc_expr * op1, gfc_expr * op2)
+{
+ return eval_intrinsic_f3 (INTRINSIC_POWER, gfc_arith_power, op1, op2);
+}
+
+
+gfc_expr *
+gfc_concat (gfc_expr * op1, gfc_expr * op2)
+{
+ return eval_intrinsic_f3 (INTRINSIC_CONCAT, gfc_arith_concat, op1, op2);
+}
+
+
+gfc_expr *
+gfc_and (gfc_expr * op1, gfc_expr * op2)
+{
+ return eval_intrinsic_f3 (INTRINSIC_AND, gfc_arith_and, op1, op2);
+}
+
+
+gfc_expr *
+gfc_or (gfc_expr * op1, gfc_expr * op2)
+{
+ return eval_intrinsic_f3 (INTRINSIC_OR, gfc_arith_or, op1, op2);
+}
+
+
+gfc_expr *
+gfc_not (gfc_expr * op1)
+{
+ return eval_intrinsic_f2 (INTRINSIC_NOT, gfc_arith_not, op1, NULL);
+}
+
+
+gfc_expr *
+gfc_eqv (gfc_expr * op1, gfc_expr * op2)
+{
+ return eval_intrinsic_f3 (INTRINSIC_EQV, gfc_arith_eqv, op1, op2);
+}
+
+
+gfc_expr *
+gfc_neqv (gfc_expr * op1, gfc_expr * op2)
+{
+ return eval_intrinsic_f3 (INTRINSIC_NEQV, gfc_arith_neqv, op1, op2);
+}
+
+
+gfc_expr *
+gfc_eq (gfc_expr * op1, gfc_expr * op2)
+{
+ return eval_intrinsic_f3 (INTRINSIC_EQ, gfc_arith_eq, op1, op2);
+}
+
+
+gfc_expr *
+gfc_ne (gfc_expr * op1, gfc_expr * op2)
+{
+ return eval_intrinsic_f3 (INTRINSIC_NE, gfc_arith_ne, op1, op2);
+}
+
+
+gfc_expr *
+gfc_gt (gfc_expr * op1, gfc_expr * op2)
+{
+ return eval_intrinsic_f3 (INTRINSIC_GT, gfc_arith_gt, op1, op2);
+}
+
+
+gfc_expr *
+gfc_ge (gfc_expr * op1, gfc_expr * op2)
+{
+ return eval_intrinsic_f3 (INTRINSIC_GE, gfc_arith_ge, op1, op2);
+}
+
+
+gfc_expr *
+gfc_lt (gfc_expr * op1, gfc_expr * op2)
+{
+ return eval_intrinsic_f3 (INTRINSIC_LT, gfc_arith_lt, op1, op2);
+}
+
+
+gfc_expr *
+gfc_le (gfc_expr * op1, gfc_expr * op2)
+{
+ return eval_intrinsic_f3 (INTRINSIC_LE, gfc_arith_le, op1, op2);
+}
+
+
+/* Convert an integer string to an expression node. */
+
+gfc_expr *
+gfc_convert_integer (const char * buffer, int kind, int radix, locus * where)
+{
+ gfc_expr *e;
+ const char *t;
+
+ e = gfc_constant_result (BT_INTEGER, kind, where);
+ /* A leading plus is allowed, but not by mpz_set_str. */
+ if (buffer[0] == '+')
+ t = buffer + 1;
+ else
+ t = buffer;
+ mpz_set_str (e->value.integer, t, radix);
+
+ return e;
+}
+
+
+/* Convert a real string to an expression node. */
+
+gfc_expr *
+gfc_convert_real (const char * buffer, int kind, locus * where)
+{
+ gfc_expr *e;
+
+ e = gfc_constant_result (BT_REAL, kind, where);
+ mpfr_set_str (e->value.real, buffer, 10, GFC_RND_MODE);
+
+ return e;
+}
+
+
+/* Convert a pair of real, constant expression nodes to a single
+ complex expression node. */
+
+gfc_expr *
+gfc_convert_complex (gfc_expr * real, gfc_expr * imag, int kind)
+{
+ gfc_expr *e;
+
+ e = gfc_constant_result (BT_COMPLEX, kind, &real->where);
+ mpfr_set (e->value.complex.r, real->value.real, GFC_RND_MODE);
+ mpfr_set (e->value.complex.i, imag->value.real, GFC_RND_MODE);
+
+ return e;
+}
+
+
+/******* Simplification of intrinsic functions with constant arguments *****/
+
+
+/* Deal with an arithmetic error. */
+
+static void
+arith_error (arith rc, gfc_typespec * from, gfc_typespec * to, locus * where)
+{
+ switch (rc)
+ {
+ case ARITH_OK:
+ gfc_error ("Arithmetic OK converting %s to %s at %L",
+ gfc_typename (from), gfc_typename (to), where);
+ break;
+ case ARITH_OVERFLOW:
+ gfc_error ("Arithmetic overflow converting %s to %s at %L",
+ gfc_typename (from), gfc_typename (to), where);
+ break;
+ case ARITH_UNDERFLOW:
+ gfc_error ("Arithmetic underflow converting %s to %s at %L",
+ gfc_typename (from), gfc_typename (to), where);
+ break;
+ case ARITH_NAN:
+ gfc_error ("Arithmetic NaN converting %s to %s at %L",
+ gfc_typename (from), gfc_typename (to), where);
+ break;
+ case ARITH_DIV0:
+ gfc_error ("Division by zero converting %s to %s at %L",
+ gfc_typename (from), gfc_typename (to), where);
+ break;
+ case ARITH_INCOMMENSURATE:
+ gfc_error ("Array operands are incommensurate converting %s to %s at %L",
+ gfc_typename (from), gfc_typename (to), where);
+ break;
+ case ARITH_ASYMMETRIC:
+ gfc_error ("Integer outside symmetric range implied by Standard Fortran"
+ " converting %s to %s at %L",
+ gfc_typename (from), gfc_typename (to), where);
+ break;
+ default:
+ gfc_internal_error ("gfc_arith_error(): Bad error code");
+ }
+
+ /* TODO: Do something about the error, ie, throw exception, return
+ NaN, etc. */
+}
+
+
+/* Convert integers to integers. */
+
+gfc_expr *
+gfc_int2int (gfc_expr * src, int kind)
+{
+ gfc_expr *result;
+ arith rc;
+
+ result = gfc_constant_result (BT_INTEGER, kind, &src->where);
+
+ mpz_set (result->value.integer, src->value.integer);
+
+ if ((rc = gfc_check_integer_range (result->value.integer, kind))
+ != ARITH_OK)
+ {
+ if (rc == ARITH_ASYMMETRIC)
+ {
+ gfc_warning (gfc_arith_error (rc), &src->where);
+ }
+ else
+ {
+ arith_error (rc, &src->ts, &result->ts, &src->where);
+ gfc_free_expr (result);
+ return NULL;
+ }
+ }
+
+ return result;
+}
+
+
+/* Convert integers to reals. */
+
+gfc_expr *
+gfc_int2real (gfc_expr * src, int kind)
+{
+ gfc_expr *result;
+ arith rc;
+
+ result = gfc_constant_result (BT_REAL, kind, &src->where);
+
+ mpfr_set_z (result->value.real, src->value.integer, GFC_RND_MODE);
+
+ if ((rc = gfc_check_real_range (result->value.real, kind)) != ARITH_OK)
+ {
+ arith_error (rc, &src->ts, &result->ts, &src->where);
+ gfc_free_expr (result);
+ return NULL;
+ }
+
+ return result;
+}
+
+
+/* Convert default integer to default complex. */
+
+gfc_expr *
+gfc_int2complex (gfc_expr * src, int kind)
+{
+ gfc_expr *result;
+ arith rc;
+
+ result = gfc_constant_result (BT_COMPLEX, kind, &src->where);
+
+ mpfr_set_z (result->value.complex.r, src->value.integer, GFC_RND_MODE);
+ mpfr_set_ui (result->value.complex.i, 0, GFC_RND_MODE);
+
+ if ((rc = gfc_check_real_range (result->value.complex.r, kind)) != ARITH_OK)
+ {
+ arith_error (rc, &src->ts, &result->ts, &src->where);
+ gfc_free_expr (result);
+ return NULL;
+ }
+
+ return result;
+}
+
+
+/* Convert default real to default integer. */
+
+gfc_expr *
+gfc_real2int (gfc_expr * src, int kind)
+{
+ gfc_expr *result;
+ arith rc;
+
+ result = gfc_constant_result (BT_INTEGER, kind, &src->where);
+
+ gfc_mpfr_to_mpz (result->value.integer, src->value.real);
+
+ if ((rc = gfc_check_integer_range (result->value.integer, kind))
+ != ARITH_OK)
+ {
+ arith_error (rc, &src->ts, &result->ts, &src->where);
+ gfc_free_expr (result);
+ return NULL;
+ }
+
+ return result;
+}
+
+
+/* Convert real to real. */
+
+gfc_expr *
+gfc_real2real (gfc_expr * src, int kind)
+{
+ gfc_expr *result;
+ arith rc;
+
+ result = gfc_constant_result (BT_REAL, kind, &src->where);
+
+ mpfr_set (result->value.real, src->value.real, GFC_RND_MODE);
+
+ rc = gfc_check_real_range (result->value.real, kind);
+
+ if (rc == ARITH_UNDERFLOW)
+ {
+ if (gfc_option.warn_underflow)
+ gfc_warning (gfc_arith_error (rc), &src->where);
+ mpfr_set_ui (result->value.real, 0, GFC_RND_MODE);
+ }
+ else if (rc != ARITH_OK)
+ {
+ arith_error (rc, &src->ts, &result->ts, &src->where);
+ gfc_free_expr (result);
+ return NULL;
+ }
+
+ return result;
+}
+
+
+/* Convert real to complex. */
+
+gfc_expr *
+gfc_real2complex (gfc_expr * src, int kind)
+{
+ gfc_expr *result;
+ arith rc;
+
+ result = gfc_constant_result (BT_COMPLEX, kind, &src->where);
+
+ mpfr_set (result->value.complex.r, src->value.real, GFC_RND_MODE);
+ mpfr_set_ui (result->value.complex.i, 0, GFC_RND_MODE);
+
+ rc = gfc_check_real_range (result->value.complex.r, kind);
+
+ if (rc == ARITH_UNDERFLOW)
+ {
+ if (gfc_option.warn_underflow)
+ gfc_warning (gfc_arith_error (rc), &src->where);
+ mpfr_set_ui (result->value.complex.r, 0, GFC_RND_MODE);
+ }
+ else if (rc != ARITH_OK)
+ {
+ arith_error (rc, &src->ts, &result->ts, &src->where);
+ gfc_free_expr (result);
+ return NULL;
+ }
+
+ return result;
+}
+
+
+/* Convert complex to integer. */
+
+gfc_expr *
+gfc_complex2int (gfc_expr * src, int kind)
+{
+ gfc_expr *result;
+ arith rc;
+
+ result = gfc_constant_result (BT_INTEGER, kind, &src->where);
+
+ gfc_mpfr_to_mpz (result->value.integer, src->value.complex.r);
+
+ if ((rc = gfc_check_integer_range (result->value.integer, kind))
+ != ARITH_OK)
+ {
+ arith_error (rc, &src->ts, &result->ts, &src->where);
+ gfc_free_expr (result);
+ return NULL;
+ }
+
+ return result;
+}
+
+
+/* Convert complex to real. */
+
+gfc_expr *
+gfc_complex2real (gfc_expr * src, int kind)
+{
+ gfc_expr *result;
+ arith rc;
+
+ result = gfc_constant_result (BT_REAL, kind, &src->where);
+
+ mpfr_set (result->value.real, src->value.complex.r, GFC_RND_MODE);
+
+ rc = gfc_check_real_range (result->value.real, kind);
+
+ if (rc == ARITH_UNDERFLOW)
+ {
+ if (gfc_option.warn_underflow)
+ gfc_warning (gfc_arith_error (rc), &src->where);
+ mpfr_set_ui (result->value.real, 0, GFC_RND_MODE);
+ }
+ if (rc != ARITH_OK)
+ {
+ arith_error (rc, &src->ts, &result->ts, &src->where);
+ gfc_free_expr (result);
+ return NULL;
+ }
+
+ return result;
+}
+
+
+/* Convert complex to complex. */
+
+gfc_expr *
+gfc_complex2complex (gfc_expr * src, int kind)
+{
+ gfc_expr *result;
+ arith rc;
+
+ result = gfc_constant_result (BT_COMPLEX, kind, &src->where);
+
+ mpfr_set (result->value.complex.r, src->value.complex.r, GFC_RND_MODE);
+ mpfr_set (result->value.complex.i, src->value.complex.i, GFC_RND_MODE);
+
+ rc = gfc_check_real_range (result->value.complex.r, kind);
+
+ if (rc == ARITH_UNDERFLOW)
+ {
+ if (gfc_option.warn_underflow)
+ gfc_warning (gfc_arith_error (rc), &src->where);
+ mpfr_set_ui (result->value.complex.r, 0, GFC_RND_MODE);
+ }
+ else if (rc != ARITH_OK)
+ {
+ arith_error (rc, &src->ts, &result->ts, &src->where);
+ gfc_free_expr (result);
+ return NULL;
+ }
+
+ rc = gfc_check_real_range (result->value.complex.i, kind);
+
+ if (rc == ARITH_UNDERFLOW)
+ {
+ if (gfc_option.warn_underflow)
+ gfc_warning (gfc_arith_error (rc), &src->where);
+ mpfr_set_ui (result->value.complex.i, 0, GFC_RND_MODE);
+ }
+ else if (rc != ARITH_OK)
+ {
+ arith_error (rc, &src->ts, &result->ts, &src->where);
+ gfc_free_expr (result);
+ return NULL;
+ }
+
+ return result;
+}
+
+
+/* Logical kind conversion. */
+
+gfc_expr *
+gfc_log2log (gfc_expr * src, int kind)
+{
+ gfc_expr *result;
+
+ result = gfc_constant_result (BT_LOGICAL, kind, &src->where);
+ result->value.logical = src->value.logical;
+
+ return result;
+}
+
+
+/* Convert logical to integer. */
+
+gfc_expr *
+gfc_log2int (gfc_expr *src, int kind)
+{
+ gfc_expr *result;
+
+ result = gfc_constant_result (BT_INTEGER, kind, &src->where);
+ mpz_set_si (result->value.integer, src->value.logical);
+
+ return result;
+}
+
+
+/* Convert integer to logical. */
+
+gfc_expr *
+gfc_int2log (gfc_expr *src, int kind)
+{
+ gfc_expr *result;
+
+ result = gfc_constant_result (BT_LOGICAL, kind, &src->where);
+ result->value.logical = (mpz_cmp_si (src->value.integer, 0) != 0);
+
+ return result;
+}
+
+
+/* Convert Hollerith to integer. The constant will be padded or truncated. */
+
+gfc_expr *
+gfc_hollerith2int (gfc_expr * src, int kind)
+{
+ gfc_expr *result;
+ int len;
+
+ len = src->value.character.length;
+
+ result = gfc_get_expr ();
+ result->expr_type = EXPR_CONSTANT;
+ result->ts.type = BT_INTEGER;
+ result->ts.kind = kind;
+ result->where = src->where;
+ result->from_H = 1;
+
+ if (len > kind)
+ {
+ gfc_warning ("The Hollerith constant at %L is too long to convert to %s",
+ &src->where, gfc_typename(&result->ts));
+ }
+ result->value.character.string = gfc_getmem (kind + 1);
+ memcpy (result->value.character.string, src->value.character.string,
+ MIN (kind, len));
+
+ if (len < kind)
+ memset (&result->value.character.string[len], ' ', kind - len);
+
+ result->value.character.string[kind] = '\0'; /* For debugger */
+ result->value.character.length = kind;
+
+ return result;
+}
+
+
+/* Convert Hollerith to real. The constant will be padded or truncated. */
+
+gfc_expr *
+gfc_hollerith2real (gfc_expr * src, int kind)
+{
+ gfc_expr *result;
+ int len;
+
+ len = src->value.character.length;
+
+ result = gfc_get_expr ();
+ result->expr_type = EXPR_CONSTANT;
+ result->ts.type = BT_REAL;
+ result->ts.kind = kind;
+ result->where = src->where;
+ result->from_H = 1;
+
+ if (len > kind)
+ {
+ gfc_warning ("The Hollerith constant at %L is too long to convert to %s",
+ &src->where, gfc_typename(&result->ts));
+ }
+ result->value.character.string = gfc_getmem (kind + 1);
+ memcpy (result->value.character.string, src->value.character.string,
+ MIN (kind, len));
+
+ if (len < kind)
+ memset (&result->value.character.string[len], ' ', kind - len);
+
+ result->value.character.string[kind] = '\0'; /* For debugger. */
+ result->value.character.length = kind;
+
+ return result;
+}
+
+
+/* Convert Hollerith to complex. The constant will be padded or truncated. */
+
+gfc_expr *
+gfc_hollerith2complex (gfc_expr * src, int kind)
+{
+ gfc_expr *result;
+ int len;
+
+ len = src->value.character.length;
+
+ result = gfc_get_expr ();
+ result->expr_type = EXPR_CONSTANT;
+ result->ts.type = BT_COMPLEX;
+ result->ts.kind = kind;
+ result->where = src->where;
+ result->from_H = 1;
+
+ kind = kind * 2;
+
+ if (len > kind)
+ {
+ gfc_warning ("The Hollerith constant at %L is too long to convert to %s",
+ &src->where, gfc_typename(&result->ts));
+ }
+ result->value.character.string = gfc_getmem (kind + 1);
+ memcpy (result->value.character.string, src->value.character.string,
+ MIN (kind, len));
+
+ if (len < kind)
+ memset (&result->value.character.string[len], ' ', kind - len);
+
+ result->value.character.string[kind] = '\0'; /* For debugger */
+ result->value.character.length = kind;
+
+ return result;
+}
+
+
+/* Convert Hollerith to character. */
+
+gfc_expr *
+gfc_hollerith2character (gfc_expr * src, int kind)
+{
+ gfc_expr *result;
+
+ result = gfc_copy_expr (src);
+ result->ts.type = BT_CHARACTER;
+ result->ts.kind = kind;
+ result->from_H = 1;
+
+ return result;
+}
+
+
+/* Convert Hollerith to logical. The constant will be padded or truncated. */
+
+gfc_expr *
+gfc_hollerith2logical (gfc_expr * src, int kind)
+{
+ gfc_expr *result;
+ int len;
+
+ len = src->value.character.length;
+
+ result = gfc_get_expr ();
+ result->expr_type = EXPR_CONSTANT;
+ result->ts.type = BT_LOGICAL;
+ result->ts.kind = kind;
+ result->where = src->where;
+ result->from_H = 1;
+
+ if (len > kind)
+ {
+ gfc_warning ("The Hollerith constant at %L is too long to convert to %s",
+ &src->where, gfc_typename(&result->ts));
+ }
+ result->value.character.string = gfc_getmem (kind + 1);
+ memcpy (result->value.character.string, src->value.character.string,
+ MIN (kind, len));
+
+ if (len < kind)
+ memset (&result->value.character.string[len], ' ', kind - len);
+
+ result->value.character.string[kind] = '\0'; /* For debugger */
+ result->value.character.length = kind;
+
+ return result;
+}
+
+
+/* Returns an initializer whose value is one higher than the value of the
+ LAST_INITIALIZER argument. If the argument is NULL, the
+ initializers value will be set to zero. The initializer's kind
+ will be set to gfc_c_int_kind.
+
+ If -fshort-enums is given, the appropriate kind will be selected
+ later after all enumerators have been parsed. A warning is issued
+ here if an initializer exceeds gfc_c_int_kind. */
+
+gfc_expr *
+gfc_enum_initializer (gfc_expr * last_initializer, locus where)
+{
+ gfc_expr *result;
+
+ result = gfc_get_expr ();
+ result->expr_type = EXPR_CONSTANT;
+ result->ts.type = BT_INTEGER;
+ result->ts.kind = gfc_c_int_kind;
+ result->where = where;
+
+ mpz_init (result->value.integer);
+
+ if (last_initializer != NULL)
+ {
+ mpz_add_ui (result->value.integer, last_initializer->value.integer, 1);
+ result->where = last_initializer->where;
+
+ if (gfc_check_integer_range (result->value.integer,
+ gfc_c_int_kind) != ARITH_OK)
+ {
+ gfc_error ("Enumerator exceeds the C integer type at %C");
+ return NULL;
+ }
+ }
+ else
+ {
+ /* Control comes here, if it's the very first enumerator and no
+ initializer has been given. It will be initialized to zero. */
+ mpz_set_si (result->value.integer, 0);
+ }
+
+ return result;
+}