/* -*- c -*- */ /* Copyright (C) 2013-2014 Free Software Foundation, Inc. Contributed by Red Hat. Written by DJ Delorie. This file is part of the GNU opcodes library. This library is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #include "sysdep.h" #include #include #include #include "ansidecl.h" #include "opcode/msp430-decode.h" static int trace = 0; typedef struct { MSP430_Opcode_Decoded *msp430; int (*getbyte)(void *); void *ptr; unsigned char *op; int op_ptr; int pc; } LocalData; #define AU ATTRIBUTE_UNUSED #define GETBYTE() getbyte_swapped (ld) #define B ((unsigned long) GETBYTE ()) static int getbyte_swapped (LocalData *ld) { int b; if (ld->op_ptr == ld->msp430->n_bytes) { do { b = ld->getbyte (ld->ptr); ld->op [(ld->msp430->n_bytes++)^1] = b; } while (ld->msp430->n_bytes & 1); } return ld->op[ld->op_ptr++]; } #define ID(x) msp430->id = x #define OP(n, t, r, a) (msp430->op[n].type = t, \ msp430->op[n].reg = r, \ msp430->op[n].addend = a) #define OPX(n, t, r1, r2, a) \ (msp430->op[n].type = t, \ msp430->op[n].reg = r1, \ msp430->op[n].reg2 = r2, \ msp430->op[n].addend = a) #define SYNTAX(x) msp430->syntax = x #define UNSUPPORTED() msp430->syntax = "*unknown*" #define DC(c) OP (0, MSP430_Operand_Immediate, 0, c) #define DR(r) OP (0, MSP430_Operand_Register, r, 0) #define DM(r, a) OP (0, MSP430_Operand_Indirect, r, a) #define DA(a) OP (0, MSP430_Operand_Indirect, MSR_None, a) #define AD(r, ad) encode_ad (r, ad, ld, 0) #define ADX(r, ad, x) encode_ad (r, ad, ld, x) #define SC(c) OP (1, MSP430_Operand_Immediate, 0, c) #define SR(r) OP (1, MSP430_Operand_Register, r, 0) #define SM(r, a) OP (1, MSP430_Operand_Indirect, r, a) #define SA(a) OP (1, MSP430_Operand_Indirect, MSR_None, a) #define SI(r) OP (1, MSP430_Operand_Indirect_Postinc, r, 0) #define AS(r, as) encode_as (r, as, ld, 0) #define ASX(r, as, x) encode_as (r, as, ld, x) #define BW(x) msp430->size = (x ? 8 : 16) /* The last 20 is for SWPBX.Z and SXTX.A. */ #define ABW(a,x) msp430->size = (a ? ((x ? 8 : 16)) : (x ? 20 : 20)) #define IMMU(bytes) immediate (bytes, 0, ld) #define IMMS(bytes) immediate (bytes, 1, ld) /* Helper macros for known status bits settings. */ #define F_____ msp430->flags_1 = msp430->flags_0 = 0; msp430->flags_set = 0 #define F_VNZC msp430->flags_1 = msp430->flags_0 = 0; msp430->flags_set = 0x87 #define F_0NZC msp430->flags_1 = 0; msp430->flags_0 = 0x80; msp430->flags_set = 0x07 /* The chip is little-endian, but GETBYTE byte-swaps words because the decoder is based on 16-bit "words" so *this* logic is big-endian. */ static int immediate (int bytes, int sign_extend, LocalData *ld) { unsigned long i = 0; switch (bytes) { case 1: i |= B; if (sign_extend && (i & 0x80)) i -= 0x100; break; case 2: i |= B << 8; i |= B; if (sign_extend && (i & 0x8000)) i -= 0x10000; break; case 3: i |= B << 16; i |= B << 8; i |= B; if (sign_extend && (i & 0x800000)) i -= 0x1000000; break; case 4: i |= B << 24; i |= B << 16; i |= B << 8; i |= B; if (sign_extend && (i & 0x80000000ULL)) i -= 0x100000000ULL; break; default: fprintf (stderr, "Programmer error: immediate() called with invalid byte count %d\n", bytes); abort (); } return i; } /* PC SP SR CG As 00 Rn - - R2 #0 01 X(Rn) Sym - X(abs) #1 10 (Rn) - - #4 #2 11 (Rn++) #imm - #8 #-1 Ad 0 Rn - - - - 1 X(Rn) Sym - X(abs) - */ static void encode_ad (int reg, int ad, LocalData *ld, int ext) { MSP430_Opcode_Decoded *msp430 = ld->msp430; if (ad) { int x = IMMU(2) | (ext << 16); switch (reg) { case 0: /* (PC) -> Symbolic. */ DA (x + ld->pc + ld->op_ptr - 2); break; case 2: /* (SR) -> Absolute. */ DA (x); break; default: DM (reg, x); break; } } else { DR (reg); } } static void encode_as (int reg, int as, LocalData *ld, int ext) { MSP430_Opcode_Decoded *msp430 = ld->msp430; int x; switch (as) { case 0: switch (reg) { case 3: SC (0); break; default: SR (reg); break; } break; case 1: switch (reg) { case 0: /* PC -> Symbolic. */ x = IMMU(2) | (ext << 16); SA (x + ld->pc + ld->op_ptr - 2); break; case 2: /* SR -> Absolute. */ x = IMMU(2) | (ext << 16); SA (x); break; case 3: SC (1); break; default: x = IMMU(2) | (ext << 16); SM (reg, x); break; } break; case 2: switch (reg) { case 2: SC (4); break; case 3: SC (2); break; case MSR_None: SA (0); default: SM (reg, 0); break; } break; case 3: switch (reg) { case 0: { /* This fetch *is* the *PC++ that the opcode encodes :-) */ x = IMMU(2) | (ext << 16); SC (x); } break; case 2: SC (8); break; case 3: SC (-1); break; default: SI (reg); break; } break; } } static void encode_rep_zc (int srxt, int dsxt, LocalData *ld) { MSP430_Opcode_Decoded *msp430 = ld->msp430; msp430->repeat_reg = srxt & 1; msp430->repeats = dsxt; msp430->zc = (srxt & 2) ? 1 : 0; } #define REPZC(s,d) encode_rep_zc (s, d, ld) static int dopc_to_id (int dopc) { switch (dopc) { case 4: return MSO_mov; case 5: return MSO_add; case 6: return MSO_addc; case 7: return MSO_subc; case 8: return MSO_sub; case 9: return MSO_cmp; case 10: return MSO_dadd; case 11: return MSO_bit; case 12: return MSO_bic; case 13: return MSO_bis; case 14: return MSO_xor; case 15: return MSO_and; default: return MSO_unknown; } } static int sopc_to_id (int sop, int c) { switch (sop * 2 + c) { case 0: return MSO_rrc; case 1: return MSO_swpb; case 2: return MSO_rra; case 3: return MSO_sxt; case 4: return MSO_push; case 5: return MSO_call; case 6: return MSO_reti; default: return MSO_unknown; } } int msp430_decode_opcode (unsigned long pc, MSP430_Opcode_Decoded *msp430, int (*getbyte)(void *), void *ptr) { LocalData lds, *ld = &lds; unsigned char op_buf[20] = {0}; unsigned char *op = op_buf; int raddr; int al_bit; int srxt_bits, dsxt_bits; lds.msp430 = msp430; lds.getbyte = getbyte; lds.ptr = ptr; lds.op = op; lds.op_ptr = 0; lds.pc = pc; memset (msp430, 0, sizeof (*msp430)); /* These are overridden by an extension word. */ al_bit = 1; srxt_bits = 0; dsxt_bits = 0; post_extension_word: ; /* 430X extention word. */ /** 0001 1srx t l 00 dsxt 430x */ al_bit = l; srxt_bits = srx * 2 + t; dsxt_bits = dsxt; op = op_buf + lds.op_ptr; msp430->ofs_430x = 1; goto post_extension_word; /* double-op insns: opcode:4 sreg:4 Ad:1 BW:1 As:2 Dreg:4 single-op insn: opcode:9 BW:1 Ad:2 DSreg:4 jumps: opcode:3 Cond:3 pcrel:10. */ /* Double-Operand "opcode" fields. */ /** VARY dopc 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 */ /** dopc sreg a b as dreg %D%b %1,%0 */ ID (dopc_to_id (dopc)); ASX (sreg, as, srxt_bits); ADX (dreg, a, dsxt_bits); ABW (al_bit, b); if (a == 0 && as == 0) REPZC (srxt_bits, dsxt_bits); switch (msp430->id) { case MSO_mov: F_____; break; case MSO_add: F_VNZC; break; case MSO_addc: F_VNZC; break; case MSO_subc: F_VNZC; break; case MSO_sub: F_VNZC; break; case MSO_cmp: F_VNZC; break; case MSO_dadd: F_VNZC; break; case MSO_bit: F_0NZC; break; case MSO_bic: F_____; break; case MSO_bis: F_____; break; case MSO_xor: F_VNZC; break; case MSO_and: F_0NZC; break; default: break; } /** 0001 00so c b ad dreg %S%b %1 */ ID (sopc_to_id (so,c)); ASX (dreg, ad, srxt_bits); ABW (al_bit, b); if (ad == 0) REPZC (srxt_bits, dsxt_bits); /* The helper functions encode for source, but it's both source and dest, with a few documented exceptions. */ msp430->op[0] = msp430->op[1]; /* RETI ignores the operand. */ if (msp430->id == MSO_reti) msp430->syntax = "%S"; switch (msp430->id) { case MSO_rrc: F_VNZC; break; case MSO_swpb: F_____; break; case MSO_rra: F_0NZC; break; case MSO_sxt: F_0NZC; break; case MSO_push: F_____; break; case MSO_call: F_____; break; case MSO_reti: F_VNZC; break; default: break; } /* 20xx 0010 0000 ---- ---- 3cxx 0011 1100 ---- ---- 001j mp-- ---- ----. */ /** 001jmp aa addrlsbs %J %1 */ raddr = (aa << 9) | (addrlsbs << 1); if (raddr & 0x400) raddr = raddr - 0x800; /* This is a pc-relative jump, but we don't use SM because that would load the target address from the memory at X(PC), not use PC+X *as* the address. So we use SC to use the address, not the data at that address. */ ID (MSO_jmp); SC (pc + raddr + msp430->n_bytes); msp430->cond = jmp; /* Extended instructions. */ /** 0000 srcr 0000 dstr MOVA @%1, %0 */ ID (MSO_mov); SM (srcr, 0); DR (dstr); msp430->size = 20; msp430->ofs_430x = 1; /** 0000 srcr 0001 dstr MOVA @%1+, %0 */ ID (MSO_mov); SI (srcr); DR (dstr); msp430->size = 20; msp430->ofs_430x = 1; /** 0000 srcr 0010 dstr MOVA &%1, %0 */ ID (MSO_mov); SA ((srcr << 16) + IMMU(2)); DR (dstr); msp430->size = 20; msp430->ofs_430x = 1; /** 0000 srcr 0011 dstr MOVA %1, %0 */ ID (MSO_mov); SM (srcr, IMMS(2)); DR (dstr); msp430->size = 20; msp430->ofs_430x = 1; /** 0000 srcr 0110 dstr MOVA %1, &%0 */ ID (MSO_mov); SR (srcr); DA ((dstr << 16) + IMMU(2)); msp430->size = 20; msp430->ofs_430x = 1; /** 0000 srcr 0111 dstr MOVA %1, &%0 */ ID (MSO_mov); SR (srcr); DM (dstr, IMMS(2)); msp430->size = 20; msp430->ofs_430x = 1; /** 0000 srcr 1000 dstr MOVA %1, %0 */ ID (MSO_mov); SC ((srcr << 16) + IMMU(2)); DR (dstr); msp430->size = 20; msp430->ofs_430x = 1; /** 0000 srcr 1001 dstr CMPA %1, %0 */ ID (MSO_cmp); SC ((srcr << 16) + IMMU(2)); DR (dstr); msp430->size = 20; msp430->ofs_430x = 1; F_VNZC; /** 0000 srcr 1010 dstr ADDA %1, %0 */ ID (MSO_add); SC ((srcr << 16) + IMMU(2)); DR (dstr); msp430->size = 20; msp430->ofs_430x = 1; F_VNZC; /** 0000 srcr 1011 dstr SUBA %1, %0 */ ID (MSO_sub); SC ((srcr << 16) + IMMU(2)); DR (dstr); msp430->size = 20; msp430->ofs_430x = 1; F_VNZC; /** 0000 srcr 1011 dstr SUBA %1, %0 */ ID (MSO_sub); SC ((srcr << 16) + IMMU(2)); DR (dstr); msp430->size = 20; msp430->ofs_430x = 1; F_VNZC; /** 0000 srcr 1100 dstr MOVA %1, %0 */ ID (MSO_mov); SR (srcr); DR (dstr); msp430->size = 20; msp430->ofs_430x = 1; /** 0000 srcr 1101 dstr CMPA %1, %0 */ ID (MSO_cmp); SR (srcr); DR (dstr); msp430->size = 20; msp430->ofs_430x = 1; F_VNZC; /** 0000 srcr 1110 dstr ADDA %1, %0 */ ID (MSO_add); SR (srcr); DR (dstr); msp430->size = 20; msp430->ofs_430x = 1; F_VNZC; /** 0000 srcr 1111 dstr SUBA %1, %0 */ ID (MSO_sub); SR (srcr); DR (dstr); msp430->size = 20; msp430->ofs_430x = 1; F_VNZC; /** 0000 bt00 010w dstr RRCM.A %c, %0 */ ID (MSO_rrc); DR (dstr); SR (dstr); msp430->repeats = bt; msp430->size = w ? 16 : 20; msp430->ofs_430x = 1; F_0NZC; /** 0000 bt01 010w dstr RRAM.A %c, %0 */ ID (MSO_rra); DR (dstr); SR (dstr); msp430->repeats = bt; msp430->size = w ? 16 : 20; msp430->ofs_430x = 1; F_0NZC; /** 0000 bt10 010w dstr RLAM.A %c, %0 */ ID (MSO_add); DR (dstr); SR (dstr); msp430->repeats = bt; msp430->size = w ? 16 : 20; msp430->ofs_430x = 1; F_0NZC; /** 0000 bt11 010w dstr RRUM.A %c, %0 */ ID (MSO_rru); DR (dstr); SR (dstr); msp430->repeats = bt; msp430->size = w ? 16 : 20; msp430->ofs_430x = 1; F_0NZC; /** 0001 0011 0000 0000 RETI */ ID (MSO_reti); msp430->size = 20; msp430->ofs_430x = 1; /** 0001 0011 01as dstr CALLA %0 */ ID (MSO_call); AS (dstr, as); msp430->size = 20; msp430->ofs_430x = 1; /** 0001 0011 1000 extb CALLA %0 */ ID (MSO_call); SA (IMMU(2) | (extb << 16)); msp430->size = 20; msp430->ofs_430x = 1; /** 0001 0011 1001 extb CALLA %0 */ raddr = IMMU(2) | (extb << 16); if (raddr & 0x80000) raddr -= 0x100000; ID (MSO_call); SA (pc + raddr + msp430->n_bytes); msp430->size = 20; msp430->ofs_430x = 1; /** 0001 0011 1011 extb CALLA %0 */ ID (MSO_call); SC (IMMU(2) | (extb << 16)); msp430->size = 20; msp430->ofs_430x = 1; /** 0001 010w bits srcr PUSHM.A %0 */ ID (MSO_push); SR (srcr); msp430->size = w ? 16 : 20; msp430->repeats = bits; msp430->ofs_430x = 1; /** 0001 011w bits dstr POPM.A %0 */ ID (MSO_pop); DR (dstr); msp430->size = w ? 16 : 20; msp430->repeats = bits; msp430->ofs_430x = 1; /** */ return msp430->n_bytes; }