; Ubicom IP2K CPU description. -*- Scheme -*- ; Copyright (C) 2002, 2009, 2011 Free Software Foundation, Inc. ; ; Contributed by Red Hat Inc; ; ; This file is part of the GNU Binutils. ; ; This program is free software; you can redistribute it and/or modify ; it under the terms of the GNU General Public License as published by ; the Free Software Foundation; either version 3 of the License, or ; (at your option) any later version. ; ; This program is distributed in the hope that it will be useful, ; but WITHOUT ANY WARRANTY; without even the implied warranty of ; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ; GNU General Public License for more details. ; ; You should have received a copy of the GNU General Public License ; along with this program; if not, write to the Free Software ; Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, ; MA 02110-1301, USA. (define-rtl-version 0 8) (include "simplify.inc") ; define-arch must appear first (define-arch (name ip2k) ; name of cpu family (comment "Ubicom IP2000 family") (default-alignment aligned) (insn-lsb0? #t) (machs ip2022 ip2022ext) (isas ip2k) ) ; Attributes. (define-attr (for insn) (type boolean) (name EXT-SKIP-INSN) (comment "instruction is a PAGE, LOADL, LOADH or BREAKX instruction") ) (define-attr (for insn) (type boolean) (name SKIPA) (comment "instruction is a SKIP instruction") ) ; Instruction set parameters. (define-isa (name ip2k) (comment "Ubicom IP2000 ISA") (default-insn-word-bitsize 16) (default-insn-bitsize 16) (base-insn-bitsize 16) ) ; Cpu family definitions. (define-cpu ; cpu names must be distinct from the architecture name and machine names. (name ip2kbf) (comment "Ubicom IP2000 Family") (endian big) (word-bitsize 16) ) (define-mach (name ip2022) (comment "Ubicom IP2022") (cpu ip2kbf) ) (define-mach (name ip2022ext) (comment "Ubicom IP2022 extended") (cpu ip2kbf) ) ; Model descriptions. (define-model (name ip2k) (comment "VPE 2xxx") (attrs) (mach ip2022ext) (unit u-exec "Execution Unit" () 1 1 ; issue done () ; state () ; inputs () ; outputs () ; profile action (default) ) ) ; FIXME: It might simplify things to separate the execute process from the ; one that updates the PC. ; Instruction fields. ; ; Attributes: ; XXX: what VPE attrs ; PCREL-ADDR: pc relative value (for reloc and disassembly purposes) ; ABS-ADDR: absolute address (for reloc and disassembly purposes?) ; RESERVED: bits are not used to decode insn, must be all 0 ; RELOC: there is a relocation associated with this field (experiment) (dnf f-imm8 "imm8" () 7 8) (dnf f-reg "reg" (ABS-ADDR) 8 9) (dnf f-addr16cjp "addr16cjp" (ABS-ADDR) 12 13) (dnf f-dir "dir" () 9 1) (dnf f-bitno "bit number" () 11 3) (dnf f-op3 "op3" () 15 3) (dnf f-op4 "op4" () 15 4) (dnf f-op4mid "op4mid" () 11 4) (dnf f-op6 "op6" () 15 6) (dnf f-op8 "op8" () 15 8) (dnf f-op6-10low "op6-10low" () 9 10) (dnf f-op6-7low "op6-7low" () 9 7) (dnf f-reti3 "reti3" () 2 3) (dnf f-skipb "sb/snb" (ABS-ADDR) 12 1) (dnf f-page3 "page3" () 2 3) ;(define-ifield (name f-page3) (comment "page3") (attrs) (start 2) (length 3) ; (encode (value pc) (srl WI value 13)) ; (decode (value pc) (sll WI value 13)) ;) ; To fix the page/call asymmetry ;(define-ifield (name f-page3) (comment "page3") (attrs) (start 2) (length 3) ; (encode (value pc) (srl WI value 13)) ; (decode (value pc) (sll WI value 13)) ;) ; Enums. ; insn-op6: bits 15-10 (define-normal-insn-enum insn-op6 "op6 enums" () OP6_ f-op6 (OTHER1 OTHER2 SUB DEC OR AND XOR ADD TEST NOT INC DECSZ RR RL SWAP INCSZ CSE POP SUBC DECSNZ MULU MULS INCSNZ ADDC - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ) ) ; insn-dir: bit 9 (define-normal-insn-enum insn-dir "dir enums" () DIR_ f-dir ; This bit specifies the polarity of many two-operand instructions: ; TO_W writes result to W regiser (eg. ADDC W,$fr) ; NOTTO_W writes result in general register (eg. ADDC $fr,W) (TO_W NOTTO_W) ) ; insn-op4: bits 15-12 (define-normal-insn-enum insn-op4 "op4 enums" () OP4_ f-op4 (- - - - - - - LITERAL CLRB SETB SNB SB - - - - ) ) ; insn-op4mid: bits 11-8 ; used for f-op4=LITERAL (define-normal-insn-enum insn-op4mid "op4mid enums" () OP4MID_ f-op4mid (LOADH_L LOADL_L MULU_L MULS_L PUSH_L - CSNE_L CSE_L RETW_L CMP_L SUB_L ADD_L MOV_L OR_L AND_L XOR_L) ) ; insn-op3: bits 15-13 (define-normal-insn-enum insn-op3 "op3 enums" () OP3_ f-op3 (- - - - - - CALL JMP) ) ; Hardware pieces. ; Bank-relative general purpose registers ; (define-pmacro (build-reg-name n) (.splice (.str "$" n) n)) (define-keyword (name register-names) (enum-prefix H-REGISTERS-) (values ; These are the "Special Purpose Registers" that are not reserved ("ADDRSEL" #x2) ("ADDRX" #x3) ("IPH" #x4) ("IPL" #x5) ("SPH" #x6) ("SPL" #x7) ("PCH" #x8) ("PCL" #x9) ("WREG" #xA) ("STATUS" #xB) ("DPH" #xC) ("DPL" #xD) ("SPDREG" #xE) ("MULH" #xF) ("ADDRH" #x10) ("ADDRL" #x11) ("DATAH" #x12) ("DATAL" #x13) ("INTVECH" #x14) ("INTVECL" #x15) ("INTSPD" #x16) ("INTF" #x17) ("INTE" #x18) ("INTED" #x19) ("FCFG" #x1A) ("TCTRL" #x1B) ("XCFG" #x1C) ("EMCFG" #x1D) ("IPCH" #x1E) ("IPCL" #x1F) ("RAIN" #x20) ("RAOUT" #x21) ("RADIR" #x22) ("LFSRH" #x23) ("RBIN" #x24) ("RBOUT" #x25) ("RBDIR" #x26) ("LFSRL" #x27) ("RCIN" #x28) ("RCOUT" #x29) ("RCDIR" #x2A) ("LFSRA" #x2B) ("RDIN" #x2C) ("RDOUT" #x2D) ("RDDIR" #x2E) ("REIN" #x30) ("REOUT" #x31) ("REDIR" #x32) ("RFIN" #x34) ("RFOUT" #x35) ("RFDIR" #x36) ("RGOUT" #x39) ("RGDIR" #x3A) ("RTTMR" #x40) ("RTCFG" #x41) ("T0TMR" #x42) ("T0CFG" #x43) ("T1CNTH" #x44) ("T1CNTL" #x45) ("T1CAP1H" #x46) ("T1CAP1L" #x47) ("T1CAP2H" #x48) ("T1CMP2H" #x48) ("T1CAP2L" #x49) ("T1CMP2L" #x49) ; note aliases ("T1CMP1H" #x4A) ("T1CMP1L" #x4B) ("T1CFG1H" #x4C) ("T1CFG1L" #x4D) ("T1CFG2H" #x4E) ("T1CFG2L" #x4F) ("ADCH" #x50) ("ADCL" #x51) ("ADCCFG" #x52) ("ADCTMR" #x53) ("T2CNTH" #x54) ("T2CNTL" #x55) ("T2CAP1H" #x56) ("T2CAP1L" #x57) ("T2CAP2H" #x58) ("T2CMP2H" #x58) ("T2CAP2L" #x59) ("T2CMP2L" #x59) ; note aliases ("T2CMP1H" #x5A) ("T2CMP1L" #x5B) ("T2CFG1H" #x5C) ("T2CFG1L" #x5D) ("T2CFG2H" #x5E) ("T2CFG2L" #x5F) ("S1TMRH" #x60) ("S1TMRL" #x61) ("S1TBUFH" #x62) ("S1TBUFL" #x63) ("S1TCFG" #x64) ("S1RCNT" #x65) ("S1RBUFH" #x66) ("S1RBUFL" #x67) ("S1RCFG" #x68) ("S1RSYNC" #x69) ("S1INTF" #x6A) ("S1INTE" #x6B) ("S1MODE" #x6C) ("S1SMASK" #x6D) ("PSPCFG" #x6E) ("CMPCFG" #x6F) ("S2TMRH" #x70) ("S2TMRL" #x71) ("S2TBUFH" #x72) ("S2TBUFL" #x73) ("S2TCFG" #x74) ("S2RCNT" #x75) ("S2RBUFH" #x76) ("S2RBUFL" #x77) ("S2RCFG" #x78) ("S2RSYNC" #x79) ("S2INTF" #x7A) ("S2INTE" #x7B) ("S2MODE" #x7C) ("S2SMASK" #x7D) ("CALLH" #x7E) ("CALLL" #x7F)) ) (define-hardware (name h-spr) (comment "special-purpose registers") (type register QI (128)) (get (index) (c-call QI "get_spr" index )) (set (index newval) (c-call VOID "set_spr" index newval )) ) ;;(define-hardware ;; (name h-gpr-global) ;; (comment "gpr registers - global") ;; (type register QI (128)) ;;) ; The general register (define-hardware (name h-registers) (comment "all addressable registers") (attrs VIRTUAL) (type register QI (512)) (get (index) (c-call QI "get_h_registers" index )) (set (index newval) (c-call VOID "set_h_registers" index newval )) ) ; The hardware stack. ; Use {push,pop}_pc_stack c-calls to operate on this hardware element. (define-hardware (name h-stack) (comment "hardware stack") (type register UHI (16)) ) (dsh h-pabits "page bits" () (register QI)) (dsh h-zbit "zero bit" () (register BI)) (dsh h-cbit "carry bit" () (register BI)) (dsh h-dcbit "digit-carry bit" () (register BI)) (dnh h-pc "program counter" (PC PROFILE) (pc) () () ()) ; Operands (define-operand (name addr16cjp) (comment "13-bit address") (attrs) (type h-uint) (index f-addr16cjp) (handlers (parse "addr16_cjp") (print "dollarhex_cj"))) ; overload lit8 printer (define-operand (name fr) (comment "register") (attrs) (type h-registers) (index f-reg) (handlers (parse "fr") (print "fr"))) (define-operand (name lit8) (comment "8-bit signed literal") (attrs) (type h-sint) (index f-imm8) (handlers (parse "lit8") (print "dollarhex8"))) (define-operand (name bitno) (comment "bit number") (attrs) (type h-uint) (index f-bitno) (handlers (parse "bit3")(print "decimal"))) (define-operand (name addr16p) (comment "page number") (attrs) (type h-uint) (index f-page3) (handlers (parse "addr16_cjp") (print "dollarhex_p"))) (define-operand (name addr16h) (comment "high 8 bits of address") (attrs) (type h-uint) (index f-imm8) (handlers (parse "addr16") (print "dollarhex_addr16h"))) (define-operand (name addr16l) (comment "low 8 bits of address") (attrs) (type h-uint) (index f-imm8) (handlers (parse "addr16") (print "dollarhex_addr16l"))) (define-operand (name reti3) (comment "reti flags") (attrs) (type h-uint) (index f-reti3) (handlers (print "dollarhex"))) (dnop pabits "page bits" () h-pabits f-nil) (dnop zbit "zero bit" () h-zbit f-nil) (dnop cbit "carry bit" () h-cbit f-nil) (dnop dcbit "digit carry bit" () h-dcbit f-nil) ;;(dnop bank "bank register" () h-bank-no f-nil) (define-pmacro w (reg h-spr #x0A)) (define-pmacro mulh (reg h-spr #x0F)) (define-pmacro dph (reg h-spr #x0C)) (define-pmacro dpl (reg h-spr #x0D)) (define-pmacro sph (reg h-spr #x06)) (define-pmacro spl (reg h-spr #x07)) (define-pmacro iph (reg h-spr #x04)) (define-pmacro ipl (reg h-spr #x05)) (define-pmacro addrh (reg h-spr #x10)) (define-pmacro addrl (reg h-spr #x11)) ; Pseudo-RTL for DC flag calculations ; "DC" = "digit carry", ie carry between nibbles (define-pmacro (add-dcflag a b c) (add-cflag (sll QI a 4) (sll QI b 4) c) ) (define-pmacro (sub-dcflag a b c) (sub-cflag (sll QI a 4) (sll QI b 4) c) ) ; Check to see if an fr is one of IPL, SPL, DPL, ADDRL, PCL. (define-pmacro (LregCheck isLreg fr9bit) (sequence() (set isLreg #x0) ;; Assume it's not an Lreg (if (or (or (eq fr9bit #x5) (eq fr9bit #x7)) (or (eq fr9bit #x9) (or (eq fr9bit #xd) (eq fr9bit #x11)))) (set isLreg #x1) ) ) ) ; Instructions, in order of the "Instruction Set Map" table on ; pp 19-20 of IP2022 spec V1.09 (dni jmp "Jump" () "jmp $addr16cjp" (+ OP3_JMP addr16cjp) (set pc (or (sll pabits 13) addr16cjp)) () ) ; note that in call, we push pc instead of pc + 1 because the ip2k increments ; the pc prior to execution of the instruction (dni call "Call" () "call $addr16cjp" (+ OP3_CALL addr16cjp) (sequence () (c-call "push_pc_stack" pc) (set pc (or (sll pabits 13) addr16cjp))) () ) (dni sb "Skip if bit set" () "sb $fr,$bitno" (+ OP4_SB bitno fr) (if (and fr (sll 1 bitno)) (skip 1)) () ) (dni snb "Skip if bit clear" () "snb $fr,$bitno" (+ OP4_SNB bitno fr) (if (not (and fr (sll 1 bitno))) (skip 1)) () ) (dni setb "Set bit" () "setb $fr,$bitno" (+ OP4_SETB bitno fr) (set fr (or fr (sll 1 bitno))) () ) (dni clrb "Clear bit" () "clrb $fr,$bitno" (+ OP4_CLRB bitno fr) (set fr (and fr (inv (sll 1 bitno)))) () ) (dni xorw_l "XOR W,literal" () "xor W,#$lit8" (+ OP4_LITERAL OP4MID_XOR_L lit8) (sequence () (set w (xor w lit8)) (set zbit (zflag w))) () ) (dni andw_l "AND W,literal" () "and W,#$lit8" (+ OP4_LITERAL OP4MID_AND_L lit8) (sequence () (set w (and w lit8)) (set zbit (zflag w))) () ) (dni orw_l "OR W,literal" () "or W,#$lit8" (+ OP4_LITERAL OP4MID_OR_L lit8) (sequence () (set w (or w lit8)) (set zbit (zflag w))) () ) (dni addw_l "ADD W,literal" () "add W,#$lit8" (+ OP4_LITERAL OP4MID_ADD_L lit8) (sequence () (set cbit (add-cflag w lit8 0)) (set dcbit (add-dcflag w lit8 0)) (set w (add w lit8)) (set zbit (zflag w))) () ) (dni subw_l "SUB W,literal" () "sub W,#$lit8" (+ OP4_LITERAL OP4MID_SUB_L lit8) (sequence () (set cbit (not (sub-cflag lit8 w 0))) (set dcbit (not (sub-dcflag lit8 w 0))) (set zbit (zflag (sub w lit8))) (set w (sub lit8 w))) () ) (dni cmpw_l "CMP W,literal" () "cmp W,#$lit8" (+ OP4_LITERAL OP4MID_CMP_L lit8) (sequence () (set cbit (not (sub-cflag lit8 w 0))) (set dcbit (not (sub-dcflag lit8 w 0))) (set zbit (zflag (sub w lit8)))) () ) (dni retw_l "RETW literal" () "retw #$lit8" (+ OP4_LITERAL OP4MID_RETW_L lit8) (sequence ((USI new_pc)) (set w lit8) (set new_pc (c-call UHI "pop_pc_stack")) (set pabits (srl new_pc 13)) (set pc new_pc)) () ) (dni csew_l "CSE W,literal" () "cse W,#$lit8" (+ OP4_LITERAL OP4MID_CSE_L lit8) (if (eq w lit8) (skip 1)) () ) (dni csnew_l "CSNE W,literal" () "csne W,#$lit8" (+ OP4_LITERAL OP4MID_CSNE_L lit8) (if (not (eq w lit8)) (skip 1)) () ) (dni push_l "Push #lit8" () "push #$lit8" (+ OP4_LITERAL OP4MID_PUSH_L lit8) (sequence () (c-call "push" lit8) (c-call VOID "adjuststackptr" (const -1)) ) () ) (dni mulsw_l "Multiply W,literal (signed)" () "muls W,#$lit8" (+ OP4_LITERAL OP4MID_MULS_L lit8) (sequence ((SI tmp)) (set tmp (mul (ext SI w) (ext SI (and UQI #xff lit8)))) (set w (and tmp #xFF)) (set mulh (srl tmp 8))) () ) (dni muluw_l "Multiply W,literal (unsigned)" () "mulu W,#$lit8" (+ OP4_LITERAL OP4MID_MULU_L lit8) (sequence ((USI tmp)) (set tmp (and #xFFFF (mul (zext USI w) (zext USI lit8)))) (set w (and tmp #xFF)) (set mulh (srl tmp 8))) () ) (dni loadl_l "LoadL literal" (EXT-SKIP-INSN) "loadl #$lit8" (+ OP4_LITERAL OP4MID_LOADL_L lit8) (set dpl (and lit8 #x00FF)) () ) (dni loadh_l "LoadH literal" (EXT-SKIP-INSN) "loadh #$lit8" (+ OP4_LITERAL OP4MID_LOADH_L lit8) (set dph (and lit8 #x00FF)) () ) (dni loadl_a "LoadL addr16l" (EXT-SKIP-INSN) "loadl $addr16l" (+ OP4_LITERAL OP4MID_LOADL_L addr16l) (set dpl (and addr16l #x00FF)) () ) (dni loadh_a "LoadH addr16h" (EXT-SKIP-INSN) "loadh $addr16h" (+ OP4_LITERAL OP4MID_LOADH_L addr16h) (set dph (and addr16l #x0FF00)) () ) ;; THIS NO LONGER EXISTS -> Now LOADL ;;(dni bank_l "Bank literal" ;; () ;; "bank #$lit8" ;; (+ OP4_LITERAL OP4MID_BANK_L lit8) ;; (set bank lit8) ;; () ;;) (dni addcfr_w "Add w/carry fr,W" () "addc $fr,W" (+ OP6_ADDC DIR_NOTTO_W fr) (sequence ((QI result) (BI newcbit) (QI isLreg) (HI 16bval)) (set newcbit (add-cflag w fr cbit)) (set dcbit (add-dcflag w fr cbit)) ;; If fr is an Lreg, then we have to do 16-bit arithmetic. ;; We can take advantage of the fact that by a lucky ;; coincidence, the address of register xxxH is always ;; one lower than the address of register xxxL. (LregCheck isLreg (ifield f-reg)) (if (eq isLreg #x1) (sequence() (set 16bval (reg h-spr (sub (ifield f-reg) 1))) (set 16bval (sll 16bval 8)) (set 16bval (or 16bval (and (reg h-spr (ifield f-reg)) #xFF))) (set 16bval (addc HI 16bval w cbit)) (set (reg h-spr (ifield f-reg)) (and 16bval #xFF)) (set (reg h-spr (sub (ifield f-reg) 1)) (and (srl 16bval 8) #xFF)) (set result (reg h-spr (ifield f-reg))) ) (set result (addc w fr cbit)) ;; else part ) (set zbit (zflag result)) (set cbit newcbit) (set fr result)) () ) (dni addcw_fr "Add w/carry W,fr" () "addc W,$fr" (+ OP6_ADDC DIR_TO_W fr) (sequence ((QI result) (BI newcbit)) (set newcbit (add-cflag w fr cbit)) (set dcbit (add-dcflag w fr cbit)) (set result (addc w fr cbit)) (set zbit (zflag result)) (set cbit newcbit) (set w result)) () ) (dni incsnz_fr "Skip if fr++ not zero" () "incsnz $fr" (+ OP6_INCSNZ DIR_NOTTO_W fr) (sequence ((QI isLreg) (HI 16bval)) (LregCheck isLreg (ifield f-reg)) ;; If fr is an Lreg, then we have to do 16-bit arithmetic. ;; We can take advantage of the fact that by a lucky ;; coincidence, the address of register xxxH is always ;; one lower than the address of register xxxL. (if (eq isLreg #x1) (sequence() ; Create the 16 bit value (set 16bval (reg h-spr (sub (ifield f-reg) 1))) (set 16bval (sll 16bval 8)) (set 16bval (or 16bval (and (reg h-spr (ifield f-reg)) #xFF))) ; Do 16 bit arithmetic. (set 16bval (add HI 16bval 1)) ; Separate the 16 bit values into the H and L regs (set (reg h-spr (ifield f-reg)) (and 16bval #xFF)) (set (reg h-spr (sub (ifield f-reg) 1)) (and (srl 16bval 8) #xFF)) (set fr (reg h-spr (ifield f-reg))) ) (set fr (add fr 1)) ; Do 8 bit arithmetic. ) (if (not (zflag fr)) (skip 1))) () ) (dni incsnzw_fr "Skip if W=fr+1 not zero" () "incsnz W,$fr" (+ OP6_INCSNZ DIR_TO_W fr) (sequence () (set w (add fr 1)) (if (not (zflag w)) (skip 1))) () ) (dni mulsw_fr "Multiply W,fr (signed)" () "muls W,$fr" (+ OP6_MULS DIR_TO_W fr) (sequence ((SI tmp)) (set tmp (mul (ext SI w) (ext SI fr))) (set w (and tmp #xFF)) (set mulh (srl tmp 8))) () ) (dni muluw_fr "Multiply W,fr (unsigned)" () "mulu W,$fr" (+ OP6_MULU DIR_TO_W fr) (sequence ((USI tmp)) (set tmp (and #xFFFF (mul (zext USI w) (zext USI fr)))) (set w (and tmp #xFF)) (set mulh (srl tmp 8))) () ) (dni decsnz_fr "Skip if fr-- not zero" () "decsnz $fr" (+ OP6_DECSNZ DIR_NOTTO_W fr) (sequence ((QI isLreg) (HI 16bval)) (LregCheck isLreg (ifield f-reg)) ;; If fr is an Lreg, then we have to do 16-bit arithmetic. ;; We can take advantage of the fact that by a lucky ;; coincidence, the address of register xxxH is always ;; one lower than the address of register xxxL. (if (eq isLreg #x1) (sequence() ; Create the 16 bit value (set 16bval (reg h-spr (sub (ifield f-reg) 1))) (set 16bval (sll 16bval 8)) (set 16bval (or 16bval (and (reg h-spr (ifield f-reg)) #xFF))) ; New 16 bit instruction (set 16bval (sub HI 16bval 1)) ; Separate the 16 bit values into the H and L regs (set (reg h-spr (ifield f-reg)) (and 16bval #xFF)) (set (reg h-spr (sub (ifield f-reg) 1)) (and (srl 16bval 8) #xFF)) (set fr (reg h-spr (ifield f-reg))) ) ; Original instruction (set fr (sub fr 1)) ) (if (not (zflag fr)) (skip 1))) () ) (dni decsnzw_fr "Skip if W=fr-1 not zero" () "decsnz W,$fr" (+ OP6_DECSNZ DIR_TO_W fr) (sequence () (set w (sub fr 1)) (if (not (zflag w)) (skip 1))) () ) (dni subcw_fr "Subract w/carry W,fr" () "subc W,$fr" (+ OP6_SUBC DIR_TO_W fr) (sequence ((QI result) (BI newcbit)) (set newcbit (not (sub-cflag fr w (not cbit)))) (set dcbit (not (sub-dcflag fr w (not cbit)))) (set result (subc fr w (not cbit))) (set zbit (zflag result)) (set cbit newcbit) (set w result)) () ) (dni subcfr_w "Subtract w/carry fr,W" () "subc $fr,W" (+ OP6_SUBC DIR_NOTTO_W fr) (sequence ((QI result) (BI newcbit) (QI isLreg) (HI 16bval)) (set newcbit (not (sub-cflag fr w (not cbit)))) (set dcbit (not (sub-dcflag fr w (not cbit)))) (LregCheck isLreg (ifield f-reg)) ;; If fr is an Lreg, then we have to do 16-bit arithmetic. ;; We can take advantage of the fact that by a lucky ;; coincidence, the address of register xxxH is always ;; one lower than the address of register xxxL. (if (eq isLreg #x1) (sequence() ; Create the 16 bit value (set 16bval (reg h-spr (sub (ifield f-reg) 1))) (set 16bval (sll 16bval 8)) (set 16bval (or 16bval (and (reg h-spr (ifield f-reg)) #xFF))) ; New 16 bit instruction (set 16bval (subc HI 16bval w (not cbit))) ; Separate the 16 bit values into the H and L regs (set (reg h-spr (ifield f-reg)) (and 16bval #xFF)) (set (reg h-spr (sub (ifield f-reg) 1)) (and (srl 16bval 8) #xFF)) (set result (reg h-spr (ifield f-reg))) ) ; Original instruction (set result (subc fr w (not cbit))) ) (set zbit (zflag result)) (set cbit newcbit) (set fr result)) () ) (dni pop_fr "Pop fr" () "pop $fr" (+ OP6_POP (f-dir 1) fr) (sequence() (set fr (c-call QI "pop")) (c-call VOID "adjuststackptr" (const 1)) ) () ) (dni push_fr "Push fr" () "push $fr" (+ OP6_POP (f-dir 0) fr) (sequence() (c-call "push" fr) (c-call VOID "adjuststackptr" (const -1)) ) () ) (dni csew_fr "Skip if equal W,fr" () "cse W,$fr" (+ OP6_CSE (f-dir 1) fr) (if (eq w fr) (skip 1)) () ) (dni csnew_fr "Skip if not-equal W,fr" () "csne W,$fr" (+ OP6_CSE (f-dir 0) fr) (if (not (eq w fr)) (skip 1)) () ) ;;(dni csaw_fr "Skip if W above fr" ;; ((MACH ip2022ext)) ;; "csa W,$fr" ;; (+ OP6_CSAB (f-dir 1) fr) ;; (if (gt w fr) ;; (skip 1)) ;; () ;;) ;;(dni csbw_fr "Skip if W below fr" ;; ((MACH ip2022ext)) ;; "csb W,$fr" ;; (+ OP6_CSAB (f-dir 0) fr) ;; (if (lt w fr) ;; (skip 1)) ;; () ;;) (dni incsz_fr "Skip if fr++ zero" () "incsz $fr" (+ OP6_INCSZ DIR_NOTTO_W fr) (sequence ((QI isLreg) (HI 16bval)) (LregCheck isLreg (ifield f-reg)) ;; If fr is an Lreg, then we have to do 16-bit arithmetic. ;; We can take advantage of the fact that by a lucky ;; coincidence, the address of register xxxH is always ;; one lower than the address of register xxxL. (if (eq isLreg #x1) (sequence() ; Create the 16 bit value (set 16bval (reg h-spr (sub (ifield f-reg) 1))) (set 16bval (sll 16bval 8)) (set 16bval (or 16bval (and (reg h-spr (ifield f-reg)) #xFF))) ; New 16 bit instruction (set 16bval (add HI 16bval 1)) ; Separate the 16 bit values into the H and L regs (set (reg h-spr (ifield f-reg)) (and 16bval #xFF)) (set (reg h-spr (sub (ifield f-reg) 1)) (and (srl 16bval 8) #xFF)) (set fr (reg h-spr (ifield f-reg))) ) ; Original instruction (set fr (add fr 1)) ) (if (zflag fr) (skip 1))) () ) (dni incszw_fr "Skip if W=fr+1 zero" () "incsz W,$fr" (+ OP6_INCSZ DIR_TO_W fr) (sequence () (set w (add fr 1)) (if (zflag w) (skip 1))) () ) (dni swap_fr "Swap fr nibbles" () "swap $fr" (+ OP6_SWAP DIR_NOTTO_W fr) (set fr (or (and (sll fr 4) #xf0) (and (srl fr 4) #x0f))) () ) (dni swapw_fr "Swap fr nibbles into W" () "swap W,$fr" (+ OP6_SWAP DIR_TO_W fr) (set w (or (and (sll fr 4) #xf0) (and (srl fr 4) #x0f))) () ) (dni rl_fr "Rotate fr left with carry" () "rl $fr" (+ OP6_RL DIR_NOTTO_W fr) (sequence ((QI newfr) (BI newc)) (set newc (and fr #x80)) (set newfr (or (sll fr 1) (if QI cbit 1 0))) (set cbit (if QI newc 1 0)) (set fr newfr)) () ) (dni rlw_fr "Rotate fr left with carry into W" () "rl W,$fr" (+ OP6_RL DIR_TO_W fr) (sequence ((QI newfr) (BI newc)) (set newc (and fr #x80)) (set newfr (or (sll fr 1) (if QI cbit 1 0))) (set cbit (if QI newc 1 0)) (set w newfr)) () ) (dni rr_fr "Rotate fr right with carry" () "rr $fr" (+ OP6_RR DIR_NOTTO_W fr) (sequence ((QI newfr) (BI newc)) (set newc (and fr #x01)) (set newfr (or (srl fr 1) (if QI cbit #x80 #x00))) (set cbit (if QI newc 1 0)) (set fr newfr)) () ) (dni rrw_fr "Rotate fr right with carry into W" () "rr W,$fr" (+ OP6_RR DIR_TO_W fr) (sequence ((QI newfr) (BI newc)) (set newc (and fr #x01)) (set newfr (or (srl fr 1) (if QI cbit #x80 #x00))) (set cbit (if QI newc 1 0)) (set w newfr)) () ) (dni decsz_fr "Skip if fr-- zero" () "decsz $fr" (+ OP6_DECSZ DIR_NOTTO_W fr) (sequence ((QI isLreg) (HI 16bval)) (LregCheck isLreg (ifield f-reg)) ;; If fr is an Lreg, then we have to do 16-bit arithmetic. ;; We can take advantage of the fact that by a lucky ;; coincidence, the address of register xxxH is always ;; one lower than the address of register xxxL. (if (eq isLreg #x1) (sequence() ; Create the 16 bit value (set 16bval (reg h-spr (sub (ifield f-reg) 1))) (set 16bval (sll 16bval 8)) (set 16bval (or 16bval (and (reg h-spr (ifield f-reg)) #xFF))) ; New 16 bit instruction (set 16bval (sub HI 16bval 1)) ; Separate the 16 bit values into the H and L regs (set (reg h-spr (ifield f-reg)) (and 16bval #xFF)) (set (reg h-spr (sub (ifield f-reg) 1)) (and (srl 16bval 8) #xFF)) (set fr (reg h-spr (ifield f-reg))) ) ; Original instruction (set fr (sub fr 1)) ) (if (zflag fr) (skip 1))) () ) (dni decszw_fr "Skip if W=fr-1 zero" () "decsz W,$fr" (+ OP6_DECSZ DIR_TO_W fr) (sequence () (set w (sub fr 1)) (if (zflag w) (skip 1))) () ) (dni inc_fr "Increment fr" () "inc $fr" (+ OP6_INC DIR_NOTTO_W fr) (sequence ((QI isLreg) (HI 16bval)) (LregCheck isLreg (ifield f-reg)) ;; If fr is an Lreg, then we have to do 16-bit arithmetic. ;; We can take advantage of the fact that by a lucky ;; coincidence, the address of register xxxH is always ;; one lower than the address of register xxxL. (if (eq isLreg #x1) (sequence() ; Create the 16 bit value (set 16bval (reg h-spr (sub (ifield f-reg) 1))) (set 16bval (sll 16bval 8)) (set 16bval (or 16bval (and (reg h-spr (ifield f-reg)) #xFF))) ; New 16 bit instruction (set 16bval (add HI 16bval 1)) ; Separate the 16 bit values into the H and L regs (set (reg h-spr (ifield f-reg)) (and 16bval #xFF)) (set (reg h-spr (sub (ifield f-reg) 1)) (and (srl 16bval 8) #xFF)) (set fr (reg h-spr (ifield f-reg))) ) ; Original instruction (set fr (add fr 1)) ) (set zbit (zflag fr))) () ) (dni incw_fr "Increment fr into w" () "inc W,$fr" (+ OP6_INC DIR_TO_W fr) (sequence () (set w (add fr 1)) (set zbit (zflag w))) () ) (dni not_fr "Invert fr" () "not $fr" (+ OP6_NOT DIR_NOTTO_W fr) (sequence () (set fr (inv fr)) (set zbit (zflag fr))) () ) (dni notw_fr "Invert fr into w" () "not W,$fr" (+ OP6_NOT DIR_TO_W fr) (sequence () (set w (inv fr)) (set zbit (zflag w))) () ) (dni test_fr "Test fr" () "test $fr" (+ OP6_TEST DIR_NOTTO_W fr) (sequence () (set zbit (zflag fr))) () ) (dni movw_l "MOV W,literal" () "mov W,#$lit8" (+ OP4_LITERAL OP4MID_MOV_L lit8) (set w lit8) () ) (dni movfr_w "Move/test w into fr" () "mov $fr,W" (+ OP6_OTHER1 DIR_NOTTO_W fr) (set fr w) () ) (dni movw_fr "Move/test fr into w" () "mov W,$fr" (+ OP6_TEST DIR_TO_W fr) (sequence () (set w fr) (set zbit (zflag w))) () ) (dni addfr_w "Add fr,W" () "add $fr,W" (+ OP6_ADD DIR_NOTTO_W fr) (sequence ((QI result) (QI isLreg) (HI 16bval)) (set cbit (add-cflag w fr 0)) (set dcbit (add-dcflag w fr 0)) (LregCheck isLreg (ifield f-reg)) ;; If fr is an Lreg, then we have to do 16-bit arithmetic. ;; We can take advantage of the fact that by a lucky ;; coincidence, the address of register xxxH is always ;; one lower than the address of register xxxL. (if (eq isLreg #x1) (sequence() (set 16bval (reg h-spr (sub (ifield f-reg) 1))) (set 16bval (sll 16bval 8)) (set 16bval (or 16bval (and (reg h-spr (ifield f-reg)) #xFF))) (set 16bval (add HI (and w #xFF) 16bval)) (set (reg h-spr (ifield f-reg)) (and 16bval #xFF)) (set (reg h-spr (sub (ifield f-reg) 1)) (and (srl 16bval 8) #xFF)) (set result (reg h-spr (ifield f-reg))) ) (set result (addc w fr 0)) ;; else part ) (set zbit (zflag result)) (set fr result)) () ) (dni addw_fr "Add W,fr" () "add W,$fr" (+ OP6_ADD DIR_TO_W fr) (sequence ((QI result)) (set cbit (add-cflag w fr 0)) (set dcbit (add-dcflag w fr 0)) (set result (addc w fr 0)) (set zbit (zflag result)) (set w result)) () ) (dni xorfr_w "XOR fr,W" () "xor $fr,W" (+ OP6_XOR DIR_NOTTO_W fr) (sequence () (set fr (xor w fr)) (set zbit (zflag fr))) () ) (dni xorw_fr "XOR W,fr" () "xor W,$fr" (+ OP6_XOR DIR_TO_W fr) (sequence () (set w (xor fr w)) (set zbit (zflag w))) () ) (dni andfr_w "AND fr,W" () "and $fr,W" (+ OP6_AND DIR_NOTTO_W fr) (sequence () (set fr (and w fr)) (set zbit (zflag fr))) () ) (dni andw_fr "AND W,fr" () "and W,$fr" (+ OP6_AND DIR_TO_W fr) (sequence () (set w (and fr w)) (set zbit (zflag w))) () ) (dni orfr_w "OR fr,W" () "or $fr,W" (+ OP6_OR DIR_NOTTO_W fr) (sequence () (set fr (or w fr)) (set zbit (zflag fr))) () ) (dni orw_fr "OR W,fr" () "or W,$fr" (+ OP6_OR DIR_TO_W fr) (sequence () (set w (or fr w)) (set zbit (zflag w))) () ) (dni dec_fr "Decrement fr" () "dec $fr" (+ OP6_DEC DIR_NOTTO_W fr) (sequence ((QI isLreg) (HI 16bval)) (LregCheck isLreg (ifield f-reg)) ;; If fr is an Lreg, then we have to do 16-bit arithmetic. ;; We can take advantage of the fact that by a lucky ;; coincidence, the address of register xxxH is always ;; one lower than the address of register xxxL. (if (eq isLreg #x1) (sequence() ; Create the 16 bit value (set 16bval (reg h-spr (sub (ifield f-reg) 1))) (set 16bval (sll 16bval 8)) (set 16bval (or 16bval (and (reg h-spr (ifield f-reg)) #xFF))) ; New 16 bit instruction (set 16bval (sub HI 16bval 1)) ; Separate the 16 bit values into the H and L regs (set (reg h-spr (ifield f-reg)) (and 16bval #xFF)) (set (reg h-spr (sub (ifield f-reg) 1)) (and (srl 16bval 8) #xFF)) (set fr (reg h-spr (ifield f-reg))) ) ; Original instruction (set fr (sub fr 1)) ) (set zbit (zflag fr))) () ) (dni decw_fr "Decrement fr into w" () "dec W,$fr" (+ OP6_DEC DIR_TO_W fr) (sequence () (set w (sub fr 1)) (set zbit (zflag w))) () ) (dni subfr_w "Sub fr,W" () "sub $fr,W" (+ OP6_SUB DIR_NOTTO_W fr) (sequence ((QI result) (QI isLreg) (HI 16bval)) (set cbit (not (sub-cflag fr w 0))) (set dcbit (not (sub-dcflag fr w 0))) (LregCheck isLreg (ifield f-reg)) ;; If fr is an Lreg, then we have to do 16-bit arithmetic. ;; We can take advantage of the fact that by a lucky ;; coincidence, the address of register xxxH is always ;; one lower than the address of register xxxL. (if (eq isLreg #x1) (sequence() ; Create the 16 bit value (set 16bval (reg h-spr (sub (ifield f-reg) 1))) (set 16bval (sll 16bval 8)) (set 16bval (or 16bval (and (reg h-spr (ifield f-reg)) #xFF))) ; New 16 bit instruction (set 16bval (sub HI 16bval (and w #xFF))) ; Separate the 16 bit values into the H and L regs (set (reg h-spr (ifield f-reg)) (and 16bval #xFF)) (set (reg h-spr (sub (ifield f-reg) 1)) (and (srl 16bval 8) #xFF)) (set result (reg h-spr (ifield f-reg))) ) ; Original instruction (set result (subc fr w 0)) ) (set zbit (zflag result)) (set fr result)) () ) (dni subw_fr "Sub W,fr" () "sub W,$fr" (+ OP6_SUB DIR_TO_W fr) (sequence ((QI result)) (set cbit (not (sub-cflag fr w 0))) (set dcbit (not (sub-dcflag fr w 0))) (set result (subc fr w 0)) (set zbit (zflag result)) (set w result)) () ) (dni clr_fr "Clear fr" () "clr $fr" (+ OP6_OTHER2 (f-dir 1) fr) (sequence () (set fr 0) (set zbit (zflag fr))) () ) (dni cmpw_fr "CMP W,fr" () "cmp W,$fr" (+ OP6_OTHER2 (f-dir 0) fr) (sequence () (set cbit (not (sub-cflag fr w 0))) (set dcbit (not (sub-dcflag fr w 0))) (set zbit (zflag (sub w fr)))) () ) (dni speed "Set speed" () "speed #$lit8" (+ (f-op8 1) lit8) (set (reg h-registers #x0E) lit8) () ) (dni ireadi "Insn memory read with increment" () "ireadi" (+ OP6_OTHER1 (f-op6-10low #x1D)) (c-call "do_insn_read") () ) (dni iwritei "Insn memory write with increment" () "iwritei" (+ OP6_OTHER1 (f-op6-10low #x1C)) (c-call "do_insn_write") () ) (dni fread "Flash read" () "fread" (+ OP6_OTHER1 (f-op6-10low #x1B)) (c-call "do_flash_read") () ) (dni fwrite "Flash write" () "fwrite" (+ OP6_OTHER1 (f-op6-10low #x1A)) (c-call "do_flash_write") () ) (dni iread "Insn memory read" () "iread" (+ OP6_OTHER1 (f-op6-10low #x19)) (c-call "do_insn_read") () ) (dni iwrite "Insn memory write" () "iwrite" (+ OP6_OTHER1 (f-op6-10low #x18)) (c-call "do_insn_write") () ) (dni page "Set insn page" (EXT-SKIP-INSN) ;"page $page3" "page $addr16p" ;(+ OP6_OTHER1 (f-op6-7low #x2) page3) ;(set pabits (srl page3 13)) (+ OP6_OTHER1 (f-op6-7low #x2) addr16p) (set pabits addr16p) () ) (dni system "System call" () "system" (+ OP6_OTHER1 (f-op6-10low #xff)) (c-call "do_system") () ) (dni reti "Return from interrupt" () "reti #$reti3" (+ OP6_OTHER1 (f-op6-7low #x1) reti3) (c-call "do_reti" reti3) () ) (dni ret "Return" () "ret" (+ OP6_OTHER1 (f-op6-10low #x07)) (sequence ((USI new_pc)) (set new_pc (c-call UHI "pop_pc_stack")) (set pabits (srl new_pc 13)) (set pc new_pc)) () ) (dni int "Software interrupt" () "int" (+ OP6_OTHER1 (f-op6-10low #x6)) (nop) () ) (dni breakx "Breakpoint with extended skip" (EXT-SKIP-INSN) "breakx" (+ OP6_OTHER1 (f-op6-10low #x5)) (c-call "do_break" pc) () ) (dni cwdt "Clear watchdog timer" () "cwdt" (+ OP6_OTHER1 (f-op6-10low #x4)) (c-call "do_clear_wdt") () ) (dni ferase "Flash erase" () "ferase" (+ OP6_OTHER1 (f-op6-10low #x3)) (c-call "do_flash_erase") () ) (dni retnp "Return, no page" () "retnp" (+ OP6_OTHER1 (f-op6-10low #x2)) (sequence ((USI new_pc)) (set new_pc (c-call UHI "pop_pc_stack")) (set pc new_pc)) () ) (dni break "Breakpoint" () "break" (+ OP6_OTHER1 (f-op6-10low #x1)) (c-call "do_break" pc) () ) (dni nop "No operation" () "nop" (+ OP6_OTHER1 (f-op6-10low #x0)) (nop) () ) ; Macro instructions (dnmi sc "Skip on carry" () "sc" (emit sb (bitno 0) (fr #xB)) ; sb status.0 ) (dnmi snc "Skip on no carry" () "snc" (emit snb (bitno 0) (fr #xB)) ; snb status.0 ) (dnmi sz "Skip on zero" () "sz" (emit sb (bitno 2) (fr #xB)) ; sb status.2 ) (dnmi snz "Skip on no zero" () "snz" (emit snb (bitno 2) (fr #xB)) ; snb status.2 ) (dnmi skip "Skip always" (SKIPA) "skip" (emit snb (bitno 0) (fr 9)) ; snb pcl.0 | (pcl&1)<<12 ) (dnmi skipb "Skip always" (SKIPA) "skip" (emit sb (bitno 0) (fr 9)) ; sb pcl.0 | (pcl&1)<<12 )