summaryrefslogtreecommitdiffstats
path: root/binutils-2.25/gold/output.cc
diff options
context:
space:
mode:
Diffstat (limited to 'binutils-2.25/gold/output.cc')
-rw-r--r--binutils-2.25/gold/output.cc5568
1 files changed, 5568 insertions, 0 deletions
diff --git a/binutils-2.25/gold/output.cc b/binutils-2.25/gold/output.cc
new file mode 100644
index 00000000..348ad646
--- /dev/null
+++ b/binutils-2.25/gold/output.cc
@@ -0,0 +1,5568 @@
+// output.cc -- manage the output file for gold
+
+// Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
+// Free Software Foundation, Inc.
+// Written by Ian Lance Taylor <iant@google.com>.
+
+// This file is part of gold.
+
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 3 of the License, or
+// (at your option) any later version.
+
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License for more details.
+
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
+// MA 02110-1301, USA.
+
+#include "gold.h"
+
+#include <cstdlib>
+#include <cstring>
+#include <cerrno>
+#include <fcntl.h>
+#include <unistd.h>
+#include <sys/stat.h>
+#include <algorithm>
+
+#ifdef HAVE_SYS_MMAN_H
+#include <sys/mman.h>
+#endif
+
+#include "libiberty.h"
+
+#include "dwarf.h"
+#include "parameters.h"
+#include "object.h"
+#include "symtab.h"
+#include "reloc.h"
+#include "merge.h"
+#include "descriptors.h"
+#include "layout.h"
+#include "output.h"
+
+// For systems without mmap support.
+#ifndef HAVE_MMAP
+# define mmap gold_mmap
+# define munmap gold_munmap
+# define mremap gold_mremap
+# ifndef MAP_FAILED
+# define MAP_FAILED (reinterpret_cast<void*>(-1))
+# endif
+# ifndef PROT_READ
+# define PROT_READ 0
+# endif
+# ifndef PROT_WRITE
+# define PROT_WRITE 0
+# endif
+# ifndef MAP_PRIVATE
+# define MAP_PRIVATE 0
+# endif
+# ifndef MAP_ANONYMOUS
+# define MAP_ANONYMOUS 0
+# endif
+# ifndef MAP_SHARED
+# define MAP_SHARED 0
+# endif
+
+# ifndef ENOSYS
+# define ENOSYS EINVAL
+# endif
+
+static void *
+gold_mmap(void *, size_t, int, int, int, off_t)
+{
+ errno = ENOSYS;
+ return MAP_FAILED;
+}
+
+static int
+gold_munmap(void *, size_t)
+{
+ errno = ENOSYS;
+ return -1;
+}
+
+static void *
+gold_mremap(void *, size_t, size_t, int)
+{
+ errno = ENOSYS;
+ return MAP_FAILED;
+}
+
+#endif
+
+#if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
+# define mremap gold_mremap
+extern "C" void *gold_mremap(void *, size_t, size_t, int);
+#endif
+
+// Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
+#ifndef MAP_ANONYMOUS
+# define MAP_ANONYMOUS MAP_ANON
+#endif
+
+#ifndef MREMAP_MAYMOVE
+# define MREMAP_MAYMOVE 1
+#endif
+
+// Mingw does not have S_ISLNK.
+#ifndef S_ISLNK
+# define S_ISLNK(mode) 0
+#endif
+
+namespace gold
+{
+
+// A wrapper around posix_fallocate. If we don't have posix_fallocate,
+// or the --no-posix-fallocate option is set, we try the fallocate
+// system call directly. If that fails, we use ftruncate to set
+// the file size and hope that there is enough disk space.
+
+static int
+gold_fallocate(int o, off_t offset, off_t len)
+{
+#ifdef HAVE_POSIX_FALLOCATE
+ if (parameters->options().posix_fallocate())
+ return ::posix_fallocate(o, offset, len);
+#endif // defined(HAVE_POSIX_FALLOCATE)
+#ifdef HAVE_FALLOCATE
+ if (::fallocate(o, 0, offset, len) == 0)
+ return 0;
+#endif // defined(HAVE_FALLOCATE)
+ if (::ftruncate(o, offset + len) < 0)
+ return errno;
+ return 0;
+}
+
+// Output_data variables.
+
+bool Output_data::allocated_sizes_are_fixed;
+
+// Output_data methods.
+
+Output_data::~Output_data()
+{
+}
+
+// Return the default alignment for the target size.
+
+uint64_t
+Output_data::default_alignment()
+{
+ return Output_data::default_alignment_for_size(
+ parameters->target().get_size());
+}
+
+// Return the default alignment for a size--32 or 64.
+
+uint64_t
+Output_data::default_alignment_for_size(int size)
+{
+ if (size == 32)
+ return 4;
+ else if (size == 64)
+ return 8;
+ else
+ gold_unreachable();
+}
+
+// Output_section_header methods. This currently assumes that the
+// segment and section lists are complete at construction time.
+
+Output_section_headers::Output_section_headers(
+ const Layout* layout,
+ const Layout::Segment_list* segment_list,
+ const Layout::Section_list* section_list,
+ const Layout::Section_list* unattached_section_list,
+ const Stringpool* secnamepool,
+ const Output_section* shstrtab_section)
+ : layout_(layout),
+ segment_list_(segment_list),
+ section_list_(section_list),
+ unattached_section_list_(unattached_section_list),
+ secnamepool_(secnamepool),
+ shstrtab_section_(shstrtab_section)
+{
+}
+
+// Compute the current data size.
+
+off_t
+Output_section_headers::do_size() const
+{
+ // Count all the sections. Start with 1 for the null section.
+ off_t count = 1;
+ if (!parameters->options().relocatable())
+ {
+ for (Layout::Segment_list::const_iterator p =
+ this->segment_list_->begin();
+ p != this->segment_list_->end();
+ ++p)
+ if ((*p)->type() == elfcpp::PT_LOAD)
+ count += (*p)->output_section_count();
+ }
+ else
+ {
+ for (Layout::Section_list::const_iterator p =
+ this->section_list_->begin();
+ p != this->section_list_->end();
+ ++p)
+ if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
+ ++count;
+ }
+ count += this->unattached_section_list_->size();
+
+ const int size = parameters->target().get_size();
+ int shdr_size;
+ if (size == 32)
+ shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
+ else if (size == 64)
+ shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
+ else
+ gold_unreachable();
+
+ return count * shdr_size;
+}
+
+// Write out the section headers.
+
+void
+Output_section_headers::do_write(Output_file* of)
+{
+ switch (parameters->size_and_endianness())
+ {
+#ifdef HAVE_TARGET_32_LITTLE
+ case Parameters::TARGET_32_LITTLE:
+ this->do_sized_write<32, false>(of);
+ break;
+#endif
+#ifdef HAVE_TARGET_32_BIG
+ case Parameters::TARGET_32_BIG:
+ this->do_sized_write<32, true>(of);
+ break;
+#endif
+#ifdef HAVE_TARGET_64_LITTLE
+ case Parameters::TARGET_64_LITTLE:
+ this->do_sized_write<64, false>(of);
+ break;
+#endif
+#ifdef HAVE_TARGET_64_BIG
+ case Parameters::TARGET_64_BIG:
+ this->do_sized_write<64, true>(of);
+ break;
+#endif
+ default:
+ gold_unreachable();
+ }
+}
+
+template<int size, bool big_endian>
+void
+Output_section_headers::do_sized_write(Output_file* of)
+{
+ off_t all_shdrs_size = this->data_size();
+ unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
+
+ const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
+ unsigned char* v = view;
+
+ {
+ typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
+ oshdr.put_sh_name(0);
+ oshdr.put_sh_type(elfcpp::SHT_NULL);
+ oshdr.put_sh_flags(0);
+ oshdr.put_sh_addr(0);
+ oshdr.put_sh_offset(0);
+
+ size_t section_count = (this->data_size()
+ / elfcpp::Elf_sizes<size>::shdr_size);
+ if (section_count < elfcpp::SHN_LORESERVE)
+ oshdr.put_sh_size(0);
+ else
+ oshdr.put_sh_size(section_count);
+
+ unsigned int shstrndx = this->shstrtab_section_->out_shndx();
+ if (shstrndx < elfcpp::SHN_LORESERVE)
+ oshdr.put_sh_link(0);
+ else
+ oshdr.put_sh_link(shstrndx);
+
+ size_t segment_count = this->segment_list_->size();
+ oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
+
+ oshdr.put_sh_addralign(0);
+ oshdr.put_sh_entsize(0);
+ }
+
+ v += shdr_size;
+
+ unsigned int shndx = 1;
+ if (!parameters->options().relocatable())
+ {
+ for (Layout::Segment_list::const_iterator p =
+ this->segment_list_->begin();
+ p != this->segment_list_->end();
+ ++p)
+ v = (*p)->write_section_headers<size, big_endian>(this->layout_,
+ this->secnamepool_,
+ v,
+ &shndx);
+ }
+ else
+ {
+ for (Layout::Section_list::const_iterator p =
+ this->section_list_->begin();
+ p != this->section_list_->end();
+ ++p)
+ {
+ // We do unallocated sections below, except that group
+ // sections have to come first.
+ if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
+ && (*p)->type() != elfcpp::SHT_GROUP)
+ continue;
+ gold_assert(shndx == (*p)->out_shndx());
+ elfcpp::Shdr_write<size, big_endian> oshdr(v);
+ (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
+ v += shdr_size;
+ ++shndx;
+ }
+ }
+
+ for (Layout::Section_list::const_iterator p =
+ this->unattached_section_list_->begin();
+ p != this->unattached_section_list_->end();
+ ++p)
+ {
+ // For a relocatable link, we did unallocated group sections
+ // above, since they have to come first.
+ if ((*p)->type() == elfcpp::SHT_GROUP
+ && parameters->options().relocatable())
+ continue;
+ gold_assert(shndx == (*p)->out_shndx());
+ elfcpp::Shdr_write<size, big_endian> oshdr(v);
+ (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
+ v += shdr_size;
+ ++shndx;
+ }
+
+ of->write_output_view(this->offset(), all_shdrs_size, view);
+}
+
+// Output_segment_header methods.
+
+Output_segment_headers::Output_segment_headers(
+ const Layout::Segment_list& segment_list)
+ : segment_list_(segment_list)
+{
+ this->set_current_data_size_for_child(this->do_size());
+}
+
+void
+Output_segment_headers::do_write(Output_file* of)
+{
+ switch (parameters->size_and_endianness())
+ {
+#ifdef HAVE_TARGET_32_LITTLE
+ case Parameters::TARGET_32_LITTLE:
+ this->do_sized_write<32, false>(of);
+ break;
+#endif
+#ifdef HAVE_TARGET_32_BIG
+ case Parameters::TARGET_32_BIG:
+ this->do_sized_write<32, true>(of);
+ break;
+#endif
+#ifdef HAVE_TARGET_64_LITTLE
+ case Parameters::TARGET_64_LITTLE:
+ this->do_sized_write<64, false>(of);
+ break;
+#endif
+#ifdef HAVE_TARGET_64_BIG
+ case Parameters::TARGET_64_BIG:
+ this->do_sized_write<64, true>(of);
+ break;
+#endif
+ default:
+ gold_unreachable();
+ }
+}
+
+template<int size, bool big_endian>
+void
+Output_segment_headers::do_sized_write(Output_file* of)
+{
+ const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
+ off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
+ gold_assert(all_phdrs_size == this->data_size());
+ unsigned char* view = of->get_output_view(this->offset(),
+ all_phdrs_size);
+ unsigned char* v = view;
+ for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
+ p != this->segment_list_.end();
+ ++p)
+ {
+ elfcpp::Phdr_write<size, big_endian> ophdr(v);
+ (*p)->write_header(&ophdr);
+ v += phdr_size;
+ }
+
+ gold_assert(v - view == all_phdrs_size);
+
+ of->write_output_view(this->offset(), all_phdrs_size, view);
+}
+
+off_t
+Output_segment_headers::do_size() const
+{
+ const int size = parameters->target().get_size();
+ int phdr_size;
+ if (size == 32)
+ phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
+ else if (size == 64)
+ phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
+ else
+ gold_unreachable();
+
+ return this->segment_list_.size() * phdr_size;
+}
+
+// Output_file_header methods.
+
+Output_file_header::Output_file_header(Target* target,
+ const Symbol_table* symtab,
+ const Output_segment_headers* osh)
+ : target_(target),
+ symtab_(symtab),
+ segment_header_(osh),
+ section_header_(NULL),
+ shstrtab_(NULL)
+{
+ this->set_data_size(this->do_size());
+}
+
+// Set the section table information for a file header.
+
+void
+Output_file_header::set_section_info(const Output_section_headers* shdrs,
+ const Output_section* shstrtab)
+{
+ this->section_header_ = shdrs;
+ this->shstrtab_ = shstrtab;
+}
+
+// Write out the file header.
+
+void
+Output_file_header::do_write(Output_file* of)
+{
+ gold_assert(this->offset() == 0);
+
+ switch (parameters->size_and_endianness())
+ {
+#ifdef HAVE_TARGET_32_LITTLE
+ case Parameters::TARGET_32_LITTLE:
+ this->do_sized_write<32, false>(of);
+ break;
+#endif
+#ifdef HAVE_TARGET_32_BIG
+ case Parameters::TARGET_32_BIG:
+ this->do_sized_write<32, true>(of);
+ break;
+#endif
+#ifdef HAVE_TARGET_64_LITTLE
+ case Parameters::TARGET_64_LITTLE:
+ this->do_sized_write<64, false>(of);
+ break;
+#endif
+#ifdef HAVE_TARGET_64_BIG
+ case Parameters::TARGET_64_BIG:
+ this->do_sized_write<64, true>(of);
+ break;
+#endif
+ default:
+ gold_unreachable();
+ }
+}
+
+// Write out the file header with appropriate size and endianness.
+
+template<int size, bool big_endian>
+void
+Output_file_header::do_sized_write(Output_file* of)
+{
+ gold_assert(this->offset() == 0);
+
+ int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
+ unsigned char* view = of->get_output_view(0, ehdr_size);
+ elfcpp::Ehdr_write<size, big_endian> oehdr(view);
+
+ unsigned char e_ident[elfcpp::EI_NIDENT];
+ memset(e_ident, 0, elfcpp::EI_NIDENT);
+ e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
+ e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
+ e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
+ e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
+ if (size == 32)
+ e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
+ else if (size == 64)
+ e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
+ else
+ gold_unreachable();
+ e_ident[elfcpp::EI_DATA] = (big_endian
+ ? elfcpp::ELFDATA2MSB
+ : elfcpp::ELFDATA2LSB);
+ e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
+ oehdr.put_e_ident(e_ident);
+
+ elfcpp::ET e_type;
+ if (parameters->options().relocatable())
+ e_type = elfcpp::ET_REL;
+ else if (parameters->options().output_is_position_independent())
+ e_type = elfcpp::ET_DYN;
+ else
+ e_type = elfcpp::ET_EXEC;
+ oehdr.put_e_type(e_type);
+
+ oehdr.put_e_machine(this->target_->machine_code());
+ oehdr.put_e_version(elfcpp::EV_CURRENT);
+
+ oehdr.put_e_entry(this->entry<size>());
+
+ if (this->segment_header_ == NULL)
+ oehdr.put_e_phoff(0);
+ else
+ oehdr.put_e_phoff(this->segment_header_->offset());
+
+ oehdr.put_e_shoff(this->section_header_->offset());
+ oehdr.put_e_flags(this->target_->processor_specific_flags());
+ oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
+
+ if (this->segment_header_ == NULL)
+ {
+ oehdr.put_e_phentsize(0);
+ oehdr.put_e_phnum(0);
+ }
+ else
+ {
+ oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
+ size_t phnum = (this->segment_header_->data_size()
+ / elfcpp::Elf_sizes<size>::phdr_size);
+ if (phnum > elfcpp::PN_XNUM)
+ phnum = elfcpp::PN_XNUM;
+ oehdr.put_e_phnum(phnum);
+ }
+
+ oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
+ size_t section_count = (this->section_header_->data_size()
+ / elfcpp::Elf_sizes<size>::shdr_size);
+
+ if (section_count < elfcpp::SHN_LORESERVE)
+ oehdr.put_e_shnum(this->section_header_->data_size()
+ / elfcpp::Elf_sizes<size>::shdr_size);
+ else
+ oehdr.put_e_shnum(0);
+
+ unsigned int shstrndx = this->shstrtab_->out_shndx();
+ if (shstrndx < elfcpp::SHN_LORESERVE)
+ oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
+ else
+ oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
+
+ // Let the target adjust the ELF header, e.g., to set EI_OSABI in
+ // the e_ident field.
+ this->target_->adjust_elf_header(view, ehdr_size);
+
+ of->write_output_view(0, ehdr_size, view);
+}
+
+// Return the value to use for the entry address.
+
+template<int size>
+typename elfcpp::Elf_types<size>::Elf_Addr
+Output_file_header::entry()
+{
+ const bool should_issue_warning = (parameters->options().entry() != NULL
+ && !parameters->options().relocatable()
+ && !parameters->options().shared());
+ const char* entry = parameters->entry();
+ Symbol* sym = this->symtab_->lookup(entry);
+
+ typename Sized_symbol<size>::Value_type v;
+ if (sym != NULL)
+ {
+ Sized_symbol<size>* ssym;
+ ssym = this->symtab_->get_sized_symbol<size>(sym);
+ if (!ssym->is_defined() && should_issue_warning)
+ gold_warning("entry symbol '%s' exists but is not defined", entry);
+ v = ssym->value();
+ }
+ else
+ {
+ // We couldn't find the entry symbol. See if we can parse it as
+ // a number. This supports, e.g., -e 0x1000.
+ char* endptr;
+ v = strtoull(entry, &endptr, 0);
+ if (*endptr != '\0')
+ {
+ if (should_issue_warning)
+ gold_warning("cannot find entry symbol '%s'", entry);
+ v = 0;
+ }
+ }
+
+ return v;
+}
+
+// Compute the current data size.
+
+off_t
+Output_file_header::do_size() const
+{
+ const int size = parameters->target().get_size();
+ if (size == 32)
+ return elfcpp::Elf_sizes<32>::ehdr_size;
+ else if (size == 64)
+ return elfcpp::Elf_sizes<64>::ehdr_size;
+ else
+ gold_unreachable();
+}
+
+// Output_data_const methods.
+
+void
+Output_data_const::do_write(Output_file* of)
+{
+ of->write(this->offset(), this->data_.data(), this->data_.size());
+}
+
+// Output_data_const_buffer methods.
+
+void
+Output_data_const_buffer::do_write(Output_file* of)
+{
+ of->write(this->offset(), this->p_, this->data_size());
+}
+
+// Output_section_data methods.
+
+// Record the output section, and set the entry size and such.
+
+void
+Output_section_data::set_output_section(Output_section* os)
+{
+ gold_assert(this->output_section_ == NULL);
+ this->output_section_ = os;
+ this->do_adjust_output_section(os);
+}
+
+// Return the section index of the output section.
+
+unsigned int
+Output_section_data::do_out_shndx() const
+{
+ gold_assert(this->output_section_ != NULL);
+ return this->output_section_->out_shndx();
+}
+
+// Set the alignment, which means we may need to update the alignment
+// of the output section.
+
+void
+Output_section_data::set_addralign(uint64_t addralign)
+{
+ this->addralign_ = addralign;
+ if (this->output_section_ != NULL
+ && this->output_section_->addralign() < addralign)
+ this->output_section_->set_addralign(addralign);
+}
+
+// Output_data_strtab methods.
+
+// Set the final data size.
+
+void
+Output_data_strtab::set_final_data_size()
+{
+ this->strtab_->set_string_offsets();
+ this->set_data_size(this->strtab_->get_strtab_size());
+}
+
+// Write out a string table.
+
+void
+Output_data_strtab::do_write(Output_file* of)
+{
+ this->strtab_->write(of, this->offset());
+}
+
+// Output_reloc methods.
+
+// A reloc against a global symbol.
+
+template<bool dynamic, int size, bool big_endian>
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
+ Symbol* gsym,
+ unsigned int type,
+ Output_data* od,
+ Address address,
+ bool is_relative,
+ bool is_symbolless,
+ bool use_plt_offset)
+ : address_(address), local_sym_index_(GSYM_CODE), type_(type),
+ is_relative_(is_relative), is_symbolless_(is_symbolless),
+ is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
+{
+ // this->type_ is a bitfield; make sure TYPE fits.
+ gold_assert(this->type_ == type);
+ this->u1_.gsym = gsym;
+ this->u2_.od = od;
+ if (dynamic)
+ this->set_needs_dynsym_index();
+}
+
+template<bool dynamic, int size, bool big_endian>
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
+ Symbol* gsym,
+ unsigned int type,
+ Sized_relobj<size, big_endian>* relobj,
+ unsigned int shndx,
+ Address address,
+ bool is_relative,
+ bool is_symbolless,
+ bool use_plt_offset)
+ : address_(address), local_sym_index_(GSYM_CODE), type_(type),
+ is_relative_(is_relative), is_symbolless_(is_symbolless),
+ is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
+{
+ gold_assert(shndx != INVALID_CODE);
+ // this->type_ is a bitfield; make sure TYPE fits.
+ gold_assert(this->type_ == type);
+ this->u1_.gsym = gsym;
+ this->u2_.relobj = relobj;
+ if (dynamic)
+ this->set_needs_dynsym_index();
+}
+
+// A reloc against a local symbol.
+
+template<bool dynamic, int size, bool big_endian>
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
+ Sized_relobj<size, big_endian>* relobj,
+ unsigned int local_sym_index,
+ unsigned int type,
+ Output_data* od,
+ Address address,
+ bool is_relative,
+ bool is_symbolless,
+ bool is_section_symbol,
+ bool use_plt_offset)
+ : address_(address), local_sym_index_(local_sym_index), type_(type),
+ is_relative_(is_relative), is_symbolless_(is_symbolless),
+ is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
+ shndx_(INVALID_CODE)
+{
+ gold_assert(local_sym_index != GSYM_CODE
+ && local_sym_index != INVALID_CODE);
+ // this->type_ is a bitfield; make sure TYPE fits.
+ gold_assert(this->type_ == type);
+ this->u1_.relobj = relobj;
+ this->u2_.od = od;
+ if (dynamic)
+ this->set_needs_dynsym_index();
+}
+
+template<bool dynamic, int size, bool big_endian>
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
+ Sized_relobj<size, big_endian>* relobj,
+ unsigned int local_sym_index,
+ unsigned int type,
+ unsigned int shndx,
+ Address address,
+ bool is_relative,
+ bool is_symbolless,
+ bool is_section_symbol,
+ bool use_plt_offset)
+ : address_(address), local_sym_index_(local_sym_index), type_(type),
+ is_relative_(is_relative), is_symbolless_(is_symbolless),
+ is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
+ shndx_(shndx)
+{
+ gold_assert(local_sym_index != GSYM_CODE
+ && local_sym_index != INVALID_CODE);
+ gold_assert(shndx != INVALID_CODE);
+ // this->type_ is a bitfield; make sure TYPE fits.
+ gold_assert(this->type_ == type);
+ this->u1_.relobj = relobj;
+ this->u2_.relobj = relobj;
+ if (dynamic)
+ this->set_needs_dynsym_index();
+}
+
+// A reloc against the STT_SECTION symbol of an output section.
+
+template<bool dynamic, int size, bool big_endian>
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
+ Output_section* os,
+ unsigned int type,
+ Output_data* od,
+ Address address,
+ bool is_relative)
+ : address_(address), local_sym_index_(SECTION_CODE), type_(type),
+ is_relative_(is_relative), is_symbolless_(is_relative),
+ is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
+{
+ // this->type_ is a bitfield; make sure TYPE fits.
+ gold_assert(this->type_ == type);
+ this->u1_.os = os;
+ this->u2_.od = od;
+ if (dynamic)
+ this->set_needs_dynsym_index();
+ else
+ os->set_needs_symtab_index();
+}
+
+template<bool dynamic, int size, bool big_endian>
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
+ Output_section* os,
+ unsigned int type,
+ Sized_relobj<size, big_endian>* relobj,
+ unsigned int shndx,
+ Address address,
+ bool is_relative)
+ : address_(address), local_sym_index_(SECTION_CODE), type_(type),
+ is_relative_(is_relative), is_symbolless_(is_relative),
+ is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
+{
+ gold_assert(shndx != INVALID_CODE);
+ // this->type_ is a bitfield; make sure TYPE fits.
+ gold_assert(this->type_ == type);
+ this->u1_.os = os;
+ this->u2_.relobj = relobj;
+ if (dynamic)
+ this->set_needs_dynsym_index();
+ else
+ os->set_needs_symtab_index();
+}
+
+// An absolute or relative relocation.
+
+template<bool dynamic, int size, bool big_endian>
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
+ unsigned int type,
+ Output_data* od,
+ Address address,
+ bool is_relative)
+ : address_(address), local_sym_index_(0), type_(type),
+ is_relative_(is_relative), is_symbolless_(false),
+ is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
+{
+ // this->type_ is a bitfield; make sure TYPE fits.
+ gold_assert(this->type_ == type);
+ this->u1_.relobj = NULL;
+ this->u2_.od = od;
+}
+
+template<bool dynamic, int size, bool big_endian>
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
+ unsigned int type,
+ Sized_relobj<size, big_endian>* relobj,
+ unsigned int shndx,
+ Address address,
+ bool is_relative)
+ : address_(address), local_sym_index_(0), type_(type),
+ is_relative_(is_relative), is_symbolless_(false),
+ is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
+{
+ gold_assert(shndx != INVALID_CODE);
+ // this->type_ is a bitfield; make sure TYPE fits.
+ gold_assert(this->type_ == type);
+ this->u1_.relobj = NULL;
+ this->u2_.relobj = relobj;
+}
+
+// A target specific relocation.
+
+template<bool dynamic, int size, bool big_endian>
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
+ unsigned int type,
+ void* arg,
+ Output_data* od,
+ Address address)
+ : address_(address), local_sym_index_(TARGET_CODE), type_(type),
+ is_relative_(false), is_symbolless_(false),
+ is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
+{
+ // this->type_ is a bitfield; make sure TYPE fits.
+ gold_assert(this->type_ == type);
+ this->u1_.arg = arg;
+ this->u2_.od = od;
+}
+
+template<bool dynamic, int size, bool big_endian>
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
+ unsigned int type,
+ void* arg,
+ Sized_relobj<size, big_endian>* relobj,
+ unsigned int shndx,
+ Address address)
+ : address_(address), local_sym_index_(TARGET_CODE), type_(type),
+ is_relative_(false), is_symbolless_(false),
+ is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
+{
+ gold_assert(shndx != INVALID_CODE);
+ // this->type_ is a bitfield; make sure TYPE fits.
+ gold_assert(this->type_ == type);
+ this->u1_.arg = arg;
+ this->u2_.relobj = relobj;
+}
+
+// Record that we need a dynamic symbol index for this relocation.
+
+template<bool dynamic, int size, bool big_endian>
+void
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
+set_needs_dynsym_index()
+{
+ if (this->is_symbolless_)
+ return;
+ switch (this->local_sym_index_)
+ {
+ case INVALID_CODE:
+ gold_unreachable();
+
+ case GSYM_CODE:
+ this->u1_.gsym->set_needs_dynsym_entry();
+ break;
+
+ case SECTION_CODE:
+ this->u1_.os->set_needs_dynsym_index();
+ break;
+
+ case TARGET_CODE:
+ // The target must take care of this if necessary.
+ break;
+
+ case 0:
+ break;
+
+ default:
+ {
+ const unsigned int lsi = this->local_sym_index_;
+ Sized_relobj_file<size, big_endian>* relobj =
+ this->u1_.relobj->sized_relobj();
+ gold_assert(relobj != NULL);
+ if (!this->is_section_symbol_)
+ relobj->set_needs_output_dynsym_entry(lsi);
+ else
+ relobj->output_section(lsi)->set_needs_dynsym_index();
+ }
+ break;
+ }
+}
+
+// Get the symbol index of a relocation.
+
+template<bool dynamic, int size, bool big_endian>
+unsigned int
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
+ const
+{
+ unsigned int index;
+ if (this->is_symbolless_)
+ return 0;
+ switch (this->local_sym_index_)
+ {
+ case INVALID_CODE:
+ gold_unreachable();
+
+ case GSYM_CODE:
+ if (this->u1_.gsym == NULL)
+ index = 0;
+ else if (dynamic)
+ index = this->u1_.gsym->dynsym_index();
+ else
+ index = this->u1_.gsym->symtab_index();
+ break;
+
+ case SECTION_CODE:
+ if (dynamic)
+ index = this->u1_.os->dynsym_index();
+ else
+ index = this->u1_.os->symtab_index();
+ break;
+
+ case TARGET_CODE:
+ index = parameters->target().reloc_symbol_index(this->u1_.arg,
+ this->type_);
+ break;
+
+ case 0:
+ // Relocations without symbols use a symbol index of 0.
+ index = 0;
+ break;
+
+ default:
+ {
+ const unsigned int lsi = this->local_sym_index_;
+ Sized_relobj_file<size, big_endian>* relobj =
+ this->u1_.relobj->sized_relobj();
+ gold_assert(relobj != NULL);
+ if (!this->is_section_symbol_)
+ {
+ if (dynamic)
+ index = relobj->dynsym_index(lsi);
+ else
+ index = relobj->symtab_index(lsi);
+ }
+ else
+ {
+ Output_section* os = relobj->output_section(lsi);
+ gold_assert(os != NULL);
+ if (dynamic)
+ index = os->dynsym_index();
+ else
+ index = os->symtab_index();
+ }
+ }
+ break;
+ }
+ gold_assert(index != -1U);
+ return index;
+}
+
+// For a local section symbol, get the address of the offset ADDEND
+// within the input section.
+
+template<bool dynamic, int size, bool big_endian>
+typename elfcpp::Elf_types<size>::Elf_Addr
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
+ local_section_offset(Addend addend) const
+{
+ gold_assert(this->local_sym_index_ != GSYM_CODE
+ && this->local_sym_index_ != SECTION_CODE
+ && this->local_sym_index_ != TARGET_CODE
+ && this->local_sym_index_ != INVALID_CODE
+ && this->local_sym_index_ != 0
+ && this->is_section_symbol_);
+ const unsigned int lsi = this->local_sym_index_;
+ Output_section* os = this->u1_.relobj->output_section(lsi);
+ gold_assert(os != NULL);
+ Address offset = this->u1_.relobj->get_output_section_offset(lsi);
+ if (offset != invalid_address)
+ return offset + addend;
+ // This is a merge section.
+ Sized_relobj_file<size, big_endian>* relobj =
+ this->u1_.relobj->sized_relobj();
+ gold_assert(relobj != NULL);
+ offset = os->output_address(relobj, lsi, addend);
+ gold_assert(offset != invalid_address);
+ return offset;
+}
+
+// Get the output address of a relocation.
+
+template<bool dynamic, int size, bool big_endian>
+typename elfcpp::Elf_types<size>::Elf_Addr
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
+{
+ Address address = this->address_;
+ if (this->shndx_ != INVALID_CODE)
+ {
+ Output_section* os = this->u2_.relobj->output_section(this->shndx_);
+ gold_assert(os != NULL);
+ Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
+ if (off != invalid_address)
+ address += os->address() + off;
+ else
+ {
+ Sized_relobj_file<size, big_endian>* relobj =
+ this->u2_.relobj->sized_relobj();
+ gold_assert(relobj != NULL);
+ address = os->output_address(relobj, this->shndx_, address);
+ gold_assert(address != invalid_address);
+ }
+ }
+ else if (this->u2_.od != NULL)
+ address += this->u2_.od->address();
+ return address;
+}
+
+// Write out the offset and info fields of a Rel or Rela relocation
+// entry.
+
+template<bool dynamic, int size, bool big_endian>
+template<typename Write_rel>
+void
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
+ Write_rel* wr) const
+{
+ wr->put_r_offset(this->get_address());
+ unsigned int sym_index = this->get_symbol_index();
+ wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
+}
+
+// Write out a Rel relocation.
+
+template<bool dynamic, int size, bool big_endian>
+void
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
+ unsigned char* pov) const
+{
+ elfcpp::Rel_write<size, big_endian> orel(pov);
+ this->write_rel(&orel);
+}
+
+// Get the value of the symbol referred to by a Rel relocation.
+
+template<bool dynamic, int size, bool big_endian>
+typename elfcpp::Elf_types<size>::Elf_Addr
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
+ Addend addend) const
+{
+ if (this->local_sym_index_ == GSYM_CODE)
+ {
+ const Sized_symbol<size>* sym;
+ sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
+ if (this->use_plt_offset_ && sym->has_plt_offset())
+ return parameters->target().plt_address_for_global(sym);
+ else
+ return sym->value() + addend;
+ }
+ if (this->local_sym_index_ == SECTION_CODE)
+ {
+ gold_assert(!this->use_plt_offset_);
+ return this->u1_.os->address() + addend;
+ }
+ gold_assert(this->local_sym_index_ != TARGET_CODE
+ && this->local_sym_index_ != INVALID_CODE
+ && this->local_sym_index_ != 0
+ && !this->is_section_symbol_);
+ const unsigned int lsi = this->local_sym_index_;
+ Sized_relobj_file<size, big_endian>* relobj =
+ this->u1_.relobj->sized_relobj();
+ gold_assert(relobj != NULL);
+ if (this->use_plt_offset_)
+ return parameters->target().plt_address_for_local(relobj, lsi);
+ const Symbol_value<size>* symval = relobj->local_symbol(lsi);
+ return symval->value(relobj, addend);
+}
+
+// Reloc comparison. This function sorts the dynamic relocs for the
+// benefit of the dynamic linker. First we sort all relative relocs
+// to the front. Among relative relocs, we sort by output address.
+// Among non-relative relocs, we sort by symbol index, then by output
+// address.
+
+template<bool dynamic, int size, bool big_endian>
+int
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
+ compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
+ const
+{
+ if (this->is_relative_)
+ {
+ if (!r2.is_relative_)
+ return -1;
+ // Otherwise sort by reloc address below.
+ }
+ else if (r2.is_relative_)
+ return 1;
+ else
+ {
+ unsigned int sym1 = this->get_symbol_index();
+ unsigned int sym2 = r2.get_symbol_index();
+ if (sym1 < sym2)
+ return -1;
+ else if (sym1 > sym2)
+ return 1;
+ // Otherwise sort by reloc address.
+ }
+
+ section_offset_type addr1 = this->get_address();
+ section_offset_type addr2 = r2.get_address();
+ if (addr1 < addr2)
+ return -1;
+ else if (addr1 > addr2)
+ return 1;
+
+ // Final tie breaker, in order to generate the same output on any
+ // host: reloc type.
+ unsigned int type1 = this->type_;
+ unsigned int type2 = r2.type_;
+ if (type1 < type2)
+ return -1;
+ else if (type1 > type2)
+ return 1;
+
+ // These relocs appear to be exactly the same.
+ return 0;
+}
+
+// Write out a Rela relocation.
+
+template<bool dynamic, int size, bool big_endian>
+void
+Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
+ unsigned char* pov) const
+{
+ elfcpp::Rela_write<size, big_endian> orel(pov);
+ this->rel_.write_rel(&orel);
+ Addend addend = this->addend_;
+ if (this->rel_.is_target_specific())
+ addend = parameters->target().reloc_addend(this->rel_.target_arg(),
+ this->rel_.type(), addend);
+ else if (this->rel_.is_symbolless())
+ addend = this->rel_.symbol_value(addend);
+ else if (this->rel_.is_local_section_symbol())
+ addend = this->rel_.local_section_offset(addend);
+ orel.put_r_addend(addend);
+}
+
+// Output_data_reloc_base methods.
+
+// Adjust the output section.
+
+template<int sh_type, bool dynamic, int size, bool big_endian>
+void
+Output_data_reloc_base<sh_type, dynamic, size, big_endian>
+ ::do_adjust_output_section(Output_section* os)
+{
+ if (sh_type == elfcpp::SHT_REL)
+ os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
+ else if (sh_type == elfcpp::SHT_RELA)
+ os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
+ else
+ gold_unreachable();
+
+ // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
+ // static link. The backends will generate a dynamic reloc section
+ // to hold this. In that case we don't want to link to the dynsym
+ // section, because there isn't one.
+ if (!dynamic)
+ os->set_should_link_to_symtab();
+ else if (parameters->doing_static_link())
+ ;
+ else
+ os->set_should_link_to_dynsym();
+}
+
+// Write out relocation data.
+
+template<int sh_type, bool dynamic, int size, bool big_endian>
+void
+Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
+ Output_file* of)
+{
+ const off_t off = this->offset();
+ const off_t oview_size = this->data_size();
+ unsigned char* const oview = of->get_output_view(off, oview_size);
+
+ if (this->sort_relocs())
+ {
+ gold_assert(dynamic);
+ std::sort(this->relocs_.begin(), this->relocs_.end(),
+ Sort_relocs_comparison());
+ }
+
+ unsigned char* pov = oview;
+ for (typename Relocs::const_iterator p = this->relocs_.begin();
+ p != this->relocs_.end();
+ ++p)
+ {
+ p->write(pov);
+ pov += reloc_size;
+ }
+
+ gold_assert(pov - oview == oview_size);
+
+ of->write_output_view(off, oview_size, oview);
+
+ // We no longer need the relocation entries.
+ this->relocs_.clear();
+}
+
+// Class Output_relocatable_relocs.
+
+template<int sh_type, int size, bool big_endian>
+void
+Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
+{
+ this->set_data_size(this->rr_->output_reloc_count()
+ * Reloc_types<sh_type, size, big_endian>::reloc_size);
+}
+
+// class Output_data_group.
+
+template<int size, bool big_endian>
+Output_data_group<size, big_endian>::Output_data_group(
+ Sized_relobj_file<size, big_endian>* relobj,
+ section_size_type entry_count,
+ elfcpp::Elf_Word flags,
+ std::vector<unsigned int>* input_shndxes)
+ : Output_section_data(entry_count * 4, 4, false),
+ relobj_(relobj),
+ flags_(flags)
+{
+ this->input_shndxes_.swap(*input_shndxes);
+}
+
+// Write out the section group, which means translating the section
+// indexes to apply to the output file.
+
+template<int size, bool big_endian>
+void
+Output_data_group<size, big_endian>::do_write(Output_file* of)
+{
+ const off_t off = this->offset();
+ const section_size_type oview_size =
+ convert_to_section_size_type(this->data_size());
+ unsigned char* const oview = of->get_output_view(off, oview_size);
+
+ elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
+ elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
+ ++contents;
+
+ for (std::vector<unsigned int>::const_iterator p =
+ this->input_shndxes_.begin();
+ p != this->input_shndxes_.end();
+ ++p, ++contents)
+ {
+ Output_section* os = this->relobj_->output_section(*p);
+
+ unsigned int output_shndx;
+ if (os != NULL)
+ output_shndx = os->out_shndx();
+ else
+ {
+ this->relobj_->error(_("section group retained but "
+ "group element discarded"));
+ output_shndx = 0;
+ }
+
+ elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
+ }
+
+ size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
+ gold_assert(wrote == oview_size);
+
+ of->write_output_view(off, oview_size, oview);
+
+ // We no longer need this information.
+ this->input_shndxes_.clear();
+}
+
+// Output_data_got::Got_entry methods.
+
+// Write out the entry.
+
+template<int got_size, bool big_endian>
+void
+Output_data_got<got_size, big_endian>::Got_entry::write(
+ unsigned int got_indx,
+ unsigned char* pov) const
+{
+ Valtype val = 0;
+
+ switch (this->local_sym_index_)
+ {
+ case GSYM_CODE:
+ {
+ // If the symbol is resolved locally, we need to write out the
+ // link-time value, which will be relocated dynamically by a
+ // RELATIVE relocation.
+ Symbol* gsym = this->u_.gsym;
+ if (this->use_plt_or_tls_offset_ && gsym->has_plt_offset())
+ val = parameters->target().plt_address_for_global(gsym);
+ else
+ {
+ switch (parameters->size_and_endianness())
+ {
+#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
+ case Parameters::TARGET_32_LITTLE:
+ case Parameters::TARGET_32_BIG:
+ {
+ // This cast is ugly. We don't want to put a
+ // virtual method in Symbol, because we want Symbol
+ // to be as small as possible.
+ Sized_symbol<32>::Value_type v;
+ v = static_cast<Sized_symbol<32>*>(gsym)->value();
+ val = convert_types<Valtype, Sized_symbol<32>::Value_type>(v);
+ }
+ break;
+#endif
+#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
+ case Parameters::TARGET_64_LITTLE:
+ case Parameters::TARGET_64_BIG:
+ {
+ Sized_symbol<64>::Value_type v;
+ v = static_cast<Sized_symbol<64>*>(gsym)->value();
+ val = convert_types<Valtype, Sized_symbol<64>::Value_type>(v);
+ }
+ break;
+#endif
+ default:
+ gold_unreachable();
+ }
+ if (this->use_plt_or_tls_offset_
+ && gsym->type() == elfcpp::STT_TLS)
+ val += parameters->target().tls_offset_for_global(gsym,
+ got_indx);
+ }
+ }
+ break;
+
+ case CONSTANT_CODE:
+ val = this->u_.constant;
+ break;
+
+ case RESERVED_CODE:
+ // If we're doing an incremental update, don't touch this GOT entry.
+ if (parameters->incremental_update())
+ return;
+ val = this->u_.constant;
+ break;
+
+ default:
+ {
+ const Relobj* object = this->u_.object;
+ const unsigned int lsi = this->local_sym_index_;
+ bool is_tls = object->local_is_tls(lsi);
+ if (this->use_plt_or_tls_offset_ && !is_tls)
+ val = parameters->target().plt_address_for_local(object, lsi);
+ else
+ {
+ uint64_t lval = object->local_symbol_value(lsi, 0);
+ val = convert_types<Valtype, uint64_t>(lval);
+ if (this->use_plt_or_tls_offset_ && is_tls)
+ val += parameters->target().tls_offset_for_local(object, lsi,
+ got_indx);
+ }
+ }
+ break;
+ }
+
+ elfcpp::Swap<got_size, big_endian>::writeval(pov, val);
+}
+
+// Output_data_got methods.
+
+// Add an entry for a global symbol to the GOT. This returns true if
+// this is a new GOT entry, false if the symbol already had a GOT
+// entry.
+
+template<int got_size, bool big_endian>
+bool
+Output_data_got<got_size, big_endian>::add_global(
+ Symbol* gsym,
+ unsigned int got_type)
+{
+ if (gsym->has_got_offset(got_type))
+ return false;
+
+ unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
+ gsym->set_got_offset(got_type, got_offset);
+ return true;
+}
+
+// Like add_global, but use the PLT offset.
+
+template<int got_size, bool big_endian>
+bool
+Output_data_got<got_size, big_endian>::add_global_plt(Symbol* gsym,
+ unsigned int got_type)
+{
+ if (gsym->has_got_offset(got_type))
+ return false;
+
+ unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
+ gsym->set_got_offset(got_type, got_offset);
+ return true;
+}
+
+// Add an entry for a global symbol to the GOT, and add a dynamic
+// relocation of type R_TYPE for the GOT entry.
+
+template<int got_size, bool big_endian>
+void
+Output_data_got<got_size, big_endian>::add_global_with_rel(
+ Symbol* gsym,
+ unsigned int got_type,
+ Output_data_reloc_generic* rel_dyn,
+ unsigned int r_type)
+{
+ if (gsym->has_got_offset(got_type))
+ return;
+
+ unsigned int got_offset = this->add_got_entry(Got_entry());
+ gsym->set_got_offset(got_type, got_offset);
+ rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
+}
+
+// Add a pair of entries for a global symbol to the GOT, and add
+// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
+// If R_TYPE_2 == 0, add the second entry with no relocation.
+template<int got_size, bool big_endian>
+void
+Output_data_got<got_size, big_endian>::add_global_pair_with_rel(
+ Symbol* gsym,
+ unsigned int got_type,
+ Output_data_reloc_generic* rel_dyn,
+ unsigned int r_type_1,
+ unsigned int r_type_2)
+{
+ if (gsym->has_got_offset(got_type))
+ return;
+
+ unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
+ gsym->set_got_offset(got_type, got_offset);
+ rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
+
+ if (r_type_2 != 0)
+ rel_dyn->add_global_generic(gsym, r_type_2, this,
+ got_offset + got_size / 8, 0);
+}
+
+// Add an entry for a local symbol to the GOT. This returns true if
+// this is a new GOT entry, false if the symbol already has a GOT
+// entry.
+
+template<int got_size, bool big_endian>
+bool
+Output_data_got<got_size, big_endian>::add_local(
+ Relobj* object,
+ unsigned int symndx,
+ unsigned int got_type)
+{
+ if (object->local_has_got_offset(symndx, got_type))
+ return false;
+
+ unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
+ false));
+ object->set_local_got_offset(symndx, got_type, got_offset);
+ return true;
+}
+
+// Like add_local, but use the PLT offset.
+
+template<int got_size, bool big_endian>
+bool
+Output_data_got<got_size, big_endian>::add_local_plt(
+ Relobj* object,
+ unsigned int symndx,
+ unsigned int got_type)
+{
+ if (object->local_has_got_offset(symndx, got_type))
+ return false;
+
+ unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
+ true));
+ object->set_local_got_offset(symndx, got_type, got_offset);
+ return true;
+}
+
+// Add an entry for a local symbol to the GOT, and add a dynamic
+// relocation of type R_TYPE for the GOT entry.
+
+template<int got_size, bool big_endian>
+void
+Output_data_got<got_size, big_endian>::add_local_with_rel(
+ Relobj* object,
+ unsigned int symndx,
+ unsigned int got_type,
+ Output_data_reloc_generic* rel_dyn,
+ unsigned int r_type)
+{
+ if (object->local_has_got_offset(symndx, got_type))
+ return;
+
+ unsigned int got_offset = this->add_got_entry(Got_entry());
+ object->set_local_got_offset(symndx, got_type, got_offset);
+ rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
+}
+
+// Add a pair of entries for a local symbol to the GOT, and add
+// a dynamic relocation of type R_TYPE using the section symbol of
+// the output section to which input section SHNDX maps, on the first.
+// The first got entry will have a value of zero, the second the
+// value of the local symbol.
+template<int got_size, bool big_endian>
+void
+Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
+ Relobj* object,
+ unsigned int symndx,
+ unsigned int shndx,
+ unsigned int got_type,
+ Output_data_reloc_generic* rel_dyn,
+ unsigned int r_type)
+{
+ if (object->local_has_got_offset(symndx, got_type))
+ return;
+
+ unsigned int got_offset =
+ this->add_got_entry_pair(Got_entry(),
+ Got_entry(object, symndx, false));
+ object->set_local_got_offset(symndx, got_type, got_offset);
+ Output_section* os = object->output_section(shndx);
+ rel_dyn->add_output_section_generic(os, r_type, this, got_offset, 0);
+}
+
+// Add a pair of entries for a local symbol to the GOT, and add
+// a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
+// The first got entry will have a value of zero, the second the
+// value of the local symbol offset by Target::tls_offset_for_local.
+template<int got_size, bool big_endian>
+void
+Output_data_got<got_size, big_endian>::add_local_tls_pair(
+ Relobj* object,
+ unsigned int symndx,
+ unsigned int got_type,
+ Output_data_reloc_generic* rel_dyn,
+ unsigned int r_type)
+{
+ if (object->local_has_got_offset(symndx, got_type))
+ return;
+
+ unsigned int got_offset
+ = this->add_got_entry_pair(Got_entry(),
+ Got_entry(object, symndx, true));
+ object->set_local_got_offset(symndx, got_type, got_offset);
+ rel_dyn->add_local_generic(object, 0, r_type, this, got_offset, 0);
+}
+
+// Reserve a slot in the GOT for a local symbol or the second slot of a pair.
+
+template<int got_size, bool big_endian>
+void
+Output_data_got<got_size, big_endian>::reserve_local(
+ unsigned int i,
+ Relobj* object,
+ unsigned int sym_index,
+ unsigned int got_type)
+{
+ this->do_reserve_slot(i);
+ object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
+}
+
+// Reserve a slot in the GOT for a global symbol.
+
+template<int got_size, bool big_endian>
+void
+Output_data_got<got_size, big_endian>::reserve_global(
+ unsigned int i,
+ Symbol* gsym,
+ unsigned int got_type)
+{
+ this->do_reserve_slot(i);
+ gsym->set_got_offset(got_type, this->got_offset(i));
+}
+
+// Write out the GOT.
+
+template<int got_size, bool big_endian>
+void
+Output_data_got<got_size, big_endian>::do_write(Output_file* of)
+{
+ const int add = got_size / 8;
+
+ const off_t off = this->offset();
+ const off_t oview_size = this->data_size();
+ unsigned char* const oview = of->get_output_view(off, oview_size);
+
+ unsigned char* pov = oview;
+ for (unsigned int i = 0; i < this->entries_.size(); ++i)
+ {
+ this->entries_[i].write(i, pov);
+ pov += add;
+ }
+
+ gold_assert(pov - oview == oview_size);
+
+ of->write_output_view(off, oview_size, oview);
+
+ // We no longer need the GOT entries.
+ this->entries_.clear();
+}
+
+// Create a new GOT entry and return its offset.
+
+template<int got_size, bool big_endian>
+unsigned int
+Output_data_got<got_size, big_endian>::add_got_entry(Got_entry got_entry)
+{
+ if (!this->is_data_size_valid())
+ {
+ this->entries_.push_back(got_entry);
+ this->set_got_size();
+ return this->last_got_offset();
+ }
+ else
+ {
+ // For an incremental update, find an available slot.
+ off_t got_offset = this->free_list_.allocate(got_size / 8,
+ got_size / 8, 0);
+ if (got_offset == -1)
+ gold_fallback(_("out of patch space (GOT);"
+ " relink with --incremental-full"));
+ unsigned int got_index = got_offset / (got_size / 8);
+ gold_assert(got_index < this->entries_.size());
+ this->entries_[got_index] = got_entry;
+ return static_cast<unsigned int>(got_offset);
+ }
+}
+
+// Create a pair of new GOT entries and return the offset of the first.
+
+template<int got_size, bool big_endian>
+unsigned int
+Output_data_got<got_size, big_endian>::add_got_entry_pair(
+ Got_entry got_entry_1,
+ Got_entry got_entry_2)
+{
+ if (!this->is_data_size_valid())
+ {
+ unsigned int got_offset;
+ this->entries_.push_back(got_entry_1);
+ got_offset = this->last_got_offset();
+ this->entries_.push_back(got_entry_2);
+ this->set_got_size();
+ return got_offset;
+ }
+ else
+ {
+ // For an incremental update, find an available pair of slots.
+ off_t got_offset = this->free_list_.allocate(2 * got_size / 8,
+ got_size / 8, 0);
+ if (got_offset == -1)
+ gold_fallback(_("out of patch space (GOT);"
+ " relink with --incremental-full"));
+ unsigned int got_index = got_offset / (got_size / 8);
+ gold_assert(got_index < this->entries_.size());
+ this->entries_[got_index] = got_entry_1;
+ this->entries_[got_index + 1] = got_entry_2;
+ return static_cast<unsigned int>(got_offset);
+ }
+}
+
+// Replace GOT entry I with a new value.
+
+template<int got_size, bool big_endian>
+void
+Output_data_got<got_size, big_endian>::replace_got_entry(
+ unsigned int i,
+ Got_entry got_entry)
+{
+ gold_assert(i < this->entries_.size());
+ this->entries_[i] = got_entry;
+}
+
+// Output_data_dynamic::Dynamic_entry methods.
+
+// Write out the entry.
+
+template<int size, bool big_endian>
+void
+Output_data_dynamic::Dynamic_entry::write(
+ unsigned char* pov,
+ const Stringpool* pool) const
+{
+ typename elfcpp::Elf_types<size>::Elf_WXword val;
+ switch (this->offset_)
+ {
+ case DYNAMIC_NUMBER:
+ val = this->u_.val;
+ break;
+
+ case DYNAMIC_SECTION_SIZE:
+ val = this->u_.od->data_size();
+ if (this->od2 != NULL)
+ val += this->od2->data_size();
+ break;
+
+ case DYNAMIC_SYMBOL:
+ {
+ const Sized_symbol<size>* s =
+ static_cast<const Sized_symbol<size>*>(this->u_.sym);
+ val = s->value();
+ }
+ break;
+
+ case DYNAMIC_STRING:
+ val = pool->get_offset(this->u_.str);
+ break;
+
+ default:
+ val = this->u_.od->address() + this->offset_;
+ break;
+ }
+
+ elfcpp::Dyn_write<size, big_endian> dw(pov);
+ dw.put_d_tag(this->tag_);
+ dw.put_d_val(val);
+}
+
+// Output_data_dynamic methods.
+
+// Adjust the output section to set the entry size.
+
+void
+Output_data_dynamic::do_adjust_output_section(Output_section* os)
+{
+ if (parameters->target().get_size() == 32)
+ os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
+ else if (parameters->target().get_size() == 64)
+ os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
+ else
+ gold_unreachable();
+}
+
+// Set the final data size.
+
+void
+Output_data_dynamic::set_final_data_size()
+{
+ // Add the terminating entry if it hasn't been added.
+ // Because of relaxation, we can run this multiple times.
+ if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
+ {
+ int extra = parameters->options().spare_dynamic_tags();
+ for (int i = 0; i < extra; ++i)
+ this->add_constant(elfcpp::DT_NULL, 0);
+ this->add_constant(elfcpp::DT_NULL, 0);
+ }
+
+ int dyn_size;
+ if (parameters->target().get_size() == 32)
+ dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
+ else if (parameters->target().get_size() == 64)
+ dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
+ else
+ gold_unreachable();
+ this->set_data_size(this->entries_.size() * dyn_size);
+}
+
+// Write out the dynamic entries.
+
+void
+Output_data_dynamic::do_write(Output_file* of)
+{
+ switch (parameters->size_and_endianness())
+ {
+#ifdef HAVE_TARGET_32_LITTLE
+ case Parameters::TARGET_32_LITTLE:
+ this->sized_write<32, false>(of);
+ break;
+#endif
+#ifdef HAVE_TARGET_32_BIG
+ case Parameters::TARGET_32_BIG:
+ this->sized_write<32, true>(of);
+ break;
+#endif
+#ifdef HAVE_TARGET_64_LITTLE
+ case Parameters::TARGET_64_LITTLE:
+ this->sized_write<64, false>(of);
+ break;
+#endif
+#ifdef HAVE_TARGET_64_BIG
+ case Parameters::TARGET_64_BIG:
+ this->sized_write<64, true>(of);
+ break;
+#endif
+ default:
+ gold_unreachable();
+ }
+}
+
+template<int size, bool big_endian>
+void
+Output_data_dynamic::sized_write(Output_file* of)
+{
+ const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
+
+ const off_t offset = this->offset();
+ const off_t oview_size = this->data_size();
+ unsigned char* const oview = of->get_output_view(offset, oview_size);
+
+ unsigned char* pov = oview;
+ for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
+ p != this->entries_.end();
+ ++p)
+ {
+ p->write<size, big_endian>(pov, this->pool_);
+ pov += dyn_size;
+ }
+
+ gold_assert(pov - oview == oview_size);
+
+ of->write_output_view(offset, oview_size, oview);
+
+ // We no longer need the dynamic entries.
+ this->entries_.clear();
+}
+
+// Class Output_symtab_xindex.
+
+void
+Output_symtab_xindex::do_write(Output_file* of)
+{
+ const off_t offset = this->offset();
+ const off_t oview_size = this->data_size();
+ unsigned char* const oview = of->get_output_view(offset, oview_size);
+
+ memset(oview, 0, oview_size);
+
+ if (parameters->target().is_big_endian())
+ this->endian_do_write<true>(oview);
+ else
+ this->endian_do_write<false>(oview);
+
+ of->write_output_view(offset, oview_size, oview);
+
+ // We no longer need the data.
+ this->entries_.clear();
+}
+
+template<bool big_endian>
+void
+Output_symtab_xindex::endian_do_write(unsigned char* const oview)
+{
+ for (Xindex_entries::const_iterator p = this->entries_.begin();
+ p != this->entries_.end();
+ ++p)
+ {
+ unsigned int symndx = p->first;
+ gold_assert(static_cast<off_t>(symndx) * 4 < this->data_size());
+ elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
+ }
+}
+
+// Output_fill_debug_info methods.
+
+// Return the minimum size needed for a dummy compilation unit header.
+
+size_t
+Output_fill_debug_info::do_minimum_hole_size() const
+{
+ // Compile unit header fields: unit_length, version, debug_abbrev_offset,
+ // address_size.
+ const size_t len = 4 + 2 + 4 + 1;
+ // For type units, add type_signature, type_offset.
+ if (this->is_debug_types_)
+ return len + 8 + 4;
+ return len;
+}
+
+// Write a dummy compilation unit header to fill a hole in the
+// .debug_info or .debug_types section.
+
+void
+Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
+{
+ gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
+ static_cast<long>(off), static_cast<long>(len));
+
+ gold_assert(len >= this->do_minimum_hole_size());
+
+ unsigned char* const oview = of->get_output_view(off, len);
+ unsigned char* pov = oview;
+
+ // Write header fields: unit_length, version, debug_abbrev_offset,
+ // address_size.
+ if (this->is_big_endian())
+ {
+ elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
+ elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
+ elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
+ }
+ else
+ {
+ elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
+ elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
+ elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
+ }
+ pov += 4 + 2 + 4;
+ *pov++ = 4;
+
+ // For type units, the additional header fields -- type_signature,
+ // type_offset -- can be filled with zeroes.
+
+ // Fill the remainder of the free space with zeroes. The first
+ // zero should tell the consumer there are no DIEs to read in this
+ // compilation unit.
+ if (pov < oview + len)
+ memset(pov, 0, oview + len - pov);
+
+ of->write_output_view(off, len, oview);
+}
+
+// Output_fill_debug_line methods.
+
+// Return the minimum size needed for a dummy line number program header.
+
+size_t
+Output_fill_debug_line::do_minimum_hole_size() const
+{
+ // Line number program header fields: unit_length, version, header_length,
+ // minimum_instruction_length, default_is_stmt, line_base, line_range,
+ // opcode_base, standard_opcode_lengths[], include_directories, filenames.
+ const size_t len = 4 + 2 + 4 + this->header_length;
+ return len;
+}
+
+// Write a dummy line number program header to fill a hole in the
+// .debug_line section.
+
+void
+Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
+{
+ gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
+ static_cast<long>(off), static_cast<long>(len));
+
+ gold_assert(len >= this->do_minimum_hole_size());
+
+ unsigned char* const oview = of->get_output_view(off, len);
+ unsigned char* pov = oview;
+
+ // Write header fields: unit_length, version, header_length,
+ // minimum_instruction_length, default_is_stmt, line_base, line_range,
+ // opcode_base, standard_opcode_lengths[], include_directories, filenames.
+ // We set the header_length field to cover the entire hole, so the
+ // line number program is empty.
+ if (this->is_big_endian())
+ {
+ elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
+ elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
+ elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
+ }
+ else
+ {
+ elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
+ elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
+ elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
+ }
+ pov += 4 + 2 + 4;
+ *pov++ = 1; // minimum_instruction_length
+ *pov++ = 0; // default_is_stmt
+ *pov++ = 0; // line_base
+ *pov++ = 5; // line_range
+ *pov++ = 13; // opcode_base
+ *pov++ = 0; // standard_opcode_lengths[1]
+ *pov++ = 1; // standard_opcode_lengths[2]
+ *pov++ = 1; // standard_opcode_lengths[3]
+ *pov++ = 1; // standard_opcode_lengths[4]
+ *pov++ = 1; // standard_opcode_lengths[5]
+ *pov++ = 0; // standard_opcode_lengths[6]
+ *pov++ = 0; // standard_opcode_lengths[7]
+ *pov++ = 0; // standard_opcode_lengths[8]
+ *pov++ = 1; // standard_opcode_lengths[9]
+ *pov++ = 0; // standard_opcode_lengths[10]
+ *pov++ = 0; // standard_opcode_lengths[11]
+ *pov++ = 1; // standard_opcode_lengths[12]
+ *pov++ = 0; // include_directories (empty)
+ *pov++ = 0; // filenames (empty)
+
+ // Some consumers don't check the header_length field, and simply
+ // start reading the line number program immediately following the
+ // header. For those consumers, we fill the remainder of the free
+ // space with DW_LNS_set_basic_block opcodes. These are effectively
+ // no-ops: the resulting line table program will not create any rows.
+ if (pov < oview + len)
+ memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
+
+ of->write_output_view(off, len, oview);
+}
+
+// Output_section::Input_section methods.
+
+// Return the current data size. For an input section we store the size here.
+// For an Output_section_data, we have to ask it for the size.
+
+off_t
+Output_section::Input_section::current_data_size() const
+{
+ if (this->is_input_section())
+ return this->u1_.data_size;
+ else
+ {
+ this->u2_.posd->pre_finalize_data_size();
+ return this->u2_.posd->current_data_size();
+ }
+}
+
+// Return the data size. For an input section we store the size here.
+// For an Output_section_data, we have to ask it for the size.
+
+off_t
+Output_section::Input_section::data_size() const
+{
+ if (this->is_input_section())
+ return this->u1_.data_size;
+ else
+ return this->u2_.posd->data_size();
+}
+
+// Return the object for an input section.
+
+Relobj*
+Output_section::Input_section::relobj() const
+{
+ if (this->is_input_section())
+ return this->u2_.object;
+ else if (this->is_merge_section())
+ {
+ gold_assert(this->u2_.pomb->first_relobj() != NULL);
+ return this->u2_.pomb->first_relobj();
+ }
+ else if (this->is_relaxed_input_section())
+ return this->u2_.poris->relobj();
+ else
+ gold_unreachable();
+}
+
+// Return the input section index for an input section.
+
+unsigned int
+Output_section::Input_section::shndx() const
+{
+ if (this->is_input_section())
+ return this->shndx_;
+ else if (this->is_merge_section())
+ {
+ gold_assert(this->u2_.pomb->first_relobj() != NULL);
+ return this->u2_.pomb->first_shndx();
+ }
+ else if (this->is_relaxed_input_section())
+ return this->u2_.poris->shndx();
+ else
+ gold_unreachable();
+}
+
+// Set the address and file offset.
+
+void
+Output_section::Input_section::set_address_and_file_offset(
+ uint64_t address,
+ off_t file_offset,
+ off_t section_file_offset)
+{
+ if (this->is_input_section())
+ this->u2_.object->set_section_offset(this->shndx_,
+ file_offset - section_file_offset);
+ else
+ this->u2_.posd->set_address_and_file_offset(address, file_offset);
+}
+
+// Reset the address and file offset.
+
+void
+Output_section::Input_section::reset_address_and_file_offset()
+{
+ if (!this->is_input_section())
+ this->u2_.posd->reset_address_and_file_offset();
+}
+
+// Finalize the data size.
+
+void
+Output_section::Input_section::finalize_data_size()
+{
+ if (!this->is_input_section())
+ this->u2_.posd->finalize_data_size();
+}
+
+// Try to turn an input offset into an output offset. We want to
+// return the output offset relative to the start of this
+// Input_section in the output section.
+
+inline bool
+Output_section::Input_section::output_offset(
+ const Relobj* object,
+ unsigned int shndx,
+ section_offset_type offset,
+ section_offset_type* poutput) const
+{
+ if (!this->is_input_section())
+ return this->u2_.posd->output_offset(object, shndx, offset, poutput);
+ else
+ {
+ if (this->shndx_ != shndx || this->u2_.object != object)
+ return false;
+ *poutput = offset;
+ return true;
+ }
+}
+
+// Return whether this is the merge section for the input section
+// SHNDX in OBJECT.
+
+inline bool
+Output_section::Input_section::is_merge_section_for(const Relobj* object,
+ unsigned int shndx) const
+{
+ if (this->is_input_section())
+ return false;
+ return this->u2_.posd->is_merge_section_for(object, shndx);
+}
+
+// Write out the data. We don't have to do anything for an input
+// section--they are handled via Object::relocate--but this is where
+// we write out the data for an Output_section_data.
+
+void
+Output_section::Input_section::write(Output_file* of)
+{
+ if (!this->is_input_section())
+ this->u2_.posd->write(of);
+}
+
+// Write the data to a buffer. As for write(), we don't have to do
+// anything for an input section.
+
+void
+Output_section::Input_section::write_to_buffer(unsigned char* buffer)
+{
+ if (!this->is_input_section())
+ this->u2_.posd->write_to_buffer(buffer);
+}
+
+// Print to a map file.
+
+void
+Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
+{
+ switch (this->shndx_)
+ {
+ case OUTPUT_SECTION_CODE:
+ case MERGE_DATA_SECTION_CODE:
+ case MERGE_STRING_SECTION_CODE:
+ this->u2_.posd->print_to_mapfile(mapfile);
+ break;
+
+ case RELAXED_INPUT_SECTION_CODE:
+ {
+ Output_relaxed_input_section* relaxed_section =
+ this->relaxed_input_section();
+ mapfile->print_input_section(relaxed_section->relobj(),
+ relaxed_section->shndx());
+ }
+ break;
+ default:
+ mapfile->print_input_section(this->u2_.object, this->shndx_);
+ break;
+ }
+}
+
+// Output_section methods.
+
+// Construct an Output_section. NAME will point into a Stringpool.
+
+Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
+ elfcpp::Elf_Xword flags)
+ : name_(name),
+ addralign_(0),
+ entsize_(0),
+ load_address_(0),
+ link_section_(NULL),
+ link_(0),
+ info_section_(NULL),
+ info_symndx_(NULL),
+ info_(0),
+ type_(type),
+ flags_(flags),
+ order_(ORDER_INVALID),
+ out_shndx_(-1U),
+ symtab_index_(0),
+ dynsym_index_(0),
+ input_sections_(),
+ first_input_offset_(0),
+ fills_(),
+ postprocessing_buffer_(NULL),
+ needs_symtab_index_(false),
+ needs_dynsym_index_(false),
+ should_link_to_symtab_(false),
+ should_link_to_dynsym_(false),
+ after_input_sections_(false),
+ requires_postprocessing_(false),
+ found_in_sections_clause_(false),
+ has_load_address_(false),
+ info_uses_section_index_(false),
+ input_section_order_specified_(false),
+ may_sort_attached_input_sections_(false),
+ must_sort_attached_input_sections_(false),
+ attached_input_sections_are_sorted_(false),
+ is_relro_(false),
+ is_small_section_(false),
+ is_large_section_(false),
+ generate_code_fills_at_write_(false),
+ is_entsize_zero_(false),
+ section_offsets_need_adjustment_(false),
+ is_noload_(false),
+ always_keeps_input_sections_(false),
+ has_fixed_layout_(false),
+ is_patch_space_allowed_(false),
+ is_unique_segment_(false),
+ tls_offset_(0),
+ extra_segment_flags_(0),
+ segment_alignment_(0),
+ checkpoint_(NULL),
+ lookup_maps_(new Output_section_lookup_maps),
+ free_list_(),
+ free_space_fill_(NULL),
+ patch_space_(0)
+{
+ // An unallocated section has no address. Forcing this means that
+ // we don't need special treatment for symbols defined in debug
+ // sections.
+ if ((flags & elfcpp::SHF_ALLOC) == 0)
+ this->set_address(0);
+}
+
+Output_section::~Output_section()
+{
+ delete this->checkpoint_;
+}
+
+// Set the entry size.
+
+void
+Output_section::set_entsize(uint64_t v)
+{
+ if (this->is_entsize_zero_)
+ ;
+ else if (this->entsize_ == 0)
+ this->entsize_ = v;
+ else if (this->entsize_ != v)
+ {
+ this->entsize_ = 0;
+ this->is_entsize_zero_ = 1;
+ }
+}
+
+// Add the input section SHNDX, with header SHDR, named SECNAME, in
+// OBJECT, to the Output_section. RELOC_SHNDX is the index of a
+// relocation section which applies to this section, or 0 if none, or
+// -1U if more than one. Return the offset of the input section
+// within the output section. Return -1 if the input section will
+// receive special handling. In the normal case we don't always keep
+// track of input sections for an Output_section. Instead, each
+// Object keeps track of the Output_section for each of its input
+// sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
+// track of input sections here; this is used when SECTIONS appears in
+// a linker script.
+
+template<int size, bool big_endian>
+off_t
+Output_section::add_input_section(Layout* layout,
+ Sized_relobj_file<size, big_endian>* object,
+ unsigned int shndx,
+ const char* secname,
+ const elfcpp::Shdr<size, big_endian>& shdr,
+ unsigned int reloc_shndx,
+ bool have_sections_script)
+{
+ elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
+ if ((addralign & (addralign - 1)) != 0)
+ {
+ object->error(_("invalid alignment %lu for section \"%s\""),
+ static_cast<unsigned long>(addralign), secname);
+ addralign = 1;
+ }
+
+ if (addralign > this->addralign_)
+ this->addralign_ = addralign;
+
+ typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
+ uint64_t entsize = shdr.get_sh_entsize();
+
+ // .debug_str is a mergeable string section, but is not always so
+ // marked by compilers. Mark manually here so we can optimize.
+ if (strcmp(secname, ".debug_str") == 0)
+ {
+ sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
+ entsize = 1;
+ }
+
+ this->update_flags_for_input_section(sh_flags);
+ this->set_entsize(entsize);
+
+ // If this is a SHF_MERGE section, we pass all the input sections to
+ // a Output_data_merge. We don't try to handle relocations for such
+ // a section. We don't try to handle empty merge sections--they
+ // mess up the mappings, and are useless anyhow.
+ // FIXME: Need to handle merge sections during incremental update.
+ if ((sh_flags & elfcpp::SHF_MERGE) != 0
+ && reloc_shndx == 0
+ && shdr.get_sh_size() > 0
+ && !parameters->incremental())
+ {
+ // Keep information about merged input sections for rebuilding fast
+ // lookup maps if we have sections-script or we do relaxation.
+ bool keeps_input_sections = (this->always_keeps_input_sections_
+ || have_sections_script
+ || parameters->target().may_relax());
+
+ if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
+ addralign, keeps_input_sections))
+ {
+ // Tell the relocation routines that they need to call the
+ // output_offset method to determine the final address.
+ return -1;
+ }
+ }
+
+ section_size_type input_section_size = shdr.get_sh_size();
+ section_size_type uncompressed_size;
+ if (object->section_is_compressed(shndx, &uncompressed_size))
+ input_section_size = uncompressed_size;
+
+ off_t offset_in_section;
+
+ if (this->has_fixed_layout())
+ {
+ // For incremental updates, find a chunk of unused space in the section.
+ offset_in_section = this->free_list_.allocate(input_section_size,
+ addralign, 0);
+ if (offset_in_section == -1)
+ gold_fallback(_("out of patch space in section %s; "
+ "relink with --incremental-full"),
+ this->name());
+ return offset_in_section;
+ }
+
+ offset_in_section = this->current_data_size_for_child();
+ off_t aligned_offset_in_section = align_address(offset_in_section,
+ addralign);
+ this->set_current_data_size_for_child(aligned_offset_in_section
+ + input_section_size);
+
+ // Determine if we want to delay code-fill generation until the output
+ // section is written. When the target is relaxing, we want to delay fill
+ // generating to avoid adjusting them during relaxation. Also, if we are
+ // sorting input sections we must delay fill generation.
+ if (!this->generate_code_fills_at_write_
+ && !have_sections_script
+ && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
+ && parameters->target().has_code_fill()
+ && (parameters->target().may_relax()
+ || layout->is_section_ordering_specified()))
+ {
+ gold_assert(this->fills_.empty());
+ this->generate_code_fills_at_write_ = true;
+ }
+
+ if (aligned_offset_in_section > offset_in_section
+ && !this->generate_code_fills_at_write_
+ && !have_sections_script
+ && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
+ && parameters->target().has_code_fill())
+ {
+ // We need to add some fill data. Using fill_list_ when
+ // possible is an optimization, since we will often have fill
+ // sections without input sections.
+ off_t fill_len = aligned_offset_in_section - offset_in_section;
+ if (this->input_sections_.empty())
+ this->fills_.push_back(Fill(offset_in_section, fill_len));
+ else
+ {
+ std::string fill_data(parameters->target().code_fill(fill_len));
+ Output_data_const* odc = new Output_data_const(fill_data, 1);
+ this->input_sections_.push_back(Input_section(odc));
+ }
+ }
+
+ // We need to keep track of this section if we are already keeping
+ // track of sections, or if we are relaxing. Also, if this is a
+ // section which requires sorting, or which may require sorting in
+ // the future, we keep track of the sections. If the
+ // --section-ordering-file option is used to specify the order of
+ // sections, we need to keep track of sections.
+ if (this->always_keeps_input_sections_
+ || have_sections_script
+ || !this->input_sections_.empty()
+ || this->may_sort_attached_input_sections()
+ || this->must_sort_attached_input_sections()
+ || parameters->options().user_set_Map()
+ || parameters->target().may_relax()
+ || layout->is_section_ordering_specified())
+ {
+ Input_section isecn(object, shndx, input_section_size, addralign);
+ /* If section ordering is requested by specifying a ordering file,
+ using --section-ordering-file, match the section name with
+ a pattern. */
+ if (parameters->options().section_ordering_file())
+ {
+ unsigned int section_order_index =
+ layout->find_section_order_index(std::string(secname));
+ if (section_order_index != 0)
+ {
+ isecn.set_section_order_index(section_order_index);
+ this->set_input_section_order_specified();
+ }
+ }
+ this->input_sections_.push_back(isecn);
+ }
+
+ return aligned_offset_in_section;
+}
+
+// Add arbitrary data to an output section.
+
+void
+Output_section::add_output_section_data(Output_section_data* posd)
+{
+ Input_section inp(posd);
+ this->add_output_section_data(&inp);
+
+ if (posd->is_data_size_valid())
+ {
+ off_t offset_in_section;
+ if (this->has_fixed_layout())
+ {
+ // For incremental updates, find a chunk of unused space.
+ offset_in_section = this->free_list_.allocate(posd->data_size(),
+ posd->addralign(), 0);
+ if (offset_in_section == -1)
+ gold_fallback(_("out of patch space in section %s; "
+ "relink with --incremental-full"),
+ this->name());
+ // Finalize the address and offset now.
+ uint64_t addr = this->address();
+ off_t offset = this->offset();
+ posd->set_address_and_file_offset(addr + offset_in_section,
+ offset + offset_in_section);
+ }
+ else
+ {
+ offset_in_section = this->current_data_size_for_child();
+ off_t aligned_offset_in_section = align_address(offset_in_section,
+ posd->addralign());
+ this->set_current_data_size_for_child(aligned_offset_in_section
+ + posd->data_size());
+ }
+ }
+ else if (this->has_fixed_layout())
+ {
+ // For incremental updates, arrange for the data to have a fixed layout.
+ // This will mean that additions to the data must be allocated from
+ // free space within the containing output section.
+ uint64_t addr = this->address();
+ posd->set_address(addr);
+ posd->set_file_offset(0);
+ // FIXME: This should eventually be unreachable.
+ // gold_unreachable();
+ }
+}
+
+// Add a relaxed input section.
+
+void
+Output_section::add_relaxed_input_section(Layout* layout,
+ Output_relaxed_input_section* poris,
+ const std::string& name)
+{
+ Input_section inp(poris);
+
+ // If the --section-ordering-file option is used to specify the order of
+ // sections, we need to keep track of sections.
+ if (layout->is_section_ordering_specified())
+ {
+ unsigned int section_order_index =
+ layout->find_section_order_index(name);
+ if (section_order_index != 0)
+ {
+ inp.set_section_order_index(section_order_index);
+ this->set_input_section_order_specified();
+ }
+ }
+
+ this->add_output_section_data(&inp);
+ if (this->lookup_maps_->is_valid())
+ this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
+ poris->shndx(), poris);
+
+ // For a relaxed section, we use the current data size. Linker scripts
+ // get all the input sections, including relaxed one from an output
+ // section and add them back to the same output section to compute the
+ // output section size. If we do not account for sizes of relaxed input
+ // sections, an output section would be incorrectly sized.
+ off_t offset_in_section = this->current_data_size_for_child();
+ off_t aligned_offset_in_section = align_address(offset_in_section,
+ poris->addralign());
+ this->set_current_data_size_for_child(aligned_offset_in_section
+ + poris->current_data_size());
+}
+
+// Add arbitrary data to an output section by Input_section.
+
+void
+Output_section::add_output_section_data(Input_section* inp)
+{
+ if (this->input_sections_.empty())
+ this->first_input_offset_ = this->current_data_size_for_child();
+
+ this->input_sections_.push_back(*inp);
+
+ uint64_t addralign = inp->addralign();
+ if (addralign > this->addralign_)
+ this->addralign_ = addralign;
+
+ inp->set_output_section(this);
+}
+
+// Add a merge section to an output section.
+
+void
+Output_section::add_output_merge_section(Output_section_data* posd,
+ bool is_string, uint64_t entsize)
+{
+ Input_section inp(posd, is_string, entsize);
+ this->add_output_section_data(&inp);
+}
+
+// Add an input section to a SHF_MERGE section.
+
+bool
+Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
+ uint64_t flags, uint64_t entsize,
+ uint64_t addralign,
+ bool keeps_input_sections)
+{
+ bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
+
+ // We cannot restore merged input section states.
+ gold_assert(this->checkpoint_ == NULL);
+
+ // Look up merge sections by required properties.
+ // Currently, we only invalidate the lookup maps in script processing
+ // and relaxation. We should not have done either when we reach here.
+ // So we assume that the lookup maps are valid to simply code.
+ gold_assert(this->lookup_maps_->is_valid());
+ Merge_section_properties msp(is_string, entsize, addralign);
+ Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
+ bool is_new = false;
+ if (pomb != NULL)
+ {
+ gold_assert(pomb->is_string() == is_string
+ && pomb->entsize() == entsize
+ && pomb->addralign() == addralign);
+ }
+ else
+ {
+ // Create a new Output_merge_data or Output_merge_string_data.
+ if (!is_string)
+ pomb = new Output_merge_data(entsize, addralign);
+ else
+ {
+ switch (entsize)
+ {
+ case 1:
+ pomb = new Output_merge_string<char>(addralign);
+ break;
+ case 2:
+ pomb = new Output_merge_string<uint16_t>(addralign);
+ break;
+ case 4:
+ pomb = new Output_merge_string<uint32_t>(addralign);
+ break;
+ default:
+ return false;
+ }
+ }
+ // If we need to do script processing or relaxation, we need to keep
+ // the original input sections to rebuild the fast lookup maps.
+ if (keeps_input_sections)
+ pomb->set_keeps_input_sections();
+ is_new = true;
+ }
+
+ if (pomb->add_input_section(object, shndx))
+ {
+ // Add new merge section to this output section and link merge
+ // section properties to new merge section in map.
+ if (is_new)
+ {
+ this->add_output_merge_section(pomb, is_string, entsize);
+ this->lookup_maps_->add_merge_section(msp, pomb);
+ }
+
+ // Add input section to new merge section and link input section to new
+ // merge section in map.
+ this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
+ return true;
+ }
+ else
+ {
+ // If add_input_section failed, delete new merge section to avoid
+ // exporting empty merge sections in Output_section::get_input_section.
+ if (is_new)
+ delete pomb;
+ return false;
+ }
+}
+
+// Build a relaxation map to speed up relaxation of existing input sections.
+// Look up to the first LIMIT elements in INPUT_SECTIONS.
+
+void
+Output_section::build_relaxation_map(
+ const Input_section_list& input_sections,
+ size_t limit,
+ Relaxation_map* relaxation_map) const
+{
+ for (size_t i = 0; i < limit; ++i)
+ {
+ const Input_section& is(input_sections[i]);
+ if (is.is_input_section() || is.is_relaxed_input_section())
+ {
+ Section_id sid(is.relobj(), is.shndx());
+ (*relaxation_map)[sid] = i;
+ }
+ }
+}
+
+// Convert regular input sections in INPUT_SECTIONS into relaxed input
+// sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
+// indices of INPUT_SECTIONS.
+
+void
+Output_section::convert_input_sections_in_list_to_relaxed_sections(
+ const std::vector<Output_relaxed_input_section*>& relaxed_sections,
+ const Relaxation_map& map,
+ Input_section_list* input_sections)
+{
+ for (size_t i = 0; i < relaxed_sections.size(); ++i)
+ {
+ Output_relaxed_input_section* poris = relaxed_sections[i];
+ Section_id sid(poris->relobj(), poris->shndx());
+ Relaxation_map::const_iterator p = map.find(sid);
+ gold_assert(p != map.end());
+ gold_assert((*input_sections)[p->second].is_input_section());
+
+ // Remember section order index of original input section
+ // if it is set. Copy it to the relaxed input section.
+ unsigned int soi =
+ (*input_sections)[p->second].section_order_index();
+ (*input_sections)[p->second] = Input_section(poris);
+ (*input_sections)[p->second].set_section_order_index(soi);
+ }
+}
+
+// Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
+// is a vector of pointers to Output_relaxed_input_section or its derived
+// classes. The relaxed sections must correspond to existing input sections.
+
+void
+Output_section::convert_input_sections_to_relaxed_sections(
+ const std::vector<Output_relaxed_input_section*>& relaxed_sections)
+{
+ gold_assert(parameters->target().may_relax());
+
+ // We want to make sure that restore_states does not undo the effect of
+ // this. If there is no checkpoint active, just search the current
+ // input section list and replace the sections there. If there is
+ // a checkpoint, also replace the sections there.
+
+ // By default, we look at the whole list.
+ size_t limit = this->input_sections_.size();
+
+ if (this->checkpoint_ != NULL)
+ {
+ // Replace input sections with relaxed input section in the saved
+ // copy of the input section list.
+ if (this->checkpoint_->input_sections_saved())
+ {
+ Relaxation_map map;
+ this->build_relaxation_map(
+ *(this->checkpoint_->input_sections()),
+ this->checkpoint_->input_sections()->size(),
+ &map);
+ this->convert_input_sections_in_list_to_relaxed_sections(
+ relaxed_sections,
+ map,
+ this->checkpoint_->input_sections());
+ }
+ else
+ {
+ // We have not copied the input section list yet. Instead, just
+ // look at the portion that would be saved.
+ limit = this->checkpoint_->input_sections_size();
+ }
+ }
+
+ // Convert input sections in input_section_list.
+ Relaxation_map map;
+ this->build_relaxation_map(this->input_sections_, limit, &map);
+ this->convert_input_sections_in_list_to_relaxed_sections(
+ relaxed_sections,
+ map,
+ &this->input_sections_);
+
+ // Update fast look-up map.
+ if (this->lookup_maps_->is_valid())
+ for (size_t i = 0; i < relaxed_sections.size(); ++i)
+ {
+ Output_relaxed_input_section* poris = relaxed_sections[i];
+ this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
+ poris->shndx(), poris);
+ }
+}
+
+// Update the output section flags based on input section flags.
+
+void
+Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
+{
+ // If we created the section with SHF_ALLOC clear, we set the
+ // address. If we are now setting the SHF_ALLOC flag, we need to
+ // undo that.
+ if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
+ && (flags & elfcpp::SHF_ALLOC) != 0)
+ this->mark_address_invalid();
+
+ this->flags_ |= (flags
+ & (elfcpp::SHF_WRITE
+ | elfcpp::SHF_ALLOC
+ | elfcpp::SHF_EXECINSTR));
+
+ if ((flags & elfcpp::SHF_MERGE) == 0)
+ this->flags_ &=~ elfcpp::SHF_MERGE;
+ else
+ {
+ if (this->current_data_size_for_child() == 0)
+ this->flags_ |= elfcpp::SHF_MERGE;
+ }
+
+ if ((flags & elfcpp::SHF_STRINGS) == 0)
+ this->flags_ &=~ elfcpp::SHF_STRINGS;
+ else
+ {
+ if (this->current_data_size_for_child() == 0)
+ this->flags_ |= elfcpp::SHF_STRINGS;
+ }
+}
+
+// Find the merge section into which an input section with index SHNDX in
+// OBJECT has been added. Return NULL if none found.
+
+Output_section_data*
+Output_section::find_merge_section(const Relobj* object,
+ unsigned int shndx) const
+{
+ if (!this->lookup_maps_->is_valid())
+ this->build_lookup_maps();
+ return this->lookup_maps_->find_merge_section(object, shndx);
+}
+
+// Build the lookup maps for merge and relaxed sections. This is needs
+// to be declared as a const methods so that it is callable with a const
+// Output_section pointer. The method only updates states of the maps.
+
+void
+Output_section::build_lookup_maps() const
+{
+ this->lookup_maps_->clear();
+ for (Input_section_list::const_iterator p = this->input_sections_.begin();
+ p != this->input_sections_.end();
+ ++p)
+ {
+ if (p->is_merge_section())
+ {
+ Output_merge_base* pomb = p->output_merge_base();
+ Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
+ pomb->addralign());
+ this->lookup_maps_->add_merge_section(msp, pomb);
+ for (Output_merge_base::Input_sections::const_iterator is =
+ pomb->input_sections_begin();
+ is != pomb->input_sections_end();
+ ++is)
+ {
+ const Const_section_id& csid = *is;
+ this->lookup_maps_->add_merge_input_section(csid.first,
+ csid.second, pomb);
+ }
+
+ }
+ else if (p->is_relaxed_input_section())
+ {
+ Output_relaxed_input_section* poris = p->relaxed_input_section();
+ this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
+ poris->shndx(), poris);
+ }
+ }
+}
+
+// Find an relaxed input section corresponding to an input section
+// in OBJECT with index SHNDX.
+
+const Output_relaxed_input_section*
+Output_section::find_relaxed_input_section(const Relobj* object,
+ unsigned int shndx) const
+{
+ if (!this->lookup_maps_->is_valid())
+ this->build_lookup_maps();
+ return this->lookup_maps_->find_relaxed_input_section(object, shndx);
+}
+
+// Given an address OFFSET relative to the start of input section
+// SHNDX in OBJECT, return whether this address is being included in
+// the final link. This should only be called if SHNDX in OBJECT has
+// a special mapping.
+
+bool
+Output_section::is_input_address_mapped(const Relobj* object,
+ unsigned int shndx,
+ off_t offset) const
+{
+ // Look at the Output_section_data_maps first.
+ const Output_section_data* posd = this->find_merge_section(object, shndx);
+ if (posd == NULL)
+ posd = this->find_relaxed_input_section(object, shndx);
+
+ if (posd != NULL)
+ {
+ section_offset_type output_offset;
+ bool found = posd->output_offset(object, shndx, offset, &output_offset);
+ gold_assert(found);
+ return output_offset != -1;
+ }
+
+ // Fall back to the slow look-up.
+ for (Input_section_list::const_iterator p = this->input_sections_.begin();
+ p != this->input_sections_.end();
+ ++p)
+ {
+ section_offset_type output_offset;
+ if (p->output_offset(object, shndx, offset, &output_offset))
+ return output_offset != -1;
+ }
+
+ // By default we assume that the address is mapped. This should
+ // only be called after we have passed all sections to Layout. At
+ // that point we should know what we are discarding.
+ return true;
+}
+
+// Given an address OFFSET relative to the start of input section
+// SHNDX in object OBJECT, return the output offset relative to the
+// start of the input section in the output section. This should only
+// be called if SHNDX in OBJECT has a special mapping.
+
+section_offset_type
+Output_section::output_offset(const Relobj* object, unsigned int shndx,
+ section_offset_type offset) const
+{
+ // This can only be called meaningfully when we know the data size
+ // of this.
+ gold_assert(this->is_data_size_valid());
+
+ // Look at the Output_section_data_maps first.
+ const Output_section_data* posd = this->find_merge_section(object, shndx);
+ if (posd == NULL)
+ posd = this->find_relaxed_input_section(object, shndx);
+ if (posd != NULL)
+ {
+ section_offset_type output_offset;
+ bool found = posd->output_offset(object, shndx, offset, &output_offset);
+ gold_assert(found);
+ return output_offset;
+ }
+
+ // Fall back to the slow look-up.
+ for (Input_section_list::const_iterator p = this->input_sections_.begin();
+ p != this->input_sections_.end();
+ ++p)
+ {
+ section_offset_type output_offset;
+ if (p->output_offset(object, shndx, offset, &output_offset))
+ return output_offset;
+ }
+ gold_unreachable();
+}
+
+// Return the output virtual address of OFFSET relative to the start
+// of input section SHNDX in object OBJECT.
+
+uint64_t
+Output_section::output_address(const Relobj* object, unsigned int shndx,
+ off_t offset) const
+{
+ uint64_t addr = this->address() + this->first_input_offset_;
+
+ // Look at the Output_section_data_maps first.
+ const Output_section_data* posd = this->find_merge_section(object, shndx);
+ if (posd == NULL)
+ posd = this->find_relaxed_input_section(object, shndx);
+ if (posd != NULL && posd->is_address_valid())
+ {
+ section_offset_type output_offset;
+ bool found = posd->output_offset(object, shndx, offset, &output_offset);
+ gold_assert(found);
+ return posd->address() + output_offset;
+ }
+
+ // Fall back to the slow look-up.
+ for (Input_section_list::const_iterator p = this->input_sections_.begin();
+ p != this->input_sections_.end();
+ ++p)
+ {
+ addr = align_address(addr, p->addralign());
+ section_offset_type output_offset;
+ if (p->output_offset(object, shndx, offset, &output_offset))
+ {
+ if (output_offset == -1)
+ return -1ULL;
+ return addr + output_offset;
+ }
+ addr += p->data_size();
+ }
+
+ // If we get here, it means that we don't know the mapping for this
+ // input section. This might happen in principle if
+ // add_input_section were called before add_output_section_data.
+ // But it should never actually happen.
+
+ gold_unreachable();
+}
+
+// Find the output address of the start of the merged section for
+// input section SHNDX in object OBJECT.
+
+bool
+Output_section::find_starting_output_address(const Relobj* object,
+ unsigned int shndx,
+ uint64_t* paddr) const
+{
+ // FIXME: This becomes a bottle-neck if we have many relaxed sections.
+ // Looking up the merge section map does not always work as we sometimes
+ // find a merge section without its address set.
+ uint64_t addr = this->address() + this->first_input_offset_;
+ for (Input_section_list::const_iterator p = this->input_sections_.begin();
+ p != this->input_sections_.end();
+ ++p)
+ {
+ addr = align_address(addr, p->addralign());
+
+ // It would be nice if we could use the existing output_offset
+ // method to get the output offset of input offset 0.
+ // Unfortunately we don't know for sure that input offset 0 is
+ // mapped at all.
+ if (p->is_merge_section_for(object, shndx))
+ {
+ *paddr = addr;
+ return true;
+ }
+
+ addr += p->data_size();
+ }
+
+ // We couldn't find a merge output section for this input section.
+ return false;
+}
+
+// Update the data size of an Output_section.
+
+void
+Output_section::update_data_size()
+{
+ if (this->input_sections_.empty())
+ return;
+
+ if (this->must_sort_attached_input_sections()
+ || this->input_section_order_specified())
+ this->sort_attached_input_sections();
+
+ off_t off = this->first_input_offset_;
+ for (Input_section_list::iterator p = this->input_sections_.begin();
+ p != this->input_sections_.end();
+ ++p)
+ {
+ off = align_address(off, p->addralign());
+ off += p->current_data_size();
+ }
+
+ this->set_current_data_size_for_child(off);
+}
+
+// Set the data size of an Output_section. This is where we handle
+// setting the addresses of any Output_section_data objects.
+
+void
+Output_section::set_final_data_size()
+{
+ off_t data_size;
+
+ if (this->input_sections_.empty())
+ data_size = this->current_data_size_for_child();
+ else
+ {
+ if (this->must_sort_attached_input_sections()
+ || this->input_section_order_specified())
+ this->sort_attached_input_sections();
+
+ uint64_t address = this->address();
+ off_t startoff = this->offset();
+ off_t off = startoff + this->first_input_offset_;
+ for (Input_section_list::iterator p = this->input_sections_.begin();
+ p != this->input_sections_.end();
+ ++p)
+ {
+ off = align_address(off, p->addralign());
+ p->set_address_and_file_offset(address + (off - startoff), off,
+ startoff);
+ off += p->data_size();
+ }
+ data_size = off - startoff;
+ }
+
+ // For full incremental links, we want to allocate some patch space
+ // in most sections for subsequent incremental updates.
+ if (this->is_patch_space_allowed_ && parameters->incremental_full())
+ {
+ double pct = parameters->options().incremental_patch();
+ size_t extra = static_cast<size_t>(data_size * pct);
+ if (this->free_space_fill_ != NULL
+ && this->free_space_fill_->minimum_hole_size() > extra)
+ extra = this->free_space_fill_->minimum_hole_size();
+ off_t new_size = align_address(data_size + extra, this->addralign());
+ this->patch_space_ = new_size - data_size;
+ gold_debug(DEBUG_INCREMENTAL,
+ "set_final_data_size: %08lx + %08lx: section %s",
+ static_cast<long>(data_size),
+ static_cast<long>(this->patch_space_),
+ this->name());
+ data_size = new_size;
+ }
+
+ this->set_data_size(data_size);
+}
+
+// Reset the address and file offset.
+
+void
+Output_section::do_reset_address_and_file_offset()
+{
+ // An unallocated section has no address. Forcing this means that
+ // we don't need special treatment for symbols defined in debug
+ // sections. We do the same in the constructor. This does not
+ // apply to NOLOAD sections though.
+ if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
+ this->set_address(0);
+
+ for (Input_section_list::iterator p = this->input_sections_.begin();
+ p != this->input_sections_.end();
+ ++p)
+ p->reset_address_and_file_offset();
+
+ // Remove any patch space that was added in set_final_data_size.
+ if (this->patch_space_ > 0)
+ {
+ this->set_current_data_size_for_child(this->current_data_size_for_child()
+ - this->patch_space_);
+ this->patch_space_ = 0;
+ }
+}
+
+// Return true if address and file offset have the values after reset.
+
+bool
+Output_section::do_address_and_file_offset_have_reset_values() const
+{
+ if (this->is_offset_valid())
+ return false;
+
+ // An unallocated section has address 0 after its construction or a reset.
+ if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
+ return this->is_address_valid() && this->address() == 0;
+ else
+ return !this->is_address_valid();
+}
+
+// Set the TLS offset. Called only for SHT_TLS sections.
+
+void
+Output_section::do_set_tls_offset(uint64_t tls_base)
+{
+ this->tls_offset_ = this->address() - tls_base;
+}
+
+// In a few cases we need to sort the input sections attached to an
+// output section. This is used to implement the type of constructor
+// priority ordering implemented by the GNU linker, in which the
+// priority becomes part of the section name and the sections are
+// sorted by name. We only do this for an output section if we see an
+// attached input section matching ".ctors.*", ".dtors.*",
+// ".init_array.*" or ".fini_array.*".
+
+class Output_section::Input_section_sort_entry
+{
+ public:
+ Input_section_sort_entry()
+ : input_section_(), index_(-1U), section_has_name_(false),
+ section_name_()
+ { }
+
+ Input_section_sort_entry(const Input_section& input_section,
+ unsigned int index,
+ bool must_sort_attached_input_sections)
+ : input_section_(input_section), index_(index),
+ section_has_name_(input_section.is_input_section()
+ || input_section.is_relaxed_input_section())
+ {
+ if (this->section_has_name_
+ && must_sort_attached_input_sections)
+ {
+ // This is only called single-threaded from Layout::finalize,
+ // so it is OK to lock. Unfortunately we have no way to pass
+ // in a Task token.
+ const Task* dummy_task = reinterpret_cast<const Task*>(-1);
+ Object* obj = (input_section.is_input_section()
+ ? input_section.relobj()
+ : input_section.relaxed_input_section()->relobj());
+ Task_lock_obj<Object> tl(dummy_task, obj);
+
+ // This is a slow operation, which should be cached in
+ // Layout::layout if this becomes a speed problem.
+ this->section_name_ = obj->section_name(input_section.shndx());
+ }
+ }
+
+ // Return the Input_section.
+ const Input_section&
+ input_section() const
+ {
+ gold_assert(this->index_ != -1U);
+ return this->input_section_;
+ }
+
+ // The index of this entry in the original list. This is used to
+ // make the sort stable.
+ unsigned int
+ index() const
+ {
+ gold_assert(this->index_ != -1U);
+ return this->index_;
+ }
+
+ // Whether there is a section name.
+ bool
+ section_has_name() const
+ { return this->section_has_name_; }
+
+ // The section name.
+ const std::string&
+ section_name() const
+ {
+ gold_assert(this->section_has_name_);
+ return this->section_name_;
+ }
+
+ // Return true if the section name has a priority. This is assumed
+ // to be true if it has a dot after the initial dot.
+ bool
+ has_priority() const
+ {
+ gold_assert(this->section_has_name_);
+ return this->section_name_.find('.', 1) != std::string::npos;
+ }
+
+ // Return the priority. Believe it or not, gcc encodes the priority
+ // differently for .ctors/.dtors and .init_array/.fini_array
+ // sections.
+ unsigned int
+ get_priority() const
+ {
+ gold_assert(this->section_has_name_);
+ bool is_ctors;
+ if (is_prefix_of(".ctors.", this->section_name_.c_str())
+ || is_prefix_of(".dtors.", this->section_name_.c_str()))
+ is_ctors = true;
+ else if (is_prefix_of(".init_array.", this->section_name_.c_str())
+ || is_prefix_of(".fini_array.", this->section_name_.c_str()))
+ is_ctors = false;
+ else
+ return 0;
+ char* end;
+ unsigned long prio = strtoul((this->section_name_.c_str()
+ + (is_ctors ? 7 : 12)),
+ &end, 10);
+ if (*end != '\0')
+ return 0;
+ else if (is_ctors)
+ return 65535 - prio;
+ else
+ return prio;
+ }
+
+ // Return true if this an input file whose base name matches
+ // FILE_NAME. The base name must have an extension of ".o", and
+ // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
+ // This is to match crtbegin.o as well as crtbeginS.o without
+ // getting confused by other possibilities. Overall matching the
+ // file name this way is a dreadful hack, but the GNU linker does it
+ // in order to better support gcc, and we need to be compatible.
+ bool
+ match_file_name(const char* file_name) const
+ {
+ if (this->input_section_.is_output_section_data())
+ return false;
+ return Layout::match_file_name(this->input_section_.relobj(), file_name);
+ }
+
+ // Returns 1 if THIS should appear before S in section order, -1 if S
+ // appears before THIS and 0 if they are not comparable.
+ int
+ compare_section_ordering(const Input_section_sort_entry& s) const
+ {
+ unsigned int this_secn_index = this->input_section_.section_order_index();
+ unsigned int s_secn_index = s.input_section().section_order_index();
+ if (this_secn_index > 0 && s_secn_index > 0)
+ {
+ if (this_secn_index < s_secn_index)
+ return 1;
+ else if (this_secn_index > s_secn_index)
+ return -1;
+ }
+ return 0;
+ }
+
+ private:
+ // The Input_section we are sorting.
+ Input_section input_section_;
+ // The index of this Input_section in the original list.
+ unsigned int index_;
+ // Whether this Input_section has a section name--it won't if this
+ // is some random Output_section_data.
+ bool section_has_name_;
+ // The section name if there is one.
+ std::string section_name_;
+};
+
+// Return true if S1 should come before S2 in the output section.
+
+bool
+Output_section::Input_section_sort_compare::operator()(
+ const Output_section::Input_section_sort_entry& s1,
+ const Output_section::Input_section_sort_entry& s2) const
+{
+ // crtbegin.o must come first.
+ bool s1_begin = s1.match_file_name("crtbegin");
+ bool s2_begin = s2.match_file_name("crtbegin");
+ if (s1_begin || s2_begin)
+ {
+ if (!s1_begin)
+ return false;
+ if (!s2_begin)
+ return true;
+ return s1.index() < s2.index();
+ }
+
+ // crtend.o must come last.
+ bool s1_end = s1.match_file_name("crtend");
+ bool s2_end = s2.match_file_name("crtend");
+ if (s1_end || s2_end)
+ {
+ if (!s1_end)
+ return true;
+ if (!s2_end)
+ return false;
+ return s1.index() < s2.index();
+ }
+
+ // We sort all the sections with no names to the end.
+ if (!s1.section_has_name() || !s2.section_has_name())
+ {
+ if (s1.section_has_name())
+ return true;
+ if (s2.section_has_name())
+ return false;
+ return s1.index() < s2.index();
+ }
+
+ // A section with a priority follows a section without a priority.
+ bool s1_has_priority = s1.has_priority();
+ bool s2_has_priority = s2.has_priority();
+ if (s1_has_priority && !s2_has_priority)
+ return false;
+ if (!s1_has_priority && s2_has_priority)
+ return true;
+
+ // Check if a section order exists for these sections through a section
+ // ordering file. If sequence_num is 0, an order does not exist.
+ int sequence_num = s1.compare_section_ordering(s2);
+ if (sequence_num != 0)
+ return sequence_num == 1;
+
+ // Otherwise we sort by name.
+ int compare = s1.section_name().compare(s2.section_name());
+ if (compare != 0)
+ return compare < 0;
+
+ // Otherwise we keep the input order.
+ return s1.index() < s2.index();
+}
+
+// Return true if S1 should come before S2 in an .init_array or .fini_array
+// output section.
+
+bool
+Output_section::Input_section_sort_init_fini_compare::operator()(
+ const Output_section::Input_section_sort_entry& s1,
+ const Output_section::Input_section_sort_entry& s2) const
+{
+ // We sort all the sections with no names to the end.
+ if (!s1.section_has_name() || !s2.section_has_name())
+ {
+ if (s1.section_has_name())
+ return true;
+ if (s2.section_has_name())
+ return false;
+ return s1.index() < s2.index();
+ }
+
+ // A section without a priority follows a section with a priority.
+ // This is the reverse of .ctors and .dtors sections.
+ bool s1_has_priority = s1.has_priority();
+ bool s2_has_priority = s2.has_priority();
+ if (s1_has_priority && !s2_has_priority)
+ return true;
+ if (!s1_has_priority && s2_has_priority)
+ return false;
+
+ // .ctors and .dtors sections without priority come after
+ // .init_array and .fini_array sections without priority.
+ if (!s1_has_priority
+ && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
+ && s1.section_name() != s2.section_name())
+ return false;
+ if (!s2_has_priority
+ && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
+ && s2.section_name() != s1.section_name())
+ return true;
+
+ // Sort by priority if we can.
+ if (s1_has_priority)
+ {
+ unsigned int s1_prio = s1.get_priority();
+ unsigned int s2_prio = s2.get_priority();
+ if (s1_prio < s2_prio)
+ return true;
+ else if (s1_prio > s2_prio)
+ return false;
+ }
+
+ // Check if a section order exists for these sections through a section
+ // ordering file. If sequence_num is 0, an order does not exist.
+ int sequence_num = s1.compare_section_ordering(s2);
+ if (sequence_num != 0)
+ return sequence_num == 1;
+
+ // Otherwise we sort by name.
+ int compare = s1.section_name().compare(s2.section_name());
+ if (compare != 0)
+ return compare < 0;
+
+ // Otherwise we keep the input order.
+ return s1.index() < s2.index();
+}
+
+// Return true if S1 should come before S2. Sections that do not match
+// any pattern in the section ordering file are placed ahead of the sections
+// that match some pattern.
+
+bool
+Output_section::Input_section_sort_section_order_index_compare::operator()(
+ const Output_section::Input_section_sort_entry& s1,
+ const Output_section::Input_section_sort_entry& s2) const
+{
+ unsigned int s1_secn_index = s1.input_section().section_order_index();
+ unsigned int s2_secn_index = s2.input_section().section_order_index();
+
+ // Keep input order if section ordering cannot determine order.
+ if (s1_secn_index == s2_secn_index)
+ return s1.index() < s2.index();
+
+ return s1_secn_index < s2_secn_index;
+}
+
+// Return true if S1 should come before S2. This is the sort comparison
+// function for .text to sort sections with prefixes
+// .text.{unlikely,exit,startup,hot} before other sections.
+
+bool
+Output_section::Input_section_sort_section_prefix_special_ordering_compare
+ ::operator()(
+ const Output_section::Input_section_sort_entry& s1,
+ const Output_section::Input_section_sort_entry& s2) const
+{
+ // We sort all the sections with no names to the end.
+ if (!s1.section_has_name() || !s2.section_has_name())
+ {
+ if (s1.section_has_name())
+ return true;
+ if (s2.section_has_name())
+ return false;
+ return s1.index() < s2.index();
+ }
+
+ // Some input section names have special ordering requirements.
+ int o1 = Layout::special_ordering_of_input_section(s1.section_name().c_str());
+ int o2 = Layout::special_ordering_of_input_section(s2.section_name().c_str());
+ if (o1 != o2)
+ {
+ if (o1 < 0)
+ return false;
+ else if (o2 < 0)
+ return true;
+ else
+ return o1 < o2;
+ }
+
+ // Keep input order otherwise.
+ return s1.index() < s2.index();
+}
+
+// Return true if S1 should come before S2. This is the sort comparison
+// function for sections to sort them by name.
+
+bool
+Output_section::Input_section_sort_section_name_compare
+ ::operator()(
+ const Output_section::Input_section_sort_entry& s1,
+ const Output_section::Input_section_sort_entry& s2) const
+{
+ // We sort all the sections with no names to the end.
+ if (!s1.section_has_name() || !s2.section_has_name())
+ {
+ if (s1.section_has_name())
+ return true;
+ if (s2.section_has_name())
+ return false;
+ return s1.index() < s2.index();
+ }
+
+ // We sort by name.
+ int compare = s1.section_name().compare(s2.section_name());
+ if (compare != 0)
+ return compare < 0;
+
+ // Keep input order otherwise.
+ return s1.index() < s2.index();
+}
+
+// This updates the section order index of input sections according to the
+// the order specified in the mapping from Section id to order index.
+
+void
+Output_section::update_section_layout(
+ const Section_layout_order* order_map)
+{
+ for (Input_section_list::iterator p = this->input_sections_.begin();
+ p != this->input_sections_.end();
+ ++p)
+ {
+ if (p->is_input_section()
+ || p->is_relaxed_input_section())
+ {
+ Object* obj = (p->is_input_section()
+ ? p->relobj()
+ : p->relaxed_input_section()->relobj());
+ unsigned int shndx = p->shndx();
+ Section_layout_order::const_iterator it
+ = order_map->find(Section_id(obj, shndx));
+ if (it == order_map->end())
+ continue;
+ unsigned int section_order_index = it->second;
+ if (section_order_index != 0)
+ {
+ p->set_section_order_index(section_order_index);
+ this->set_input_section_order_specified();
+ }
+ }
+ }
+}
+
+// Sort the input sections attached to an output section.
+
+void
+Output_section::sort_attached_input_sections()
+{
+ if (this->attached_input_sections_are_sorted_)
+ return;
+
+ if (this->checkpoint_ != NULL
+ && !this->checkpoint_->input_sections_saved())
+ this->checkpoint_->save_input_sections();
+
+ // The only thing we know about an input section is the object and
+ // the section index. We need the section name. Recomputing this
+ // is slow but this is an unusual case. If this becomes a speed
+ // problem we can cache the names as required in Layout::layout.
+
+ // We start by building a larger vector holding a copy of each
+ // Input_section, plus its current index in the list and its name.
+ std::vector<Input_section_sort_entry> sort_list;
+
+ unsigned int i = 0;
+ for (Input_section_list::iterator p = this->input_sections_.begin();
+ p != this->input_sections_.end();
+ ++p, ++i)
+ sort_list.push_back(Input_section_sort_entry(*p, i,
+ this->must_sort_attached_input_sections()));
+
+ // Sort the input sections.
+ if (this->must_sort_attached_input_sections())
+ {
+ if (this->type() == elfcpp::SHT_PREINIT_ARRAY
+ || this->type() == elfcpp::SHT_INIT_ARRAY
+ || this->type() == elfcpp::SHT_FINI_ARRAY)
+ std::sort(sort_list.begin(), sort_list.end(),
+ Input_section_sort_init_fini_compare());
+ else if (strcmp(parameters->options().sort_section(), "name") == 0)
+ std::sort(sort_list.begin(), sort_list.end(),
+ Input_section_sort_section_name_compare());
+ else if (strcmp(this->name(), ".text") == 0)
+ std::sort(sort_list.begin(), sort_list.end(),
+ Input_section_sort_section_prefix_special_ordering_compare());
+ else
+ std::sort(sort_list.begin(), sort_list.end(),
+ Input_section_sort_compare());
+ }
+ else
+ {
+ gold_assert(this->input_section_order_specified());
+ std::sort(sort_list.begin(), sort_list.end(),
+ Input_section_sort_section_order_index_compare());
+ }
+
+ // Copy the sorted input sections back to our list.
+ this->input_sections_.clear();
+ for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
+ p != sort_list.end();
+ ++p)
+ this->input_sections_.push_back(p->input_section());
+ sort_list.clear();
+
+ // Remember that we sorted the input sections, since we might get
+ // called again.
+ this->attached_input_sections_are_sorted_ = true;
+}
+
+// Write the section header to *OSHDR.
+
+template<int size, bool big_endian>
+void
+Output_section::write_header(const Layout* layout,
+ const Stringpool* secnamepool,
+ elfcpp::Shdr_write<size, big_endian>* oshdr) const
+{
+ oshdr->put_sh_name(secnamepool->get_offset(this->name_));
+ oshdr->put_sh_type(this->type_);
+
+ elfcpp::Elf_Xword flags = this->flags_;
+ if (this->info_section_ != NULL && this->info_uses_section_index_)
+ flags |= elfcpp::SHF_INFO_LINK;
+ oshdr->put_sh_flags(flags);
+
+ oshdr->put_sh_addr(this->address());
+ oshdr->put_sh_offset(this->offset());
+ oshdr->put_sh_size(this->data_size());
+ if (this->link_section_ != NULL)
+ oshdr->put_sh_link(this->link_section_->out_shndx());
+ else if (this->should_link_to_symtab_)
+ oshdr->put_sh_link(layout->symtab_section_shndx());
+ else if (this->should_link_to_dynsym_)
+ oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
+ else
+ oshdr->put_sh_link(this->link_);
+
+ elfcpp::Elf_Word info;
+ if (this->info_section_ != NULL)
+ {
+ if (this->info_uses_section_index_)
+ info = this->info_section_->out_shndx();
+ else
+ info = this->info_section_->symtab_index();
+ }
+ else if (this->info_symndx_ != NULL)
+ info = this->info_symndx_->symtab_index();
+ else
+ info = this->info_;
+ oshdr->put_sh_info(info);
+
+ oshdr->put_sh_addralign(this->addralign_);
+ oshdr->put_sh_entsize(this->entsize_);
+}
+
+// Write out the data. For input sections the data is written out by
+// Object::relocate, but we have to handle Output_section_data objects
+// here.
+
+void
+Output_section::do_write(Output_file* of)
+{
+ gold_assert(!this->requires_postprocessing());
+
+ // If the target performs relaxation, we delay filler generation until now.
+ gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
+
+ off_t output_section_file_offset = this->offset();
+ for (Fill_list::iterator p = this->fills_.begin();
+ p != this->fills_.end();
+ ++p)
+ {
+ std::string fill_data(parameters->target().code_fill(p->length()));
+ of->write(output_section_file_offset + p->section_offset(),
+ fill_data.data(), fill_data.size());
+ }
+
+ off_t off = this->offset() + this->first_input_offset_;
+ for (Input_section_list::iterator p = this->input_sections_.begin();
+ p != this->input_sections_.end();
+ ++p)
+ {
+ off_t aligned_off = align_address(off, p->addralign());
+ if (this->generate_code_fills_at_write_ && (off != aligned_off))
+ {
+ size_t fill_len = aligned_off - off;
+ std::string fill_data(parameters->target().code_fill(fill_len));
+ of->write(off, fill_data.data(), fill_data.size());
+ }
+
+ p->write(of);
+ off = aligned_off + p->data_size();
+ }
+
+ // For incremental links, fill in unused chunks in debug sections
+ // with dummy compilation unit headers.
+ if (this->free_space_fill_ != NULL)
+ {
+ for (Free_list::Const_iterator p = this->free_list_.begin();
+ p != this->free_list_.end();
+ ++p)
+ {
+ off_t off = p->start_;
+ size_t len = p->end_ - off;
+ this->free_space_fill_->write(of, this->offset() + off, len);
+ }
+ if (this->patch_space_ > 0)
+ {
+ off_t off = this->current_data_size_for_child() - this->patch_space_;
+ this->free_space_fill_->write(of, this->offset() + off,
+ this->patch_space_);
+ }
+ }
+}
+
+// If a section requires postprocessing, create the buffer to use.
+
+void
+Output_section::create_postprocessing_buffer()
+{
+ gold_assert(this->requires_postprocessing());
+
+ if (this->postprocessing_buffer_ != NULL)
+ return;
+
+ if (!this->input_sections_.empty())
+ {
+ off_t off = this->first_input_offset_;
+ for (Input_section_list::iterator p = this->input_sections_.begin();
+ p != this->input_sections_.end();
+ ++p)
+ {
+ off = align_address(off, p->addralign());
+ p->finalize_data_size();
+ off += p->data_size();
+ }
+ this->set_current_data_size_for_child(off);
+ }
+
+ off_t buffer_size = this->current_data_size_for_child();
+ this->postprocessing_buffer_ = new unsigned char[buffer_size];
+}
+
+// Write all the data of an Output_section into the postprocessing
+// buffer. This is used for sections which require postprocessing,
+// such as compression. Input sections are handled by
+// Object::Relocate.
+
+void
+Output_section::write_to_postprocessing_buffer()
+{
+ gold_assert(this->requires_postprocessing());
+
+ // If the target performs relaxation, we delay filler generation until now.
+ gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
+
+ unsigned char* buffer = this->postprocessing_buffer();
+ for (Fill_list::iterator p = this->fills_.begin();
+ p != this->fills_.end();
+ ++p)
+ {
+ std::string fill_data(parameters->target().code_fill(p->length()));
+ memcpy(buffer + p->section_offset(), fill_data.data(),
+ fill_data.size());
+ }
+
+ off_t off = this->first_input_offset_;
+ for (Input_section_list::iterator p = this->input_sections_.begin();
+ p != this->input_sections_.end();
+ ++p)
+ {
+ off_t aligned_off = align_address(off, p->addralign());
+ if (this->generate_code_fills_at_write_ && (off != aligned_off))
+ {
+ size_t fill_len = aligned_off - off;
+ std::string fill_data(parameters->target().code_fill(fill_len));
+ memcpy(buffer + off, fill_data.data(), fill_data.size());
+ }
+
+ p->write_to_buffer(buffer + aligned_off);
+ off = aligned_off + p->data_size();
+ }
+}
+
+// Get the input sections for linker script processing. We leave
+// behind the Output_section_data entries. Note that this may be
+// slightly incorrect for merge sections. We will leave them behind,
+// but it is possible that the script says that they should follow
+// some other input sections, as in:
+// .rodata { *(.rodata) *(.rodata.cst*) }
+// For that matter, we don't handle this correctly:
+// .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
+// With luck this will never matter.
+
+uint64_t
+Output_section::get_input_sections(
+ uint64_t address,
+ const std::string& fill,
+ std::list<Input_section>* input_sections)
+{
+ if (this->checkpoint_ != NULL
+ && !this->checkpoint_->input_sections_saved())
+ this->checkpoint_->save_input_sections();
+
+ // Invalidate fast look-up maps.
+ this->lookup_maps_->invalidate();
+
+ uint64_t orig_address = address;
+
+ address = align_address(address, this->addralign());
+
+ Input_section_list remaining;
+ for (Input_section_list::iterator p = this->input_sections_.begin();
+ p != this->input_sections_.end();
+ ++p)
+ {
+ if (p->is_input_section()
+ || p->is_relaxed_input_section()
+ || p->is_merge_section())
+ input_sections->push_back(*p);
+ else
+ {
+ uint64_t aligned_address = align_address(address, p->addralign());
+ if (aligned_address != address && !fill.empty())
+ {
+ section_size_type length =
+ convert_to_section_size_type(aligned_address - address);
+ std::string this_fill;
+ this_fill.reserve(length);
+ while (this_fill.length() + fill.length() <= length)
+ this_fill += fill;
+ if (this_fill.length() < length)
+ this_fill.append(fill, 0, length - this_fill.length());
+
+ Output_section_data* posd = new Output_data_const(this_fill, 0);
+ remaining.push_back(Input_section(posd));
+ }
+ address = aligned_address;
+
+ remaining.push_back(*p);
+
+ p->finalize_data_size();
+ address += p->data_size();
+ }
+ }
+
+ this->input_sections_.swap(remaining);
+ this->first_input_offset_ = 0;
+
+ uint64_t data_size = address - orig_address;
+ this->set_current_data_size_for_child(data_size);
+ return data_size;
+}
+
+// Add a script input section. SIS is an Output_section::Input_section,
+// which can be either a plain input section or a special input section like
+// a relaxed input section. For a special input section, its size must be
+// finalized.
+
+void
+Output_section::add_script_input_section(const Input_section& sis)
+{
+ uint64_t data_size = sis.data_size();
+ uint64_t addralign = sis.addralign();
+ if (addralign > this->addralign_)
+ this->addralign_ = addralign;
+
+ off_t offset_in_section = this->current_data_size_for_child();
+ off_t aligned_offset_in_section = align_address(offset_in_section,
+ addralign);
+
+ this->set_current_data_size_for_child(aligned_offset_in_section
+ + data_size);
+
+ this->input_sections_.push_back(sis);
+
+ // Update fast lookup maps if necessary.
+ if (this->lookup_maps_->is_valid())
+ {
+ if (sis.is_merge_section())
+ {
+ Output_merge_base* pomb = sis.output_merge_base();
+ Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
+ pomb->addralign());
+ this->lookup_maps_->add_merge_section(msp, pomb);
+ for (Output_merge_base::Input_sections::const_iterator p =
+ pomb->input_sections_begin();
+ p != pomb->input_sections_end();
+ ++p)
+ this->lookup_maps_->add_merge_input_section(p->first, p->second,
+ pomb);
+ }
+ else if (sis.is_relaxed_input_section())
+ {
+ Output_relaxed_input_section* poris = sis.relaxed_input_section();
+ this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
+ poris->shndx(), poris);
+ }
+ }
+}
+
+// Save states for relaxation.
+
+void
+Output_section::save_states()
+{
+ gold_assert(this->checkpoint_ == NULL);
+ Checkpoint_output_section* checkpoint =
+ new Checkpoint_output_section(this->addralign_, this->flags_,
+ this->input_sections_,
+ this->first_input_offset_,
+ this->attached_input_sections_are_sorted_);
+ this->checkpoint_ = checkpoint;
+ gold_assert(this->fills_.empty());
+}
+
+void
+Output_section::discard_states()
+{
+ gold_assert(this->checkpoint_ != NULL);
+ delete this->checkpoint_;
+ this->checkpoint_ = NULL;
+ gold_assert(this->fills_.empty());
+
+ // Simply invalidate the fast lookup maps since we do not keep
+ // track of them.
+ this->lookup_maps_->invalidate();
+}
+
+void
+Output_section::restore_states()
+{
+ gold_assert(this->checkpoint_ != NULL);
+ Checkpoint_output_section* checkpoint = this->checkpoint_;
+
+ this->addralign_ = checkpoint->addralign();
+ this->flags_ = checkpoint->flags();
+ this->first_input_offset_ = checkpoint->first_input_offset();
+
+ if (!checkpoint->input_sections_saved())
+ {
+ // If we have not copied the input sections, just resize it.
+ size_t old_size = checkpoint->input_sections_size();
+ gold_assert(this->input_sections_.size() >= old_size);
+ this->input_sections_.resize(old_size);
+ }
+ else
+ {
+ // We need to copy the whole list. This is not efficient for
+ // extremely large output with hundreads of thousands of input
+ // objects. We may need to re-think how we should pass sections
+ // to scripts.
+ this->input_sections_ = *checkpoint->input_sections();
+ }
+
+ this->attached_input_sections_are_sorted_ =
+ checkpoint->attached_input_sections_are_sorted();
+
+ // Simply invalidate the fast lookup maps since we do not keep
+ // track of them.
+ this->lookup_maps_->invalidate();
+}
+
+// Update the section offsets of input sections in this. This is required if
+// relaxation causes some input sections to change sizes.
+
+void
+Output_section::adjust_section_offsets()
+{
+ if (!this->section_offsets_need_adjustment_)
+ return;
+
+ off_t off = 0;
+ for (Input_section_list::iterator p = this->input_sections_.begin();
+ p != this->input_sections_.end();
+ ++p)
+ {
+ off = align_address(off, p->addralign());
+ if (p->is_input_section())
+ p->relobj()->set_section_offset(p->shndx(), off);
+ off += p->data_size();
+ }
+
+ this->section_offsets_need_adjustment_ = false;
+}
+
+// Print to the map file.
+
+void
+Output_section::do_print_to_mapfile(Mapfile* mapfile) const
+{
+ mapfile->print_output_section(this);
+
+ for (Input_section_list::const_iterator p = this->input_sections_.begin();
+ p != this->input_sections_.end();
+ ++p)
+ p->print_to_mapfile(mapfile);
+}
+
+// Print stats for merge sections to stderr.
+
+void
+Output_section::print_merge_stats()
+{
+ Input_section_list::iterator p;
+ for (p = this->input_sections_.begin();
+ p != this->input_sections_.end();
+ ++p)
+ p->print_merge_stats(this->name_);
+}
+
+// Set a fixed layout for the section. Used for incremental update links.
+
+void
+Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
+ off_t sh_size, uint64_t sh_addralign)
+{
+ this->addralign_ = sh_addralign;
+ this->set_current_data_size(sh_size);
+ if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
+ this->set_address(sh_addr);
+ this->set_file_offset(sh_offset);
+ this->finalize_data_size();
+ this->free_list_.init(sh_size, false);
+ this->has_fixed_layout_ = true;
+}
+
+// Reserve space within the fixed layout for the section. Used for
+// incremental update links.
+
+void
+Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
+{
+ this->free_list_.remove(sh_offset, sh_offset + sh_size);
+}
+
+// Allocate space from the free list for the section. Used for
+// incremental update links.
+
+off_t
+Output_section::allocate(off_t len, uint64_t addralign)
+{
+ return this->free_list_.allocate(len, addralign, 0);
+}
+
+// Output segment methods.
+
+Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
+ : vaddr_(0),
+ paddr_(0),
+ memsz_(0),
+ max_align_(0),
+ min_p_align_(0),
+ offset_(0),
+ filesz_(0),
+ type_(type),
+ flags_(flags),
+ is_max_align_known_(false),
+ are_addresses_set_(false),
+ is_large_data_segment_(false),
+ is_unique_segment_(false)
+{
+ // The ELF ABI specifies that a PT_TLS segment always has PF_R as
+ // the flags.
+ if (type == elfcpp::PT_TLS)
+ this->flags_ = elfcpp::PF_R;
+}
+
+// Add an Output_section to a PT_LOAD Output_segment.
+
+void
+Output_segment::add_output_section_to_load(Layout* layout,
+ Output_section* os,
+ elfcpp::Elf_Word seg_flags)
+{
+ gold_assert(this->type() == elfcpp::PT_LOAD);
+ gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
+ gold_assert(!this->is_max_align_known_);
+ gold_assert(os->is_large_data_section() == this->is_large_data_segment());
+
+ this->update_flags_for_output_section(seg_flags);
+
+ // We don't want to change the ordering if we have a linker script
+ // with a SECTIONS clause.
+ Output_section_order order = os->order();
+ if (layout->script_options()->saw_sections_clause())
+ order = static_cast<Output_section_order>(0);
+ else
+ gold_assert(order != ORDER_INVALID);
+
+ this->output_lists_[order].push_back(os);
+}
+
+// Add an Output_section to a non-PT_LOAD Output_segment.
+
+void
+Output_segment::add_output_section_to_nonload(Output_section* os,
+ elfcpp::Elf_Word seg_flags)
+{
+ gold_assert(this->type() != elfcpp::PT_LOAD);
+ gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
+ gold_assert(!this->is_max_align_known_);
+
+ this->update_flags_for_output_section(seg_flags);
+
+ this->output_lists_[0].push_back(os);
+}
+
+// Remove an Output_section from this segment. It is an error if it
+// is not present.
+
+void
+Output_segment::remove_output_section(Output_section* os)
+{
+ for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
+ {
+ Output_data_list* pdl = &this->output_lists_[i];
+ for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
+ {
+ if (*p == os)
+ {
+ pdl->erase(p);
+ return;
+ }
+ }
+ }
+ gold_unreachable();
+}
+
+// Add an Output_data (which need not be an Output_section) to the
+// start of a segment.
+
+void
+Output_segment::add_initial_output_data(Output_data* od)
+{
+ gold_assert(!this->is_max_align_known_);
+ Output_data_list::iterator p = this->output_lists_[0].begin();
+ this->output_lists_[0].insert(p, od);
+}
+
+// Return true if this segment has any sections which hold actual
+// data, rather than being a BSS section.
+
+bool
+Output_segment::has_any_data_sections() const
+{
+ for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
+ {
+ const Output_data_list* pdl = &this->output_lists_[i];
+ for (Output_data_list::const_iterator p = pdl->begin();
+ p != pdl->end();
+ ++p)
+ {
+ if (!(*p)->is_section())
+ return true;
+ if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
+ return true;
+ }
+ }
+ return false;
+}
+
+// Return whether the first data section (not counting TLS sections)
+// is a relro section.
+
+bool
+Output_segment::is_first_section_relro() const
+{
+ for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
+ {
+ if (i == static_cast<int>(ORDER_TLS_DATA)
+ || i == static_cast<int>(ORDER_TLS_BSS))
+ continue;
+ const Output_data_list* pdl = &this->output_lists_[i];
+ if (!pdl->empty())
+ {
+ Output_data* p = pdl->front();
+ return p->is_section() && p->output_section()->is_relro();
+ }
+ }
+ return false;
+}
+
+// Return the maximum alignment of the Output_data in Output_segment.
+
+uint64_t
+Output_segment::maximum_alignment()
+{
+ if (!this->is_max_align_known_)
+ {
+ for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
+ {
+ const Output_data_list* pdl = &this->output_lists_[i];
+ uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
+ if (addralign > this->max_align_)
+ this->max_align_ = addralign;
+ }
+ this->is_max_align_known_ = true;
+ }
+
+ return this->max_align_;
+}
+
+// Return the maximum alignment of a list of Output_data.
+
+uint64_t
+Output_segment::maximum_alignment_list(const Output_data_list* pdl)
+{
+ uint64_t ret = 0;
+ for (Output_data_list::const_iterator p = pdl->begin();
+ p != pdl->end();
+ ++p)
+ {
+ uint64_t addralign = (*p)->addralign();
+ if (addralign > ret)
+ ret = addralign;
+ }
+ return ret;
+}
+
+// Return whether this segment has any dynamic relocs.
+
+bool
+Output_segment::has_dynamic_reloc() const
+{
+ for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
+ if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
+ return true;
+ return false;
+}
+
+// Return whether this Output_data_list has any dynamic relocs.
+
+bool
+Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
+{
+ for (Output_data_list::const_iterator p = pdl->begin();
+ p != pdl->end();
+ ++p)
+ if ((*p)->has_dynamic_reloc())
+ return true;
+ return false;
+}
+
+// Set the section addresses for an Output_segment. If RESET is true,
+// reset the addresses first. ADDR is the address and *POFF is the
+// file offset. Set the section indexes starting with *PSHNDX.
+// INCREASE_RELRO is the size of the portion of the first non-relro
+// section that should be included in the PT_GNU_RELRO segment.
+// If this segment has relro sections, and has been aligned for
+// that purpose, set *HAS_RELRO to TRUE. Return the address of
+// the immediately following segment. Update *HAS_RELRO, *POFF,
+// and *PSHNDX.
+
+uint64_t
+Output_segment::set_section_addresses(const Target* target,
+ Layout* layout, bool reset,
+ uint64_t addr,
+ unsigned int* increase_relro,
+ bool* has_relro,
+ off_t* poff,
+ unsigned int* pshndx)
+{
+ gold_assert(this->type_ == elfcpp::PT_LOAD);
+
+ uint64_t last_relro_pad = 0;
+ off_t orig_off = *poff;
+
+ bool in_tls = false;
+
+ // If we have relro sections, we need to pad forward now so that the
+ // relro sections plus INCREASE_RELRO end on an abi page boundary.
+ if (parameters->options().relro()
+ && this->is_first_section_relro()
+ && (!this->are_addresses_set_ || reset))
+ {
+ uint64_t relro_size = 0;
+ off_t off = *poff;
+ uint64_t max_align = 0;
+ for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
+ {
+ Output_data_list* pdl = &this->output_lists_[i];
+ Output_data_list::iterator p;
+ for (p = pdl->begin(); p != pdl->end(); ++p)
+ {
+ if (!(*p)->is_section())
+ break;
+ uint64_t align = (*p)->addralign();
+ if (align > max_align)
+ max_align = align;
+ if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
+ in_tls = true;
+ else if (in_tls)
+ {
+ // Align the first non-TLS section to the alignment
+ // of the TLS segment.
+ align = max_align;
+ in_tls = false;
+ }
+ relro_size = align_address(relro_size, align);
+ // Ignore the size of the .tbss section.
+ if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
+ && (*p)->is_section_type(elfcpp::SHT_NOBITS))
+ continue;
+ if ((*p)->is_address_valid())
+ relro_size += (*p)->data_size();
+ else
+ {
+ // FIXME: This could be faster.
+ (*p)->set_address_and_file_offset(addr + relro_size,
+ off + relro_size);
+ relro_size += (*p)->data_size();
+ (*p)->reset_address_and_file_offset();
+ }
+ }
+ if (p != pdl->end())
+ break;
+ }
+ relro_size += *increase_relro;
+ // Pad the total relro size to a multiple of the maximum
+ // section alignment seen.
+ uint64_t aligned_size = align_address(relro_size, max_align);
+ // Note the amount of padding added after the last relro section.
+ last_relro_pad = aligned_size - relro_size;
+ *has_relro = true;
+
+ uint64_t page_align = parameters->target().abi_pagesize();
+
+ // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
+ uint64_t desired_align = page_align - (aligned_size % page_align);
+ if (desired_align < *poff % page_align)
+ *poff += page_align - *poff % page_align;
+ *poff += desired_align - *poff % page_align;
+ addr += *poff - orig_off;
+ orig_off = *poff;
+ }
+
+ if (!reset && this->are_addresses_set_)
+ {
+ gold_assert(this->paddr_ == addr);
+ addr = this->vaddr_;
+ }
+ else
+ {
+ this->vaddr_ = addr;
+ this->paddr_ = addr;
+ this->are_addresses_set_ = true;
+ }
+
+ in_tls = false;
+
+ this->offset_ = orig_off;
+
+ off_t off = 0;
+ uint64_t ret;
+ for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
+ {
+ if (i == static_cast<int>(ORDER_RELRO_LAST))
+ {
+ *poff += last_relro_pad;
+ addr += last_relro_pad;
+ if (this->output_lists_[i].empty())
+ {
+ // If there is nothing in the ORDER_RELRO_LAST list,
+ // the padding will occur at the end of the relro
+ // segment, and we need to add it to *INCREASE_RELRO.
+ *increase_relro += last_relro_pad;
+ }
+ }
+ addr = this->set_section_list_addresses(layout, reset,
+ &this->output_lists_[i],
+ addr, poff, pshndx, &in_tls);
+ if (i < static_cast<int>(ORDER_SMALL_BSS))
+ {
+ this->filesz_ = *poff - orig_off;
+ off = *poff;
+ }
+
+ ret = addr;
+ }
+
+ // If the last section was a TLS section, align upward to the
+ // alignment of the TLS segment, so that the overall size of the TLS
+ // segment is aligned.
+ if (in_tls)
+ {
+ uint64_t segment_align = layout->tls_segment()->maximum_alignment();
+ *poff = align_address(*poff, segment_align);
+ }
+
+ this->memsz_ = *poff - orig_off;
+
+ // Ignore the file offset adjustments made by the BSS Output_data
+ // objects.
+ *poff = off;
+
+ // If code segments must contain only code, and this code segment is
+ // page-aligned in the file, then fill it out to a whole page with
+ // code fill (the tail of the segment will not be within any section).
+ // Thus the entire code segment can be mapped from the file as whole
+ // pages and that mapping will contain only valid instructions.
+ if (target->isolate_execinstr() && (this->flags() & elfcpp::PF_X) != 0)
+ {
+ uint64_t abi_pagesize = target->abi_pagesize();
+ if (orig_off % abi_pagesize == 0 && off % abi_pagesize != 0)
+ {
+ size_t fill_size = abi_pagesize - (off % abi_pagesize);
+
+ std::string fill_data;
+ if (target->has_code_fill())
+ fill_data = target->code_fill(fill_size);
+ else
+ fill_data.resize(fill_size); // Zero fill.
+
+ Output_data_const* fill = new Output_data_const(fill_data, 0);
+ fill->set_address(this->vaddr_ + this->memsz_);
+ fill->set_file_offset(off);
+ layout->add_relax_output(fill);
+
+ off += fill_size;
+ gold_assert(off % abi_pagesize == 0);
+ ret += fill_size;
+ gold_assert(ret % abi_pagesize == 0);
+
+ gold_assert((uint64_t) this->filesz_ == this->memsz_);
+ this->memsz_ = this->filesz_ += fill_size;
+
+ *poff = off;
+ }
+ }
+
+ return ret;
+}
+
+// Set the addresses and file offsets in a list of Output_data
+// structures.
+
+uint64_t
+Output_segment::set_section_list_addresses(Layout* layout, bool reset,
+ Output_data_list* pdl,
+ uint64_t addr, off_t* poff,
+ unsigned int* pshndx,
+ bool* in_tls)
+{
+ off_t startoff = *poff;
+ // For incremental updates, we may allocate non-fixed sections from
+ // free space in the file. This keeps track of the high-water mark.
+ off_t maxoff = startoff;
+
+ off_t off = startoff;
+ for (Output_data_list::iterator p = pdl->begin();
+ p != pdl->end();
+ ++p)
+ {
+ if (reset)
+ (*p)->reset_address_and_file_offset();
+
+ // When doing an incremental update or when using a linker script,
+ // the section will most likely already have an address.
+ if (!(*p)->is_address_valid())
+ {
+ uint64_t align = (*p)->addralign();
+
+ if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
+ {
+ // Give the first TLS section the alignment of the
+ // entire TLS segment. Otherwise the TLS segment as a
+ // whole may be misaligned.
+ if (!*in_tls)
+ {
+ Output_segment* tls_segment = layout->tls_segment();
+ gold_assert(tls_segment != NULL);
+ uint64_t segment_align = tls_segment->maximum_alignment();
+ gold_assert(segment_align >= align);
+ align = segment_align;
+
+ *in_tls = true;
+ }
+ }
+ else
+ {
+ // If this is the first section after the TLS segment,
+ // align it to at least the alignment of the TLS
+ // segment, so that the size of the overall TLS segment
+ // is aligned.
+ if (*in_tls)
+ {
+ uint64_t segment_align =
+ layout->tls_segment()->maximum_alignment();
+ if (segment_align > align)
+ align = segment_align;
+
+ *in_tls = false;
+ }
+ }
+
+ if (!parameters->incremental_update())
+ {
+ off = align_address(off, align);
+ (*p)->set_address_and_file_offset(addr + (off - startoff), off);
+ }
+ else
+ {
+ // Incremental update: allocate file space from free list.
+ (*p)->pre_finalize_data_size();
+ off_t current_size = (*p)->current_data_size();
+ off = layout->allocate(current_size, align, startoff);
+ if (off == -1)
+ {
+ gold_assert((*p)->output_section() != NULL);
+ gold_fallback(_("out of patch space for section %s; "
+ "relink with --incremental-full"),
+ (*p)->output_section()->name());
+ }
+ (*p)->set_address_and_file_offset(addr + (off - startoff), off);
+ if ((*p)->data_size() > current_size)
+ {
+ gold_assert((*p)->output_section() != NULL);
+ gold_fallback(_("%s: section changed size; "
+ "relink with --incremental-full"),
+ (*p)->output_section()->name());
+ }
+ }
+ }
+ else if (parameters->incremental_update())
+ {
+ // For incremental updates, use the fixed offset for the
+ // high-water mark computation.
+ off = (*p)->offset();
+ }
+ else
+ {
+ // The script may have inserted a skip forward, but it
+ // better not have moved backward.
+ if ((*p)->address() >= addr + (off - startoff))
+ off += (*p)->address() - (addr + (off - startoff));
+ else
+ {
+ if (!layout->script_options()->saw_sections_clause())
+ gold_unreachable();
+ else
+ {
+ Output_section* os = (*p)->output_section();
+
+ // Cast to unsigned long long to avoid format warnings.
+ unsigned long long previous_dot =
+ static_cast<unsigned long long>(addr + (off - startoff));
+ unsigned long long dot =
+ static_cast<unsigned long long>((*p)->address());
+
+ if (os == NULL)
+ gold_error(_("dot moves backward in linker script "
+ "from 0x%llx to 0x%llx"), previous_dot, dot);
+ else
+ gold_error(_("address of section '%s' moves backward "
+ "from 0x%llx to 0x%llx"),
+ os->name(), previous_dot, dot);
+ }
+ }
+ (*p)->set_file_offset(off);
+ (*p)->finalize_data_size();
+ }
+
+ if (parameters->incremental_update())
+ gold_debug(DEBUG_INCREMENTAL,
+ "set_section_list_addresses: %08lx %08lx %s",
+ static_cast<long>(off),
+ static_cast<long>((*p)->data_size()),
+ ((*p)->output_section() != NULL
+ ? (*p)->output_section()->name() : "(special)"));
+
+ // We want to ignore the size of a SHF_TLS SHT_NOBITS
+ // section. Such a section does not affect the size of a
+ // PT_LOAD segment.
+ if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
+ || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
+ off += (*p)->data_size();
+
+ if (off > maxoff)
+ maxoff = off;
+
+ if ((*p)->is_section())
+ {
+ (*p)->set_out_shndx(*pshndx);
+ ++*pshndx;
+ }
+ }
+
+ *poff = maxoff;
+ return addr + (maxoff - startoff);
+}
+
+// For a non-PT_LOAD segment, set the offset from the sections, if
+// any. Add INCREASE to the file size and the memory size.
+
+void
+Output_segment::set_offset(unsigned int increase)
+{
+ gold_assert(this->type_ != elfcpp::PT_LOAD);
+
+ gold_assert(!this->are_addresses_set_);
+
+ // A non-load section only uses output_lists_[0].
+
+ Output_data_list* pdl = &this->output_lists_[0];
+
+ if (pdl->empty())
+ {
+ gold_assert(increase == 0);
+ this->vaddr_ = 0;
+ this->paddr_ = 0;
+ this->are_addresses_set_ = true;
+ this->memsz_ = 0;
+ this->min_p_align_ = 0;
+ this->offset_ = 0;
+ this->filesz_ = 0;
+ return;
+ }
+
+ // Find the first and last section by address.
+ const Output_data* first = NULL;
+ const Output_data* last_data = NULL;
+ const Output_data* last_bss = NULL;
+ for (Output_data_list::const_iterator p = pdl->begin();
+ p != pdl->end();
+ ++p)
+ {
+ if (first == NULL
+ || (*p)->address() < first->address()
+ || ((*p)->address() == first->address()
+ && (*p)->data_size() < first->data_size()))
+ first = *p;
+ const Output_data** plast;
+ if ((*p)->is_section()
+ && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
+ plast = &last_bss;
+ else
+ plast = &last_data;
+ if (*plast == NULL
+ || (*p)->address() > (*plast)->address()
+ || ((*p)->address() == (*plast)->address()
+ && (*p)->data_size() > (*plast)->data_size()))
+ *plast = *p;
+ }
+
+ this->vaddr_ = first->address();
+ this->paddr_ = (first->has_load_address()
+ ? first->load_address()
+ : this->vaddr_);
+ this->are_addresses_set_ = true;
+ this->offset_ = first->offset();
+
+ if (last_data == NULL)
+ this->filesz_ = 0;
+ else
+ this->filesz_ = (last_data->address()
+ + last_data->data_size()
+ - this->vaddr_);
+
+ const Output_data* last = last_bss != NULL ? last_bss : last_data;
+ this->memsz_ = (last->address()
+ + last->data_size()
+ - this->vaddr_);
+
+ this->filesz_ += increase;
+ this->memsz_ += increase;
+
+ // If this is a RELRO segment, verify that the segment ends at a
+ // page boundary.
+ if (this->type_ == elfcpp::PT_GNU_RELRO)
+ {
+ uint64_t page_align = parameters->target().abi_pagesize();
+ uint64_t segment_end = this->vaddr_ + this->memsz_;
+ if (parameters->incremental_update())
+ {
+ // The INCREASE_RELRO calculation is bypassed for an incremental
+ // update, so we need to adjust the segment size manually here.
+ segment_end = align_address(segment_end, page_align);
+ this->memsz_ = segment_end - this->vaddr_;
+ }
+ else
+ gold_assert(segment_end == align_address(segment_end, page_align));
+ }
+
+ // If this is a TLS segment, align the memory size. The code in
+ // set_section_list ensures that the section after the TLS segment
+ // is aligned to give us room.
+ if (this->type_ == elfcpp::PT_TLS)
+ {
+ uint64_t segment_align = this->maximum_alignment();
+ gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
+ this->memsz_ = align_address(this->memsz_, segment_align);
+ }
+}
+
+// Set the TLS offsets of the sections in the PT_TLS segment.
+
+void
+Output_segment::set_tls_offsets()
+{
+ gold_assert(this->type_ == elfcpp::PT_TLS);
+
+ for (Output_data_list::iterator p = this->output_lists_[0].begin();
+ p != this->output_lists_[0].end();
+ ++p)
+ (*p)->set_tls_offset(this->vaddr_);
+}
+
+// Return the first section.
+
+Output_section*
+Output_segment::first_section() const
+{
+ for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
+ {
+ const Output_data_list* pdl = &this->output_lists_[i];
+ for (Output_data_list::const_iterator p = pdl->begin();
+ p != pdl->end();
+ ++p)
+ {
+ if ((*p)->is_section())
+ return (*p)->output_section();
+ }
+ }
+ gold_unreachable();
+}
+
+// Return the number of Output_sections in an Output_segment.
+
+unsigned int
+Output_segment::output_section_count() const
+{
+ unsigned int ret = 0;
+ for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
+ ret += this->output_section_count_list(&this->output_lists_[i]);
+ return ret;
+}
+
+// Return the number of Output_sections in an Output_data_list.
+
+unsigned int
+Output_segment::output_section_count_list(const Output_data_list* pdl) const
+{
+ unsigned int count = 0;
+ for (Output_data_list::const_iterator p = pdl->begin();
+ p != pdl->end();
+ ++p)
+ {
+ if ((*p)->is_section())
+ ++count;
+ }
+ return count;
+}
+
+// Return the section attached to the list segment with the lowest
+// load address. This is used when handling a PHDRS clause in a
+// linker script.
+
+Output_section*
+Output_segment::section_with_lowest_load_address() const
+{
+ Output_section* found = NULL;
+ uint64_t found_lma = 0;
+ for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
+ this->lowest_load_address_in_list(&this->output_lists_[i], &found,
+ &found_lma);
+ return found;
+}
+
+// Look through a list for a section with a lower load address.
+
+void
+Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
+ Output_section** found,
+ uint64_t* found_lma) const
+{
+ for (Output_data_list::const_iterator p = pdl->begin();
+ p != pdl->end();
+ ++p)
+ {
+ if (!(*p)->is_section())
+ continue;
+ Output_section* os = static_cast<Output_section*>(*p);
+ uint64_t lma = (os->has_load_address()
+ ? os->load_address()
+ : os->address());
+ if (*found == NULL || lma < *found_lma)
+ {
+ *found = os;
+ *found_lma = lma;
+ }
+ }
+}
+
+// Write the segment data into *OPHDR.
+
+template<int size, bool big_endian>
+void
+Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
+{
+ ophdr->put_p_type(this->type_);
+ ophdr->put_p_offset(this->offset_);
+ ophdr->put_p_vaddr(this->vaddr_);
+ ophdr->put_p_paddr(this->paddr_);
+ ophdr->put_p_filesz(this->filesz_);
+ ophdr->put_p_memsz(this->memsz_);
+ ophdr->put_p_flags(this->flags_);
+ ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
+}
+
+// Write the section headers into V.
+
+template<int size, bool big_endian>
+unsigned char*
+Output_segment::write_section_headers(const Layout* layout,
+ const Stringpool* secnamepool,
+ unsigned char* v,
+ unsigned int* pshndx) const
+{
+ // Every section that is attached to a segment must be attached to a
+ // PT_LOAD segment, so we only write out section headers for PT_LOAD
+ // segments.
+ if (this->type_ != elfcpp::PT_LOAD)
+ return v;
+
+ for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
+ {
+ const Output_data_list* pdl = &this->output_lists_[i];
+ v = this->write_section_headers_list<size, big_endian>(layout,
+ secnamepool,
+ pdl,
+ v, pshndx);
+ }
+
+ return v;
+}
+
+template<int size, bool big_endian>
+unsigned char*
+Output_segment::write_section_headers_list(const Layout* layout,
+ const Stringpool* secnamepool,
+ const Output_data_list* pdl,
+ unsigned char* v,
+ unsigned int* pshndx) const
+{
+ const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
+ for (Output_data_list::const_iterator p = pdl->begin();
+ p != pdl->end();
+ ++p)
+ {
+ if ((*p)->is_section())
+ {
+ const Output_section* ps = static_cast<const Output_section*>(*p);
+ gold_assert(*pshndx == ps->out_shndx());
+ elfcpp::Shdr_write<size, big_endian> oshdr(v);
+ ps->write_header(layout, secnamepool, &oshdr);
+ v += shdr_size;
+ ++*pshndx;
+ }
+ }
+ return v;
+}
+
+// Print the output sections to the map file.
+
+void
+Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
+{
+ if (this->type() != elfcpp::PT_LOAD)
+ return;
+ for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
+ this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
+}
+
+// Print an output section list to the map file.
+
+void
+Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
+ const Output_data_list* pdl) const
+{
+ for (Output_data_list::const_iterator p = pdl->begin();
+ p != pdl->end();
+ ++p)
+ (*p)->print_to_mapfile(mapfile);
+}
+
+// Output_file methods.
+
+Output_file::Output_file(const char* name)
+ : name_(name),
+ o_(-1),
+ file_size_(0),
+ base_(NULL),
+ map_is_anonymous_(false),
+ map_is_allocated_(false),
+ is_temporary_(false)
+{
+}
+
+// Try to open an existing file. Returns false if the file doesn't
+// exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
+// NULL, open that file as the base for incremental linking, and
+// copy its contents to the new output file. This routine can
+// be called for incremental updates, in which case WRITABLE should
+// be true, or by the incremental-dump utility, in which case
+// WRITABLE should be false.
+
+bool
+Output_file::open_base_file(const char* base_name, bool writable)
+{
+ // The name "-" means "stdout".
+ if (strcmp(this->name_, "-") == 0)
+ return false;
+
+ bool use_base_file = base_name != NULL;
+ if (!use_base_file)
+ base_name = this->name_;
+ else if (strcmp(base_name, this->name_) == 0)
+ gold_fatal(_("%s: incremental base and output file name are the same"),
+ base_name);
+
+ // Don't bother opening files with a size of zero.
+ struct stat s;
+ if (::stat(base_name, &s) != 0)
+ {
+ gold_info(_("%s: stat: %s"), base_name, strerror(errno));
+ return false;
+ }
+ if (s.st_size == 0)
+ {
+ gold_info(_("%s: incremental base file is empty"), base_name);
+ return false;
+ }
+
+ // If we're using a base file, we want to open it read-only.
+ if (use_base_file)
+ writable = false;
+
+ int oflags = writable ? O_RDWR : O_RDONLY;
+ int o = open_descriptor(-1, base_name, oflags, 0);
+ if (o < 0)
+ {
+ gold_info(_("%s: open: %s"), base_name, strerror(errno));
+ return false;
+ }
+
+ // If the base file and the output file are different, open a
+ // new output file and read the contents from the base file into
+ // the newly-mapped region.
+ if (use_base_file)
+ {
+ this->open(s.st_size);
+ ssize_t bytes_to_read = s.st_size;
+ unsigned char* p = this->base_;
+ while (bytes_to_read > 0)
+ {
+ ssize_t len = ::read(o, p, bytes_to_read);
+ if (len < 0)
+ {
+ gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
+ return false;
+ }
+ if (len == 0)
+ {
+ gold_info(_("%s: file too short: read only %lld of %lld bytes"),
+ base_name,
+ static_cast<long long>(s.st_size - bytes_to_read),
+ static_cast<long long>(s.st_size));
+ return false;
+ }
+ p += len;
+ bytes_to_read -= len;
+ }
+ ::close(o);
+ return true;
+ }
+
+ this->o_ = o;
+ this->file_size_ = s.st_size;
+
+ if (!this->map_no_anonymous(writable))
+ {
+ release_descriptor(o, true);
+ this->o_ = -1;
+ this->file_size_ = 0;
+ return false;
+ }
+
+ return true;
+}
+
+// Open the output file.
+
+void
+Output_file::open(off_t file_size)
+{
+ this->file_size_ = file_size;
+
+ // Unlink the file first; otherwise the open() may fail if the file
+ // is busy (e.g. it's an executable that's currently being executed).
+ //
+ // However, the linker may be part of a system where a zero-length
+ // file is created for it to write to, with tight permissions (gcc
+ // 2.95 did something like this). Unlinking the file would work
+ // around those permission controls, so we only unlink if the file
+ // has a non-zero size. We also unlink only regular files to avoid
+ // trouble with directories/etc.
+ //
+ // If we fail, continue; this command is merely a best-effort attempt
+ // to improve the odds for open().
+
+ // We let the name "-" mean "stdout"
+ if (!this->is_temporary_)
+ {
+ if (strcmp(this->name_, "-") == 0)
+ this->o_ = STDOUT_FILENO;
+ else
+ {
+ struct stat s;
+ if (::stat(this->name_, &s) == 0
+ && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
+ {
+ if (s.st_size != 0)
+ ::unlink(this->name_);
+ else if (!parameters->options().relocatable())
+ {
+ // If we don't unlink the existing file, add execute
+ // permission where read permissions already exist
+ // and where the umask permits.
+ int mask = ::umask(0);
+ ::umask(mask);
+ s.st_mode |= (s.st_mode & 0444) >> 2;
+ ::chmod(this->name_, s.st_mode & ~mask);
+ }
+ }
+
+ int mode = parameters->options().relocatable() ? 0666 : 0777;
+ int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
+ mode);
+ if (o < 0)
+ gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
+ this->o_ = o;
+ }
+ }
+
+ this->map();
+}
+
+// Resize the output file.
+
+void
+Output_file::resize(off_t file_size)
+{
+ // If the mmap is mapping an anonymous memory buffer, this is easy:
+ // just mremap to the new size. If it's mapping to a file, we want
+ // to unmap to flush to the file, then remap after growing the file.
+ if (this->map_is_anonymous_)
+ {
+ void* base;
+ if (!this->map_is_allocated_)
+ {
+ base = ::mremap(this->base_, this->file_size_, file_size,
+ MREMAP_MAYMOVE);
+ if (base == MAP_FAILED)
+ gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
+ }
+ else
+ {
+ base = realloc(this->base_, file_size);
+ if (base == NULL)
+ gold_nomem();
+ if (file_size > this->file_size_)
+ memset(static_cast<char*>(base) + this->file_size_, 0,
+ file_size - this->file_size_);
+ }
+ this->base_ = static_cast<unsigned char*>(base);
+ this->file_size_ = file_size;
+ }
+ else
+ {
+ this->unmap();
+ this->file_size_ = file_size;
+ if (!this->map_no_anonymous(true))
+ gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
+ }
+}
+
+// Map an anonymous block of memory which will later be written to the
+// file. Return whether the map succeeded.
+
+bool
+Output_file::map_anonymous()
+{
+ void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
+ MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
+ if (base == MAP_FAILED)
+ {
+ base = malloc(this->file_size_);
+ if (base == NULL)
+ return false;
+ memset(base, 0, this->file_size_);
+ this->map_is_allocated_ = true;
+ }
+ this->base_ = static_cast<unsigned char*>(base);
+ this->map_is_anonymous_ = true;
+ return true;
+}
+
+// Map the file into memory. Return whether the mapping succeeded.
+// If WRITABLE is true, map with write access.
+
+bool
+Output_file::map_no_anonymous(bool writable)
+{
+ const int o = this->o_;
+
+ // If the output file is not a regular file, don't try to mmap it;
+ // instead, we'll mmap a block of memory (an anonymous buffer), and
+ // then later write the buffer to the file.
+ void* base;
+ struct stat statbuf;
+ if (o == STDOUT_FILENO || o == STDERR_FILENO
+ || ::fstat(o, &statbuf) != 0
+ || !S_ISREG(statbuf.st_mode)
+ || this->is_temporary_)
+ return false;
+
+ // Ensure that we have disk space available for the file. If we
+ // don't do this, it is possible that we will call munmap, close,
+ // and exit with dirty buffers still in the cache with no assigned
+ // disk blocks. If the disk is out of space at that point, the
+ // output file will wind up incomplete, but we will have already
+ // exited. The alternative to fallocate would be to use fdatasync,
+ // but that would be a more significant performance hit.
+ if (writable)
+ {
+ int err = gold_fallocate(o, 0, this->file_size_);
+ if (err != 0)
+ gold_fatal(_("%s: %s"), this->name_, strerror(err));
+ }
+
+ // Map the file into memory.
+ int prot = PROT_READ;
+ if (writable)
+ prot |= PROT_WRITE;
+ base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
+
+ // The mmap call might fail because of file system issues: the file
+ // system might not support mmap at all, or it might not support
+ // mmap with PROT_WRITE.
+ if (base == MAP_FAILED)
+ return false;
+
+ this->map_is_anonymous_ = false;
+ this->base_ = static_cast<unsigned char*>(base);
+ return true;
+}
+
+// Map the file into memory.
+
+void
+Output_file::map()
+{
+ if (parameters->options().mmap_output_file()
+ && this->map_no_anonymous(true))
+ return;
+
+ // The mmap call might fail because of file system issues: the file
+ // system might not support mmap at all, or it might not support
+ // mmap with PROT_WRITE. I'm not sure which errno values we will
+ // see in all cases, so if the mmap fails for any reason and we
+ // don't care about file contents, try for an anonymous map.
+ if (this->map_anonymous())
+ return;
+
+ gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
+ this->name_, static_cast<unsigned long>(this->file_size_),
+ strerror(errno));
+}
+
+// Unmap the file from memory.
+
+void
+Output_file::unmap()
+{
+ if (this->map_is_anonymous_)
+ {
+ // We've already written out the data, so there is no reason to
+ // waste time unmapping or freeing the memory.
+ }
+ else
+ {
+ if (::munmap(this->base_, this->file_size_) < 0)
+ gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
+ }
+ this->base_ = NULL;
+}
+
+// Close the output file.
+
+void
+Output_file::close()
+{
+ // If the map isn't file-backed, we need to write it now.
+ if (this->map_is_anonymous_ && !this->is_temporary_)
+ {
+ size_t bytes_to_write = this->file_size_;
+ size_t offset = 0;
+ while (bytes_to_write > 0)
+ {
+ ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
+ bytes_to_write);
+ if (bytes_written == 0)
+ gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
+ else if (bytes_written < 0)
+ gold_error(_("%s: write: %s"), this->name_, strerror(errno));
+ else
+ {
+ bytes_to_write -= bytes_written;
+ offset += bytes_written;
+ }
+ }
+ }
+ this->unmap();
+
+ // We don't close stdout or stderr
+ if (this->o_ != STDOUT_FILENO
+ && this->o_ != STDERR_FILENO
+ && !this->is_temporary_)
+ if (::close(this->o_) < 0)
+ gold_error(_("%s: close: %s"), this->name_, strerror(errno));
+ this->o_ = -1;
+}
+
+// Instantiate the templates we need. We could use the configure
+// script to restrict this to only the ones for implemented targets.
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+off_t
+Output_section::add_input_section<32, false>(
+ Layout* layout,
+ Sized_relobj_file<32, false>* object,
+ unsigned int shndx,
+ const char* secname,
+ const elfcpp::Shdr<32, false>& shdr,
+ unsigned int reloc_shndx,
+ bool have_sections_script);
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+off_t
+Output_section::add_input_section<32, true>(
+ Layout* layout,
+ Sized_relobj_file<32, true>* object,
+ unsigned int shndx,
+ const char* secname,
+ const elfcpp::Shdr<32, true>& shdr,
+ unsigned int reloc_shndx,
+ bool have_sections_script);
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+off_t
+Output_section::add_input_section<64, false>(
+ Layout* layout,
+ Sized_relobj_file<64, false>* object,
+ unsigned int shndx,
+ const char* secname,
+ const elfcpp::Shdr<64, false>& shdr,
+ unsigned int reloc_shndx,
+ bool have_sections_script);
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+off_t
+Output_section::add_input_section<64, true>(
+ Layout* layout,
+ Sized_relobj_file<64, true>* object,
+ unsigned int shndx,
+ const char* secname,
+ const elfcpp::Shdr<64, true>& shdr,
+ unsigned int reloc_shndx,
+ bool have_sections_script);
+#endif
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
+#endif
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
+#endif
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
+#endif
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
+#endif
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
+#endif
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
+#endif
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
+#endif
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
+#endif
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
+#endif
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
+#endif
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+class Output_data_group<32, false>;
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+class Output_data_group<32, true>;
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+class Output_data_group<64, false>;
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+class Output_data_group<64, true>;
+#endif
+
+template
+class Output_data_got<32, false>;
+
+template
+class Output_data_got<32, true>;
+
+template
+class Output_data_got<64, false>;
+
+template
+class Output_data_got<64, true>;
+
+} // End namespace gold.