summaryrefslogtreecommitdiffstats
path: root/binutils-2.24/gas/atof-generic.c
diff options
context:
space:
mode:
Diffstat (limited to 'binutils-2.24/gas/atof-generic.c')
-rw-r--r--binutils-2.24/gas/atof-generic.c614
1 files changed, 0 insertions, 614 deletions
diff --git a/binutils-2.24/gas/atof-generic.c b/binutils-2.24/gas/atof-generic.c
deleted file mode 100644
index 40a9ff04..00000000
--- a/binutils-2.24/gas/atof-generic.c
+++ /dev/null
@@ -1,614 +0,0 @@
-/* atof_generic.c - turn a string of digits into a Flonum
- Copyright 1987, 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999, 2000,
- 2001, 2003, 2005, 2006, 2007, 2009 Free Software Foundation, Inc.
-
- This file is part of GAS, the GNU Assembler.
-
- GAS is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 3, or (at your option)
- any later version.
-
- GAS is distributed in the hope that it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
- License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GAS; see the file COPYING. If not, write to the Free
- Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
- 02110-1301, USA. */
-
-#include "as.h"
-#include "safe-ctype.h"
-
-#ifndef FALSE
-#define FALSE (0)
-#endif
-#ifndef TRUE
-#define TRUE (1)
-#endif
-
-#ifdef TRACE
-static void flonum_print (const FLONUM_TYPE *);
-#endif
-
-#define ASSUME_DECIMAL_MARK_IS_DOT
-
-/***********************************************************************\
- * *
- * Given a string of decimal digits , with optional decimal *
- * mark and optional decimal exponent (place value) of the *
- * lowest_order decimal digit: produce a floating point *
- * number. The number is 'generic' floating point: our *
- * caller will encode it for a specific machine architecture. *
- * *
- * Assumptions *
- * uses base (radix) 2 *
- * this machine uses 2's complement binary integers *
- * target flonums use " " " " *
- * target flonums exponents fit in a long *
- * *
- \***********************************************************************/
-
-/*
-
- Syntax:
-
- <flonum> ::= <optional-sign> <decimal-number> <optional-exponent>
- <optional-sign> ::= '+' | '-' | {empty}
- <decimal-number> ::= <integer>
- | <integer> <radix-character>
- | <integer> <radix-character> <integer>
- | <radix-character> <integer>
-
- <optional-exponent> ::= {empty}
- | <exponent-character> <optional-sign> <integer>
-
- <integer> ::= <digit> | <digit> <integer>
- <digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
- <exponent-character> ::= {one character from "string_of_decimal_exponent_marks"}
- <radix-character> ::= {one character from "string_of_decimal_marks"}
-
- */
-
-int
-atof_generic (/* return pointer to just AFTER number we read. */
- char **address_of_string_pointer,
- /* At most one per number. */
- const char *string_of_decimal_marks,
- const char *string_of_decimal_exponent_marks,
- FLONUM_TYPE *address_of_generic_floating_point_number)
-{
- int return_value; /* 0 means OK. */
- char *first_digit;
- unsigned int number_of_digits_before_decimal;
- unsigned int number_of_digits_after_decimal;
- long decimal_exponent;
- unsigned int number_of_digits_available;
- char digits_sign_char;
-
- /*
- * Scan the input string, abstracting (1)digits (2)decimal mark (3) exponent.
- * It would be simpler to modify the string, but we don't; just to be nice
- * to caller.
- * We need to know how many digits we have, so we can allocate space for
- * the digits' value.
- */
-
- char *p;
- char c;
- int seen_significant_digit;
-
-#ifdef ASSUME_DECIMAL_MARK_IS_DOT
- gas_assert (string_of_decimal_marks[0] == '.'
- && string_of_decimal_marks[1] == 0);
-#define IS_DECIMAL_MARK(c) ((c) == '.')
-#else
-#define IS_DECIMAL_MARK(c) (0 != strchr (string_of_decimal_marks, (c)))
-#endif
-
- first_digit = *address_of_string_pointer;
- c = *first_digit;
-
- if (c == '-' || c == '+')
- {
- digits_sign_char = c;
- first_digit++;
- }
- else
- digits_sign_char = '+';
-
- switch (first_digit[0])
- {
- case 'n':
- case 'N':
- if (!strncasecmp ("nan", first_digit, 3))
- {
- address_of_generic_floating_point_number->sign = 0;
- address_of_generic_floating_point_number->exponent = 0;
- address_of_generic_floating_point_number->leader =
- address_of_generic_floating_point_number->low;
- *address_of_string_pointer = first_digit + 3;
- return 0;
- }
- break;
-
- case 'i':
- case 'I':
- if (!strncasecmp ("inf", first_digit, 3))
- {
- address_of_generic_floating_point_number->sign =
- digits_sign_char == '+' ? 'P' : 'N';
- address_of_generic_floating_point_number->exponent = 0;
- address_of_generic_floating_point_number->leader =
- address_of_generic_floating_point_number->low;
-
- first_digit += 3;
- if (!strncasecmp ("inity", first_digit, 5))
- first_digit += 5;
-
- *address_of_string_pointer = first_digit;
-
- return 0;
- }
- break;
- }
-
- number_of_digits_before_decimal = 0;
- number_of_digits_after_decimal = 0;
- decimal_exponent = 0;
- seen_significant_digit = 0;
- for (p = first_digit;
- (((c = *p) != '\0')
- && (!c || !IS_DECIMAL_MARK (c))
- && (!c || !strchr (string_of_decimal_exponent_marks, c)));
- p++)
- {
- if (ISDIGIT (c))
- {
- if (seen_significant_digit || c > '0')
- {
- ++number_of_digits_before_decimal;
- seen_significant_digit = 1;
- }
- else
- {
- first_digit++;
- }
- }
- else
- {
- break; /* p -> char after pre-decimal digits. */
- }
- } /* For each digit before decimal mark. */
-
-#ifndef OLD_FLOAT_READS
- /* Ignore trailing 0's after the decimal point. The original code here
- * (ifdef'd out) does not do this, and numbers like
- * 4.29496729600000000000e+09 (2**31)
- * come out inexact for some reason related to length of the digit
- * string.
- */
- if (c && IS_DECIMAL_MARK (c))
- {
- unsigned int zeros = 0; /* Length of current string of zeros */
-
- for (p++; (c = *p) && ISDIGIT (c); p++)
- {
- if (c == '0')
- {
- zeros++;
- }
- else
- {
- number_of_digits_after_decimal += 1 + zeros;
- zeros = 0;
- }
- }
- }
-#else
- if (c && IS_DECIMAL_MARK (c))
- {
- for (p++;
- (((c = *p) != '\0')
- && (!c || !strchr (string_of_decimal_exponent_marks, c)));
- p++)
- {
- if (ISDIGIT (c))
- {
- /* This may be retracted below. */
- number_of_digits_after_decimal++;
-
- if ( /* seen_significant_digit || */ c > '0')
- {
- seen_significant_digit = TRUE;
- }
- }
- else
- {
- if (!seen_significant_digit)
- {
- number_of_digits_after_decimal = 0;
- }
- break;
- }
- } /* For each digit after decimal mark. */
- }
-
- while (number_of_digits_after_decimal
- && first_digit[number_of_digits_before_decimal
- + number_of_digits_after_decimal] == '0')
- --number_of_digits_after_decimal;
-#endif
-
- if (flag_m68k_mri)
- {
- while (c == '_')
- c = *++p;
- }
- if (c && strchr (string_of_decimal_exponent_marks, c))
- {
- char digits_exponent_sign_char;
-
- c = *++p;
- if (flag_m68k_mri)
- {
- while (c == '_')
- c = *++p;
- }
- if (c && strchr ("+-", c))
- {
- digits_exponent_sign_char = c;
- c = *++p;
- }
- else
- {
- digits_exponent_sign_char = '+';
- }
-
- for (; (c); c = *++p)
- {
- if (ISDIGIT (c))
- {
- decimal_exponent = decimal_exponent * 10 + c - '0';
- /*
- * BUG! If we overflow here, we lose!
- */
- }
- else
- {
- break;
- }
- }
-
- if (digits_exponent_sign_char == '-')
- {
- decimal_exponent = -decimal_exponent;
- }
- }
-
- *address_of_string_pointer = p;
-
- number_of_digits_available =
- number_of_digits_before_decimal + number_of_digits_after_decimal;
- return_value = 0;
- if (number_of_digits_available == 0)
- {
- address_of_generic_floating_point_number->exponent = 0; /* Not strictly necessary */
- address_of_generic_floating_point_number->leader
- = -1 + address_of_generic_floating_point_number->low;
- address_of_generic_floating_point_number->sign = digits_sign_char;
- /* We have just concocted (+/-)0.0E0 */
-
- }
- else
- {
- int count; /* Number of useful digits left to scan. */
-
- LITTLENUM_TYPE *digits_binary_low;
- unsigned int precision;
- unsigned int maximum_useful_digits;
- unsigned int number_of_digits_to_use;
- unsigned int more_than_enough_bits_for_digits;
- unsigned int more_than_enough_littlenums_for_digits;
- unsigned int size_of_digits_in_littlenums;
- unsigned int size_of_digits_in_chars;
- FLONUM_TYPE power_of_10_flonum;
- FLONUM_TYPE digits_flonum;
-
- precision = (address_of_generic_floating_point_number->high
- - address_of_generic_floating_point_number->low
- + 1); /* Number of destination littlenums. */
-
- /* Includes guard bits (two littlenums worth) */
- maximum_useful_digits = (((precision - 2))
- * ( (LITTLENUM_NUMBER_OF_BITS))
- * 1000000 / 3321928)
- + 2; /* 2 :: guard digits. */
-
- if (number_of_digits_available > maximum_useful_digits)
- {
- number_of_digits_to_use = maximum_useful_digits;
- }
- else
- {
- number_of_digits_to_use = number_of_digits_available;
- }
-
- /* Cast these to SIGNED LONG first, otherwise, on systems with
- LONG wider than INT (such as Alpha OSF/1), unsignedness may
- cause unexpected results. */
- decimal_exponent += ((long) number_of_digits_before_decimal
- - (long) number_of_digits_to_use);
-
- more_than_enough_bits_for_digits
- = (number_of_digits_to_use * 3321928 / 1000000 + 1);
-
- more_than_enough_littlenums_for_digits
- = (more_than_enough_bits_for_digits
- / LITTLENUM_NUMBER_OF_BITS)
- + 2;
-
- /* Compute (digits) part. In "12.34E56" this is the "1234" part.
- Arithmetic is exact here. If no digits are supplied then this
- part is a 0 valued binary integer. Allocate room to build up
- the binary number as littlenums. We want this memory to
- disappear when we leave this function. Assume no alignment
- problems => (room for n objects) == n * (room for 1
- object). */
-
- size_of_digits_in_littlenums = more_than_enough_littlenums_for_digits;
- size_of_digits_in_chars = size_of_digits_in_littlenums
- * sizeof (LITTLENUM_TYPE);
-
- digits_binary_low = (LITTLENUM_TYPE *)
- alloca (size_of_digits_in_chars);
-
- memset ((char *) digits_binary_low, '\0', size_of_digits_in_chars);
-
- /* Digits_binary_low[] is allocated and zeroed. */
-
- /*
- * Parse the decimal digits as if * digits_low was in the units position.
- * Emit a binary number into digits_binary_low[].
- *
- * Use a large-precision version of:
- * (((1st-digit) * 10 + 2nd-digit) * 10 + 3rd-digit ...) * 10 + last-digit
- */
-
- for (p = first_digit, count = number_of_digits_to_use; count; p++, --count)
- {
- c = *p;
- if (ISDIGIT (c))
- {
- /*
- * Multiply by 10. Assume can never overflow.
- * Add this digit to digits_binary_low[].
- */
-
- long carry;
- LITTLENUM_TYPE *littlenum_pointer;
- LITTLENUM_TYPE *littlenum_limit;
-
- littlenum_limit = digits_binary_low
- + more_than_enough_littlenums_for_digits
- - 1;
-
- carry = c - '0'; /* char -> binary */
-
- for (littlenum_pointer = digits_binary_low;
- littlenum_pointer <= littlenum_limit;
- littlenum_pointer++)
- {
- long work;
-
- work = carry + 10 * (long) (*littlenum_pointer);
- *littlenum_pointer = work & LITTLENUM_MASK;
- carry = work >> LITTLENUM_NUMBER_OF_BITS;
- }
-
- if (carry != 0)
- {
- /*
- * We have a GROSS internal error.
- * This should never happen.
- */
- as_fatal (_("failed sanity check"));
- }
- }
- else
- {
- ++count; /* '.' doesn't alter digits used count. */
- }
- }
-
- /*
- * Digits_binary_low[] properly encodes the value of the digits.
- * Forget about any high-order littlenums that are 0.
- */
- while (digits_binary_low[size_of_digits_in_littlenums - 1] == 0
- && size_of_digits_in_littlenums >= 2)
- size_of_digits_in_littlenums--;
-
- digits_flonum.low = digits_binary_low;
- digits_flonum.high = digits_binary_low + size_of_digits_in_littlenums - 1;
- digits_flonum.leader = digits_flonum.high;
- digits_flonum.exponent = 0;
- /*
- * The value of digits_flonum . sign should not be important.
- * We have already decided the output's sign.
- * We trust that the sign won't influence the other parts of the number!
- * So we give it a value for these reasons:
- * (1) courtesy to humans reading/debugging
- * these numbers so they don't get excited about strange values
- * (2) in future there may be more meaning attached to sign,
- * and what was
- * harmless noise may become disruptive, ill-conditioned (or worse)
- * input.
- */
- digits_flonum.sign = '+';
-
- {
- /*
- * Compute the mantssa (& exponent) of the power of 10.
- * If successful, then multiply the power of 10 by the digits
- * giving return_binary_mantissa and return_binary_exponent.
- */
-
- LITTLENUM_TYPE *power_binary_low;
- int decimal_exponent_is_negative;
- /* This refers to the "-56" in "12.34E-56". */
- /* FALSE: decimal_exponent is positive (or 0) */
- /* TRUE: decimal_exponent is negative */
- FLONUM_TYPE temporary_flonum;
- LITTLENUM_TYPE *temporary_binary_low;
- unsigned int size_of_power_in_littlenums;
- unsigned int size_of_power_in_chars;
-
- size_of_power_in_littlenums = precision;
- /* Precision has a built-in fudge factor so we get a few guard bits. */
-
- decimal_exponent_is_negative = decimal_exponent < 0;
- if (decimal_exponent_is_negative)
- {
- decimal_exponent = -decimal_exponent;
- }
-
- /* From now on: the decimal exponent is > 0. Its sign is separate. */
-
- size_of_power_in_chars = size_of_power_in_littlenums
- * sizeof (LITTLENUM_TYPE) + 2;
-
- power_binary_low = (LITTLENUM_TYPE *) alloca (size_of_power_in_chars);
- temporary_binary_low = (LITTLENUM_TYPE *) alloca (size_of_power_in_chars);
- memset ((char *) power_binary_low, '\0', size_of_power_in_chars);
- *power_binary_low = 1;
- power_of_10_flonum.exponent = 0;
- power_of_10_flonum.low = power_binary_low;
- power_of_10_flonum.leader = power_binary_low;
- power_of_10_flonum.high = power_binary_low + size_of_power_in_littlenums - 1;
- power_of_10_flonum.sign = '+';
- temporary_flonum.low = temporary_binary_low;
- temporary_flonum.high = temporary_binary_low + size_of_power_in_littlenums - 1;
- /*
- * (power) == 1.
- * Space for temporary_flonum allocated.
- */
-
- /*
- * ...
- *
- * WHILE more bits
- * DO find next bit (with place value)
- * multiply into power mantissa
- * OD
- */
- {
- int place_number_limit;
- /* Any 10^(2^n) whose "n" exceeds this */
- /* value will fall off the end of */
- /* flonum_XXXX_powers_of_ten[]. */
- int place_number;
- const FLONUM_TYPE *multiplicand; /* -> 10^(2^n) */
-
- place_number_limit = table_size_of_flonum_powers_of_ten;
-
- multiplicand = (decimal_exponent_is_negative
- ? flonum_negative_powers_of_ten
- : flonum_positive_powers_of_ten);
-
- for (place_number = 1;/* Place value of this bit of exponent. */
- decimal_exponent;/* Quit when no more 1 bits in exponent. */
- decimal_exponent >>= 1, place_number++)
- {
- if (decimal_exponent & 1)
- {
- if (place_number > place_number_limit)
- {
- /* The decimal exponent has a magnitude so great
- that our tables can't help us fragment it.
- Although this routine is in error because it
- can't imagine a number that big, signal an
- error as if it is the user's fault for
- presenting such a big number. */
- return_value = ERROR_EXPONENT_OVERFLOW;
- /* quit out of loop gracefully */
- decimal_exponent = 0;
- }
- else
- {
-#ifdef TRACE
- printf ("before multiply, place_number = %d., power_of_10_flonum:\n",
- place_number);
-
- flonum_print (&power_of_10_flonum);
- (void) putchar ('\n');
-#endif
-#ifdef TRACE
- printf ("multiplier:\n");
- flonum_print (multiplicand + place_number);
- (void) putchar ('\n');
-#endif
- flonum_multip (multiplicand + place_number,
- &power_of_10_flonum, &temporary_flonum);
-#ifdef TRACE
- printf ("after multiply:\n");
- flonum_print (&temporary_flonum);
- (void) putchar ('\n');
-#endif
- flonum_copy (&temporary_flonum, &power_of_10_flonum);
-#ifdef TRACE
- printf ("after copy:\n");
- flonum_print (&power_of_10_flonum);
- (void) putchar ('\n');
-#endif
- } /* If this bit of decimal_exponent was computable.*/
- } /* If this bit of decimal_exponent was set. */
- } /* For each bit of binary representation of exponent */
-#ifdef TRACE
- printf ("after computing power_of_10_flonum:\n");
- flonum_print (&power_of_10_flonum);
- (void) putchar ('\n');
-#endif
- }
-
- }
-
- /*
- * power_of_10_flonum is power of ten in binary (mantissa) , (exponent).
- * It may be the number 1, in which case we don't NEED to multiply.
- *
- * Multiply (decimal digits) by power_of_10_flonum.
- */
-
- flonum_multip (&power_of_10_flonum, &digits_flonum, address_of_generic_floating_point_number);
- /* Assert sign of the number we made is '+'. */
- address_of_generic_floating_point_number->sign = digits_sign_char;
-
- }
- return return_value;
-}
-
-#ifdef TRACE
-static void
-flonum_print (f)
- const FLONUM_TYPE *f;
-{
- LITTLENUM_TYPE *lp;
- char littlenum_format[10];
- sprintf (littlenum_format, " %%0%dx", sizeof (LITTLENUM_TYPE) * 2);
-#define print_littlenum(LP) (printf (littlenum_format, LP))
- printf ("flonum @%p %c e%ld", f, f->sign, f->exponent);
- if (f->low < f->high)
- for (lp = f->high; lp >= f->low; lp--)
- print_littlenum (*lp);
- else
- for (lp = f->low; lp <= f->high; lp++)
- print_littlenum (*lp);
- printf ("\n");
- fflush (stdout);
-}
-#endif
-
-/* end of atof_generic.c */