summaryrefslogtreecommitdiffstats
path: root/binutils-2.17/bfd/doc/bfdsumm.texi
diff options
context:
space:
mode:
Diffstat (limited to 'binutils-2.17/bfd/doc/bfdsumm.texi')
-rw-r--r--binutils-2.17/bfd/doc/bfdsumm.texi148
1 files changed, 0 insertions, 148 deletions
diff --git a/binutils-2.17/bfd/doc/bfdsumm.texi b/binutils-2.17/bfd/doc/bfdsumm.texi
deleted file mode 100644
index 77a5f09e..00000000
--- a/binutils-2.17/bfd/doc/bfdsumm.texi
+++ /dev/null
@@ -1,148 +0,0 @@
-@c This summary of BFD is shared by the BFD and LD docs.
-When an object file is opened, BFD subroutines automatically determine
-the format of the input object file. They then build a descriptor in
-memory with pointers to routines that will be used to access elements of
-the object file's data structures.
-
-As different information from the object files is required,
-BFD reads from different sections of the file and processes them.
-For example, a very common operation for the linker is processing symbol
-tables. Each BFD back end provides a routine for converting
-between the object file's representation of symbols and an internal
-canonical format. When the linker asks for the symbol table of an object
-file, it calls through a memory pointer to the routine from the
-relevant BFD back end which reads and converts the table into a canonical
-form. The linker then operates upon the canonical form. When the link is
-finished and the linker writes the output file's symbol table,
-another BFD back end routine is called to take the newly
-created symbol table and convert it into the chosen output format.
-
-@menu
-* BFD information loss:: Information Loss
-* Canonical format:: The BFD canonical object-file format
-@end menu
-
-@node BFD information loss
-@subsection Information Loss
-
-@emph{Information can be lost during output.} The output formats
-supported by BFD do not provide identical facilities, and
-information which can be described in one form has nowhere to go in
-another format. One example of this is alignment information in
-@code{b.out}. There is nowhere in an @code{a.out} format file to store
-alignment information on the contained data, so when a file is linked
-from @code{b.out} and an @code{a.out} image is produced, alignment
-information will not propagate to the output file. (The linker will
-still use the alignment information internally, so the link is performed
-correctly).
-
-Another example is COFF section names. COFF files may contain an
-unlimited number of sections, each one with a textual section name. If
-the target of the link is a format which does not have many sections (e.g.,
-@code{a.out}) or has sections without names (e.g., the Oasys format), the
-link cannot be done simply. You can circumvent this problem by
-describing the desired input-to-output section mapping with the linker command
-language.
-
-@emph{Information can be lost during canonicalization.} The BFD
-internal canonical form of the external formats is not exhaustive; there
-are structures in input formats for which there is no direct
-representation internally. This means that the BFD back ends
-cannot maintain all possible data richness through the transformation
-between external to internal and back to external formats.
-
-This limitation is only a problem when an application reads one
-format and writes another. Each BFD back end is responsible for
-maintaining as much data as possible, and the internal BFD
-canonical form has structures which are opaque to the BFD core,
-and exported only to the back ends. When a file is read in one format,
-the canonical form is generated for BFD and the application. At the
-same time, the back end saves away any information which may otherwise
-be lost. If the data is then written back in the same format, the back
-end routine will be able to use the canonical form provided by the
-BFD core as well as the information it prepared earlier. Since
-there is a great deal of commonality between back ends,
-there is no information lost when
-linking or copying big endian COFF to little endian COFF, or @code{a.out} to
-@code{b.out}. When a mixture of formats is linked, the information is
-only lost from the files whose format differs from the destination.
-
-@node Canonical format
-@subsection The BFD canonical object-file format
-
-The greatest potential for loss of information occurs when there is the least
-overlap between the information provided by the source format, that
-stored by the canonical format, and that needed by the
-destination format. A brief description of the canonical form may help
-you understand which kinds of data you can count on preserving across
-conversions.
-@cindex BFD canonical format
-@cindex internal object-file format
-
-@table @emph
-@item files
-Information stored on a per-file basis includes target machine
-architecture, particular implementation format type, a demand pageable
-bit, and a write protected bit. Information like Unix magic numbers is
-not stored here---only the magic numbers' meaning, so a @code{ZMAGIC}
-file would have both the demand pageable bit and the write protected
-text bit set. The byte order of the target is stored on a per-file
-basis, so that big- and little-endian object files may be used with one
-another.
-
-@item sections
-Each section in the input file contains the name of the section, the
-section's original address in the object file, size and alignment
-information, various flags, and pointers into other BFD data
-structures.
-
-@item symbols
-Each symbol contains a pointer to the information for the object file
-which originally defined it, its name, its value, and various flag
-bits. When a BFD back end reads in a symbol table, it relocates all
-symbols to make them relative to the base of the section where they were
-defined. Doing this ensures that each symbol points to its containing
-section. Each symbol also has a varying amount of hidden private data
-for the BFD back end. Since the symbol points to the original file, the
-private data format for that symbol is accessible. @code{ld} can
-operate on a collection of symbols of wildly different formats without
-problems.
-
-Normal global and simple local symbols are maintained on output, so an
-output file (no matter its format) will retain symbols pointing to
-functions and to global, static, and common variables. Some symbol
-information is not worth retaining; in @code{a.out}, type information is
-stored in the symbol table as long symbol names. This information would
-be useless to most COFF debuggers; the linker has command line switches
-to allow users to throw it away.
-
-There is one word of type information within the symbol, so if the
-format supports symbol type information within symbols (for example, COFF,
-IEEE, Oasys) and the type is simple enough to fit within one word
-(nearly everything but aggregates), the information will be preserved.
-
-@item relocation level
-Each canonical BFD relocation record contains a pointer to the symbol to
-relocate to, the offset of the data to relocate, the section the data
-is in, and a pointer to a relocation type descriptor. Relocation is
-performed by passing messages through the relocation type
-descriptor and the symbol pointer. Therefore, relocations can be performed
-on output data using a relocation method that is only available in one of the
-input formats. For instance, Oasys provides a byte relocation format.
-A relocation record requesting this relocation type would point
-indirectly to a routine to perform this, so the relocation may be
-performed on a byte being written to a 68k COFF file, even though 68k COFF
-has no such relocation type.
-
-@item line numbers
-Object formats can contain, for debugging purposes, some form of mapping
-between symbols, source line numbers, and addresses in the output file.
-These addresses have to be relocated along with the symbol information.
-Each symbol with an associated list of line number records points to the
-first record of the list. The head of a line number list consists of a
-pointer to the symbol, which allows finding out the address of the
-function whose line number is being described. The rest of the list is
-made up of pairs: offsets into the section and line numbers. Any format
-which can simply derive this information can pass it successfully
-between formats (COFF, IEEE and Oasys).
-@end table