summaryrefslogtreecommitdiffstats
path: root/binutils-2.25/gold/expression.cc
diff options
context:
space:
mode:
authorAndrew Hsieh <andrewhsieh@google.com>2014-06-13 12:38:00 -0700
committerAndrew Hsieh <andrewhsieh@google.com>2014-06-13 12:38:00 -0700
commit54f1b3cf509cd889905287cb8ce6c5ae33911a21 (patch)
treee39b1a7fa04db86a8215b7f9d4656d74e394aec0 /binutils-2.25/gold/expression.cc
parent2a6558a8ecfb81d75215b4ec7dc61113e12cfd5f (diff)
downloadtoolchain_binutils-54f1b3cf509cd889905287cb8ce6c5ae33911a21.tar.gz
toolchain_binutils-54f1b3cf509cd889905287cb8ce6c5ae33911a21.tar.bz2
toolchain_binutils-54f1b3cf509cd889905287cb8ce6c5ae33911a21.zip
Add upstream binutils-2.25 snapshot 4/4 2014
For MIPS -mmsa support Change-Id: I08c4f002fa7b33dec85ed75956e6ab551bb03c96
Diffstat (limited to 'binutils-2.25/gold/expression.cc')
-rw-r--r--binutils-2.25/gold/expression.cc1273
1 files changed, 1273 insertions, 0 deletions
diff --git a/binutils-2.25/gold/expression.cc b/binutils-2.25/gold/expression.cc
new file mode 100644
index 00000000..e31c151c
--- /dev/null
+++ b/binutils-2.25/gold/expression.cc
@@ -0,0 +1,1273 @@
+// expression.cc -- expressions in linker scripts for gold
+
+// Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
+// Written by Ian Lance Taylor <iant@google.com>.
+
+// This file is part of gold.
+
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 3 of the License, or
+// (at your option) any later version.
+
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License for more details.
+
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
+// MA 02110-1301, USA.
+
+#include "gold.h"
+
+#include <string>
+
+#include "elfcpp.h"
+#include "parameters.h"
+#include "symtab.h"
+#include "layout.h"
+#include "output.h"
+#include "script.h"
+#include "script-c.h"
+
+namespace gold
+{
+
+// This file holds the code which handles linker expressions.
+
+// The dot symbol, which linker scripts refer to simply as ".",
+// requires special treatment. The dot symbol is set several times,
+// section addresses will refer to it, output sections will change it,
+// and it can be set based on the value of other symbols. We simplify
+// the handling by prohibiting setting the dot symbol to the value of
+// a non-absolute symbol.
+
+// When evaluating the value of an expression, we pass in a pointer to
+// this struct, so that the expression evaluation can find the
+// information it needs.
+
+struct Expression::Expression_eval_info
+{
+ // The symbol table.
+ const Symbol_table* symtab;
+ // The layout--we use this to get section information.
+ const Layout* layout;
+ // Whether to check assertions.
+ bool check_assertions;
+ // Whether expressions can refer to the dot symbol. The dot symbol
+ // is only available within a SECTIONS clause.
+ bool is_dot_available;
+ // The current value of the dot symbol.
+ uint64_t dot_value;
+ // The section in which the dot symbol is defined; this is NULL if
+ // it is absolute.
+ Output_section* dot_section;
+ // Points to where the section of the result should be stored.
+ Output_section** result_section_pointer;
+ // Pointer to where the alignment of the result should be stored.
+ uint64_t* result_alignment_pointer;
+};
+
+// Evaluate an expression.
+
+uint64_t
+Expression::eval(const Symbol_table* symtab, const Layout* layout,
+ bool check_assertions)
+{
+ return this->eval_maybe_dot(symtab, layout, check_assertions,
+ false, 0, NULL, NULL, NULL, false);
+}
+
+// Evaluate an expression which may refer to the dot symbol.
+
+uint64_t
+Expression::eval_with_dot(const Symbol_table* symtab, const Layout* layout,
+ bool check_assertions, uint64_t dot_value,
+ Output_section* dot_section,
+ Output_section** result_section_pointer,
+ uint64_t* result_alignment_pointer,
+ bool is_section_dot_assignment)
+{
+ return this->eval_maybe_dot(symtab, layout, check_assertions, true,
+ dot_value, dot_section, result_section_pointer,
+ result_alignment_pointer,
+ is_section_dot_assignment);
+}
+
+// Evaluate an expression which may or may not refer to the dot
+// symbol.
+
+uint64_t
+Expression::eval_maybe_dot(const Symbol_table* symtab, const Layout* layout,
+ bool check_assertions, bool is_dot_available,
+ uint64_t dot_value, Output_section* dot_section,
+ Output_section** result_section_pointer,
+ uint64_t* result_alignment_pointer,
+ bool is_section_dot_assignment)
+{
+ Expression_eval_info eei;
+ eei.symtab = symtab;
+ eei.layout = layout;
+ eei.check_assertions = check_assertions;
+ eei.is_dot_available = is_dot_available;
+ eei.dot_value = dot_value;
+ eei.dot_section = dot_section;
+
+ // We assume the value is absolute, and only set this to a section
+ // if we find a section-relative reference.
+ if (result_section_pointer != NULL)
+ *result_section_pointer = NULL;
+ eei.result_section_pointer = result_section_pointer;
+
+ eei.result_alignment_pointer = result_alignment_pointer;
+
+ uint64_t val = this->value(&eei);
+
+ // If this is an assignment to dot within a section, and the value
+ // is absolute, treat it as a section-relative offset.
+ if (is_section_dot_assignment && *result_section_pointer == NULL)
+ {
+ gold_assert(dot_section != NULL);
+ val += dot_section->address();
+ *result_section_pointer = dot_section;
+ }
+ return val;
+}
+
+// A number.
+
+class Integer_expression : public Expression
+{
+ public:
+ Integer_expression(uint64_t val)
+ : val_(val)
+ { }
+
+ uint64_t
+ value(const Expression_eval_info*)
+ { return this->val_; }
+
+ void
+ print(FILE* f) const
+ { fprintf(f, "0x%llx", static_cast<unsigned long long>(this->val_)); }
+
+ private:
+ uint64_t val_;
+};
+
+extern "C" Expression*
+script_exp_integer(uint64_t val)
+{
+ return new Integer_expression(val);
+}
+
+// An expression whose value is the value of a symbol.
+
+class Symbol_expression : public Expression
+{
+ public:
+ Symbol_expression(const char* name, size_t length)
+ : name_(name, length)
+ { }
+
+ uint64_t
+ value(const Expression_eval_info*);
+
+ void
+ print(FILE* f) const
+ { fprintf(f, "%s", this->name_.c_str()); }
+
+ private:
+ std::string name_;
+};
+
+uint64_t
+Symbol_expression::value(const Expression_eval_info* eei)
+{
+ Symbol* sym = eei->symtab->lookup(this->name_.c_str());
+ if (sym == NULL || !sym->is_defined())
+ {
+ gold_error(_("undefined symbol '%s' referenced in expression"),
+ this->name_.c_str());
+ return 0;
+ }
+
+ if (eei->result_section_pointer != NULL)
+ *eei->result_section_pointer = sym->output_section();
+
+ if (parameters->target().get_size() == 32)
+ return eei->symtab->get_sized_symbol<32>(sym)->value();
+ else if (parameters->target().get_size() == 64)
+ return eei->symtab->get_sized_symbol<64>(sym)->value();
+ else
+ gold_unreachable();
+}
+
+// An expression whose value is the value of the special symbol ".".
+// This is only valid within a SECTIONS clause.
+
+class Dot_expression : public Expression
+{
+ public:
+ Dot_expression()
+ { }
+
+ uint64_t
+ value(const Expression_eval_info*);
+
+ void
+ print(FILE* f) const
+ { fprintf(f, "."); }
+};
+
+uint64_t
+Dot_expression::value(const Expression_eval_info* eei)
+{
+ if (!eei->is_dot_available)
+ {
+ gold_error(_("invalid reference to dot symbol outside of "
+ "SECTIONS clause"));
+ return 0;
+ }
+ if (eei->result_section_pointer != NULL)
+ *eei->result_section_pointer = eei->dot_section;
+ return eei->dot_value;
+}
+
+// A string. This is either the name of a symbol, or ".".
+
+extern "C" Expression*
+script_exp_string(const char* name, size_t length)
+{
+ if (length == 1 && name[0] == '.')
+ return new Dot_expression();
+ else
+ return new Symbol_expression(name, length);
+}
+
+// A unary expression.
+
+class Unary_expression : public Expression
+{
+ public:
+ Unary_expression(Expression* arg)
+ : arg_(arg)
+ { }
+
+ ~Unary_expression()
+ { delete this->arg_; }
+
+ protected:
+ uint64_t
+ arg_value(const Expression_eval_info* eei,
+ Output_section** arg_section_pointer) const
+ {
+ return this->arg_->eval_maybe_dot(eei->symtab, eei->layout,
+ eei->check_assertions,
+ eei->is_dot_available,
+ eei->dot_value,
+ eei->dot_section,
+ arg_section_pointer,
+ eei->result_alignment_pointer,
+ false);
+ }
+
+ void
+ arg_print(FILE* f) const
+ { this->arg_->print(f); }
+
+ private:
+ Expression* arg_;
+};
+
+// Handle unary operators. We use a preprocessor macro as a hack to
+// capture the C operator.
+
+#define UNARY_EXPRESSION(NAME, OPERATOR) \
+ class Unary_ ## NAME : public Unary_expression \
+ { \
+ public: \
+ Unary_ ## NAME(Expression* arg) \
+ : Unary_expression(arg) \
+ { } \
+ \
+ uint64_t \
+ value(const Expression_eval_info* eei) \
+ { \
+ Output_section* arg_section; \
+ uint64_t ret = OPERATOR this->arg_value(eei, &arg_section); \
+ if (arg_section != NULL && parameters->options().relocatable()) \
+ gold_warning(_("unary " #NAME " applied to section " \
+ "relative value")); \
+ return ret; \
+ } \
+ \
+ void \
+ print(FILE* f) const \
+ { \
+ fprintf(f, "(%s ", #OPERATOR); \
+ this->arg_print(f); \
+ fprintf(f, ")"); \
+ } \
+ }; \
+ \
+ extern "C" Expression* \
+ script_exp_unary_ ## NAME(Expression* arg) \
+ { \
+ return new Unary_ ## NAME(arg); \
+ }
+
+UNARY_EXPRESSION(minus, -)
+UNARY_EXPRESSION(logical_not, !)
+UNARY_EXPRESSION(bitwise_not, ~)
+
+// A binary expression.
+
+class Binary_expression : public Expression
+{
+ public:
+ Binary_expression(Expression* left, Expression* right)
+ : left_(left), right_(right)
+ { }
+
+ ~Binary_expression()
+ {
+ delete this->left_;
+ delete this->right_;
+ }
+
+ protected:
+ uint64_t
+ left_value(const Expression_eval_info* eei,
+ Output_section** section_pointer,
+ uint64_t* alignment_pointer) const
+ {
+ return this->left_->eval_maybe_dot(eei->symtab, eei->layout,
+ eei->check_assertions,
+ eei->is_dot_available,
+ eei->dot_value,
+ eei->dot_section,
+ section_pointer,
+ alignment_pointer,
+ false);
+ }
+
+ uint64_t
+ right_value(const Expression_eval_info* eei,
+ Output_section** section_pointer,
+ uint64_t* alignment_pointer) const
+ {
+ return this->right_->eval_maybe_dot(eei->symtab, eei->layout,
+ eei->check_assertions,
+ eei->is_dot_available,
+ eei->dot_value,
+ eei->dot_section,
+ section_pointer,
+ alignment_pointer,
+ false);
+ }
+
+ void
+ left_print(FILE* f) const
+ { this->left_->print(f); }
+
+ void
+ right_print(FILE* f) const
+ { this->right_->print(f); }
+
+ // This is a call to function FUNCTION_NAME. Print it. This is for
+ // debugging.
+ void
+ print_function(FILE* f, const char* function_name) const
+ {
+ fprintf(f, "%s(", function_name);
+ this->left_print(f);
+ fprintf(f, ", ");
+ this->right_print(f);
+ fprintf(f, ")");
+ }
+
+ private:
+ Expression* left_;
+ Expression* right_;
+};
+
+// Handle binary operators. We use a preprocessor macro as a hack to
+// capture the C operator. KEEP_LEFT means that if the left operand
+// is section relative and the right operand is not, the result uses
+// the same section as the left operand. KEEP_RIGHT is the same with
+// left and right swapped. IS_DIV means that we need to give an error
+// if the right operand is zero. WARN means that we should warn if
+// used on section relative values in a relocatable link. We always
+// warn if used on values in different sections in a relocatable link.
+
+#define BINARY_EXPRESSION(NAME, OPERATOR, KEEP_LEFT, KEEP_RIGHT, IS_DIV, WARN) \
+ class Binary_ ## NAME : public Binary_expression \
+ { \
+ public: \
+ Binary_ ## NAME(Expression* left, Expression* right) \
+ : Binary_expression(left, right) \
+ { } \
+ \
+ uint64_t \
+ value(const Expression_eval_info* eei) \
+ { \
+ Output_section* left_section; \
+ uint64_t left_alignment = 0; \
+ uint64_t left = this->left_value(eei, &left_section, \
+ &left_alignment); \
+ Output_section* right_section; \
+ uint64_t right_alignment = 0; \
+ uint64_t right = this->right_value(eei, &right_section, \
+ &right_alignment); \
+ if (KEEP_RIGHT && left_section == NULL && right_section != NULL) \
+ { \
+ if (eei->result_section_pointer != NULL) \
+ *eei->result_section_pointer = right_section; \
+ if (eei->result_alignment_pointer != NULL \
+ && right_alignment > *eei->result_alignment_pointer) \
+ *eei->result_alignment_pointer = right_alignment; \
+ } \
+ else if (KEEP_LEFT \
+ && left_section != NULL \
+ && right_section == NULL) \
+ { \
+ if (eei->result_section_pointer != NULL) \
+ *eei->result_section_pointer = left_section; \
+ if (eei->result_alignment_pointer != NULL \
+ && left_alignment > *eei->result_alignment_pointer) \
+ *eei->result_alignment_pointer = left_alignment; \
+ } \
+ else if ((WARN || left_section != right_section) \
+ && (left_section != NULL || right_section != NULL) \
+ && parameters->options().relocatable()) \
+ gold_warning(_("binary " #NAME " applied to section " \
+ "relative value")); \
+ if (IS_DIV && right == 0) \
+ { \
+ gold_error(_(#NAME " by zero")); \
+ return 0; \
+ } \
+ return left OPERATOR right; \
+ } \
+ \
+ void \
+ print(FILE* f) const \
+ { \
+ fprintf(f, "("); \
+ this->left_print(f); \
+ fprintf(f, " %s ", #OPERATOR); \
+ this->right_print(f); \
+ fprintf(f, ")"); \
+ } \
+ }; \
+ \
+ extern "C" Expression* \
+ script_exp_binary_ ## NAME(Expression* left, Expression* right) \
+ { \
+ return new Binary_ ## NAME(left, right); \
+ }
+
+BINARY_EXPRESSION(mult, *, false, false, false, true)
+BINARY_EXPRESSION(div, /, false, false, true, true)
+BINARY_EXPRESSION(mod, %, false, false, true, true)
+BINARY_EXPRESSION(add, +, true, true, false, true)
+BINARY_EXPRESSION(sub, -, true, false, false, false)
+BINARY_EXPRESSION(lshift, <<, false, false, false, true)
+BINARY_EXPRESSION(rshift, >>, false, false, false, true)
+BINARY_EXPRESSION(eq, ==, false, false, false, false)
+BINARY_EXPRESSION(ne, !=, false, false, false, false)
+BINARY_EXPRESSION(le, <=, false, false, false, false)
+BINARY_EXPRESSION(ge, >=, false, false, false, false)
+BINARY_EXPRESSION(lt, <, false, false, false, false)
+BINARY_EXPRESSION(gt, >, false, false, false, false)
+BINARY_EXPRESSION(bitwise_and, &, true, true, false, true)
+BINARY_EXPRESSION(bitwise_xor, ^, true, true, false, true)
+BINARY_EXPRESSION(bitwise_or, |, true, true, false, true)
+BINARY_EXPRESSION(logical_and, &&, false, false, false, true)
+BINARY_EXPRESSION(logical_or, ||, false, false, false, true)
+
+// A trinary expression.
+
+class Trinary_expression : public Expression
+{
+ public:
+ Trinary_expression(Expression* arg1, Expression* arg2, Expression* arg3)
+ : arg1_(arg1), arg2_(arg2), arg3_(arg3)
+ { }
+
+ ~Trinary_expression()
+ {
+ delete this->arg1_;
+ delete this->arg2_;
+ delete this->arg3_;
+ }
+
+ protected:
+ uint64_t
+ arg1_value(const Expression_eval_info* eei,
+ Output_section** section_pointer) const
+ {
+ return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
+ eei->check_assertions,
+ eei->is_dot_available,
+ eei->dot_value,
+ eei->dot_section,
+ section_pointer,
+ NULL,
+ false);
+ }
+
+ uint64_t
+ arg2_value(const Expression_eval_info* eei,
+ Output_section** section_pointer,
+ uint64_t* alignment_pointer) const
+ {
+ return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
+ eei->check_assertions,
+ eei->is_dot_available,
+ eei->dot_value,
+ eei->dot_section,
+ section_pointer,
+ alignment_pointer,
+ false);
+ }
+
+ uint64_t
+ arg3_value(const Expression_eval_info* eei,
+ Output_section** section_pointer,
+ uint64_t* alignment_pointer) const
+ {
+ return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
+ eei->check_assertions,
+ eei->is_dot_available,
+ eei->dot_value,
+ eei->dot_section,
+ section_pointer,
+ alignment_pointer,
+ false);
+ }
+
+ void
+ arg1_print(FILE* f) const
+ { this->arg1_->print(f); }
+
+ void
+ arg2_print(FILE* f) const
+ { this->arg2_->print(f); }
+
+ void
+ arg3_print(FILE* f) const
+ { this->arg3_->print(f); }
+
+ private:
+ Expression* arg1_;
+ Expression* arg2_;
+ Expression* arg3_;
+};
+
+// The conditional operator.
+
+class Trinary_cond : public Trinary_expression
+{
+ public:
+ Trinary_cond(Expression* arg1, Expression* arg2, Expression* arg3)
+ : Trinary_expression(arg1, arg2, arg3)
+ { }
+
+ uint64_t
+ value(const Expression_eval_info* eei)
+ {
+ Output_section* arg1_section;
+ uint64_t arg1 = this->arg1_value(eei, &arg1_section);
+ return (arg1
+ ? this->arg2_value(eei, eei->result_section_pointer,
+ eei->result_alignment_pointer)
+ : this->arg3_value(eei, eei->result_section_pointer,
+ eei->result_alignment_pointer));
+ }
+
+ void
+ print(FILE* f) const
+ {
+ fprintf(f, "(");
+ this->arg1_print(f);
+ fprintf(f, " ? ");
+ this->arg2_print(f);
+ fprintf(f, " : ");
+ this->arg3_print(f);
+ fprintf(f, ")");
+ }
+};
+
+extern "C" Expression*
+script_exp_trinary_cond(Expression* arg1, Expression* arg2, Expression* arg3)
+{
+ return new Trinary_cond(arg1, arg2, arg3);
+}
+
+// Max function.
+
+class Max_expression : public Binary_expression
+{
+ public:
+ Max_expression(Expression* left, Expression* right)
+ : Binary_expression(left, right)
+ { }
+
+ uint64_t
+ value(const Expression_eval_info* eei)
+ {
+ Output_section* left_section;
+ uint64_t left_alignment;
+ uint64_t left = this->left_value(eei, &left_section, &left_alignment);
+ Output_section* right_section;
+ uint64_t right_alignment;
+ uint64_t right = this->right_value(eei, &right_section, &right_alignment);
+ if (left_section == right_section)
+ {
+ if (eei->result_section_pointer != NULL)
+ *eei->result_section_pointer = left_section;
+ }
+ else if ((left_section != NULL || right_section != NULL)
+ && parameters->options().relocatable())
+ gold_warning(_("max applied to section relative value"));
+ if (eei->result_alignment_pointer != NULL)
+ {
+ uint64_t ra = *eei->result_alignment_pointer;
+ if (left > right)
+ ra = std::max(ra, left_alignment);
+ else if (right > left)
+ ra = std::max(ra, right_alignment);
+ else
+ ra = std::max(ra, std::max(left_alignment, right_alignment));
+ *eei->result_alignment_pointer = ra;
+ }
+ return std::max(left, right);
+ }
+
+ void
+ print(FILE* f) const
+ { this->print_function(f, "MAX"); }
+};
+
+extern "C" Expression*
+script_exp_function_max(Expression* left, Expression* right)
+{
+ return new Max_expression(left, right);
+}
+
+// Min function.
+
+class Min_expression : public Binary_expression
+{
+ public:
+ Min_expression(Expression* left, Expression* right)
+ : Binary_expression(left, right)
+ { }
+
+ uint64_t
+ value(const Expression_eval_info* eei)
+ {
+ Output_section* left_section;
+ uint64_t left_alignment;
+ uint64_t left = this->left_value(eei, &left_section, &left_alignment);
+ Output_section* right_section;
+ uint64_t right_alignment;
+ uint64_t right = this->right_value(eei, &right_section, &right_alignment);
+ if (left_section == right_section)
+ {
+ if (eei->result_section_pointer != NULL)
+ *eei->result_section_pointer = left_section;
+ }
+ else if ((left_section != NULL || right_section != NULL)
+ && parameters->options().relocatable())
+ gold_warning(_("min applied to section relative value"));
+ if (eei->result_alignment_pointer != NULL)
+ {
+ uint64_t ra = *eei->result_alignment_pointer;
+ if (left < right)
+ ra = std::max(ra, left_alignment);
+ else if (right < left)
+ ra = std::max(ra, right_alignment);
+ else
+ ra = std::max(ra, std::max(left_alignment, right_alignment));
+ *eei->result_alignment_pointer = ra;
+ }
+ return std::min(left, right);
+ }
+
+ void
+ print(FILE* f) const
+ { this->print_function(f, "MIN"); }
+};
+
+extern "C" Expression*
+script_exp_function_min(Expression* left, Expression* right)
+{
+ return new Min_expression(left, right);
+}
+
+// Class Section_expression. This is a parent class used for
+// functions which take the name of an output section.
+
+class Section_expression : public Expression
+{
+ public:
+ Section_expression(const char* section_name, size_t section_name_len)
+ : section_name_(section_name, section_name_len)
+ { }
+
+ uint64_t
+ value(const Expression_eval_info*);
+
+ void
+ print(FILE* f) const
+ { fprintf(f, "%s(%s)", this->function_name(), this->section_name_.c_str()); }
+
+ protected:
+ // The child class must implement this.
+ virtual uint64_t
+ value_from_output_section(const Expression_eval_info*,
+ Output_section*) = 0;
+
+ // The child class must implement this.
+ virtual uint64_t
+ value_from_script_output_section(uint64_t address, uint64_t load_address,
+ uint64_t addralign, uint64_t size) = 0;
+
+ // The child class must implement this.
+ virtual const char*
+ function_name() const = 0;
+
+ private:
+ std::string section_name_;
+};
+
+uint64_t
+Section_expression::value(const Expression_eval_info* eei)
+{
+ const char* section_name = this->section_name_.c_str();
+ Output_section* os = eei->layout->find_output_section(section_name);
+ if (os != NULL)
+ return this->value_from_output_section(eei, os);
+
+ uint64_t address;
+ uint64_t load_address;
+ uint64_t addralign;
+ uint64_t size;
+ const Script_options* ss = eei->layout->script_options();
+ if (ss->saw_sections_clause())
+ {
+ if (ss->script_sections()->get_output_section_info(section_name,
+ &address,
+ &load_address,
+ &addralign,
+ &size))
+ return this->value_from_script_output_section(address, load_address,
+ addralign, size);
+ }
+
+ gold_error("%s called on nonexistent output section '%s'",
+ this->function_name(), section_name);
+ return 0;
+}
+
+// ABSOLUTE function.
+
+class Absolute_expression : public Unary_expression
+{
+ public:
+ Absolute_expression(Expression* arg)
+ : Unary_expression(arg)
+ { }
+
+ uint64_t
+ value(const Expression_eval_info* eei)
+ {
+ uint64_t ret = this->arg_value(eei, NULL);
+ // Force the value to be absolute.
+ if (eei->result_section_pointer != NULL)
+ *eei->result_section_pointer = NULL;
+ return ret;
+ }
+
+ void
+ print(FILE* f) const
+ {
+ fprintf(f, "ABSOLUTE(");
+ this->arg_print(f);
+ fprintf(f, ")");
+ }
+};
+
+extern "C" Expression*
+script_exp_function_absolute(Expression* arg)
+{
+ return new Absolute_expression(arg);
+}
+
+// ALIGN function.
+
+class Align_expression : public Binary_expression
+{
+ public:
+ Align_expression(Expression* left, Expression* right)
+ : Binary_expression(left, right)
+ { }
+
+ uint64_t
+ value(const Expression_eval_info* eei)
+ {
+ Output_section* align_section;
+ uint64_t align = this->right_value(eei, &align_section, NULL);
+ if (align_section != NULL
+ && parameters->options().relocatable())
+ gold_warning(_("aligning to section relative value"));
+
+ if (eei->result_alignment_pointer != NULL
+ && align > *eei->result_alignment_pointer)
+ {
+ uint64_t a = align;
+ while ((a & (a - 1)) != 0)
+ a &= a - 1;
+ *eei->result_alignment_pointer = a;
+ }
+
+ uint64_t value = this->left_value(eei, eei->result_section_pointer, NULL);
+ if (align <= 1)
+ return value;
+ return ((value + align - 1) / align) * align;
+ }
+
+ void
+ print(FILE* f) const
+ { this->print_function(f, "ALIGN"); }
+};
+
+extern "C" Expression*
+script_exp_function_align(Expression* left, Expression* right)
+{
+ return new Align_expression(left, right);
+}
+
+// ASSERT function.
+
+class Assert_expression : public Unary_expression
+{
+ public:
+ Assert_expression(Expression* arg, const char* message, size_t length)
+ : Unary_expression(arg), message_(message, length)
+ { }
+
+ uint64_t
+ value(const Expression_eval_info* eei)
+ {
+ uint64_t value = this->arg_value(eei, eei->result_section_pointer);
+ if (!value && eei->check_assertions)
+ gold_error("%s", this->message_.c_str());
+ return value;
+ }
+
+ void
+ print(FILE* f) const
+ {
+ fprintf(f, "ASSERT(");
+ this->arg_print(f);
+ fprintf(f, ", %s)", this->message_.c_str());
+ }
+
+ private:
+ std::string message_;
+};
+
+extern "C" Expression*
+script_exp_function_assert(Expression* expr, const char* message,
+ size_t length)
+{
+ return new Assert_expression(expr, message, length);
+}
+
+// ADDR function.
+
+class Addr_expression : public Section_expression
+{
+ public:
+ Addr_expression(const char* section_name, size_t section_name_len)
+ : Section_expression(section_name, section_name_len)
+ { }
+
+ protected:
+ uint64_t
+ value_from_output_section(const Expression_eval_info* eei,
+ Output_section* os)
+ {
+ if (eei->result_section_pointer != NULL)
+ *eei->result_section_pointer = os;
+ return os->address();
+ }
+
+ uint64_t
+ value_from_script_output_section(uint64_t address, uint64_t, uint64_t,
+ uint64_t)
+ { return address; }
+
+ const char*
+ function_name() const
+ { return "ADDR"; }
+};
+
+extern "C" Expression*
+script_exp_function_addr(const char* section_name, size_t section_name_len)
+{
+ return new Addr_expression(section_name, section_name_len);
+}
+
+// ALIGNOF.
+
+class Alignof_expression : public Section_expression
+{
+ public:
+ Alignof_expression(const char* section_name, size_t section_name_len)
+ : Section_expression(section_name, section_name_len)
+ { }
+
+ protected:
+ uint64_t
+ value_from_output_section(const Expression_eval_info*,
+ Output_section* os)
+ { return os->addralign(); }
+
+ uint64_t
+ value_from_script_output_section(uint64_t, uint64_t, uint64_t addralign,
+ uint64_t)
+ { return addralign; }
+
+ const char*
+ function_name() const
+ { return "ALIGNOF"; }
+};
+
+extern "C" Expression*
+script_exp_function_alignof(const char* section_name, size_t section_name_len)
+{
+ return new Alignof_expression(section_name, section_name_len);
+}
+
+// CONSTANT. It would be nice if we could simply evaluate this
+// immediately and return an Integer_expression, but unfortunately we
+// don't know the target.
+
+class Constant_expression : public Expression
+{
+ public:
+ Constant_expression(const char* name, size_t length);
+
+ uint64_t
+ value(const Expression_eval_info*);
+
+ void
+ print(FILE* f) const;
+
+ private:
+ enum Constant_function
+ {
+ CONSTANT_MAXPAGESIZE,
+ CONSTANT_COMMONPAGESIZE
+ };
+
+ Constant_function function_;
+};
+
+Constant_expression::Constant_expression(const char* name, size_t length)
+{
+ if (length == 11 && strncmp(name, "MAXPAGESIZE", length) == 0)
+ this->function_ = CONSTANT_MAXPAGESIZE;
+ else if (length == 14 && strncmp(name, "COMMONPAGESIZE", length) == 0)
+ this->function_ = CONSTANT_COMMONPAGESIZE;
+ else
+ {
+ std::string s(name, length);
+ gold_error(_("unknown constant %s"), s.c_str());
+ this->function_ = CONSTANT_MAXPAGESIZE;
+ }
+}
+
+uint64_t
+Constant_expression::value(const Expression_eval_info*)
+{
+ switch (this->function_)
+ {
+ case CONSTANT_MAXPAGESIZE:
+ return parameters->target().abi_pagesize();
+ case CONSTANT_COMMONPAGESIZE:
+ return parameters->target().common_pagesize();
+ default:
+ gold_unreachable();
+ }
+}
+
+void
+Constant_expression::print(FILE* f) const
+{
+ const char* name;
+ switch (this->function_)
+ {
+ case CONSTANT_MAXPAGESIZE:
+ name = "MAXPAGESIZE";
+ break;
+ case CONSTANT_COMMONPAGESIZE:
+ name = "COMMONPAGESIZE";
+ break;
+ default:
+ gold_unreachable();
+ }
+ fprintf(f, "CONSTANT(%s)", name);
+}
+
+extern "C" Expression*
+script_exp_function_constant(const char* name, size_t length)
+{
+ return new Constant_expression(name, length);
+}
+
+// DATA_SEGMENT_ALIGN. FIXME: we don't implement this; we always fall
+// back to the general case.
+
+extern "C" Expression*
+script_exp_function_data_segment_align(Expression* left, Expression*)
+{
+ Expression* e1 = script_exp_function_align(script_exp_string(".", 1), left);
+ Expression* e2 = script_exp_binary_sub(left, script_exp_integer(1));
+ Expression* e3 = script_exp_binary_bitwise_and(script_exp_string(".", 1),
+ e2);
+ return script_exp_binary_add(e1, e3);
+}
+
+// DATA_SEGMENT_RELRO. FIXME: This is not implemented.
+
+extern "C" Expression*
+script_exp_function_data_segment_relro_end(Expression*, Expression* right)
+{
+ return right;
+}
+
+// DATA_SEGMENT_END. FIXME: This is not implemented.
+
+extern "C" Expression*
+script_exp_function_data_segment_end(Expression* val)
+{
+ return val;
+}
+
+// DEFINED function.
+
+class Defined_expression : public Expression
+{
+ public:
+ Defined_expression(const char* symbol_name, size_t symbol_name_len)
+ : symbol_name_(symbol_name, symbol_name_len)
+ { }
+
+ uint64_t
+ value(const Expression_eval_info* eei)
+ {
+ Symbol* sym = eei->symtab->lookup(this->symbol_name_.c_str());
+ return sym != NULL && sym->is_defined();
+ }
+
+ void
+ print(FILE* f) const
+ { fprintf(f, "DEFINED(%s)", this->symbol_name_.c_str()); }
+
+ private:
+ std::string symbol_name_;
+};
+
+extern "C" Expression*
+script_exp_function_defined(const char* symbol_name, size_t symbol_name_len)
+{
+ return new Defined_expression(symbol_name, symbol_name_len);
+}
+
+// LOADADDR function
+
+class Loadaddr_expression : public Section_expression
+{
+ public:
+ Loadaddr_expression(const char* section_name, size_t section_name_len)
+ : Section_expression(section_name, section_name_len)
+ { }
+
+ protected:
+ uint64_t
+ value_from_output_section(const Expression_eval_info* eei,
+ Output_section* os)
+ {
+ if (os->has_load_address())
+ return os->load_address();
+ else
+ {
+ if (eei->result_section_pointer != NULL)
+ *eei->result_section_pointer = os;
+ return os->address();
+ }
+ }
+
+ uint64_t
+ value_from_script_output_section(uint64_t, uint64_t load_address, uint64_t,
+ uint64_t)
+ { return load_address; }
+
+ const char*
+ function_name() const
+ { return "LOADADDR"; }
+};
+
+extern "C" Expression*
+script_exp_function_loadaddr(const char* section_name, size_t section_name_len)
+{
+ return new Loadaddr_expression(section_name, section_name_len);
+}
+
+// SIZEOF function
+
+class Sizeof_expression : public Section_expression
+{
+ public:
+ Sizeof_expression(const char* section_name, size_t section_name_len)
+ : Section_expression(section_name, section_name_len)
+ { }
+
+ protected:
+ uint64_t
+ value_from_output_section(const Expression_eval_info*,
+ Output_section* os)
+ {
+ // We can not use data_size here, as the size of the section may
+ // not have been finalized. Instead we get whatever the current
+ // size is. This will work correctly for backward references in
+ // linker scripts.
+ return os->current_data_size();
+ }
+
+ uint64_t
+ value_from_script_output_section(uint64_t, uint64_t, uint64_t,
+ uint64_t size)
+ { return size; }
+
+ const char*
+ function_name() const
+ { return "SIZEOF"; }
+};
+
+extern "C" Expression*
+script_exp_function_sizeof(const char* section_name, size_t section_name_len)
+{
+ return new Sizeof_expression(section_name, section_name_len);
+}
+
+// SIZEOF_HEADERS.
+
+class Sizeof_headers_expression : public Expression
+{
+ public:
+ Sizeof_headers_expression()
+ { }
+
+ uint64_t
+ value(const Expression_eval_info*);
+
+ void
+ print(FILE* f) const
+ { fprintf(f, "SIZEOF_HEADERS"); }
+};
+
+uint64_t
+Sizeof_headers_expression::value(const Expression_eval_info* eei)
+{
+ unsigned int ehdr_size;
+ unsigned int phdr_size;
+ if (parameters->target().get_size() == 32)
+ {
+ ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
+ phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
+ }
+ else if (parameters->target().get_size() == 64)
+ {
+ ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
+ phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
+ }
+ else
+ gold_unreachable();
+
+ return ehdr_size + phdr_size * eei->layout->expected_segment_count();
+}
+
+extern "C" Expression*
+script_exp_function_sizeof_headers()
+{
+ return new Sizeof_headers_expression();
+}
+
+// SEGMENT_START.
+
+class Segment_start_expression : public Unary_expression
+{
+ public:
+ Segment_start_expression(const char* segment_name, size_t segment_name_len,
+ Expression* default_value)
+ : Unary_expression(default_value),
+ segment_name_(segment_name, segment_name_len)
+ { }
+
+ uint64_t
+ value(const Expression_eval_info*);
+
+ void
+ print(FILE* f) const
+ {
+ fprintf(f, "SEGMENT_START(\"%s\", ", this->segment_name_.c_str());
+ this->arg_print(f);
+ fprintf(f, ")");
+ }
+
+ private:
+ std::string segment_name_;
+};
+
+uint64_t
+Segment_start_expression::value(const Expression_eval_info* eei)
+{
+ // Check for command line overrides.
+ if (parameters->options().user_set_Ttext()
+ && this->segment_name_ == ".text")
+ return parameters->options().Ttext();
+ else if (parameters->options().user_set_Tdata()
+ && this->segment_name_ == ".data")
+ return parameters->options().Tdata();
+ else if (parameters->options().user_set_Tbss()
+ && this->segment_name_ == ".bss")
+ return parameters->options().Tbss();
+ else
+ {
+ uint64_t ret = this->arg_value(eei, NULL);
+ // Force the value to be absolute.
+ if (eei->result_section_pointer != NULL)
+ *eei->result_section_pointer = NULL;
+ return ret;
+ }
+}
+
+extern "C" Expression*
+script_exp_function_segment_start(const char* segment_name,
+ size_t segment_name_len,
+ Expression* default_value)
+{
+ return new Segment_start_expression(segment_name, segment_name_len,
+ default_value);
+}
+
+} // End namespace gold.