/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mincrypt/rsa.h" #include "mincrypt/sha.h" #include "mincrypt/sha256.h" #include "ext4_sb.h" #include "squashfs_utils.h" #include "fs_mgr_priv.h" #include "fs_mgr_priv_verity.h" #define FSTAB_PREFIX "/fstab." #define VERITY_METADATA_SIZE 32768 #define VERITY_TABLE_RSA_KEY "/verity_key" #define VERITY_TABLE_HASH_IDX 8 #define VERITY_TABLE_SALT_IDX 9 #define METADATA_MAGIC 0x01564c54 #define METADATA_TAG_MAX_LENGTH 63 #define METADATA_EOD "eod" #define VERITY_LASTSIG_TAG "verity_lastsig" #define VERITY_STATE_TAG "verity_state" #define VERITY_STATE_HEADER 0x83c0ae9d #define VERITY_STATE_VERSION 1 #define VERITY_KMSG_RESTART "dm-verity device corrupted" #define VERITY_KMSG_BUFSIZE 1024 #define __STRINGIFY(x) #x #define STRINGIFY(x) __STRINGIFY(x) struct verity_state { uint32_t header; uint32_t version; int32_t mode; }; extern struct fs_info info; static RSAPublicKey *load_key(char *path) { FILE *f; RSAPublicKey *key; key = malloc(sizeof(RSAPublicKey)); if (!key) { ERROR("Can't malloc key\n"); return NULL; } f = fopen(path, "r"); if (!f) { ERROR("Can't open '%s'\n", path); free(key); return NULL; } if (!fread(key, sizeof(*key), 1, f)) { ERROR("Could not read key!"); fclose(f); free(key); return NULL; } if (key->len != RSANUMWORDS) { ERROR("Invalid key length %d\n", key->len); fclose(f); free(key); return NULL; } fclose(f); return key; } static int verify_table(char *signature, char *table, int table_length) { RSAPublicKey *key; uint8_t hash_buf[SHA256_DIGEST_SIZE]; int retval = -1; // Hash the table SHA256_hash((uint8_t*)table, table_length, hash_buf); // Now get the public key from the keyfile key = load_key(VERITY_TABLE_RSA_KEY); if (!key) { ERROR("Couldn't load verity keys"); goto out; } // verify the result if (!RSA_verify(key, (uint8_t*) signature, RSANUMBYTES, (uint8_t*) hash_buf, SHA256_DIGEST_SIZE)) { ERROR("Couldn't verify table."); goto out; } retval = 0; out: free(key); return retval; } static int invalidate_table(char *table, int table_length) { int n = 0; int idx = 0; int cleared = 0; while (n < table_length) { if (table[n++] == ' ') { ++idx; } if (idx != VERITY_TABLE_HASH_IDX && idx != VERITY_TABLE_SALT_IDX) { continue; } while (n < table_length && table[n] != ' ') { table[n++] = '0'; } if (++cleared == 2) { return 0; } } return -1; } static int squashfs_get_target_device_size(char *blk_device, uint64_t *device_size) { struct squashfs_info sq_info; if (squashfs_parse_sb(blk_device, &sq_info) >= 0) { *device_size = sq_info.bytes_used_4K_padded; return 0; } else { return -1; } } static int ext4_get_target_device_size(char *blk_device, uint64_t *device_size) { int data_device; struct ext4_super_block sb; struct fs_info info; info.len = 0; /* Only len is set to 0 to ask the device for real size. */ data_device = TEMP_FAILURE_RETRY(open(blk_device, O_RDONLY | O_CLOEXEC)); if (data_device == -1) { ERROR("Error opening block device (%s)", strerror(errno)); return -1; } if (TEMP_FAILURE_RETRY(lseek64(data_device, 1024, SEEK_SET)) < 0) { ERROR("Error seeking to superblock"); close(data_device); return -1; } if (TEMP_FAILURE_RETRY(read(data_device, &sb, sizeof(sb))) != sizeof(sb)) { ERROR("Error reading superblock"); close(data_device); return -1; } ext4_parse_sb(&sb, &info); *device_size = info.len; close(data_device); return 0; } static int get_fs_size(char *fs_type, char *blk_device, uint64_t *device_size) { if (!strcmp(fs_type, "ext4")) { if (ext4_get_target_device_size(blk_device, device_size) < 0) { ERROR("Failed to get ext4 fs size on %s.", blk_device); return -1; } } else if (!strcmp(fs_type, "squashfs")) { if (squashfs_get_target_device_size(blk_device, device_size) < 0) { ERROR("Failed to get squashfs fs size on %s.", blk_device); return -1; } } else { ERROR("%s: Unsupported filesystem for verity.", fs_type); return -1; } return 0; } static int read_verity_metadata(uint64_t device_size, char *block_device, char **signature, char **table) { unsigned magic_number; unsigned table_length; int protocol_version; int device; int retval = FS_MGR_SETUP_VERITY_FAIL; *signature = NULL; if (table) { *table = NULL; } device = TEMP_FAILURE_RETRY(open(block_device, O_RDONLY | O_CLOEXEC)); if (device == -1) { ERROR("Could not open block device %s (%s).\n", block_device, strerror(errno)); goto out; } if (TEMP_FAILURE_RETRY(lseek64(device, device_size, SEEK_SET)) < 0) { ERROR("Could not seek to start of verity metadata block.\n"); goto out; } // check the magic number if (TEMP_FAILURE_RETRY(read(device, &magic_number, sizeof(magic_number))) != sizeof(magic_number)) { ERROR("Couldn't read magic number!\n"); goto out; } #ifdef ALLOW_ADBD_DISABLE_VERITY if (magic_number == VERITY_METADATA_MAGIC_DISABLE) { retval = FS_MGR_SETUP_VERITY_DISABLED; INFO("Attempt to cleanly disable verity - only works in USERDEBUG"); goto out; } #endif if (magic_number != VERITY_METADATA_MAGIC_NUMBER) { ERROR("Couldn't find verity metadata at offset %"PRIu64"!\n", device_size); goto out; } // check the protocol version if (TEMP_FAILURE_RETRY(read(device, &protocol_version, sizeof(protocol_version))) != sizeof(protocol_version)) { ERROR("Couldn't read verity metadata protocol version!\n"); goto out; } if (protocol_version != 0) { ERROR("Got unknown verity metadata protocol version %d!\n", protocol_version); goto out; } // get the signature *signature = (char*) malloc(RSANUMBYTES); if (!*signature) { ERROR("Couldn't allocate memory for signature!\n"); goto out; } if (TEMP_FAILURE_RETRY(read(device, *signature, RSANUMBYTES)) != RSANUMBYTES) { ERROR("Couldn't read signature from verity metadata!\n"); goto out; } if (!table) { retval = FS_MGR_SETUP_VERITY_SUCCESS; goto out; } // get the size of the table if (TEMP_FAILURE_RETRY(read(device, &table_length, sizeof(table_length))) != sizeof(table_length)) { ERROR("Couldn't get the size of the verity table from metadata!\n"); goto out; } // get the table + null terminator *table = malloc(table_length + 1); if (!*table) { ERROR("Couldn't allocate memory for verity table!\n"); goto out; } if (TEMP_FAILURE_RETRY(read(device, *table, table_length)) != (ssize_t)table_length) { ERROR("Couldn't read the verity table from metadata!\n"); goto out; } (*table)[table_length] = 0; retval = FS_MGR_SETUP_VERITY_SUCCESS; out: if (device != -1) close(device); if (retval != FS_MGR_SETUP_VERITY_SUCCESS) { free(*signature); *signature = NULL; if (table) { free(*table); *table = NULL; } } return retval; } static void verity_ioctl_init(struct dm_ioctl *io, char *name, unsigned flags) { memset(io, 0, DM_BUF_SIZE); io->data_size = DM_BUF_SIZE; io->data_start = sizeof(struct dm_ioctl); io->version[0] = 4; io->version[1] = 0; io->version[2] = 0; io->flags = flags | DM_READONLY_FLAG; if (name) { strlcpy(io->name, name, sizeof(io->name)); } } static int create_verity_device(struct dm_ioctl *io, char *name, int fd) { verity_ioctl_init(io, name, 1); if (ioctl(fd, DM_DEV_CREATE, io)) { ERROR("Error creating device mapping (%s)", strerror(errno)); return -1; } return 0; } static int get_verity_device_name(struct dm_ioctl *io, char *name, int fd, char **dev_name) { verity_ioctl_init(io, name, 0); if (ioctl(fd, DM_DEV_STATUS, io)) { ERROR("Error fetching verity device number (%s)", strerror(errno)); return -1; } int dev_num = (io->dev & 0xff) | ((io->dev >> 12) & 0xfff00); if (asprintf(dev_name, "/dev/block/dm-%u", dev_num) < 0) { ERROR("Error getting verity block device name (%s)", strerror(errno)); return -1; } return 0; } static int load_verity_table(struct dm_ioctl *io, char *name, uint64_t device_size, int fd, char *table, int mode) { char *verity_params; char *buffer = (char*) io; size_t bufsize; verity_ioctl_init(io, name, DM_STATUS_TABLE_FLAG); struct dm_target_spec *tgt = (struct dm_target_spec *) &buffer[sizeof(struct dm_ioctl)]; // set tgt arguments here io->target_count = 1; tgt->status=0; tgt->sector_start=0; tgt->length=device_size/512; strcpy(tgt->target_type, "verity"); // build the verity params here verity_params = buffer + sizeof(struct dm_ioctl) + sizeof(struct dm_target_spec); bufsize = DM_BUF_SIZE - (verity_params - buffer); if (mode == VERITY_MODE_EIO) { // allow operation with older dm-verity drivers that are unaware // of the mode parameter by omitting it; this also means that we // cannot use logging mode with these drivers, they always cause // an I/O error for corrupted blocks strcpy(verity_params, table); } else if (snprintf(verity_params, bufsize, "%s %d", table, mode) < 0) { return -1; } // set next target boundary verity_params += strlen(verity_params) + 1; verity_params = (char*) (((unsigned long)verity_params + 7) & ~8); tgt->next = verity_params - buffer; // send the ioctl to load the verity table if (ioctl(fd, DM_TABLE_LOAD, io)) { ERROR("Error loading verity table (%s)", strerror(errno)); return -1; } return 0; } static int resume_verity_table(struct dm_ioctl *io, char *name, int fd) { verity_ioctl_init(io, name, 0); if (ioctl(fd, DM_DEV_SUSPEND, io)) { ERROR("Error activating verity device (%s)", strerror(errno)); return -1; } return 0; } static int test_access(char *device) { int tries = 25; while (tries--) { if (!access(device, F_OK) || errno != ENOENT) { return 0; } usleep(40 * 1000); } return -1; } static int check_verity_restart(const char *fname) { char buffer[VERITY_KMSG_BUFSIZE + 1]; int fd; int rc = 0; ssize_t size; struct stat s; fd = TEMP_FAILURE_RETRY(open(fname, O_RDONLY | O_CLOEXEC)); if (fd == -1) { if (errno != ENOENT) { ERROR("Failed to open %s (%s)\n", fname, strerror(errno)); } goto out; } if (fstat(fd, &s) == -1) { ERROR("Failed to fstat %s (%s)\n", fname, strerror(errno)); goto out; } size = VERITY_KMSG_BUFSIZE; if (size > s.st_size) { size = s.st_size; } if (lseek(fd, s.st_size - size, SEEK_SET) == -1) { ERROR("Failed to lseek %jd %s (%s)\n", (intmax_t)(s.st_size - size), fname, strerror(errno)); goto out; } if (TEMP_FAILURE_RETRY(read(fd, buffer, size)) != size) { ERROR("Failed to read %zd bytes from %s (%s)\n", size, fname, strerror(errno)); goto out; } buffer[size] = '\0'; if (strstr(buffer, VERITY_KMSG_RESTART) != NULL) { rc = 1; } out: if (fd != -1) { close(fd); } return rc; } static int was_verity_restart() { static const char *files[] = { "/sys/fs/pstore/console-ramoops", "/proc/last_kmsg", NULL }; int i; for (i = 0; files[i]; ++i) { if (check_verity_restart(files[i])) { return 1; } } return 0; } static int metadata_add(FILE *fp, long start, const char *tag, unsigned int length, off64_t *offset) { if (fseek(fp, start, SEEK_SET) < 0 || fprintf(fp, "%s %u\n", tag, length) < 0) { return -1; } *offset = ftell(fp); if (fseek(fp, length, SEEK_CUR) < 0 || fprintf(fp, METADATA_EOD " 0\n") < 0) { return -1; } return 0; } static int metadata_find(const char *fname, const char *stag, unsigned int slength, off64_t *offset) { FILE *fp = NULL; char tag[METADATA_TAG_MAX_LENGTH + 1]; int rc = -1; int n; long start = 0x4000; /* skip cryptfs metadata area */ uint32_t magic; unsigned int length = 0; if (!fname) { return -1; } fp = fopen(fname, "r+"); if (!fp) { ERROR("Failed to open %s (%s)\n", fname, strerror(errno)); goto out; } /* check magic */ if (fseek(fp, start, SEEK_SET) < 0 || fread(&magic, sizeof(magic), 1, fp) != 1) { ERROR("Failed to read magic from %s (%s)\n", fname, strerror(errno)); goto out; } if (magic != METADATA_MAGIC) { magic = METADATA_MAGIC; if (fseek(fp, start, SEEK_SET) < 0 || fwrite(&magic, sizeof(magic), 1, fp) != 1) { ERROR("Failed to write magic to %s (%s)\n", fname, strerror(errno)); goto out; } rc = metadata_add(fp, start + sizeof(magic), stag, slength, offset); if (rc < 0) { ERROR("Failed to add metadata to %s: %s\n", fname, strerror(errno)); } goto out; } start += sizeof(magic); while (1) { n = fscanf(fp, "%" STRINGIFY(METADATA_TAG_MAX_LENGTH) "s %u\n", tag, &length); if (n == 2 && strcmp(tag, METADATA_EOD)) { /* found a tag */ start = ftell(fp); if (!strcmp(tag, stag) && length == slength) { *offset = start; rc = 0; goto out; } start += length; if (fseek(fp, length, SEEK_CUR) < 0) { ERROR("Failed to seek %s (%s)\n", fname, strerror(errno)); goto out; } } else { rc = metadata_add(fp, start, stag, slength, offset); if (rc < 0) { ERROR("Failed to write metadata to %s: %s\n", fname, strerror(errno)); } goto out; } } out: if (fp) { fflush(fp); fclose(fp); } return rc; } static int write_verity_state(const char *fname, off64_t offset, int32_t mode) { int fd; int rc = -1; struct verity_state s = { VERITY_STATE_HEADER, VERITY_STATE_VERSION, mode }; fd = TEMP_FAILURE_RETRY(open(fname, O_WRONLY | O_SYNC | O_CLOEXEC)); if (fd == -1) { ERROR("Failed to open %s (%s)\n", fname, strerror(errno)); goto out; } if (TEMP_FAILURE_RETRY(pwrite64(fd, &s, sizeof(s), offset)) != sizeof(s)) { ERROR("Failed to write %zu bytes to %s to offset %" PRIu64 " (%s)\n", sizeof(s), fname, offset, strerror(errno)); goto out; } rc = 0; out: if (fd != -1) { close(fd); } return rc; } static int read_verity_state(const char *fname, off64_t offset, int *mode) { int fd = -1; int rc = -1; struct verity_state s; fd = TEMP_FAILURE_RETRY(open(fname, O_RDONLY | O_CLOEXEC)); if (fd == -1) { ERROR("Failed to open %s (%s)\n", fname, strerror(errno)); goto out; } if (TEMP_FAILURE_RETRY(pread64(fd, &s, sizeof(s), offset)) != sizeof(s)) { ERROR("Failed to read %zu bytes from %s offset %" PRIu64 " (%s)\n", sizeof(s), fname, offset, strerror(errno)); goto out; } if (s.header != VERITY_STATE_HEADER) { /* space allocated, but no state written. write default state */ *mode = VERITY_MODE_DEFAULT; rc = write_verity_state(fname, offset, *mode); goto out; } if (s.version != VERITY_STATE_VERSION) { ERROR("Unsupported verity state version (%u)\n", s.version); goto out; } if (s.mode < VERITY_MODE_EIO || s.mode > VERITY_MODE_LAST) { ERROR("Unsupported verity mode (%u)\n", s.mode); goto out; } *mode = s.mode; rc = 0; out: if (fd != -1) { close(fd); } return rc; } static int compare_last_signature(struct fstab_rec *fstab, int *match) { char tag[METADATA_TAG_MAX_LENGTH + 1]; char *signature = NULL; int fd = -1; int rc = -1; uint8_t curr[SHA256_DIGEST_SIZE]; uint8_t prev[SHA256_DIGEST_SIZE]; off64_t offset = 0; uint64_t device_size; *match = 1; // get verity filesystem size if (get_fs_size(fstab->fs_type, fstab->blk_device, &device_size) < 0) { ERROR("Failed to get filesystem size\n"); goto out; } if (read_verity_metadata(device_size, fstab->blk_device, &signature, NULL) < 0) { ERROR("Failed to read verity signature from %s\n", fstab->mount_point); goto out; } SHA256_hash(signature, RSANUMBYTES, curr); if (snprintf(tag, sizeof(tag), VERITY_LASTSIG_TAG "_%s", basename(fstab->mount_point)) >= (int)sizeof(tag)) { ERROR("Metadata tag name too long for %s\n", fstab->mount_point); goto out; } if (metadata_find(fstab->verity_loc, tag, SHA256_DIGEST_SIZE, &offset) < 0) { goto out; } fd = TEMP_FAILURE_RETRY(open(fstab->verity_loc, O_RDWR | O_SYNC | O_CLOEXEC)); if (fd == -1) { ERROR("Failed to open %s: %s\n", fstab->verity_loc, strerror(errno)); goto out; } if (TEMP_FAILURE_RETRY(pread64(fd, prev, sizeof(prev), offset)) != sizeof(prev)) { ERROR("Failed to read %zu bytes from %s offset %" PRIu64 " (%s)\n", sizeof(prev), fstab->verity_loc, offset, strerror(errno)); goto out; } *match = !memcmp(curr, prev, SHA256_DIGEST_SIZE); if (!*match) { /* update current signature hash */ if (TEMP_FAILURE_RETRY(pwrite64(fd, curr, sizeof(curr), offset)) != sizeof(curr)) { ERROR("Failed to write %zu bytes to %s offset %" PRIu64 " (%s)\n", sizeof(curr), fstab->verity_loc, offset, strerror(errno)); goto out; } } rc = 0; out: free(signature); if (fd != -1) { close(fd); } return rc; } static int get_verity_state_offset(struct fstab_rec *fstab, off64_t *offset) { char tag[METADATA_TAG_MAX_LENGTH + 1]; if (snprintf(tag, sizeof(tag), VERITY_STATE_TAG "_%s", basename(fstab->mount_point)) >= (int)sizeof(tag)) { ERROR("Metadata tag name too long for %s\n", fstab->mount_point); return -1; } return metadata_find(fstab->verity_loc, tag, sizeof(struct verity_state), offset); } static int load_verity_state(struct fstab_rec *fstab, int *mode) { char propbuf[PROPERTY_VALUE_MAX]; int match = 0; off64_t offset = 0; /* use the kernel parameter if set */ property_get("ro.boot.veritymode", propbuf, ""); if (*propbuf != '\0') { if (!strcmp(propbuf, "enforcing")) { *mode = VERITY_MODE_DEFAULT; return 0; } else if (!strcmp(propbuf, "logging")) { *mode = VERITY_MODE_LOGGING; return 0; } else { INFO("Unknown value %s for veritymode; ignoring", propbuf); } } if (get_verity_state_offset(fstab, &offset) < 0) { /* fall back to stateless behavior */ *mode = VERITY_MODE_EIO; return 0; } if (was_verity_restart()) { /* device was restarted after dm-verity detected a corrupted * block, so switch to logging mode */ *mode = VERITY_MODE_LOGGING; return write_verity_state(fstab->verity_loc, offset, *mode); } if (!compare_last_signature(fstab, &match) && !match) { /* partition has been reflashed, reset dm-verity state */ *mode = VERITY_MODE_DEFAULT; return write_verity_state(fstab->verity_loc, offset, *mode); } return read_verity_state(fstab->verity_loc, offset, mode); } int fs_mgr_load_verity_state(int *mode) { char fstab_filename[PROPERTY_VALUE_MAX + sizeof(FSTAB_PREFIX)]; char propbuf[PROPERTY_VALUE_MAX]; int rc = -1; int i; int current; struct fstab *fstab = NULL; /* return the default mode, unless any of the verified partitions are in * logging mode, in which case return that */ *mode = VERITY_MODE_DEFAULT; property_get("ro.hardware", propbuf, ""); snprintf(fstab_filename, sizeof(fstab_filename), FSTAB_PREFIX"%s", propbuf); fstab = fs_mgr_read_fstab(fstab_filename); if (!fstab) { ERROR("Failed to read %s\n", fstab_filename); goto out; } for (i = 0; i < fstab->num_entries; i++) { if (!fs_mgr_is_verified(&fstab->recs[i])) { continue; } rc = load_verity_state(&fstab->recs[i], ¤t); if (rc < 0) { continue; } if (current == VERITY_MODE_LOGGING) { *mode = current; } } rc = 0; out: if (fstab) { fs_mgr_free_fstab(fstab); } return rc; } int fs_mgr_update_verity_state(fs_mgr_verity_state_callback callback) { _Alignas(struct dm_ioctl) char buffer[DM_BUF_SIZE]; bool use_state = true; char fstab_filename[PROPERTY_VALUE_MAX + sizeof(FSTAB_PREFIX)]; char *mount_point; char propbuf[PROPERTY_VALUE_MAX]; char *status; int fd = -1; int i; int mode; int rc = -1; off64_t offset = 0; struct dm_ioctl *io = (struct dm_ioctl *) buffer; struct fstab *fstab = NULL; /* check if we need to store the state */ property_get("ro.boot.veritymode", propbuf, ""); if (*propbuf != '\0') { if (fs_mgr_load_verity_state(&mode) == -1) { return -1; } use_state = false; /* state is kept by the bootloader */ } fd = TEMP_FAILURE_RETRY(open("/dev/device-mapper", O_RDWR | O_CLOEXEC)); if (fd == -1) { ERROR("Error opening device mapper (%s)\n", strerror(errno)); goto out; } property_get("ro.hardware", propbuf, ""); snprintf(fstab_filename, sizeof(fstab_filename), FSTAB_PREFIX"%s", propbuf); fstab = fs_mgr_read_fstab(fstab_filename); if (!fstab) { ERROR("Failed to read %s\n", fstab_filename); goto out; } for (i = 0; i < fstab->num_entries; i++) { if (!fs_mgr_is_verified(&fstab->recs[i])) { continue; } if (use_state) { if (get_verity_state_offset(&fstab->recs[i], &offset) < 0 || read_verity_state(fstab->recs[i].verity_loc, offset, &mode) < 0) { continue; } } mount_point = basename(fstab->recs[i].mount_point); verity_ioctl_init(io, mount_point, 0); if (ioctl(fd, DM_TABLE_STATUS, io)) { ERROR("Failed to query DM_TABLE_STATUS for %s (%s)\n", mount_point, strerror(errno)); continue; } status = &buffer[io->data_start + sizeof(struct dm_target_spec)]; if (use_state && *status == 'C') { if (write_verity_state(fstab->recs[i].verity_loc, offset, VERITY_MODE_LOGGING) < 0) { continue; } } if (callback) { callback(&fstab->recs[i], mount_point, mode, *status); } } rc = 0; out: if (fstab) { fs_mgr_free_fstab(fstab); } if (fd) { close(fd); } return rc; } int fs_mgr_setup_verity(struct fstab_rec *fstab) { int retval = FS_MGR_SETUP_VERITY_FAIL; int fd = -1; int mode; char *verity_blk_name = 0; char *verity_table = 0; char *verity_table_signature = 0; int verity_table_length = 0; uint64_t device_size = 0; _Alignas(struct dm_ioctl) char buffer[DM_BUF_SIZE]; struct dm_ioctl *io = (struct dm_ioctl *) buffer; char *mount_point = basename(fstab->mount_point); // set the dm_ioctl flags io->flags |= 1; io->target_count = 1; // get verity filesystem size if (get_fs_size(fstab->fs_type, fstab->blk_device, &device_size) < 0) { return retval; } // read the verity block at the end of the block device // send error code up the chain so we can detect attempts to disable verity retval = read_verity_metadata(device_size, fstab->blk_device, &verity_table_signature, &verity_table); if (retval < 0) { goto out; } retval = FS_MGR_SETUP_VERITY_FAIL; verity_table_length = strlen(verity_table); // get the device mapper fd if ((fd = open("/dev/device-mapper", O_RDWR)) < 0) { ERROR("Error opening device mapper (%s)", strerror(errno)); goto out; } // create the device if (create_verity_device(io, mount_point, fd) < 0) { ERROR("Couldn't create verity device!"); goto out; } // get the name of the device file if (get_verity_device_name(io, mount_point, fd, &verity_blk_name) < 0) { ERROR("Couldn't get verity device number!"); goto out; } if (load_verity_state(fstab, &mode) < 0) { /* if accessing or updating the state failed, switch to the default * safe mode. This makes sure the device won't end up in an endless * restart loop, and no corrupted data will be exposed to userspace * without a warning. */ mode = VERITY_MODE_EIO; } // verify the signature on the table if (verify_table(verity_table_signature, verity_table, verity_table_length) < 0) { if (mode == VERITY_MODE_LOGGING) { // the user has been warned, allow mounting without dm-verity retval = FS_MGR_SETUP_VERITY_SUCCESS; goto out; } // invalidate root hash and salt to trigger device-specific recovery if (invalidate_table(verity_table, verity_table_length) < 0) { goto out; } } INFO("Enabling dm-verity for %s (mode %d)\n", mount_point, mode); // load the verity mapping table if (load_verity_table(io, mount_point, device_size, fd, verity_table, mode) < 0) { goto out; } // activate the device if (resume_verity_table(io, mount_point, fd) < 0) { goto out; } // mark the underlying block device as read-only fs_mgr_set_blk_ro(fstab->blk_device); // assign the new verity block device as the block device free(fstab->blk_device); fstab->blk_device = verity_blk_name; verity_blk_name = 0; // make sure we've set everything up properly if (test_access(fstab->blk_device) < 0) { goto out; } retval = FS_MGR_SETUP_VERITY_SUCCESS; out: if (fd != -1) { close(fd); } free(verity_table); free(verity_table_signature); free(verity_blk_name); return retval; }