aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/cpuset.c
blob: 1133062395e2a38c28856c375521a264dc697be6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *  Copyright (C) 2006 Google, Inc
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *  2006 Rework by Paul Menage to use generic cgroups
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
#include <linux/mempolicy.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
#include <linux/rcupdate.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/security.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>

#include <asm/uaccess.h>
#include <asm/atomic.h>
#include <linux/mutex.h>

/*
 * Tracks how many cpusets are currently defined in system.
 * When there is only one cpuset (the root cpuset) we can
 * short circuit some hooks.
 */
int number_of_cpusets __read_mostly;

/* Retrieve the cpuset from a cgroup */
struct cgroup_subsys cpuset_subsys;
struct cpuset;

/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
	time_t time;		/* clock (secs) when val computed */
	spinlock_t lock;	/* guards read or write of above */
};

struct cpuset {
	struct cgroup_subsys_state css;

	unsigned long flags;		/* "unsigned long" so bitops work */
	cpumask_t cpus_allowed;		/* CPUs allowed to tasks in cpuset */
	nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */

	struct cpuset *parent;		/* my parent */

	/*
	 * Copy of global cpuset_mems_generation as of the most
	 * recent time this cpuset changed its mems_allowed.
	 */
	int mems_generation;

	struct fmeter fmeter;		/* memory_pressure filter */
};

/* Retrieve the cpuset for a cgroup */
static inline struct cpuset *cgroup_cs(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
			    struct cpuset, css);
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
	return container_of(task_subsys_state(task, cpuset_subsys_id),
			    struct cpuset, css);
}


/* bits in struct cpuset flags field */
typedef enum {
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
	CS_MEMORY_MIGRATE,
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
} cpuset_flagbits_t;

/* convenient tests for these bits */
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
}

static inline int is_memory_migrate(const struct cpuset *cs)
{
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
}

static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

/*
 * Increment this integer everytime any cpuset changes its
 * mems_allowed value.  Users of cpusets can track this generation
 * number, and avoid having to lock and reload mems_allowed unless
 * the cpuset they're using changes generation.
 *
 * A single, global generation is needed because attach_task() could
 * reattach a task to a different cpuset, which must not have its
 * generation numbers aliased with those of that tasks previous cpuset.
 *
 * Generations are needed for mems_allowed because one task cannot
 * modify anothers memory placement.  So we must enable every task,
 * on every visit to __alloc_pages(), to efficiently check whether
 * its current->cpuset->mems_allowed has changed, requiring an update
 * of its current->mems_allowed.
 *
 * Since cpuset_mems_generation is guarded by manage_mutex,
 * there is no need to mark it atomic.
 */
static int cpuset_mems_generation;

static struct cpuset top_cpuset = {
	.flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
	.cpus_allowed = CPU_MASK_ALL,
	.mems_allowed = NODE_MASK_ALL,
};

/*
 * We have two global cpuset mutexes below.  They can nest.
 * It is ok to first take manage_mutex, then nest callback_mutex.  We also
 * require taking task_lock() when dereferencing a tasks cpuset pointer.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold both mutexes to modify cpusets.  If a task
 * holds manage_mutex, then it blocks others wanting that mutex,
 * ensuring that it is the only task able to also acquire callback_mutex
 * and be able to modify cpusets.  It can perform various checks on
 * the cpuset structure first, knowing nothing will change.  It can
 * also allocate memory while just holding manage_mutex.  While it is
 * performing these checks, various callback routines can briefly
 * acquire callback_mutex to query cpusets.  Once it is ready to make
 * the changes, it takes callback_mutex, blocking everyone else.
 *
 * Calls to the kernel memory allocator can not be made while holding
 * callback_mutex, as that would risk double tripping on callback_mutex
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
 * If a task is only holding callback_mutex, then it has read-only
 * access to cpusets.
 *
 * The task_struct fields mems_allowed and mems_generation may only
 * be accessed in the context of that task, so require no locks.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding manage_mutex or callback_mutex can't rely
 * on the count field not changing.  However, if the count goes to
 * zero, then only attach_task(), which holds both mutexes, can
 * increment it again.  Because a count of zero means that no tasks
 * are currently attached, therefore there is no way a task attached
 * to that cpuset can fork (the other way to increment the count).
 * So code holding manage_mutex or callback_mutex can safely assume that
 * if the count is zero, it will stay zero.  Similarly, if a task
 * holds manage_mutex or callback_mutex on a cpuset with zero count, it
 * knows that the cpuset won't be removed, as cpuset_rmdir() needs
 * both of those mutexes.
 *
 * The cpuset_common_file_write handler for operations that modify
 * the cpuset hierarchy holds manage_mutex across the entire operation,
 * single threading all such cpuset modifications across the system.
 *
 * The cpuset_common_file_read() handlers only hold callback_mutex across
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
 * The fork and exit callbacks cpuset_fork() and cpuset_exit(), don't
 * (usually) take either mutex.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cpuset_exit(),
 * when a task in a notify_on_release cpuset exits.  Then manage_mutex
 * is taken, and if the cpuset count is zero, a usermode call made
 * to /sbin/cpuset_release_agent with the name of the cpuset (path
 * relative to the root of cpuset file system) as the argument.
 *
 * A cpuset can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cpusets is empty.  Since all
 * tasks in the system use _some_ cpuset, and since there is always at
 * least one task in the system (init), therefore, top_cpuset
 * always has either children cpusets and/or using tasks.  So we don't
 * need a special hack to ensure that top_cpuset cannot be deleted.
 *
 * The above "Tale of Two Semaphores" would be complete, but for:
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of attach_task(),
 * which overwrites one tasks cpuset pointer with another.  It does
 * so using both mutexes, however there are several performance
 * critical places that need to reference task->cpuset without the
 * expense of grabbing a system global mutex.  Therefore except as
 * noted below, when dereferencing or, as in attach_task(), modifying
 * a tasks cpuset pointer we use task_lock(), which acts on a spinlock
 * (task->alloc_lock) already in the task_struct routinely used for
 * such matters.
 *
 * P.S.  One more locking exception.  RCU is used to guard the
 * update of a tasks cpuset pointer by attach_task() and the
 * access of task->cpuset->mems_generation via that pointer in
 * the routine cpuset_update_task_memory_state().
 */

static DEFINE_MUTEX(callback_mutex);

/* This is ugly, but preserves the userspace API for existing cpuset
 * users. If someone tries to mount the "cpuset" filesystem, we
 * silently switch it to mount "cgroup" instead */
static int cpuset_get_sb(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data, struct vfsmount *mnt)
{
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
	int ret = -ENODEV;
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
		ret = cgroup_fs->get_sb(cgroup_fs, flags,
					   unused_dev_name, mountopts, mnt);
		put_filesystem(cgroup_fs);
	}
	return ret;
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
	.get_sb = cpuset_get_sb,
};

/*
 * Return in *pmask the portion of a cpusets's cpus_allowed that
 * are online.  If none are online, walk up the cpuset hierarchy
 * until we find one that does have some online cpus.  If we get
 * all the way to the top and still haven't found any online cpus,
 * return cpu_online_map.  Or if passed a NULL cs from an exit'ing
 * task, return cpu_online_map.
 *
 * One way or another, we guarantee to return some non-empty subset
 * of cpu_online_map.
 *
 * Call with callback_mutex held.
 */

static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
{
	while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
		cs = cs->parent;
	if (cs)
		cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
	else
		*pmask = cpu_online_map;
	BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
 * online mems.  If we get all the way to the top and still haven't
 * found any online mems, return node_states[N_HIGH_MEMORY].
 *
 * One way or another, we guarantee to return some non-empty subset
 * of node_states[N_HIGH_MEMORY].
 *
 * Call with callback_mutex held.
 */

static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
{
	while (cs && !nodes_intersects(cs->mems_allowed,
					node_states[N_HIGH_MEMORY]))
		cs = cs->parent;
	if (cs)
		nodes_and(*pmask, cs->mems_allowed,
					node_states[N_HIGH_MEMORY]);
	else
		*pmask = node_states[N_HIGH_MEMORY];
	BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
}

/**
 * cpuset_update_task_memory_state - update task memory placement
 *
 * If the current tasks cpusets mems_allowed changed behind our
 * backs, update current->mems_allowed, mems_generation and task NUMA
 * mempolicy to the new value.
 *
 * Task mempolicy is updated by rebinding it relative to the
 * current->cpuset if a task has its memory placement changed.
 * Do not call this routine if in_interrupt().
 *
 * Call without callback_mutex or task_lock() held.  May be
 * called with or without manage_mutex held.  Thanks in part to
 * 'the_top_cpuset_hack', the tasks cpuset pointer will never
 * be NULL.  This routine also might acquire callback_mutex and
 * current->mm->mmap_sem during call.
 *
 * Reading current->cpuset->mems_generation doesn't need task_lock
 * to guard the current->cpuset derefence, because it is guarded
 * from concurrent freeing of current->cpuset by attach_task(),
 * using RCU.
 *
 * The rcu_dereference() is technically probably not needed,
 * as I don't actually mind if I see a new cpuset pointer but
 * an old value of mems_generation.  However this really only
 * matters on alpha systems using cpusets heavily.  If I dropped
 * that rcu_dereference(), it would save them a memory barrier.
 * For all other arch's, rcu_dereference is a no-op anyway, and for
 * alpha systems not using cpusets, another planned optimization,
 * avoiding the rcu critical section for tasks in the root cpuset
 * which is statically allocated, so can't vanish, will make this
 * irrelevant.  Better to use RCU as intended, than to engage in
 * some cute trick to save a memory barrier that is impossible to
 * test, for alpha systems using cpusets heavily, which might not
 * even exist.
 *
 * This routine is needed to update the per-task mems_allowed data,
 * within the tasks context, when it is trying to allocate memory
 * (in various mm/mempolicy.c routines) and notices that some other
 * task has been modifying its cpuset.
 */

void cpuset_update_task_memory_state(void)
{
	int my_cpusets_mem_gen;
	struct task_struct *tsk = current;
	struct cpuset *cs;

	if (task_cs(tsk) == &top_cpuset) {
		/* Don't need rcu for top_cpuset.  It's never freed. */
		my_cpusets_mem_gen = top_cpuset.mems_generation;
	} else {
		rcu_read_lock();
		my_cpusets_mem_gen = task_cs(current)->mems_generation;
		rcu_read_unlock();
	}

	if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
		mutex_lock(&callback_mutex);
		task_lock(tsk);
		cs = task_cs(tsk); /* Maybe changed when task not locked */
		guarantee_online_mems(cs, &tsk->mems_allowed);
		tsk->cpuset_mems_generation = cs->mems_generation;
		if (is_spread_page(cs))
			tsk->flags |= PF_SPREAD_PAGE;
		else
			tsk->flags &= ~PF_SPREAD_PAGE;
		if (is_spread_slab(cs))
			tsk->flags |= PF_SPREAD_SLAB;
		else
			tsk->flags &= ~PF_SPREAD_SLAB;
		task_unlock(tsk);
		mutex_unlock(&callback_mutex);
		mpol_rebind_task(tsk, &tsk->mems_allowed);
	}
}

/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
 * are only set if the other's are set.  Call holding manage_mutex.
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
	return	cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
 * manage_mutex held.
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
{
	struct cgroup *cont;
	struct cpuset *c, *par;

	/* Each of our child cpusets must be a subset of us */
	list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
		if (!is_cpuset_subset(cgroup_cs(cont), trial))
			return -EBUSY;
	}

	/* Remaining checks don't apply to root cpuset */
	if (cur == &top_cpuset)
		return 0;

	par = cur->parent;

	/* We must be a subset of our parent cpuset */
	if (!is_cpuset_subset(trial, par))
		return -EACCES;

	/* If either I or some sibling (!= me) is exclusive, we can't overlap */
	list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
		c = cgroup_cs(cont);
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
		    cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
			return -EINVAL;
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
			return -EINVAL;
	}

	return 0;
}

/*
 * Call with manage_mutex held.  May take callback_mutex during call.
 */

static int update_cpumask(struct cpuset *cs, char *buf)
{
	struct cpuset trialcs;
	int retval;

	/* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
	if (cs == &top_cpuset)
		return -EACCES;

	trialcs = *cs;

	/*
	 * We allow a cpuset's cpus_allowed to be empty; if it has attached
	 * tasks, we'll catch it later when we validate the change and return
	 * -ENOSPC.
	 */
	if (!buf[0] || (buf[0] == '\n' && !buf[1])) {
		cpus_clear(trialcs.cpus_allowed);
	} else {
		retval = cpulist_parse(buf, trialcs.cpus_allowed);
		if (retval < 0)
			return retval;
	}
	cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
	/* cpus_allowed cannot be empty for a cpuset with attached tasks. */
	if (cgroup_task_count(cs->css.cgroup) &&
	    cpus_empty(trialcs.cpus_allowed))
		return -ENOSPC;
	retval = validate_change(cs, &trialcs);
	if (retval < 0)
		return retval;
	mutex_lock(&callback_mutex);
	cs->cpus_allowed = trialcs.cpus_allowed;
	mutex_unlock(&callback_mutex);
	return 0;
}

/*
 * cpuset_migrate_mm
 *
 *    Migrate memory region from one set of nodes to another.
 *
 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 *    so that the migration code can allocate pages on these nodes.
 *
 *    Call holding manage_mutex, so our current->cpuset won't change
 *    during this call, as manage_mutex holds off any attach_task()
 *    calls.  Therefore we don't need to take task_lock around the
 *    call to guarantee_online_mems(), as we know no one is changing
 *    our tasks cpuset.
 *
 *    Hold callback_mutex around the two modifications of our tasks
 *    mems_allowed to synchronize with cpuset_mems_allowed().
 *
 *    While the mm_struct we are migrating is typically from some
 *    other task, the task_struct mems_allowed that we are hacking
 *    is for our current task, which must allocate new pages for that
 *    migrating memory region.
 *
 *    We call cpuset_update_task_memory_state() before hacking
 *    our tasks mems_allowed, so that we are assured of being in
 *    sync with our tasks cpuset, and in particular, callbacks to
 *    cpuset_update_task_memory_state() from nested page allocations
 *    won't see any mismatch of our cpuset and task mems_generation
 *    values, so won't overwrite our hacked tasks mems_allowed
 *    nodemask.
 */

static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
	struct task_struct *tsk = current;

	cpuset_update_task_memory_state();

	mutex_lock(&callback_mutex);
	tsk->mems_allowed = *to;
	mutex_unlock(&callback_mutex);

	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);

	mutex_lock(&callback_mutex);
	guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
	mutex_unlock(&callback_mutex);
}

/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
 * cpusets mems_allowed and mems_generation, and for each
 * task in the cpuset, rebind any vma mempolicies and if
 * the cpuset is marked 'memory_migrate', migrate the tasks
 * pages to the new memory.
 *
 * Call with manage_mutex held.  May take callback_mutex during call.
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */

static void *cpuset_being_rebound;

static int update_nodemask(struct cpuset *cs, char *buf)
{
	struct cpuset trialcs;
	nodemask_t oldmem;
	struct task_struct *p;
	struct mm_struct **mmarray;
	int i, n, ntasks;
	int migrate;
	int fudge;
	int retval;
	struct cgroup_iter it;

	/*
	 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
	 * it's read-only
	 */
	if (cs == &top_cpuset)
		return -EACCES;

	trialcs = *cs;

	/*
	 * We allow a cpuset's mems_allowed to be empty; if it has attached
	 * tasks, we'll catch it later when we validate the change and return
	 * -ENOSPC.
	 */
	if (!buf[0] || (buf[0] == '\n' && !buf[1])) {
		nodes_clear(trialcs.mems_allowed);
	} else {
		retval = nodelist_parse(buf, trialcs.mems_allowed);
		if (retval < 0)
			goto done;
		if (!nodes_intersects(trialcs.mems_allowed,
						node_states[N_HIGH_MEMORY])) {
			/*
			 * error if only memoryless nodes specified.
			 */
			retval = -ENOSPC;
			goto done;
		}
	}
	/*
	 * Exclude memoryless nodes.  We know that trialcs.mems_allowed
	 * contains at least one node with memory.
	 */
	nodes_and(trialcs.mems_allowed, trialcs.mems_allowed,
						node_states[N_HIGH_MEMORY]);
	oldmem = cs->mems_allowed;
	if (nodes_equal(oldmem, trialcs.mems_allowed)) {
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
	/* mems_allowed cannot be empty for a cpuset with attached tasks. */
	if (cgroup_task_count(cs->css.cgroup) &&
	    nodes_empty(trialcs.mems_allowed)) {
		retval = -ENOSPC;
		goto done;
	}
	retval = validate_change(cs, &trialcs);
	if (retval < 0)
		goto done;

	mutex_lock(&callback_mutex);
	cs->mems_allowed = trialcs.mems_allowed;
	cs->mems_generation = cpuset_mems_generation++;
	mutex_unlock(&callback_mutex);

	cpuset_being_rebound = cs;		/* causes mpol_copy() rebind */

	fudge = 10;				/* spare mmarray[] slots */
	fudge += cpus_weight(cs->cpus_allowed);	/* imagine one fork-bomb/cpu */
	retval = -ENOMEM;

	/*
	 * Allocate mmarray[] to hold mm reference for each task
	 * in cpuset cs.  Can't kmalloc GFP_KERNEL while holding
	 * tasklist_lock.  We could use GFP_ATOMIC, but with a
	 * few more lines of code, we can retry until we get a big
	 * enough mmarray[] w/o using GFP_ATOMIC.
	 */
	while (1) {
		ntasks = cgroup_task_count(cs->css.cgroup);  /* guess */
		ntasks += fudge;
		mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
		if (!mmarray)
			goto done;
		read_lock(&tasklist_lock);		/* block fork */
		if (cgroup_task_count(cs->css.cgroup) <= ntasks)
			break;				/* got enough */
		read_unlock(&tasklist_lock);		/* try again */
		kfree(mmarray);
	}

	n = 0;

	/* Load up mmarray[] with mm reference for each task in cpuset. */
	cgroup_iter_start(cs->css.cgroup, &it);
	while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
		struct mm_struct *mm;

		if (n >= ntasks) {
			printk(KERN_WARNING
				"Cpuset mempolicy rebind incomplete.\n");
			break;
		}
		mm = get_task_mm(p);
		if (!mm)
			continue;
		mmarray[n++] = mm;
	}
	cgroup_iter_end(cs->css.cgroup, &it);
	read_unlock(&tasklist_lock);

	/*
	 * Now that we've dropped the tasklist spinlock, we can
	 * rebind the vma mempolicies of each mm in mmarray[] to their
	 * new cpuset, and release that mm.  The mpol_rebind_mm()
	 * call takes mmap_sem, which we couldn't take while holding
	 * tasklist_lock.  Forks can happen again now - the mpol_copy()
	 * cpuset_being_rebound check will catch such forks, and rebind
	 * their vma mempolicies too.  Because we still hold the global
	 * cpuset manage_mutex, we know that no other rebind effort will
	 * be contending for the global variable cpuset_being_rebound.
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
	 * is idempotent.  Also migrate pages in each mm to new nodes.
	 */
	migrate = is_memory_migrate(cs);
	for (i = 0; i < n; i++) {
		struct mm_struct *mm = mmarray[i];

		mpol_rebind_mm(mm, &cs->mems_allowed);
		if (migrate)
			cpuset_migrate_mm(mm, &oldmem, &cs->mems_allowed);
		mmput(mm);
	}

	/* We're done rebinding vma's to this cpusets new mems_allowed. */
	kfree(mmarray);
	cpuset_being_rebound = NULL;
	retval = 0;
done:
	return retval;
}

int current_cpuset_is_being_rebound(void)
{
	return task_cs(current) == cpuset_being_rebound;
}

/*
 * Call with manage_mutex held.
 */

static int update_memory_pressure_enabled(struct cpuset *cs, char *buf)
{
	if (simple_strtoul(buf, NULL, 10) != 0)
		cpuset_memory_pressure_enabled = 1;
	else
		cpuset_memory_pressure_enabled = 0;
	return 0;
}

/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
 * bit:	the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
 *				CS_NOTIFY_ON_RELEASE, CS_MEMORY_MIGRATE,
 *				CS_SPREAD_PAGE, CS_SPREAD_SLAB)
 * cs:	the cpuset to update
 * buf:	the buffer where we read the 0 or 1
 *
 * Call with manage_mutex held.
 */

static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
{
	int turning_on;
	struct cpuset trialcs;
	int err;

	turning_on = (simple_strtoul(buf, NULL, 10) != 0);

	trialcs = *cs;
	if (turning_on)
		set_bit(bit, &trialcs.flags);
	else
		clear_bit(bit, &trialcs.flags);

	err = validate_change(cs, &trialcs);
	if (err < 0)
		return err;
	mutex_lock(&callback_mutex);
	cs->flags = trialcs.flags;
	mutex_unlock(&callback_mutex);

	return 0;
}

/*
 * Frequency meter - How fast is some event occurring?
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
	time_t now = get_seconds();
	time_t ticks = now - fmp->time;

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

static int cpuset_can_attach(struct cgroup_subsys *ss,
			     struct cgroup *cont, struct task_struct *tsk)
{
	struct cpuset *cs = cgroup_cs(cont);

	if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
		return -ENOSPC;

	return security_task_setscheduler(tsk, 0, NULL);
}

static void cpuset_attach(struct cgroup_subsys *ss,
			  struct cgroup *cont, struct cgroup *oldcont,
			  struct task_struct *tsk)
{
	cpumask_t cpus;
	nodemask_t from, to;
	struct mm_struct *mm;
	struct cpuset *cs = cgroup_cs(cont);
	struct cpuset *oldcs = cgroup_cs(oldcont);

	mutex_lock(&callback_mutex);
	guarantee_online_cpus(cs, &cpus);
	set_cpus_allowed(tsk, cpus);
	mutex_unlock(&callback_mutex);

	from = oldcs->mems_allowed;
	to = cs->mems_allowed;
	mm = get_task_mm(tsk);
	if (mm) {
		mpol_rebind_mm(mm, &to);
		if (is_memory_migrate(cs))
			cpuset_migrate_mm(mm, &from, &to);
		mmput(mm);
	}

}

/* The various types of files and directories in a cpuset file system */

typedef enum {
	FILE_MEMORY_MIGRATE,
	FILE_CPULIST,
	FILE_MEMLIST,
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
} cpuset_filetype_t;

static ssize_t cpuset_common_file_write(struct cgroup *cont,
					struct cftype *cft,
					struct file *file,
					const char __user *userbuf,
					size_t nbytes, loff_t *unused_ppos)
{
	struct cpuset *cs = cgroup_cs(cont);
	cpuset_filetype_t type = cft->private;
	char *buffer;
	int retval = 0;

	/* Crude upper limit on largest legitimate cpulist user might write. */
	if (nbytes > 100 + 6 * max(NR_CPUS, MAX_NUMNODES))
		return -E2BIG;

	/* +1 for nul-terminator */
	if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0)
		return -ENOMEM;

	if (copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out1;
	}
	buffer[nbytes] = 0;	/* nul-terminate */

	cgroup_lock();

	if (cgroup_is_removed(cont)) {
		retval = -ENODEV;
		goto out2;
	}

	switch (type) {
	case FILE_CPULIST:
		retval = update_cpumask(cs, buffer);
		break;
	case FILE_MEMLIST:
		retval = update_nodemask(cs, buffer);
		break;
	case FILE_CPU_EXCLUSIVE:
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer);
		break;
	case FILE_MEM_EXCLUSIVE:
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
		break;
	case FILE_MEMORY_MIGRATE:
		retval = update_flag(CS_MEMORY_MIGRATE, cs, buffer);
		break;
	case FILE_MEMORY_PRESSURE_ENABLED:
		retval = update_memory_pressure_enabled(cs, buffer);
		break;
	case FILE_MEMORY_PRESSURE:
		retval = -EACCES;
		break;
	case FILE_SPREAD_PAGE:
		retval = update_flag(CS_SPREAD_PAGE, cs, buffer);
		cs->mems_generation = cpuset_mems_generation++;
		break;
	case FILE_SPREAD_SLAB:
		retval = update_flag(CS_SPREAD_SLAB, cs, buffer);
		cs->mems_generation = cpuset_mems_generation++;
		break;
	default:
		retval = -EINVAL;
		goto out2;
	}

	if (retval == 0)
		retval = nbytes;
out2:
	cgroup_unlock();
out1:
	kfree(buffer);
	return retval;
}

/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 * A single large read to a buffer that crosses a page boundary is
 * ok, because the result being copied to user land is not recomputed
 * across a page fault.
 */

static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
{
	cpumask_t mask;

	mutex_lock(&callback_mutex);
	mask = cs->cpus_allowed;
	mutex_unlock(&callback_mutex);

	return cpulist_scnprintf(page, PAGE_SIZE, mask);
}

static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
{
	nodemask_t mask;

	mutex_lock(&callback_mutex);
	mask = cs->mems_allowed;
	mutex_unlock(&callback_mutex);

	return nodelist_scnprintf(page, PAGE_SIZE, mask);
}

static ssize_t cpuset_common_file_read(struct cgroup *cont,
				       struct cftype *cft,
				       struct file *file,
				       char __user *buf,
				       size_t nbytes, loff_t *ppos)
{
	struct cpuset *cs = cgroup_cs(cont);
	cpuset_filetype_t type = cft->private;
	char *page;
	ssize_t retval = 0;
	char *s;

	if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
		return -ENOMEM;

	s = page;

	switch (type) {
	case FILE_CPULIST:
		s += cpuset_sprintf_cpulist(s, cs);
		break;
	case FILE_MEMLIST:
		s += cpuset_sprintf_memlist(s, cs);
		break;
	case FILE_CPU_EXCLUSIVE:
		*s++ = is_cpu_exclusive(cs) ? '1' : '0';
		break;
	case FILE_MEM_EXCLUSIVE:
		*s++ = is_mem_exclusive(cs) ? '1' : '0';
		break;
	case FILE_MEMORY_MIGRATE:
		*s++ = is_memory_migrate(cs) ? '1' : '0';
		break;
	case FILE_MEMORY_PRESSURE_ENABLED:
		*s++ = cpuset_memory_pressure_enabled ? '1' : '0';
		break;
	case FILE_MEMORY_PRESSURE:
		s += sprintf(s, "%d", fmeter_getrate(&cs->fmeter));
		break;
	case FILE_SPREAD_PAGE:
		*s++ = is_spread_page(cs) ? '1' : '0';
		break;
	case FILE_SPREAD_SLAB:
		*s++ = is_spread_slab(cs) ? '1' : '0';
		break;
	default:
		retval = -EINVAL;
		goto out;
	}
	*s++ = '\n';

	retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
out:
	free_page((unsigned long)page);
	return retval;
}





/*
 * for the common functions, 'private' gives the type of file
 */

static struct cftype cft_cpus = {
	.name = "cpus",
	.read = cpuset_common_file_read,
	.write = cpuset_common_file_write,
	.private = FILE_CPULIST,
};

static struct cftype cft_mems = {
	.name = "mems",
	.read = cpuset_common_file_read,
	.write = cpuset_common_file_write,
	.private = FILE_MEMLIST,
};

static struct cftype cft_cpu_exclusive = {
	.name = "cpu_exclusive",
	.read = cpuset_common_file_read,
	.write = cpuset_common_file_write,
	.private = FILE_CPU_EXCLUSIVE,
};

static struct cftype cft_mem_exclusive = {
	.name = "mem_exclusive",
	.read = cpuset_common_file_read,
	.write = cpuset_common_file_write,
	.private = FILE_MEM_EXCLUSIVE,
};

static struct cftype cft_memory_migrate = {
	.name = "memory_migrate",
	.read = cpuset_common_file_read,
	.write = cpuset_common_file_write,
	.private = FILE_MEMORY_MIGRATE,
};

static struct cftype cft_memory_pressure_enabled = {
	.name = "memory_pressure_enabled",
	.read = cpuset_common_file_read,
	.write = cpuset_common_file_write,
	.private = FILE_MEMORY_PRESSURE_ENABLED,
};

static struct cftype cft_memory_pressure = {
	.name = "memory_pressure",
	.read = cpuset_common_file_read,
	.write = cpuset_common_file_write,
	.private = FILE_MEMORY_PRESSURE,
};

static struct cftype cft_spread_page = {
	.name = "memory_spread_page",
	.read = cpuset_common_file_read,
	.write = cpuset_common_file_write,
	.private = FILE_SPREAD_PAGE,
};

static struct cftype cft_spread_slab = {
	.name = "memory_spread_slab",
	.read = cpuset_common_file_read,
	.write = cpuset_common_file_write,
	.private = FILE_SPREAD_SLAB,
};

static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
	int err;

	if ((err = cgroup_add_file(cont, ss, &cft_cpus)) < 0)
		return err;
	if ((err = cgroup_add_file(cont, ss, &cft_mems)) < 0)
		return err;
	if ((err = cgroup_add_file(cont, ss, &cft_cpu_exclusive)) < 0)
		return err;
	if ((err = cgroup_add_file(cont, ss, &cft_mem_exclusive)) < 0)
		return err;
	if ((err = cgroup_add_file(cont, ss, &cft_memory_migrate)) < 0)
		return err;
	if ((err = cgroup_add_file(cont, ss, &cft_memory_pressure)) < 0)
		return err;
	if ((err = cgroup_add_file(cont, ss, &cft_spread_page)) < 0)
		return err;
	if ((err = cgroup_add_file(cont, ss, &cft_spread_slab)) < 0)
		return err;
	/* memory_pressure_enabled is in root cpuset only */
	if (err == 0 && !cont->parent)
		err = cgroup_add_file(cont, ss,
					 &cft_memory_pressure_enabled);
	return 0;
}

/*
 * post_clone() is called at the end of cgroup_clone().
 * 'cgroup' was just created automatically as a result of
 * a cgroup_clone(), and the current task is about to
 * be moved into 'cgroup'.
 *
 * Currently we refuse to set up the cgroup - thereby
 * refusing the task to be entered, and as a result refusing
 * the sys_unshare() or clone() which initiated it - if any
 * sibling cpusets have exclusive cpus or mem.
 *
 * If this becomes a problem for some users who wish to
 * allow that scenario, then cpuset_post_clone() could be
 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
 * (and likewise for mems) to the new cgroup.
 */
static void cpuset_post_clone(struct cgroup_subsys *ss,
			      struct cgroup *cgroup)
{
	struct cgroup *parent, *child;
	struct cpuset *cs, *parent_cs;

	parent = cgroup->parent;
	list_for_each_entry(child, &parent->children, sibling) {
		cs = cgroup_cs(child);
		if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
			return;
	}
	cs = cgroup_cs(cgroup);
	parent_cs = cgroup_cs(parent);

	cs->mems_allowed = parent_cs->mems_allowed;
	cs->cpus_allowed = parent_cs->cpus_allowed;
	return;
}

/*
 *	cpuset_create - create a cpuset
 *	parent:	cpuset that will be parent of the new cpuset.
 *	name:		name of the new cpuset. Will be strcpy'ed.
 *	mode:		mode to set on new inode
 *
 *	Must be called with the mutex on the parent inode held
 */

static struct cgroup_subsys_state *cpuset_create(
	struct cgroup_subsys *ss,
	struct cgroup *cont)
{
	struct cpuset *cs;
	struct cpuset *parent;

	if (!cont->parent) {
		/* This is early initialization for the top cgroup */
		top_cpuset.mems_generation = cpuset_mems_generation++;
		return &top_cpuset.css;
	}
	parent = cgroup_cs(cont->parent);
	cs = kmalloc(sizeof(*cs), GFP_KERNEL);
	if (!cs)
		return ERR_PTR(-ENOMEM);

	cpuset_update_task_memory_state();
	cs->flags = 0;
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);
	cs->cpus_allowed = CPU_MASK_NONE;
	cs->mems_allowed = NODE_MASK_NONE;
	cs->mems_generation = cpuset_mems_generation++;
	fmeter_init(&cs->fmeter);

	cs->parent = parent;
	number_of_cpusets++;
	return &cs->css ;
}

static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct cpuset *cs = cgroup_cs(cont);

	cpuset_update_task_memory_state();
	number_of_cpusets--;
	kfree(cs);
}

struct cgroup_subsys cpuset_subsys = {
	.name = "cpuset",
	.create = cpuset_create,
	.destroy  = cpuset_destroy,
	.can_attach = cpuset_can_attach,
	.attach = cpuset_attach,
	.populate = cpuset_populate,
	.post_clone = cpuset_post_clone,
	.subsys_id = cpuset_subsys_id,
	.early_init = 1,
};

/*
 * cpuset_init_early - just enough so that the calls to
 * cpuset_update_task_memory_state() in early init code
 * are harmless.
 */

int __init cpuset_init_early(void)
{
	top_cpuset.mems_generation = cpuset_mems_generation++;
	return 0;
}


/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
	int err = 0;

	top_cpuset.cpus_allowed = CPU_MASK_ALL;
	top_cpuset.mems_allowed = NODE_MASK_ALL;

	fmeter_init(&top_cpuset.fmeter);
	top_cpuset.mems_generation = cpuset_mems_generation++;

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
		return err;

	number_of_cpusets = 1;
	return 0;
}

/*
 * If common_cpu_mem_hotplug_unplug(), below, unplugs any CPUs
 * or memory nodes, we need to walk over the cpuset hierarchy,
 * removing that CPU or node from all cpusets.  If this removes the
 * last CPU or node from a cpuset, then the guarantee_online_cpus()
 * or guarantee_online_mems() code will use that emptied cpusets
 * parent online CPUs or nodes.  Cpusets that were already empty of
 * CPUs or nodes are left empty.
 *
 * This routine is intentionally inefficient in a couple of regards.
 * It will check all cpusets in a subtree even if the top cpuset of
 * the subtree has no offline CPUs or nodes.  It checks both CPUs and
 * nodes, even though the caller could have been coded to know that
 * only one of CPUs or nodes needed to be checked on a given call.
 * This was done to minimize text size rather than cpu cycles.
 *
 * Call with both manage_mutex and callback_mutex held.
 *
 * Recursive, on depth of cpuset subtree.
 */

static void guarantee_online_cpus_mems_in_subtree(const struct cpuset *cur)
{
	struct cgroup *cont;
	struct cpuset *c;

	/* Each of our child cpusets mems must be online */
	list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
		c = cgroup_cs(cont);
		guarantee_online_cpus_mems_in_subtree(c);
		if (!cpus_empty(c->cpus_allowed))
			guarantee_online_cpus(c, &c->cpus_allowed);
		if (!nodes_empty(c->mems_allowed))
			guarantee_online_mems(c, &c->mems_allowed);
	}
}

/*
 * The cpus_allowed and mems_allowed nodemasks in the top_cpuset track
 * cpu_online_map and node_states[N_HIGH_MEMORY].  Force the top cpuset to
 * track what's online after any CPU or memory node hotplug or unplug
 * event.
 *
 * To ensure that we don't remove a CPU or node from the top cpuset
 * that is currently in use by a child cpuset (which would violate
 * the rule that cpusets must be subsets of their parent), we first
 * call the recursive routine guarantee_online_cpus_mems_in_subtree().
 *
 * Since there are two callers of this routine, one for CPU hotplug
 * events and one for memory node hotplug events, we could have coded
 * two separate routines here.  We code it as a single common routine
 * in order to minimize text size.
 */

static void common_cpu_mem_hotplug_unplug(void)
{
	cgroup_lock();
	mutex_lock(&callback_mutex);

	guarantee_online_cpus_mems_in_subtree(&top_cpuset);
	top_cpuset.cpus_allowed = cpu_online_map;
	top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];

	mutex_unlock(&callback_mutex);
	cgroup_unlock();
}

/*
 * The top_cpuset tracks what CPUs and Memory Nodes are online,
 * period.  This is necessary in order to make cpusets transparent
 * (of no affect) on systems that are actively using CPU hotplug
 * but making no active use of cpusets.
 *
 * This routine ensures that top_cpuset.cpus_allowed tracks
 * cpu_online_map on each CPU hotplug (cpuhp) event.
 */

static int cpuset_handle_cpuhp(struct notifier_block *nb,
				unsigned long phase, void *cpu)
{
	if (phase == CPU_DYING || phase == CPU_DYING_FROZEN)
		return NOTIFY_DONE;

	common_cpu_mem_hotplug_unplug();
	return 0;
}

#ifdef CONFIG_MEMORY_HOTPLUG
/*
 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
 * Call this routine anytime after you change
 * node_states[N_HIGH_MEMORY].
 * See also the previous routine cpuset_handle_cpuhp().
 */

void cpuset_track_online_nodes(void)
{
	common_cpu_mem_hotplug_unplug();
}
#endif

/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
 **/

void __init cpuset_init_smp(void)
{
	top_cpuset.cpus_allowed = cpu_online_map;
	top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];

	hotcpu_notifier(cpuset_handle_cpuhp, 0);
}

/**

 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
 *
 * Description: Returns the cpumask_t cpus_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
 * subset of cpu_online_map, even if this means going outside the
 * tasks cpuset.
 **/

cpumask_t cpuset_cpus_allowed(struct task_struct *tsk)
{
	cpumask_t mask;

	mutex_lock(&callback_mutex);
	task_lock(tsk);
	guarantee_online_cpus(task_cs(tsk), &mask);
	task_unlock(tsk);
	mutex_unlock(&callback_mutex);

	return mask;
}

void cpuset_init_current_mems_allowed(void)
{
	current->mems_allowed = NODE_MASK_ALL;
}

/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
	nodemask_t mask;

	mutex_lock(&callback_mutex);
	task_lock(tsk);
	guarantee_online_mems(task_cs(tsk), &mask);
	task_unlock(tsk);
	mutex_unlock(&callback_mutex);

	return mask;
}

/**
 * cpuset_zonelist_valid_mems_allowed - check zonelist vs. curremt mems_allowed
 * @zl: the zonelist to be checked
 *
 * Are any of the nodes on zonelist zl allowed in current->mems_allowed?
 */
int cpuset_zonelist_valid_mems_allowed(struct zonelist *zl)
{
	int i;

	for (i = 0; zl->zones[i]; i++) {
		int nid = zone_to_nid(zl->zones[i]);

		if (node_isset(nid, current->mems_allowed))
			return 1;
	}
	return 0;
}

/*
 * nearest_exclusive_ancestor() - Returns the nearest mem_exclusive
 * ancestor to the specified cpuset.  Call holding callback_mutex.
 * If no ancestor is mem_exclusive (an unusual configuration), then
 * returns the root cpuset.
 */
static const struct cpuset *nearest_exclusive_ancestor(const struct cpuset *cs)
{
	while (!is_mem_exclusive(cs) && cs->parent)
		cs = cs->parent;
	return cs;
}

/**
 * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
 * @z: is this zone on an allowed node?
 * @gfp_mask: memory allocation flags
 *
 * If we're in interrupt, yes, we can always allocate.  If
 * __GFP_THISNODE is set, yes, we can always allocate.  If zone
 * z's node is in our tasks mems_allowed, yes.  If it's not a
 * __GFP_HARDWALL request and this zone's nodes is in the nearest
 * mem_exclusive cpuset ancestor to this tasks cpuset, yes.
 * If the task has been OOM killed and has access to memory reserves
 * as specified by the TIF_MEMDIE flag, yes.
 * Otherwise, no.
 *
 * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
 * reduces to cpuset_zone_allowed_hardwall().  Otherwise,
 * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
 * from an enclosing cpuset.
 *
 * cpuset_zone_allowed_hardwall() only handles the simpler case of
 * hardwall cpusets, and never sleeps.
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
 * and do not allow allocations outside the current tasks cpuset
 * unless the task has been OOM killed as is marked TIF_MEMDIE.
 * GFP_KERNEL allocations are not so marked, so can escape to the
 * nearest enclosing mem_exclusive ancestor cpuset.
 *
 * Scanning up parent cpusets requires callback_mutex.  The
 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 * current tasks mems_allowed came up empty on the first pass over
 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
 * cpuset are short of memory, might require taking the callback_mutex
 * mutex.
 *
 * The first call here from mm/page_alloc:get_page_from_freelist()
 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 * so no allocation on a node outside the cpuset is allowed (unless
 * in interrupt, of course).
 *
 * The second pass through get_page_from_freelist() doesn't even call
 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 * in alloc_flags.  That logic and the checks below have the combined
 * affect that:
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
 *	TIF_MEMDIE   - any node ok
 *	GFP_KERNEL   - any node in enclosing mem_exclusive cpuset ok
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
 *
 * Rule:
 *    Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
 *    pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
 *    the code that might scan up ancestor cpusets and sleep.
 */

int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
{
	int node;			/* node that zone z is on */
	const struct cpuset *cs;	/* current cpuset ancestors */
	int allowed;			/* is allocation in zone z allowed? */

	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
		return 1;
	node = zone_to_nid(z);
	might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
	if (node_isset(node, current->mems_allowed))
		return 1;
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
		return 0;

	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return 1;

	/* Not hardwall and node outside mems_allowed: scan up cpusets */
	mutex_lock(&callback_mutex);

	task_lock(current);
	cs = nearest_exclusive_ancestor(task_cs(current));
	task_unlock(current);

	allowed = node_isset(node, cs->mems_allowed);
	mutex_unlock(&callback_mutex);
	return allowed;
}

/*
 * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
 * @z: is this zone on an allowed node?
 * @gfp_mask: memory allocation flags
 *
 * If we're in interrupt, yes, we can always allocate.
 * If __GFP_THISNODE is set, yes, we can always allocate.  If zone
 * z's node is in our tasks mems_allowed, yes.   If the task has been
 * OOM killed and has access to memory reserves as specified by the
 * TIF_MEMDIE flag, yes.  Otherwise, no.
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
 * Unlike the cpuset_zone_allowed_softwall() variant, above,
 * this variant requires that the zone be in the current tasks
 * mems_allowed or that we're in interrupt.  It does not scan up the
 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
 * It never sleeps.
 */

int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
{
	int node;			/* node that zone z is on */

	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
		return 1;
	node = zone_to_nid(z);
	if (node_isset(node, current->mems_allowed))
		return 1;
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
	return 0;
}

/**
 * cpuset_lock - lock out any changes to cpuset structures
 *
 * The out of memory (oom) code needs to mutex_lock cpusets
 * from being changed while it scans the tasklist looking for a
 * task in an overlapping cpuset.  Expose callback_mutex via this
 * cpuset_lock() routine, so the oom code can lock it, before
 * locking the task list.  The tasklist_lock is a spinlock, so
 * must be taken inside callback_mutex.
 */

void cpuset_lock(void)
{
	mutex_lock(&callback_mutex);
}

/**
 * cpuset_unlock - release lock on cpuset changes
 *
 * Undo the lock taken in a previous cpuset_lock() call.
 */

void cpuset_unlock(void)
{
	mutex_unlock(&callback_mutex);
}

/**
 * cpuset_mem_spread_node() - On which node to begin search for a page
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */

int cpuset_mem_spread_node(void)
{
	int node;

	node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
	if (node == MAX_NUMNODES)
		node = first_node(current->mems_allowed);
	current->cpuset_mem_spread_rotor = node;
	return node;
}
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

/**
 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
 * @tsk1: pointer to task_struct of some task.
 * @tsk2: pointer to task_struct of some other task.
 *
 * Description: Return true if @tsk1's mems_allowed intersects the
 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
 * one of the task's memory usage might impact the memory available
 * to the other.
 **/

int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
				   const struct task_struct *tsk2)
{
	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
}

/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

int cpuset_memory_pressure_enabled __read_mostly;

/**
 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 **/

void __cpuset_memory_pressure_bump(void)
{
	task_lock(current);
	fmeter_markevent(&task_cs(current)->fmeter);
	task_unlock(current);
}

#ifdef CONFIG_PROC_PID_CPUSET
/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
 *    and we take manage_mutex, keeping attach_task() from changing it
 *    anyway.  No need to check that tsk->cpuset != NULL, thanks to
 *    the_top_cpuset_hack in cpuset_exit(), which sets an exiting tasks
 *    cpuset to top_cpuset.
 */
static int proc_cpuset_show(struct seq_file *m, void *v)
{
	struct pid *pid;
	struct task_struct *tsk;
	char *buf;
	struct cgroup_subsys_state *css;
	int retval;

	retval = -ENOMEM;
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto out;

	retval = -ESRCH;
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
	if (!tsk)
		goto out_free;

	retval = -EINVAL;
	cgroup_lock();
	css = task_subsys_state(tsk, cpuset_subsys_id);
	retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
	if (retval < 0)
		goto out_unlock;
	seq_puts(m, buf);
	seq_putc(m, '\n');
out_unlock:
	cgroup_unlock();
	put_task_struct(tsk);
out_free:
	kfree(buf);
out:
	return retval;
}

static int cpuset_open(struct inode *inode, struct file *file)
{
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cpuset_show, pid);
}

const struct file_operations proc_cpuset_operations = {
	.open		= cpuset_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};
#endif /* CONFIG_PROC_PID_CPUSET */

/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
char *cpuset_task_status_allowed(struct task_struct *task, char *buffer)
{
	buffer += sprintf(buffer, "Cpus_allowed:\t");
	buffer += cpumask_scnprintf(buffer, PAGE_SIZE, task->cpus_allowed);
	buffer += sprintf(buffer, "\n");
	buffer += sprintf(buffer, "Mems_allowed:\t");
	buffer += nodemask_scnprintf(buffer, PAGE_SIZE, task->mems_allowed);
	buffer += sprintf(buffer, "\n");
	return buffer;
}