aboutsummaryrefslogtreecommitdiffstats
path: root/include/asm-ppc64/mmu.h
blob: f373de5e3dd900964fbf2ac5f3b52e751eeab3a3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
/*
 * PowerPC memory management structures
 *
 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
 *   PPC64 rework.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

#ifndef _PPC64_MMU_H_
#define _PPC64_MMU_H_

#include <linux/config.h>
#include <asm/page.h>

/*
 * Segment table
 */

#define STE_ESID_V	0x80
#define STE_ESID_KS	0x20
#define STE_ESID_KP	0x10
#define STE_ESID_N	0x08

#define STE_VSID_SHIFT	12

/* Location of cpu0's segment table */
#define STAB0_PAGE	0x9
#define STAB0_PHYS_ADDR	(STAB0_PAGE<<PAGE_SHIFT)
#define STAB0_VIRT_ADDR	(KERNELBASE+STAB0_PHYS_ADDR)

/*
 * SLB
 */

#define SLB_NUM_BOLTED		3
#define SLB_CACHE_ENTRIES	8

/* Bits in the SLB ESID word */
#define SLB_ESID_V		ASM_CONST(0x0000000008000000) /* valid */

/* Bits in the SLB VSID word */
#define SLB_VSID_SHIFT		12
#define SLB_VSID_KS		ASM_CONST(0x0000000000000800)
#define SLB_VSID_KP		ASM_CONST(0x0000000000000400)
#define SLB_VSID_N		ASM_CONST(0x0000000000000200) /* no-execute */
#define SLB_VSID_L		ASM_CONST(0x0000000000000100) /* largepage */
#define SLB_VSID_C		ASM_CONST(0x0000000000000080) /* class */
#define SLB_VSID_LS		ASM_CONST(0x0000000000000070) /* size of largepage */
 
#define SLB_VSID_KERNEL		(SLB_VSID_KP|SLB_VSID_C)
#define SLB_VSID_USER		(SLB_VSID_KP|SLB_VSID_KS)

/*
 * Hash table
 */

#define HPTES_PER_GROUP 8

/* Values for PP (assumes Ks=0, Kp=1) */
/* pp0 will always be 0 for linux     */
#define PP_RWXX	0	/* Supervisor read/write, User none */
#define PP_RWRX 1	/* Supervisor read/write, User read */
#define PP_RWRW 2	/* Supervisor read/write, User read/write */
#define PP_RXRX 3	/* Supervisor read,       User read */

#ifndef __ASSEMBLY__

/* Hardware Page Table Entry */
typedef struct {
	unsigned long avpn:57; /* vsid | api == avpn  */
	unsigned long :     2; /* Software use */
	unsigned long bolted: 1; /* HPTE is "bolted" */
	unsigned long lock: 1; /* lock on pSeries SMP */
	unsigned long l:    1; /* Virtual page is large (L=1) or 4 KB (L=0) */
	unsigned long h:    1; /* Hash function identifier */
	unsigned long v:    1; /* Valid (v=1) or invalid (v=0) */
} Hpte_dword0;

typedef struct {
	unsigned long pp0:  1; /* Page protection bit 0 */
	unsigned long ts:   1; /* Tag set bit */
	unsigned long rpn: 50; /* Real page number */
	unsigned long :     2; /* Reserved */
	unsigned long ac:   1; /* Address compare */ 
	unsigned long r:    1; /* Referenced */
	unsigned long c:    1; /* Changed */
	unsigned long w:    1; /* Write-thru cache mode */
	unsigned long i:    1; /* Cache inhibited */
	unsigned long m:    1; /* Memory coherence required */
	unsigned long g:    1; /* Guarded */
	unsigned long n:    1; /* No-execute */
	unsigned long pp:   2; /* Page protection bits 1:2 */
} Hpte_dword1;

typedef struct {
	char padding[6];	   	/* padding */
	unsigned long :       6;	/* padding */ 
	unsigned long flags: 10;	/* HPTE flags */
} Hpte_dword1_flags;

typedef struct {
	union {
		unsigned long dword0;
		Hpte_dword0   dw0;
	} dw0;

	union {
		unsigned long dword1;
		Hpte_dword1 dw1;
		Hpte_dword1_flags flags;
	} dw1;
} HPTE; 

extern HPTE *		htab_address;
extern unsigned long	htab_hash_mask;

static inline unsigned long hpt_hash(unsigned long vpn, int large)
{
	unsigned long vsid;
	unsigned long page;

	if (large) {
		vsid = vpn >> 4;
		page = vpn & 0xf;
	} else {
		vsid = vpn >> 16;
		page = vpn & 0xffff;
	}

	return (vsid & 0x7fffffffffUL) ^ page;
}

static inline void __tlbie(unsigned long va, int large)
{
	/* clear top 16 bits, non SLS segment */
	va &= ~(0xffffULL << 48);

	if (large) {
		va &= HPAGE_MASK;
		asm volatile("tlbie %0,1" : : "r"(va) : "memory");
	} else {
		va &= PAGE_MASK;
		asm volatile("tlbie %0,0" : : "r"(va) : "memory");
	}
}

static inline void tlbie(unsigned long va, int large)
{
	asm volatile("ptesync": : :"memory");
	__tlbie(va, large);
	asm volatile("eieio; tlbsync; ptesync": : :"memory");
}

static inline void __tlbiel(unsigned long va)
{
	/* clear top 16 bits, non SLS segment */
	va &= ~(0xffffULL << 48);
	va &= PAGE_MASK;

	/* 
	 * Thanks to Alan Modra we are now able to use machine specific 
	 * assembly instructions (like tlbiel) by using the gas -many flag.
	 * However we have to support older toolchains so for the moment 
	 * we hardwire it.
	 */
#if 0
	asm volatile("tlbiel %0" : : "r"(va) : "memory");
#else
	asm volatile(".long 0x7c000224 | (%0 << 11)" : : "r"(va) : "memory");
#endif
}

static inline void tlbiel(unsigned long va)
{
	asm volatile("ptesync": : :"memory");
	__tlbiel(va);
	asm volatile("ptesync": : :"memory");
}

static inline unsigned long slot2va(unsigned long avpn, unsigned long large,
		unsigned long secondary, unsigned long slot)
{
	unsigned long va;

	va = avpn << 23;

	if (!large) {
		unsigned long vpi, pteg;

		pteg = slot / HPTES_PER_GROUP;
		if (secondary)
			pteg = ~pteg;

		vpi = ((va >> 28) ^ pteg) & htab_hash_mask;

		va |= vpi << PAGE_SHIFT;
	}

	return va;
}

/*
 * Handle a fault by adding an HPTE. If the address can't be determined
 * to be valid via Linux page tables, return 1. If handled return 0
 */
extern int __hash_page(unsigned long ea, unsigned long access,
		       unsigned long vsid, pte_t *ptep, unsigned long trap,
		       int local);

extern void htab_finish_init(void);

extern void hpte_init_native(void);
extern void hpte_init_lpar(void);
extern void hpte_init_iSeries(void);

extern long pSeries_lpar_hpte_insert(unsigned long hpte_group,
				     unsigned long va, unsigned long prpn,
				     int secondary, unsigned long hpteflags,
				     int bolted, int large);
extern long native_hpte_insert(unsigned long hpte_group, unsigned long va,
			       unsigned long prpn, int secondary,
			       unsigned long hpteflags, int bolted, int large);

#endif /* __ASSEMBLY__ */

/*
 * VSID allocation
 *
 * We first generate a 36-bit "proto-VSID".  For kernel addresses this
 * is equal to the ESID, for user addresses it is:
 *	(context << 15) | (esid & 0x7fff)
 *
 * The two forms are distinguishable because the top bit is 0 for user
 * addresses, whereas the top two bits are 1 for kernel addresses.
 * Proto-VSIDs with the top two bits equal to 0b10 are reserved for
 * now.
 *
 * The proto-VSIDs are then scrambled into real VSIDs with the
 * multiplicative hash:
 *
 *	VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
 *	where	VSID_MULTIPLIER = 268435399 = 0xFFFFFC7
 *		VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF
 *
 * This scramble is only well defined for proto-VSIDs below
 * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are
 * reserved.  VSID_MULTIPLIER is prime, so in particular it is
 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
 * Because the modulus is 2^n-1 we can compute it efficiently without
 * a divide or extra multiply (see below).
 *
 * This scheme has several advantages over older methods:
 *
 * 	- We have VSIDs allocated for every kernel address
 * (i.e. everything above 0xC000000000000000), except the very top
 * segment, which simplifies several things.
 *
 * 	- We allow for 15 significant bits of ESID and 20 bits of
 * context for user addresses.  i.e. 8T (43 bits) of address space for
 * up to 1M contexts (although the page table structure and context
 * allocation will need changes to take advantage of this).
 *
 * 	- The scramble function gives robust scattering in the hash
 * table (at least based on some initial results).  The previous
 * method was more susceptible to pathological cases giving excessive
 * hash collisions.
 */
/*
 * WARNING - If you change these you must make sure the asm
 * implementations in slb_allocate (slb_low.S), do_stab_bolted
 * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly.
 *
 * You'll also need to change the precomputed VSID values in head.S
 * which are used by the iSeries firmware.
 */

#define VSID_MULTIPLIER	ASM_CONST(200730139)	/* 28-bit prime */
#define VSID_BITS	36
#define VSID_MODULUS	((1UL<<VSID_BITS)-1)

#define CONTEXT_BITS	20
#define USER_ESID_BITS	15

/*
 * This macro generates asm code to compute the VSID scramble
 * function.  Used in slb_allocate() and do_stab_bolted.  The function
 * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
 *
 *	rt = register continaing the proto-VSID and into which the
 *		VSID will be stored
 *	rx = scratch register (clobbered)
 *
 * 	- rt and rx must be different registers
 * 	- The answer will end up in the low 36 bits of rt.  The higher
 * 	  bits may contain other garbage, so you may need to mask the
 * 	  result.
 */
#define ASM_VSID_SCRAMBLE(rt, rx)	\
	lis	rx,VSID_MULTIPLIER@h;					\
	ori	rx,rx,VSID_MULTIPLIER@l;				\
	mulld	rt,rt,rx;		/* rt = rt * MULTIPLIER */	\
									\
	srdi	rx,rt,VSID_BITS;					\
	clrldi	rt,rt,(64-VSID_BITS);					\
	add	rt,rt,rx;		/* add high and low bits */	\
	/* Now, r3 == VSID (mod 2^36-1), and lies between 0 and		\
	 * 2^36-1+2^28-1.  That in particular means that if r3 >=	\
	 * 2^36-1, then r3+1 has the 2^36 bit set.  So, if r3+1 has	\
	 * the bit clear, r3 already has the answer we want, if it	\
	 * doesn't, the answer is the low 36 bits of r3+1.  So in all	\
	 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
	addi	rx,rt,1;						\
	srdi	rx,rx,VSID_BITS;	/* extract 2^36 bit */		\
	add	rt,rt,rx


#ifndef __ASSEMBLY__

typedef unsigned long mm_context_id_t;

typedef struct {
	mm_context_id_t id;
#ifdef CONFIG_HUGETLB_PAGE
	pgd_t *huge_pgdir;
	u16 htlb_segs; /* bitmask */
#endif
} mm_context_t;


static inline unsigned long vsid_scramble(unsigned long protovsid)
{
#if 0
	/* The code below is equivalent to this function for arguments
	 * < 2^VSID_BITS, which is all this should ever be called
	 * with.  However gcc is not clever enough to compute the
	 * modulus (2^n-1) without a second multiply. */
	return ((protovsid * VSID_MULTIPLIER) % VSID_MODULUS);
#else /* 1 */
	unsigned long x;

	x = protovsid * VSID_MULTIPLIER;
	x = (x >> VSID_BITS) + (x & VSID_MODULUS);
	return (x + ((x+1) >> VSID_BITS)) & VSID_MODULUS;
#endif /* 1 */
}

/* This is only valid for addresses >= KERNELBASE */
static inline unsigned long get_kernel_vsid(unsigned long ea)
{
	return vsid_scramble(ea >> SID_SHIFT);
}

/* This is only valid for user addresses (which are below 2^41) */
static inline unsigned long get_vsid(unsigned long context, unsigned long ea)
{
	return vsid_scramble((context << USER_ESID_BITS)
			     | (ea >> SID_SHIFT));
}

#endif /* __ASSEMBLY */

#endif /* _PPC64_MMU_H_ */