#ifndef _I386_PGTABLE_H #define _I386_PGTABLE_H /* * The Linux memory management assumes a three-level page table setup. On * the i386, we use that, but "fold" the mid level into the top-level page * table, so that we physically have the same two-level page table as the * i386 mmu expects. * * This file contains the functions and defines necessary to modify and use * the i386 page table tree. */ #ifndef __ASSEMBLY__ #include #include #include #include #include #include #include #include struct mm_struct; struct vm_area_struct; /* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) extern unsigned long empty_zero_page[1024]; extern pgd_t swapper_pg_dir[1024]; extern struct kmem_cache *pmd_cache; extern spinlock_t pgd_lock; extern struct page *pgd_list; void check_pgt_cache(void); void pmd_ctor(struct kmem_cache *, void *); void pgtable_cache_init(void); void paging_init(void); /* * The Linux x86 paging architecture is 'compile-time dual-mode', it * implements both the traditional 2-level x86 page tables and the * newer 3-level PAE-mode page tables. */ #ifdef CONFIG_X86_PAE # include # define PMD_SIZE (1UL << PMD_SHIFT) # define PMD_MASK (~(PMD_SIZE-1)) #else # include #endif #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT) #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS) #define TWOLEVEL_PGDIR_SHIFT 22 #define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT) #define BOOT_KERNEL_PGD_PTRS (1024-BOOT_USER_PGD_PTRS) /* Just any arbitrary offset to the start of the vmalloc VM area: the * current 8MB value just means that there will be a 8MB "hole" after the * physical memory until the kernel virtual memory starts. That means that * any out-of-bounds memory accesses will hopefully be caught. * The vmalloc() routines leaves a hole of 4kB between each vmalloced * area for the same reason. ;) */ #define VMALLOC_OFFSET (8*1024*1024) #define VMALLOC_START (((unsigned long) high_memory + \ 2*VMALLOC_OFFSET-1) & ~(VMALLOC_OFFSET-1)) #ifdef CONFIG_HIGHMEM # define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE) #else # define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE) #endif /* * Define this if things work differently on an i386 and an i486: * it will (on an i486) warn about kernel memory accesses that are * done without a 'access_ok(VERIFY_WRITE,..)' */ #undef TEST_ACCESS_OK /* The boot page tables (all created as a single array) */ extern unsigned long pg0[]; #define pte_present(x) ((x).pte_low & (_PAGE_PRESENT | _PAGE_PROTNONE)) /* To avoid harmful races, pmd_none(x) should check only the lower when PAE */ #define pmd_none(x) (!(unsigned long)pmd_val(x)) #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT) #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE) #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT)) /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; } static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } static inline int pte_huge(pte_t pte) { return pte_val(pte) & _PAGE_PSE; } static inline int pmd_large(pmd_t pte) { return (pmd_val(pte) & (_PAGE_PSE|_PAGE_PRESENT)) == (_PAGE_PSE|_PAGE_PRESENT); } static inline pte_t pte_mkclean(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_DIRTY); } static inline pte_t pte_mkold(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_ACCESSED); } static inline pte_t pte_wrprotect(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_RW); } static inline pte_t pte_mkexec(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_NX); } static inline pte_t pte_mkdirty(pte_t pte) { return __pte(pte_val(pte) | _PAGE_DIRTY); } static inline pte_t pte_mkyoung(pte_t pte) { return __pte(pte_val(pte) | _PAGE_ACCESSED); } static inline pte_t pte_mkwrite(pte_t pte) { return __pte(pte_val(pte) | _PAGE_RW); } static inline pte_t pte_mkhuge(pte_t pte) { return __pte(pte_val(pte) | _PAGE_PSE); } static inline pte_t pte_clrhuge(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_PSE); } #ifdef CONFIG_X86_PAE # include #else # include #endif #ifndef CONFIG_PARAVIRT /* * Rules for using pte_update - it must be called after any PTE update which * has not been done using the set_pte / clear_pte interfaces. It is used by * shadow mode hypervisors to resynchronize the shadow page tables. Kernel PTE * updates should either be sets, clears, or set_pte_atomic for P->P * transitions, which means this hook should only be called for user PTEs. * This hook implies a P->P protection or access change has taken place, which * requires a subsequent TLB flush. The notification can optionally be delayed * until the TLB flush event by using the pte_update_defer form of the * interface, but care must be taken to assure that the flush happens while * still holding the same page table lock so that the shadow and primary pages * do not become out of sync on SMP. */ #define pte_update(mm, addr, ptep) do { } while (0) #define pte_update_defer(mm, addr, ptep) do { } while (0) #endif /* local pte updates need not use xchg for locking */ static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep) { pte_t res = *ptep; /* Pure native function needs no input for mm, addr */ native_pte_clear(NULL, 0, ptep); return res; } /* * We only update the dirty/accessed state if we set * the dirty bit by hand in the kernel, since the hardware * will do the accessed bit for us, and we don't want to * race with other CPU's that might be updating the dirty * bit at the same time. */ #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS #define ptep_set_access_flags(vma, address, ptep, entry, dirty) \ ({ \ int __changed = !pte_same(*(ptep), entry); \ if (__changed && dirty) { \ (ptep)->pte_low = (entry).pte_low; \ pte_update_defer((vma)->vm_mm, (address), (ptep)); \ flush_tlb_page(vma, address); \ } \ __changed; \ }) #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG #define ptep_test_and_clear_young(vma, addr, ptep) ({ \ int __ret = 0; \ if (pte_young(*(ptep))) \ __ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, \ &(ptep)->pte_low); \ if (__ret) \ pte_update((vma)->vm_mm, addr, ptep); \ __ret; \ }) #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH #define ptep_clear_flush_young(vma, address, ptep) \ ({ \ int __young; \ __young = ptep_test_and_clear_young((vma), (address), (ptep)); \ if (__young) \ flush_tlb_page(vma, address); \ __young; \ }) #define __HAVE_ARCH_PTEP_GET_AND_CLEAR static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { pte_t pte = native_ptep_get_and_clear(ptep); pte_update(mm, addr, ptep); return pte; } #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long addr, pte_t *ptep, int full) { pte_t pte; if (full) { /* * Full address destruction in progress; paravirt does not * care about updates and native needs no locking */ pte = native_local_ptep_get_and_clear(ptep); } else { pte = ptep_get_and_clear(mm, addr, ptep); } return pte; } #define __HAVE_ARCH_PTEP_SET_WRPROTECT static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { clear_bit(_PAGE_BIT_RW, &ptep->pte_low); pte_update(mm, addr, ptep); } /* * clone_pgd_range(pgd_t *dst, pgd_t *src, int count); * * dst - pointer to pgd range anwhere on a pgd page * src - "" * count - the number of pgds to copy. * * dst and src can be on the same page, but the range must not overlap, * and must not cross a page boundary. */ static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count) { memcpy(dst, src, count * sizeof(pgd_t)); } /* * Macro to mark a page protection value as "uncacheable". On processors which do not support * it, this is a no-op. */ #define pgprot_noncached(prot) ((boot_cpu_data.x86 > 3) \ ? (__pgprot(pgprot_val(prot) | _PAGE_PCD | _PAGE_PWT)) : (prot)) /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { pte.pte_low &= _PAGE_CHG_MASK; pte.pte_low |= pgprot_val(newprot); #ifdef CONFIG_X86_PAE /* * Chop off the NX bit (if present), and add the NX portion of * the newprot (if present): */ pte.pte_high &= ~(1 << (_PAGE_BIT_NX - 32)); pte.pte_high |= (pgprot_val(newprot) >> 32) & \ (__supported_pte_mask >> 32); #endif return pte; } #define pmd_large(pmd) \ ((pmd_val(pmd) & (_PAGE_PSE|_PAGE_PRESENT)) == (_PAGE_PSE|_PAGE_PRESENT)) /* * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD] * * this macro returns the index of the entry in the pgd page which would * control the given virtual address */ #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) #define pgd_index_k(addr) pgd_index(addr) /* * pgd_offset() returns a (pgd_t *) * pgd_index() is used get the offset into the pgd page's array of pgd_t's; */ #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address)) /* * a shortcut which implies the use of the kernel's pgd, instead * of a process's */ #define pgd_offset_k(address) pgd_offset(&init_mm, address) /* * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD] * * this macro returns the index of the entry in the pmd page which would * control the given virtual address */ #define pmd_index(address) \ (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) /* * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE] * * this macro returns the index of the entry in the pte page which would * control the given virtual address */ #define pte_index(address) \ (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) #define pte_offset_kernel(dir, address) \ ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address)) #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)) #define pmd_page_vaddr(pmd) \ ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) /* * Helper function that returns the kernel pagetable entry controlling * the virtual address 'address'. NULL means no pagetable entry present. * NOTE: the return type is pte_t but if the pmd is PSE then we return it * as a pte too. */ extern pte_t *lookup_address(unsigned long address); /* * Make a given kernel text page executable/non-executable. * Returns the previous executability setting of that page (which * is used to restore the previous state). Used by the SMP bootup code. * NOTE: this is an __init function for security reasons. */ #ifdef CONFIG_X86_PAE extern int set_kernel_exec(unsigned long vaddr, int enable); #else static inline int set_kernel_exec(unsigned long vaddr, int enable) { return 0;} #endif #if defined(CONFIG_HIGHPTE) #define pte_offset_map(dir, address) \ ((pte_t *)kmap_atomic_pte(pmd_page(*(dir)),KM_PTE0) + pte_index(address)) #define pte_offset_map_nested(dir, address) \ ((pte_t *)kmap_atomic_pte(pmd_page(*(dir)),KM_PTE1) + pte_index(address)) #define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0) #define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1) #else #define pte_offset_map(dir, address) \ ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address)) #define pte_offset_map_nested(dir, address) pte_offset_map(dir, address) #define pte_unmap(pte) do { } while (0) #define pte_unmap_nested(pte) do { } while (0) #endif /* Clear a kernel PTE and flush it from the TLB */ #define kpte_clear_flush(ptep, vaddr) \ do { \ pte_clear(&init_mm, vaddr, ptep); \ __flush_tlb_one(vaddr); \ } while (0) /* * The i386 doesn't have any external MMU info: the kernel page * tables contain all the necessary information. */ #define update_mmu_cache(vma,address,pte) do { } while (0) void native_pagetable_setup_start(pgd_t *base); void native_pagetable_setup_done(pgd_t *base); #ifndef CONFIG_PARAVIRT static inline void paravirt_pagetable_setup_start(pgd_t *base) { native_pagetable_setup_start(base); } static inline void paravirt_pagetable_setup_done(pgd_t *base) { native_pagetable_setup_done(base); } #endif /* !CONFIG_PARAVIRT */ #endif /* !__ASSEMBLY__ */ /* * kern_addr_valid() is (1) for FLATMEM and (0) for * SPARSEMEM and DISCONTIGMEM */ #ifdef CONFIG_FLATMEM #define kern_addr_valid(addr) (1) #else #define kern_addr_valid(kaddr) (0) #endif #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ remap_pfn_range(vma, vaddr, pfn, size, prot) #include #endif /* _I386_PGTABLE_H */