/* linux/drivers/video/samsung/s3cfb_s6e8ab0.c * * MIPI-DSI based AMS767KC01 AMOLED lcd panel driver. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_HAS_EARLYSUSPEND #include #endif #define SMART_DIMMING #include "s3cfb.h" #include "s5p-dsim.h" #include "s6e8ab0_param.h" #include "s6e8ab0_gamma.h" #ifdef SMART_DIMMING #include "smart_dimming_s6e8ab0.h" #endif #define POWER_IS_ON(pwr) ((pwr) <= FB_BLANK_NORMAL) #define MIN_BRIGHTNESS 0 #define MAX_BRIGHTNESS 255 #define DEFAULT_BRIGHTNESS 150 /* this is not candela */ #define DEFAULT_GAMMA_LEVEL GAMMA_150CD #define LDI_ID_REG 0xD1 #define LDI_ID_LEN 3 #ifdef SMART_DIMMING #define LDI_MTP_LENGTH 24 #define LDI_MTP_ADDR 0xD3 #define ELVSS_OFFSET_MAX 0x00 #define ELVSS_OFFSET_2 0x04 #define ELVSS_OFFSET_1 0x08 #define ELVSS_OFFSET_MIN 0x0C #define ELVSS_MIN_VALUE 0x81 #define ELVSS_MAX_VALUE_MODE0 0xA1 #define ELVSS_MAX_VALUE_MODE1 0xA9 #define ELVSS_MODE0_MIN_VOLTAGE 64 #define ELVSS_MODE1_MIN_VOLTAGE 64 struct str_elvss { u8 reference; u8 limit; }; #endif struct lcd_info { unsigned int bl; unsigned int acl_enable; unsigned int current_acl; unsigned int current_bl; unsigned int ldi_enable; unsigned int power; struct mutex lock; struct mutex bl_lock; struct device *dev; struct lcd_device *ld; struct backlight_device *bd; struct lcd_platform_data *lcd_pd; struct early_suspend early_suspend; unsigned char id[LDI_ID_LEN]; unsigned char **gamma_table; unsigned char **elvss_table; unsigned char elvss_cmd_length; #ifdef SMART_DIMMING unsigned int support_elvss; struct str_smart_dim smart; struct str_elvss elvss; #endif unsigned int connected; struct dsim_global *dsim; }; extern void (*lcd_early_suspend)(void); extern void (*lcd_late_resume)(void); static int s6e8ax0_write(struct lcd_info *lcd, const unsigned char *seq, int len) { int size; const unsigned char *wbuf; if (!lcd->connected) return 0; mutex_lock(&lcd->lock); size = len; wbuf = seq; if (size == 1) lcd->dsim->ops->cmd_write(lcd->dsim, DCS_WR_NO_PARA, wbuf[0], 0); else if (size == 2) lcd->dsim->ops->cmd_write(lcd->dsim, DCS_WR_1_PARA, wbuf[0], wbuf[1]); else lcd->dsim->ops->cmd_write(lcd->dsim, DCS_LONG_WR, (unsigned int)wbuf, size); mutex_unlock(&lcd->lock); return 0; } static int _s6e8ax0_read(struct lcd_info *lcd, const u8 addr, u16 count, u8 *buf) { int ret = 0; if (!lcd->connected) return ret; mutex_lock(&lcd->lock); if (lcd->dsim->ops->cmd_read) ret = lcd->dsim->ops->cmd_read(lcd->dsim, addr, count, buf); mutex_unlock(&lcd->lock); return ret; } static int s6e8ax0_read(struct lcd_info *lcd, const u8 addr, u16 count, u8 *buf, u8 retry_cnt) { int ret = 0; read_retry: ret = _s6e8ax0_read(lcd, addr, count, buf); if (!ret) { if (retry_cnt) { printk(KERN_WARNING "[WARN:LCD] %s : retry cnt : %d\n", __func__, retry_cnt); retry_cnt--; goto read_retry; } else printk(KERN_ERR "[ERROR:LCD] %s : 0x%02x read failed\n", __func__, addr); } return ret; } static int s6e8ax0_gamma_ctl(struct lcd_info *lcd) { /* Gamma Select */ s6e8ax0_write(lcd, SEQ_GAMMA_SELECT, ARRAY_SIZE(SEQ_GAMMA_SELECT)); s6e8ax0_write(lcd, lcd->gamma_table[lcd->bl], GAMMA_PARAM_SIZE); /* Gamma Set Update */ s6e8ax0_write(lcd, SEQ_GAMMA_UPDATE, ARRAY_SIZE(SEQ_GAMMA_UPDATE)); return 0; } static int s6e8ax0_set_acl(struct lcd_info *lcd, u8 force) { int ret = 0, enable, level; u32 candela = candela_table[lcd->bl]; switch (candela) { case 0 ... 49: level = ACL_STATUS_0P; break; default: level = ACL_STATUS_40P; break; } if (!lcd->acl_enable) level = ACL_STATUS_0P; enable = !!level; //if (force || lcd->acl_enable != enable) { dev_dbg(&lcd->ld->dev, "acl turn %s\n", enable ? "on" : "off"); if (enable) ret = s6e8ax0_write(lcd, SEQ_ACL_ON, ARRAY_SIZE(SEQ_ACL_ON)); else { ret = s6e8ax0_write(lcd, SEQ_ACL_OFF, ARRAY_SIZE(SEQ_ACL_OFF)); goto exit; } //} //if (force || lcd->current_acl != level) { ret = s6e8ax0_write(lcd, ACL_CUTOFF_TABLE[level], ACL_PARAM_SIZE); lcd->current_acl = level; dev_dbg(&lcd->ld->dev, "current_acl = %d\n", lcd->current_acl); //} if (ret) ret = -EPERM; exit: return ret; } static int s6e8ax0_set_elvss(struct lcd_info *lcd) { int ret = 0; u32 candela = candela_table[lcd->bl]; switch (candela) { case 0 ... 100: ret = s6e8ax0_write(lcd, lcd->elvss_table[0], lcd->elvss_cmd_length); break; case 101 ... 150: ret = s6e8ax0_write(lcd, lcd->elvss_table[1], lcd->elvss_cmd_length); break; case 151 ... 200: ret = s6e8ax0_write(lcd, lcd->elvss_table[2], lcd->elvss_cmd_length); break; case 201 ... 250: ret = s6e8ax0_write(lcd, lcd->elvss_table[3], lcd->elvss_cmd_length); break; default: break; } dev_dbg(&lcd->ld->dev, "level = %d\n", lcd->bl); if (ret) { ret = -EPERM; goto elvss_err; } elvss_err: return ret; } #ifdef SMART_DIMMING static u8 get_elvss_offset(u32 elvss_level) { u8 offset = 0; switch (elvss_level) { case 0: offset = ELVSS_OFFSET_MIN; break; case 1: offset = ELVSS_OFFSET_1; break; case 2: offset = ELVSS_OFFSET_2; break; case 3: offset = ELVSS_OFFSET_MAX; break; default: offset = ELVSS_OFFSET_MAX; break; } return offset; } static u8 get_elvss_value(struct lcd_info *lcd, u8 elvss_level) { u8 ref = 0; u8 offset; u8 elvss_max_value; ref = (lcd->elvss.reference | 0x80); if (lcd->elvss.limit == 0x00) elvss_max_value = ELVSS_MAX_VALUE_MODE0; else if (lcd->elvss.limit == 0x01) elvss_max_value = ELVSS_MAX_VALUE_MODE1; else { printk(KERN_ERR "[ERROR:ELVSS]:%s undefined elvss limit value :%x\n", __func__, lcd->elvss.limit); return 0; } offset = get_elvss_offset(elvss_level); ref += offset; if (ref < ELVSS_MIN_VALUE) ref = ELVSS_MIN_VALUE; else if (ref > elvss_max_value) ref = elvss_max_value; return ref; } static int init_elvss_table(struct lcd_info *lcd) { int i, ret = 0; lcd->elvss_table = kzalloc(ELVSS_STATUS_MAX * sizeof(u8 *), GFP_KERNEL); if (IS_ERR_OR_NULL(lcd->elvss_table)) { pr_err("failed to allocate elvss table\n"); ret = -ENOMEM; goto err_alloc_elvss_table; } for (i = 0; i < ELVSS_STATUS_MAX; i++) { lcd->elvss_table[i] = kzalloc(3 * sizeof(u8), GFP_KERNEL); if (IS_ERR_OR_NULL(lcd->elvss_table[i])) { pr_err("failed to allocate elvss\n"); ret = -ENOMEM; goto err_alloc_elvss; } lcd->elvss_table[i][0] = 0xB1; lcd->elvss_table[i][1] = 0x84; lcd->elvss_table[i][2] = get_elvss_value(lcd, i); } lcd->elvss_cmd_length = 3; return 0; err_alloc_elvss: while (i > 0) { kfree(lcd->elvss_table[i-1]); i--; } kfree(lcd->elvss_table); err_alloc_elvss_table: return ret; } static int init_gamma_table(struct lcd_info *lcd) { int i, ret = 0; lcd->gamma_table = kzalloc(GAMMA_MAX * sizeof(u8 *), GFP_KERNEL); if (IS_ERR_OR_NULL(lcd->gamma_table)) { pr_err("failed to allocate gamma table\n"); ret = -ENOMEM; goto err_alloc_gamma_table; } for (i = 0; i < GAMMA_MAX; i++) { lcd->gamma_table[i] = kzalloc(GAMMA_PARAM_SIZE * sizeof(u8), GFP_KERNEL); if (IS_ERR_OR_NULL(lcd->gamma_table[i])) { pr_err("failed to allocate gamma\n"); ret = -ENOMEM; goto err_alloc_gamma; } lcd->gamma_table[i][0] = 0xFA; calc_gamma_table(&lcd->smart, candela_table[i]-1, lcd->gamma_table[i]+1); } #if 0 for (i = 0; i < GAMMA_MAX; i++) { for (j = 0; j < GAMMA_PARAM_SIZE; j++) printk("0x%02x, ", lcd->gamma_table[i][j]); printk("\n"); } #endif return 0; err_alloc_gamma: while (i > 0) { kfree(lcd->gamma_table[i-1]); i--; } kfree(lcd->gamma_table); err_alloc_gamma_table: return ret; } #endif static int update_brightness(struct lcd_info *lcd, u8 force) { int ret; u32 brightness; mutex_lock(&lcd->bl_lock); brightness = lcd->bd->props.brightness; lcd->bl = (brightness - candela_table[0]) / 10; lcd->bl = (lcd->bl >= ARRAY_SIZE(candela_table)) ? 0 : lcd->bl; if ((force) || ((lcd->ldi_enable) && (lcd->current_bl != lcd->bl))) { ret = s6e8ax0_gamma_ctl(lcd); ret = s6e8ax0_set_acl(lcd, force); ret = s6e8ax0_set_elvss(lcd); lcd->current_bl = lcd->bl; dev_info(&lcd->ld->dev, "brightness=%d, bl=%d\n", brightness, lcd->bl); } mutex_unlock(&lcd->bl_lock); return 0; } static int s6e8ax0_ldi_init(struct lcd_info *lcd) { int ret = 0; s6e8ax0_write(lcd, SEQ_APPLY_LEVEL_2_KEY, ARRAY_SIZE(SEQ_APPLY_LEVEL_2_KEY)); s6e8ax0_write(lcd, SEQ_POWER_CONTROL, ARRAY_SIZE(SEQ_POWER_CONTROL)); s6e8ax0_write(lcd, SEQ_SLEEP_OUT, ARRAY_SIZE(SEQ_SLEEP_OUT)); msleep(22); /* 1 frame + 5ms */ s6e8ax0_write(lcd, SEQ_APPLY_MTP_KEY, ARRAY_SIZE(SEQ_APPLY_MTP_KEY)); s6e8ax0_write(lcd, SEQ_PANEL_CONDITION_SET, ARRAY_SIZE(SEQ_PANEL_CONDITION_SET)); s6e8ax0_write(lcd, SEQ_GAMMA_SELECT, ARRAY_SIZE(SEQ_GAMMA_SELECT)); s6e8ax0_write(lcd, lcd->gamma_table[GAMMA_30CD], GAMMA_PARAM_SIZE); s6e8ax0_write(lcd, SEQ_GAMMA_UPDATE, ARRAY_SIZE(SEQ_GAMMA_UPDATE)); s6e8ax0_write(lcd, SEQ_ETC_PWRCTL, ARRAY_SIZE(SEQ_ETC_PWRCTL)); s6e8ax0_write(lcd, SEQ_ETC_SOURCE_CONTROL, ARRAY_SIZE(SEQ_ETC_SOURCE_CONTROL)); s6e8ax0_write(lcd, SEQ_ELVSS_DEFAULT, ARRAY_SIZE(SEQ_ELVSS_DEFAULT)); s6e8ax0_write(lcd, SEQ_ETC_NVM_SETTING, ARRAY_SIZE(SEQ_ETC_NVM_SETTING)); s6e8ax0_write(lcd, SEQ_ELVSS_ON, ARRAY_SIZE(SEQ_ELVSS_ON)); s6e8ax0_write(lcd, SEQ_ELVSS_44, ARRAY_SIZE(SEQ_ELVSS_44)); s6e8ax0_write(lcd, SEQ_ACL_CUTOFF_40, ACL_PARAM_SIZE); s6e8ax0_write(lcd, SEQ_VREGOUT_SET, ARRAY_SIZE(SEQ_VREGOUT_SET)); return ret; } static int s6e8ax0_ldi_enable(struct lcd_info *lcd) { int ret = 0; s6e8ax0_write(lcd, SEQ_DISPLAY_ON, ARRAY_SIZE(SEQ_DISPLAY_ON)); return ret; } static int s6e8ax0_ldi_disable(struct lcd_info *lcd) { int ret = 0; s6e8ax0_write(lcd, SEQ_DISPLAY_OFF, ARRAY_SIZE(SEQ_DISPLAY_OFF)); s6e8ax0_write(lcd, SEQ_STANDBY_ON, ARRAY_SIZE(SEQ_STANDBY_ON)); return ret; } static int s6e8ax0_power_on(struct lcd_info *lcd) { int ret = 0; struct lcd_platform_data *pd = NULL; pd = lcd->lcd_pd; /* dev_info(&lcd->ld->dev, "%s\n", __func__); */ ret = s6e8ax0_ldi_init(lcd); if (ret) { dev_err(&lcd->ld->dev, "failed to initialize ldi.\n"); goto err; } msleep(120); ret = s6e8ax0_ldi_enable(lcd); if (ret) { dev_err(&lcd->ld->dev, "failed to enable ldi.\n"); goto err; } lcd->ldi_enable = 1; update_brightness(lcd, 1); err: return ret; } static int s6e8ax0_power_off(struct lcd_info *lcd) { int ret = 0; dev_info(&lcd->ld->dev, "%s\n", __func__); lcd->ldi_enable = 0; ret = s6e8ax0_ldi_disable(lcd); msleep(120); return ret; } static int s6e8ax0_power(struct lcd_info *lcd, int power) { int ret = 0; if (POWER_IS_ON(power) && !POWER_IS_ON(lcd->power)) ret = s6e8ax0_power_on(lcd); else if (!POWER_IS_ON(power) && POWER_IS_ON(lcd->power)) ret = s6e8ax0_power_off(lcd); if (!ret) lcd->power = power; return ret; } static int s6e8ax0_set_power(struct lcd_device *ld, int power) { struct lcd_info *lcd = lcd_get_data(ld); if (power != FB_BLANK_UNBLANK && power != FB_BLANK_POWERDOWN && power != FB_BLANK_NORMAL) { dev_err(&lcd->ld->dev, "power value should be 0, 1 or 4.\n"); return -EINVAL; } return s6e8ax0_power(lcd, power); } static int s6e8ax0_get_power(struct lcd_device *ld) { struct lcd_info *lcd = lcd_get_data(ld); return lcd->power; } static int s6e8ax0_set_brightness(struct backlight_device *bd) { int ret = 0; int brightness = bd->props.brightness; struct lcd_info *lcd = bl_get_data(bd); /* dev_info(&lcd->ld->dev, "%s: brightness=%d\n", __func__, brightness); */ if (brightness < MIN_BRIGHTNESS || brightness > bd->props.max_brightness) { dev_err(&bd->dev, "lcd brightness should be %d to %d. now %d\n", MIN_BRIGHTNESS, MAX_BRIGHTNESS, brightness); return -EINVAL; } if (lcd->ldi_enable) { ret = update_brightness(lcd, 0); if (ret < 0) { dev_err(lcd->dev, "err in %s\n", __func__); return -EINVAL; } } return ret; } static int s6e8ax0_get_brightness(struct backlight_device *bd) { struct lcd_info *lcd = bl_get_data(bd); return candela_table[lcd->bl]; } static struct lcd_ops s6e8ax0_lcd_ops = { .set_power = s6e8ax0_set_power, .get_power = s6e8ax0_get_power, }; static const struct backlight_ops s6e8ax0_backlight_ops = { .get_brightness = s6e8ax0_get_brightness, .update_status = s6e8ax0_set_brightness, }; static ssize_t lcd_type_show(struct device *dev, struct device_attribute *attr, char *buf) { char temp[15]; sprintf(temp, "SMD_AMS767KC01\n"); strcat(buf, temp); return strlen(buf); } static DEVICE_ATTR(lcd_type, 0444, lcd_type_show, NULL); static ssize_t power_reduce_show(struct device *dev, struct device_attribute *attr, char *buf) { struct lcd_info *lcd = dev_get_drvdata(dev); char temp[3]; sprintf(temp, "%d\n", lcd->acl_enable); strcpy(buf, temp); return strlen(buf); } static ssize_t power_reduce_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct lcd_info *lcd = dev_get_drvdata(dev); int value; int rc; rc = strict_strtoul(buf, (unsigned int)0, (unsigned long *)&value); if (rc < 0) return rc; else { if (lcd->acl_enable != value) { dev_info(dev, "%s - %d, %d\n", __func__, lcd->acl_enable, value); lcd->acl_enable = value; if (lcd->ldi_enable) s6e8ax0_set_acl(lcd, 0); } } return size; } static DEVICE_ATTR(power_reduce, 0664, power_reduce_show, power_reduce_store); static ssize_t gamma_table_show(struct device *dev, struct device_attribute *attr, char *buf) { struct lcd_info *lcd = dev_get_drvdata(dev); int i, j; for (i = 0; i < GAMMA_MAX; i++) { for (j = 0; j < GAMMA_PARAM_SIZE; j++) printk("0x%02x, ", lcd->gamma_table[i][j]); printk("\n"); } return strlen(buf); } static DEVICE_ATTR(gamma_table, 0444, gamma_table_show, NULL); #ifdef CONFIG_HAS_EARLYSUSPEND struct lcd_info *g_lcd; void s6e8ax0_early_suspend(void) { struct lcd_info *lcd = g_lcd; set_dsim_lcd_enabled(0); dev_info(&lcd->ld->dev, "+%s\n", __func__); s6e8ax0_power(lcd, FB_BLANK_POWERDOWN); dev_info(&lcd->ld->dev, "-%s\n", __func__); return ; } void s6e8ax0_late_resume(void) { struct lcd_info *lcd = g_lcd; dev_info(&lcd->ld->dev, "+%s\n", __func__); s6e8ax0_power(lcd, FB_BLANK_UNBLANK); dev_info(&lcd->ld->dev, "-%s\n", __func__); set_dsim_lcd_enabled(1); return ; } #endif static void s6e8ax0_read_id(struct lcd_info *lcd, u8 *buf) { int ret = 0; ret = s6e8ax0_read(lcd, LDI_ID_REG, LDI_ID_LEN, buf, 3); if (!ret) { /* To protect ELVSS Wrong Operation */ buf[0] = 0xA2; buf[1] = 0x15; buf[2] = 0x44; lcd->connected = 0; dev_info(&lcd->ld->dev, "panel is not connected well\n"); } SEQ_VREGOUT_SET[1] = buf[0]; SEQ_VREGOUT_SET[2] = buf[1]; SEQ_VREGOUT_SET[3] = buf[2]; } #ifdef SMART_DIMMING static int s6e8ax0_read_mtp(struct lcd_info *lcd, u8 *mtp_data) { int ret; ret = s6e8ax0_read(lcd, LDI_MTP_ADDR, LDI_MTP_LENGTH, mtp_data, 0); return ret; } static void s6e8ab0_check_id(struct lcd_info *lcd, u8 *idbuf) { u32 i; if ((idbuf[0] == 0xa2) && (idbuf[2] != 0x44)) lcd->support_elvss = 1; if (lcd->support_elvss) { lcd->elvss.limit = (idbuf[2] & 0xc0) >> 6; lcd->elvss.reference = idbuf[2] & 0x3f; lcd->elvss_cmd_length = 3; printk(KERN_INFO "ID-3 is 0x%x support dynamic elvss\n", idbuf[2]); printk(KERN_INFO "Dynamic ELVSS Information\n"); printk(KERN_INFO "limit : %02x\n", lcd->elvss.limit); } for (i = 0; i < LDI_ID_LEN; i++) lcd->smart.panelid[i] = idbuf[i]; } #endif static int s6e8ax0_probe(struct device *dev) { int ret = 0; struct lcd_info *lcd; #ifdef SMART_DIMMING u8 mtp_data[LDI_MTP_LENGTH] = {0,}; #endif lcd = kzalloc(sizeof(struct lcd_info), GFP_KERNEL); if (!lcd) { pr_err("failed to allocate for lcd\n"); ret = -ENOMEM; goto err_alloc; } g_lcd = lcd; lcd->ld = lcd_device_register("panel", dev, lcd, &s6e8ax0_lcd_ops); if (IS_ERR(lcd->ld)) { pr_err("failed to register lcd device\n"); ret = PTR_ERR(lcd->ld); goto out_free_lcd; } lcd->bd = backlight_device_register("panel", dev, lcd, &s6e8ax0_backlight_ops, NULL); if (IS_ERR(lcd->bd)) { pr_err("failed to register backlight device\n"); ret = PTR_ERR(lcd->bd); goto out_free_backlight; } lcd->dev = dev; lcd->dsim = (struct dsim_global *)dev_get_drvdata(dev->parent); lcd->bd->props.max_brightness = MAX_BRIGHTNESS; lcd->bd->props.brightness = DEFAULT_BRIGHTNESS; lcd->bl = DEFAULT_GAMMA_LEVEL; lcd->current_bl = lcd->bl; lcd->acl_enable = 0; lcd->current_acl = 0; lcd->power = FB_BLANK_UNBLANK; lcd->ldi_enable = 1; lcd->connected = 1; ret = device_create_file(&lcd->ld->dev, &dev_attr_power_reduce); if (ret < 0) dev_err(&lcd->ld->dev, "failed to add sysfs entries, %d\n", __LINE__); ret = device_create_file(&lcd->ld->dev, &dev_attr_lcd_type); if (ret < 0) dev_err(&lcd->ld->dev, "failed to add sysfs entries, %d\n", __LINE__); ret = device_create_file(&lcd->ld->dev, &dev_attr_gamma_table); if (ret < 0) dev_err(&lcd->ld->dev, "failed to add sysfs entries, %d\n", __LINE__); dev_set_drvdata(dev, lcd); mutex_init(&lcd->lock); mutex_init(&lcd->bl_lock); s6e8ax0_read_id(lcd, lcd->id); dev_info(&lcd->ld->dev, "ID: %x, %x, %x\n", lcd->id[0], lcd->id[1], lcd->id[2]); dev_info(&lcd->ld->dev, "s6e8ab0 lcd panel driver has been probed.\n"); lcd->gamma_table = (unsigned char **)gamma22_table_sm2; lcd->elvss_table = (unsigned char **)ELVSS_TABLE; lcd->elvss_cmd_length = ELVSS_PARAM_SIZE; #ifdef SMART_DIMMING s6e8ab0_check_id(lcd, lcd->id); init_table_info(&lcd->smart); ret = s6e8ax0_read_mtp(lcd, mtp_data); if (!ret) { printk(KERN_ERR "[LCD:ERROR] : %s read mtp failed\n", __func__); /*return -EPERM;*/ } calc_voltage_table(&lcd->smart, mtp_data); if (lcd->connected) { ret = init_gamma_table(lcd); if (lcd->support_elvss) ret += init_elvss_table(lcd); if (ret) { lcd->gamma_table = (unsigned char **)gamma22_table_sm2; lcd->elvss_table = (unsigned char **)ELVSS_TABLE; lcd->elvss_cmd_length = ELVSS_PARAM_SIZE; } } update_brightness(lcd, 1); #endif lcd_early_suspend = s6e8ax0_early_suspend; lcd_late_resume = s6e8ax0_late_resume; return 0; out_free_backlight: lcd_device_unregister(lcd->ld); kfree(lcd); return ret; out_free_lcd: kfree(lcd); return ret; err_alloc: return ret; } static int __devexit s6e8ax0_remove(struct device *dev) { struct lcd_info *lcd = dev_get_drvdata(dev); s6e8ax0_power(lcd, FB_BLANK_POWERDOWN); lcd_device_unregister(lcd->ld); backlight_device_unregister(lcd->bd); kfree(lcd); return 0; } /* Power down all displays on reboot, poweroff or halt. */ static void s6e8ax0_shutdown(struct device *dev) { struct lcd_info *lcd = dev_get_drvdata(dev); dev_info(&lcd->ld->dev, "%s\n", __func__); s6e8ax0_power(lcd, FB_BLANK_POWERDOWN); } static struct mipi_lcd_driver s6e8ax0_mipi_driver = { .name = "s6e8ab0", .probe = s6e8ax0_probe, .remove = __devexit_p(s6e8ax0_remove), .shutdown = s6e8ax0_shutdown, }; static int s6e8ax0_init(void) { return s5p_dsim_register_lcd_driver(&s6e8ax0_mipi_driver); } static void s6e8ax0_exit(void) { return; } module_init(s6e8ax0_init); module_exit(s6e8ax0_exit); MODULE_DESCRIPTION("MIPI-DSI S6E8AB0:AMS767KC01 (1280x800) Panel Driver"); MODULE_LICENSE("GPL");