/* * linux/drivers/s390/crypto/ap_bus.c * * Copyright (C) 2006 IBM Corporation * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com> * Martin Schwidefsky <schwidefsky@de.ibm.com> * Ralph Wuerthner <rwuerthn@de.ibm.com> * Felix Beck <felix.beck@de.ibm.com> * * Adjunct processor bus. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #define KMSG_COMPONENT "ap" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/module.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/workqueue.h> #include <linux/notifier.h> #include <linux/kthread.h> #include <linux/mutex.h> #include <asm/reset.h> #include <asm/airq.h> #include <asm/atomic.h> #include <asm/system.h> #include <asm/isc.h> #include <linux/hrtimer.h> #include <linux/ktime.h> #include "ap_bus.h" /* Some prototypes. */ static void ap_scan_bus(struct work_struct *); static void ap_poll_all(unsigned long); static enum hrtimer_restart ap_poll_timeout(struct hrtimer *); static int ap_poll_thread_start(void); static void ap_poll_thread_stop(void); static void ap_request_timeout(unsigned long); static inline void ap_schedule_poll_timer(void); /* * Module description. */ MODULE_AUTHOR("IBM Corporation"); MODULE_DESCRIPTION("Adjunct Processor Bus driver, " "Copyright 2006 IBM Corporation"); MODULE_LICENSE("GPL"); /* * Module parameter */ int ap_domain_index = -1; /* Adjunct Processor Domain Index */ module_param_named(domain, ap_domain_index, int, 0000); MODULE_PARM_DESC(domain, "domain index for ap devices"); EXPORT_SYMBOL(ap_domain_index); static int ap_thread_flag = 0; module_param_named(poll_thread, ap_thread_flag, int, 0000); MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off)."); static struct device *ap_root_device = NULL; static DEFINE_SPINLOCK(ap_device_list_lock); static LIST_HEAD(ap_device_list); /* * Workqueue & timer for bus rescan. */ static struct workqueue_struct *ap_work_queue; static struct timer_list ap_config_timer; static int ap_config_time = AP_CONFIG_TIME; static DECLARE_WORK(ap_config_work, ap_scan_bus); /* * Tasklet & timer for AP request polling and interrupts */ static DECLARE_TASKLET(ap_tasklet, ap_poll_all, 0); static atomic_t ap_poll_requests = ATOMIC_INIT(0); static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait); static struct task_struct *ap_poll_kthread = NULL; static DEFINE_MUTEX(ap_poll_thread_mutex); static void *ap_interrupt_indicator; static struct hrtimer ap_poll_timer; /* In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds. * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.*/ static unsigned long long poll_timeout = 250000; /** * ap_using_interrupts() - Returns non-zero if interrupt support is * available. */ static inline int ap_using_interrupts(void) { return ap_interrupt_indicator != NULL; } /** * ap_intructions_available() - Test if AP instructions are available. * * Returns 0 if the AP instructions are installed. */ static inline int ap_instructions_available(void) { register unsigned long reg0 asm ("0") = AP_MKQID(0,0); register unsigned long reg1 asm ("1") = -ENODEV; register unsigned long reg2 asm ("2") = 0UL; asm volatile( " .long 0xb2af0000\n" /* PQAP(TAPQ) */ "0: la %1,0\n" "1:\n" EX_TABLE(0b, 1b) : "+d" (reg0), "+d" (reg1), "+d" (reg2) : : "cc" ); return reg1; } /** * ap_interrupts_available(): Test if AP interrupts are available. * * Returns 1 if AP interrupts are available. */ static int ap_interrupts_available(void) { unsigned long long facility_bits[2]; if (stfle(facility_bits, 2) <= 1) return 0; if (!(facility_bits[0] & (1ULL << 61)) || !(facility_bits[1] & (1ULL << 62))) return 0; return 1; } /** * ap_test_queue(): Test adjunct processor queue. * @qid: The AP queue number * @queue_depth: Pointer to queue depth value * @device_type: Pointer to device type value * * Returns AP queue status structure. */ static inline struct ap_queue_status ap_test_queue(ap_qid_t qid, int *queue_depth, int *device_type) { register unsigned long reg0 asm ("0") = qid; register struct ap_queue_status reg1 asm ("1"); register unsigned long reg2 asm ("2") = 0UL; asm volatile(".long 0xb2af0000" /* PQAP(TAPQ) */ : "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc"); *device_type = (int) (reg2 >> 24); *queue_depth = (int) (reg2 & 0xff); return reg1; } /** * ap_reset_queue(): Reset adjunct processor queue. * @qid: The AP queue number * * Returns AP queue status structure. */ static inline struct ap_queue_status ap_reset_queue(ap_qid_t qid) { register unsigned long reg0 asm ("0") = qid | 0x01000000UL; register struct ap_queue_status reg1 asm ("1"); register unsigned long reg2 asm ("2") = 0UL; asm volatile( ".long 0xb2af0000" /* PQAP(RAPQ) */ : "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc"); return reg1; } #ifdef CONFIG_64BIT /** * ap_queue_interruption_control(): Enable interruption for a specific AP. * @qid: The AP queue number * @ind: The notification indicator byte * * Returns AP queue status. */ static inline struct ap_queue_status ap_queue_interruption_control(ap_qid_t qid, void *ind) { register unsigned long reg0 asm ("0") = qid | 0x03000000UL; register unsigned long reg1_in asm ("1") = 0x0000800000000000UL | AP_ISC; register struct ap_queue_status reg1_out asm ("1"); register void *reg2 asm ("2") = ind; asm volatile( ".long 0xb2af0000" /* PQAP(RAPQ) */ : "+d" (reg0), "+d" (reg1_in), "=d" (reg1_out), "+d" (reg2) : : "cc" ); return reg1_out; } #endif /** * ap_queue_enable_interruption(): Enable interruption on an AP. * @qid: The AP queue number * @ind: the notification indicator byte * * Enables interruption on AP queue via ap_queue_interruption_control(). Based * on the return value it waits a while and tests the AP queue if interrupts * have been switched on using ap_test_queue(). */ static int ap_queue_enable_interruption(ap_qid_t qid, void *ind) { #ifdef CONFIG_64BIT struct ap_queue_status status; int t_depth, t_device_type, rc, i; rc = -EBUSY; status = ap_queue_interruption_control(qid, ind); for (i = 0; i < AP_MAX_RESET; i++) { switch (status.response_code) { case AP_RESPONSE_NORMAL: if (status.int_enabled) return 0; break; case AP_RESPONSE_RESET_IN_PROGRESS: case AP_RESPONSE_BUSY: break; case AP_RESPONSE_Q_NOT_AVAIL: case AP_RESPONSE_DECONFIGURED: case AP_RESPONSE_CHECKSTOPPED: case AP_RESPONSE_INVALID_ADDRESS: return -ENODEV; case AP_RESPONSE_OTHERWISE_CHANGED: if (status.int_enabled) return 0; break; default: break; } if (i < AP_MAX_RESET - 1) { udelay(5); status = ap_test_queue(qid, &t_depth, &t_device_type); } } return rc; #else return -EINVAL; #endif } /** * __ap_send(): Send message to adjunct processor queue. * @qid: The AP queue number * @psmid: The program supplied message identifier * @msg: The message text * @length: The message length * * Returns AP queue status structure. * Condition code 1 on NQAP can't happen because the L bit is 1. * Condition code 2 on NQAP also means the send is incomplete, * because a segment boundary was reached. The NQAP is repeated. */ static inline struct ap_queue_status __ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length) { typedef struct { char _[length]; } msgblock; register unsigned long reg0 asm ("0") = qid | 0x40000000UL; register struct ap_queue_status reg1 asm ("1"); register unsigned long reg2 asm ("2") = (unsigned long) msg; register unsigned long reg3 asm ("3") = (unsigned long) length; register unsigned long reg4 asm ("4") = (unsigned int) (psmid >> 32); register unsigned long reg5 asm ("5") = (unsigned int) psmid; asm volatile ( "0: .long 0xb2ad0042\n" /* DQAP */ " brc 2,0b" : "+d" (reg0), "=d" (reg1), "+d" (reg2), "+d" (reg3) : "d" (reg4), "d" (reg5), "m" (*(msgblock *) msg) : "cc" ); return reg1; } int ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length) { struct ap_queue_status status; status = __ap_send(qid, psmid, msg, length); switch (status.response_code) { case AP_RESPONSE_NORMAL: return 0; case AP_RESPONSE_Q_FULL: case AP_RESPONSE_RESET_IN_PROGRESS: return -EBUSY; default: /* Device is gone. */ return -ENODEV; } } EXPORT_SYMBOL(ap_send); /** * __ap_recv(): Receive message from adjunct processor queue. * @qid: The AP queue number * @psmid: Pointer to program supplied message identifier * @msg: The message text * @length: The message length * * Returns AP queue status structure. * Condition code 1 on DQAP means the receive has taken place * but only partially. The response is incomplete, hence the * DQAP is repeated. * Condition code 2 on DQAP also means the receive is incomplete, * this time because a segment boundary was reached. Again, the * DQAP is repeated. * Note that gpr2 is used by the DQAP instruction to keep track of * any 'residual' length, in case the instruction gets interrupted. * Hence it gets zeroed before the instruction. */ static inline struct ap_queue_status __ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length) { typedef struct { char _[length]; } msgblock; register unsigned long reg0 asm("0") = qid | 0x80000000UL; register struct ap_queue_status reg1 asm ("1"); register unsigned long reg2 asm("2") = 0UL; register unsigned long reg4 asm("4") = (unsigned long) msg; register unsigned long reg5 asm("5") = (unsigned long) length; register unsigned long reg6 asm("6") = 0UL; register unsigned long reg7 asm("7") = 0UL; asm volatile( "0: .long 0xb2ae0064\n" " brc 6,0b\n" : "+d" (reg0), "=d" (reg1), "+d" (reg2), "+d" (reg4), "+d" (reg5), "+d" (reg6), "+d" (reg7), "=m" (*(msgblock *) msg) : : "cc" ); *psmid = (((unsigned long long) reg6) << 32) + reg7; return reg1; } int ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length) { struct ap_queue_status status; status = __ap_recv(qid, psmid, msg, length); switch (status.response_code) { case AP_RESPONSE_NORMAL: return 0; case AP_RESPONSE_NO_PENDING_REPLY: if (status.queue_empty) return -ENOENT; return -EBUSY; case AP_RESPONSE_RESET_IN_PROGRESS: return -EBUSY; default: return -ENODEV; } } EXPORT_SYMBOL(ap_recv); /** * ap_query_queue(): Check if an AP queue is available. * @qid: The AP queue number * @queue_depth: Pointer to queue depth value * @device_type: Pointer to device type value * * The test is repeated for AP_MAX_RESET times. */ static int ap_query_queue(ap_qid_t qid, int *queue_depth, int *device_type) { struct ap_queue_status status; int t_depth, t_device_type, rc, i; rc = -EBUSY; for (i = 0; i < AP_MAX_RESET; i++) { status = ap_test_queue(qid, &t_depth, &t_device_type); switch (status.response_code) { case AP_RESPONSE_NORMAL: *queue_depth = t_depth + 1; *device_type = t_device_type; rc = 0; break; case AP_RESPONSE_Q_NOT_AVAIL: rc = -ENODEV; break; case AP_RESPONSE_RESET_IN_PROGRESS: break; case AP_RESPONSE_DECONFIGURED: rc = -ENODEV; break; case AP_RESPONSE_CHECKSTOPPED: rc = -ENODEV; break; case AP_RESPONSE_INVALID_ADDRESS: rc = -ENODEV; break; case AP_RESPONSE_OTHERWISE_CHANGED: break; case AP_RESPONSE_BUSY: break; default: BUG(); } if (rc != -EBUSY) break; if (i < AP_MAX_RESET - 1) udelay(5); } return rc; } /** * ap_init_queue(): Reset an AP queue. * @qid: The AP queue number * * Reset an AP queue and wait for it to become available again. */ static int ap_init_queue(ap_qid_t qid) { struct ap_queue_status status; int rc, dummy, i; rc = -ENODEV; status = ap_reset_queue(qid); for (i = 0; i < AP_MAX_RESET; i++) { switch (status.response_code) { case AP_RESPONSE_NORMAL: if (status.queue_empty) rc = 0; break; case AP_RESPONSE_Q_NOT_AVAIL: case AP_RESPONSE_DECONFIGURED: case AP_RESPONSE_CHECKSTOPPED: i = AP_MAX_RESET; /* return with -ENODEV */ break; case AP_RESPONSE_RESET_IN_PROGRESS: rc = -EBUSY; case AP_RESPONSE_BUSY: default: break; } if (rc != -ENODEV && rc != -EBUSY) break; if (i < AP_MAX_RESET - 1) { udelay(5); status = ap_test_queue(qid, &dummy, &dummy); } } if (rc == 0 && ap_using_interrupts()) { rc = ap_queue_enable_interruption(qid, ap_interrupt_indicator); /* If interruption mode is supported by the machine, * but an AP can not be enabled for interruption then * the AP will be discarded. */ if (rc) pr_err("Registering adapter interrupts for " "AP %d failed\n", AP_QID_DEVICE(qid)); } return rc; } /** * ap_increase_queue_count(): Arm request timeout. * @ap_dev: Pointer to an AP device. * * Arm request timeout if an AP device was idle and a new request is submitted. */ static void ap_increase_queue_count(struct ap_device *ap_dev) { int timeout = ap_dev->drv->request_timeout; ap_dev->queue_count++; if (ap_dev->queue_count == 1) { mod_timer(&ap_dev->timeout, jiffies + timeout); ap_dev->reset = AP_RESET_ARMED; } } /** * ap_decrease_queue_count(): Decrease queue count. * @ap_dev: Pointer to an AP device. * * If AP device is still alive, re-schedule request timeout if there are still * pending requests. */ static void ap_decrease_queue_count(struct ap_device *ap_dev) { int timeout = ap_dev->drv->request_timeout; ap_dev->queue_count--; if (ap_dev->queue_count > 0) mod_timer(&ap_dev->timeout, jiffies + timeout); else /* * The timeout timer should to be disabled now - since * del_timer_sync() is very expensive, we just tell via the * reset flag to ignore the pending timeout timer. */ ap_dev->reset = AP_RESET_IGNORE; } /* * AP device related attributes. */ static ssize_t ap_hwtype_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ap_device *ap_dev = to_ap_dev(dev); return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->device_type); } static DEVICE_ATTR(hwtype, 0444, ap_hwtype_show, NULL); static ssize_t ap_depth_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ap_device *ap_dev = to_ap_dev(dev); return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->queue_depth); } static DEVICE_ATTR(depth, 0444, ap_depth_show, NULL); static ssize_t ap_request_count_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ap_device *ap_dev = to_ap_dev(dev); int rc; spin_lock_bh(&ap_dev->lock); rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->total_request_count); spin_unlock_bh(&ap_dev->lock); return rc; } static DEVICE_ATTR(request_count, 0444, ap_request_count_show, NULL); static ssize_t ap_modalias_show(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "ap:t%02X", to_ap_dev(dev)->device_type); } static DEVICE_ATTR(modalias, 0444, ap_modalias_show, NULL); static struct attribute *ap_dev_attrs[] = { &dev_attr_hwtype.attr, &dev_attr_depth.attr, &dev_attr_request_count.attr, &dev_attr_modalias.attr, NULL }; static struct attribute_group ap_dev_attr_group = { .attrs = ap_dev_attrs }; /** * ap_bus_match() * @dev: Pointer to device * @drv: Pointer to device_driver * * AP bus driver registration/unregistration. */ static int ap_bus_match(struct device *dev, struct device_driver *drv) { struct ap_device *ap_dev = to_ap_dev(dev); struct ap_driver *ap_drv = to_ap_drv(drv); struct ap_device_id *id; /* * Compare device type of the device with the list of * supported types of the device_driver. */ for (id = ap_drv->ids; id->match_flags; id++) { if ((id->match_flags & AP_DEVICE_ID_MATCH_DEVICE_TYPE) && (id->dev_type != ap_dev->device_type)) continue; return 1; } return 0; } /** * ap_uevent(): Uevent function for AP devices. * @dev: Pointer to device * @env: Pointer to kobj_uevent_env * * It sets up a single environment variable DEV_TYPE which contains the * hardware device type. */ static int ap_uevent (struct device *dev, struct kobj_uevent_env *env) { struct ap_device *ap_dev = to_ap_dev(dev); int retval = 0; if (!ap_dev) return -ENODEV; /* Set up DEV_TYPE environment variable. */ retval = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type); if (retval) return retval; /* Add MODALIAS= */ retval = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type); return retval; } static struct bus_type ap_bus_type = { .name = "ap", .match = &ap_bus_match, .uevent = &ap_uevent, }; static int ap_device_probe(struct device *dev) { struct ap_device *ap_dev = to_ap_dev(dev); struct ap_driver *ap_drv = to_ap_drv(dev->driver); int rc; ap_dev->drv = ap_drv; rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV; if (!rc) { spin_lock_bh(&ap_device_list_lock); list_add(&ap_dev->list, &ap_device_list); spin_unlock_bh(&ap_device_list_lock); } return rc; } /** * __ap_flush_queue(): Flush requests. * @ap_dev: Pointer to the AP device * * Flush all requests from the request/pending queue of an AP device. */ static void __ap_flush_queue(struct ap_device *ap_dev) { struct ap_message *ap_msg, *next; list_for_each_entry_safe(ap_msg, next, &ap_dev->pendingq, list) { list_del_init(&ap_msg->list); ap_dev->pendingq_count--; ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-ENODEV)); } list_for_each_entry_safe(ap_msg, next, &ap_dev->requestq, list) { list_del_init(&ap_msg->list); ap_dev->requestq_count--; ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-ENODEV)); } } void ap_flush_queue(struct ap_device *ap_dev) { spin_lock_bh(&ap_dev->lock); __ap_flush_queue(ap_dev); spin_unlock_bh(&ap_dev->lock); } EXPORT_SYMBOL(ap_flush_queue); static int ap_device_remove(struct device *dev) { struct ap_device *ap_dev = to_ap_dev(dev); struct ap_driver *ap_drv = ap_dev->drv; ap_flush_queue(ap_dev); del_timer_sync(&ap_dev->timeout); spin_lock_bh(&ap_device_list_lock); list_del_init(&ap_dev->list); spin_unlock_bh(&ap_device_list_lock); if (ap_drv->remove) ap_drv->remove(ap_dev); spin_lock_bh(&ap_dev->lock); atomic_sub(ap_dev->queue_count, &ap_poll_requests); spin_unlock_bh(&ap_dev->lock); return 0; } int ap_driver_register(struct ap_driver *ap_drv, struct module *owner, char *name) { struct device_driver *drv = &ap_drv->driver; drv->bus = &ap_bus_type; drv->probe = ap_device_probe; drv->remove = ap_device_remove; drv->owner = owner; drv->name = name; return driver_register(drv); } EXPORT_SYMBOL(ap_driver_register); void ap_driver_unregister(struct ap_driver *ap_drv) { driver_unregister(&ap_drv->driver); } EXPORT_SYMBOL(ap_driver_unregister); /* * AP bus attributes. */ static ssize_t ap_domain_show(struct bus_type *bus, char *buf) { return snprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index); } static BUS_ATTR(ap_domain, 0444, ap_domain_show, NULL); static ssize_t ap_config_time_show(struct bus_type *bus, char *buf) { return snprintf(buf, PAGE_SIZE, "%d\n", ap_config_time); } static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf) { return snprintf(buf, PAGE_SIZE, "%d\n", ap_using_interrupts() ? 1 : 0); } static BUS_ATTR(ap_interrupts, 0444, ap_interrupts_show, NULL); static ssize_t ap_config_time_store(struct bus_type *bus, const char *buf, size_t count) { int time; if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120) return -EINVAL; ap_config_time = time; if (!timer_pending(&ap_config_timer) || !mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ)) { ap_config_timer.expires = jiffies + ap_config_time * HZ; add_timer(&ap_config_timer); } return count; } static BUS_ATTR(config_time, 0644, ap_config_time_show, ap_config_time_store); static ssize_t ap_poll_thread_show(struct bus_type *bus, char *buf) { return snprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0); } static ssize_t ap_poll_thread_store(struct bus_type *bus, const char *buf, size_t count) { int flag, rc; if (sscanf(buf, "%d\n", &flag) != 1) return -EINVAL; if (flag) { rc = ap_poll_thread_start(); if (rc) return rc; } else ap_poll_thread_stop(); return count; } static BUS_ATTR(poll_thread, 0644, ap_poll_thread_show, ap_poll_thread_store); static ssize_t poll_timeout_show(struct bus_type *bus, char *buf) { return snprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout); } static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf, size_t count) { unsigned long long time; ktime_t hr_time; /* 120 seconds = maximum poll interval */ if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 || time > 120000000000ULL) return -EINVAL; poll_timeout = time; hr_time = ktime_set(0, poll_timeout); if (!hrtimer_is_queued(&ap_poll_timer) || !hrtimer_forward(&ap_poll_timer, hrtimer_get_expires(&ap_poll_timer), hr_time)) { hrtimer_set_expires(&ap_poll_timer, hr_time); hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS); } return count; } static BUS_ATTR(poll_timeout, 0644, poll_timeout_show, poll_timeout_store); static struct bus_attribute *const ap_bus_attrs[] = { &bus_attr_ap_domain, &bus_attr_config_time, &bus_attr_poll_thread, &bus_attr_ap_interrupts, &bus_attr_poll_timeout, NULL, }; /** * ap_select_domain(): Select an AP domain. * * Pick one of the 16 AP domains. */ static int ap_select_domain(void) { int queue_depth, device_type, count, max_count, best_domain; int rc, i, j; /* * We want to use a single domain. Either the one specified with * the "domain=" parameter or the domain with the maximum number * of devices. */ if (ap_domain_index >= 0 && ap_domain_index < AP_DOMAINS) /* Domain has already been selected. */ return 0; best_domain = -1; max_count = 0; for (i = 0; i < AP_DOMAINS; i++) { count = 0; for (j = 0; j < AP_DEVICES; j++) { ap_qid_t qid = AP_MKQID(j, i); rc = ap_query_queue(qid, &queue_depth, &device_type); if (rc) continue; count++; } if (count > max_count) { max_count = count; best_domain = i; } } if (best_domain >= 0){ ap_domain_index = best_domain; return 0; } return -ENODEV; } /** * ap_probe_device_type(): Find the device type of an AP. * @ap_dev: pointer to the AP device. * * Find the device type if query queue returned a device type of 0. */ static int ap_probe_device_type(struct ap_device *ap_dev) { static unsigned char msg[] = { 0x00,0x06,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x58,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x01,0x00,0x43,0x43,0x41,0x2d,0x41,0x50, 0x50,0x4c,0x20,0x20,0x20,0x01,0x01,0x01, 0x00,0x00,0x00,0x00,0x50,0x4b,0x00,0x00, 0x00,0x00,0x01,0x1c,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x05,0xb8,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x70,0x00,0x41,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x54,0x32,0x01,0x00,0xa0,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0xb8,0x05,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x0a,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x08,0x00, 0x49,0x43,0x53,0x46,0x20,0x20,0x20,0x20, 0x50,0x4b,0x0a,0x00,0x50,0x4b,0x43,0x53, 0x2d,0x31,0x2e,0x32,0x37,0x00,0x11,0x22, 0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00, 0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88, 0x99,0x00,0x11,0x22,0x33,0x44,0x55,0x66, 0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x44, 0x55,0x66,0x77,0x88,0x99,0x00,0x11,0x22, 0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00, 0x11,0x22,0x33,0x5d,0x00,0x5b,0x00,0x77, 0x88,0x1e,0x00,0x00,0x57,0x00,0x00,0x00, 0x00,0x04,0x00,0x00,0x4f,0x00,0x00,0x00, 0x03,0x02,0x00,0x00,0x40,0x01,0x00,0x01, 0xce,0x02,0x68,0x2d,0x5f,0xa9,0xde,0x0c, 0xf6,0xd2,0x7b,0x58,0x4b,0xf9,0x28,0x68, 0x3d,0xb4,0xf4,0xef,0x78,0xd5,0xbe,0x66, 0x63,0x42,0xef,0xf8,0xfd,0xa4,0xf8,0xb0, 0x8e,0x29,0xc2,0xc9,0x2e,0xd8,0x45,0xb8, 0x53,0x8c,0x6f,0x4e,0x72,0x8f,0x6c,0x04, 0x9c,0x88,0xfc,0x1e,0xc5,0x83,0x55,0x57, 0xf7,0xdd,0xfd,0x4f,0x11,0x36,0x95,0x5d, }; struct ap_queue_status status; unsigned long long psmid; char *reply; int rc, i; reply = (void *) get_zeroed_page(GFP_KERNEL); if (!reply) { rc = -ENOMEM; goto out; } status = __ap_send(ap_dev->qid, 0x0102030405060708ULL, msg, sizeof(msg)); if (status.response_code != AP_RESPONSE_NORMAL) { rc = -ENODEV; goto out_free; } /* Wait for the test message to complete. */ for (i = 0; i < 6; i++) { mdelay(300); status = __ap_recv(ap_dev->qid, &psmid, reply, 4096); if (status.response_code == AP_RESPONSE_NORMAL && psmid == 0x0102030405060708ULL) break; } if (i < 6) { /* Got an answer. */ if (reply[0] == 0x00 && reply[1] == 0x86) ap_dev->device_type = AP_DEVICE_TYPE_PCICC; else ap_dev->device_type = AP_DEVICE_TYPE_PCICA; rc = 0; } else rc = -ENODEV; out_free: free_page((unsigned long) reply); out: return rc; } static void ap_interrupt_handler(void *unused1, void *unused2) { tasklet_schedule(&ap_tasklet); } /** * __ap_scan_bus(): Scan the AP bus. * @dev: Pointer to device * @data: Pointer to data * * Scan the AP bus for new devices. */ static int __ap_scan_bus(struct device *dev, void *data) { return to_ap_dev(dev)->qid == (ap_qid_t)(unsigned long) data; } static void ap_device_release(struct device *dev) { struct ap_device *ap_dev = to_ap_dev(dev); kfree(ap_dev); } static void ap_scan_bus(struct work_struct *unused) { struct ap_device *ap_dev; struct device *dev; ap_qid_t qid; int queue_depth, device_type; int rc, i; if (ap_select_domain() != 0) return; for (i = 0; i < AP_DEVICES; i++) { qid = AP_MKQID(i, ap_domain_index); dev = bus_find_device(&ap_bus_type, NULL, (void *)(unsigned long)qid, __ap_scan_bus); rc = ap_query_queue(qid, &queue_depth, &device_type); if (dev) { if (rc == -EBUSY) { set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(AP_RESET_TIMEOUT); rc = ap_query_queue(qid, &queue_depth, &device_type); } ap_dev = to_ap_dev(dev); spin_lock_bh(&ap_dev->lock); if (rc || ap_dev->unregistered) { spin_unlock_bh(&ap_dev->lock); device_unregister(dev); put_device(dev); continue; } spin_unlock_bh(&ap_dev->lock); put_device(dev); continue; } if (rc) continue; rc = ap_init_queue(qid); if (rc) continue; ap_dev = kzalloc(sizeof(*ap_dev), GFP_KERNEL); if (!ap_dev) break; ap_dev->qid = qid; ap_dev->queue_depth = queue_depth; ap_dev->unregistered = 1; spin_lock_init(&ap_dev->lock); INIT_LIST_HEAD(&ap_dev->pendingq); INIT_LIST_HEAD(&ap_dev->requestq); INIT_LIST_HEAD(&ap_dev->list); setup_timer(&ap_dev->timeout, ap_request_timeout, (unsigned long) ap_dev); if (device_type == 0) ap_probe_device_type(ap_dev); else ap_dev->device_type = device_type; ap_dev->device.bus = &ap_bus_type; ap_dev->device.parent = ap_root_device; dev_set_name(&ap_dev->device, "card%02x", AP_QID_DEVICE(ap_dev->qid)); ap_dev->device.release = ap_device_release; rc = device_register(&ap_dev->device); if (rc) { kfree(ap_dev); continue; } /* Add device attributes. */ rc = sysfs_create_group(&ap_dev->device.kobj, &ap_dev_attr_group); if (!rc) { spin_lock_bh(&ap_dev->lock); ap_dev->unregistered = 0; spin_unlock_bh(&ap_dev->lock); } else device_unregister(&ap_dev->device); } } static void ap_config_timeout(unsigned long ptr) { queue_work(ap_work_queue, &ap_config_work); ap_config_timer.expires = jiffies + ap_config_time * HZ; add_timer(&ap_config_timer); } /** * ap_schedule_poll_timer(): Schedule poll timer. * * Set up the timer to run the poll tasklet */ static inline void ap_schedule_poll_timer(void) { if (ap_using_interrupts()) return; if (hrtimer_is_queued(&ap_poll_timer)) return; hrtimer_start(&ap_poll_timer, ktime_set(0, poll_timeout), HRTIMER_MODE_ABS); } /** * ap_poll_read(): Receive pending reply messages from an AP device. * @ap_dev: pointer to the AP device * @flags: pointer to control flags, bit 2^0 is set if another poll is * required, bit 2^1 is set if the poll timer needs to get armed * * Returns 0 if the device is still present, -ENODEV if not. */ static int ap_poll_read(struct ap_device *ap_dev, unsigned long *flags) { struct ap_queue_status status; struct ap_message *ap_msg; if (ap_dev->queue_count <= 0) return 0; status = __ap_recv(ap_dev->qid, &ap_dev->reply->psmid, ap_dev->reply->message, ap_dev->reply->length); switch (status.response_code) { case AP_RESPONSE_NORMAL: atomic_dec(&ap_poll_requests); ap_decrease_queue_count(ap_dev); list_for_each_entry(ap_msg, &ap_dev->pendingq, list) { if (ap_msg->psmid != ap_dev->reply->psmid) continue; list_del_init(&ap_msg->list); ap_dev->pendingq_count--; ap_dev->drv->receive(ap_dev, ap_msg, ap_dev->reply); break; } if (ap_dev->queue_count > 0) *flags |= 1; break; case AP_RESPONSE_NO_PENDING_REPLY: if (status.queue_empty) { /* The card shouldn't forget requests but who knows. */ atomic_sub(ap_dev->queue_count, &ap_poll_requests); ap_dev->queue_count = 0; list_splice_init(&ap_dev->pendingq, &ap_dev->requestq); ap_dev->requestq_count += ap_dev->pendingq_count; ap_dev->pendingq_count = 0; } else *flags |= 2; break; default: return -ENODEV; } return 0; } /** * ap_poll_write(): Send messages from the request queue to an AP device. * @ap_dev: pointer to the AP device * @flags: pointer to control flags, bit 2^0 is set if another poll is * required, bit 2^1 is set if the poll timer needs to get armed * * Returns 0 if the device is still present, -ENODEV if not. */ static int ap_poll_write(struct ap_device *ap_dev, unsigned long *flags) { struct ap_queue_status status; struct ap_message *ap_msg; if (ap_dev->requestq_count <= 0 || ap_dev->queue_count >= ap_dev->queue_depth) return 0; /* Start the next request on the queue. */ ap_msg = list_entry(ap_dev->requestq.next, struct ap_message, list); status = __ap_send(ap_dev->qid, ap_msg->psmid, ap_msg->message, ap_msg->length); switch (status.response_code) { case AP_RESPONSE_NORMAL: atomic_inc(&ap_poll_requests); ap_increase_queue_count(ap_dev); list_move_tail(&ap_msg->list, &ap_dev->pendingq); ap_dev->requestq_count--; ap_dev->pendingq_count++; if (ap_dev->queue_count < ap_dev->queue_depth && ap_dev->requestq_count > 0) *flags |= 1; *flags |= 2; break; case AP_RESPONSE_Q_FULL: case AP_RESPONSE_RESET_IN_PROGRESS: *flags |= 2; break; case AP_RESPONSE_MESSAGE_TOO_BIG: return -EINVAL; default: return -ENODEV; } return 0; } /** * ap_poll_queue(): Poll AP device for pending replies and send new messages. * @ap_dev: pointer to the bus device * @flags: pointer to control flags, bit 2^0 is set if another poll is * required, bit 2^1 is set if the poll timer needs to get armed * * Poll AP device for pending replies and send new messages. If either * ap_poll_read or ap_poll_write returns -ENODEV unregister the device. * Returns 0. */ static inline int ap_poll_queue(struct ap_device *ap_dev, unsigned long *flags) { int rc; rc = ap_poll_read(ap_dev, flags); if (rc) return rc; return ap_poll_write(ap_dev, flags); } /** * __ap_queue_message(): Queue a message to a device. * @ap_dev: pointer to the AP device * @ap_msg: the message to be queued * * Queue a message to a device. Returns 0 if successful. */ static int __ap_queue_message(struct ap_device *ap_dev, struct ap_message *ap_msg) { struct ap_queue_status status; if (list_empty(&ap_dev->requestq) && ap_dev->queue_count < ap_dev->queue_depth) { status = __ap_send(ap_dev->qid, ap_msg->psmid, ap_msg->message, ap_msg->length); switch (status.response_code) { case AP_RESPONSE_NORMAL: list_add_tail(&ap_msg->list, &ap_dev->pendingq); atomic_inc(&ap_poll_requests); ap_dev->pendingq_count++; ap_increase_queue_count(ap_dev); ap_dev->total_request_count++; break; case AP_RESPONSE_Q_FULL: case AP_RESPONSE_RESET_IN_PROGRESS: list_add_tail(&ap_msg->list, &ap_dev->requestq); ap_dev->requestq_count++; ap_dev->total_request_count++; return -EBUSY; case AP_RESPONSE_MESSAGE_TOO_BIG: ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-EINVAL)); return -EINVAL; default: /* Device is gone. */ ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-ENODEV)); return -ENODEV; } } else { list_add_tail(&ap_msg->list, &ap_dev->requestq); ap_dev->requestq_count++; ap_dev->total_request_count++; return -EBUSY; } ap_schedule_poll_timer(); return 0; } void ap_queue_message(struct ap_device *ap_dev, struct ap_message *ap_msg) { unsigned long flags; int rc; spin_lock_bh(&ap_dev->lock); if (!ap_dev->unregistered) { /* Make room on the queue by polling for finished requests. */ rc = ap_poll_queue(ap_dev, &flags); if (!rc) rc = __ap_queue_message(ap_dev, ap_msg); if (!rc) wake_up(&ap_poll_wait); if (rc == -ENODEV) ap_dev->unregistered = 1; } else { ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-ENODEV)); rc = -ENODEV; } spin_unlock_bh(&ap_dev->lock); if (rc == -ENODEV) device_unregister(&ap_dev->device); } EXPORT_SYMBOL(ap_queue_message); /** * ap_cancel_message(): Cancel a crypto request. * @ap_dev: The AP device that has the message queued * @ap_msg: The message that is to be removed * * Cancel a crypto request. This is done by removing the request * from the device pending or request queue. Note that the * request stays on the AP queue. When it finishes the message * reply will be discarded because the psmid can't be found. */ void ap_cancel_message(struct ap_device *ap_dev, struct ap_message *ap_msg) { struct ap_message *tmp; spin_lock_bh(&ap_dev->lock); if (!list_empty(&ap_msg->list)) { list_for_each_entry(tmp, &ap_dev->pendingq, list) if (tmp->psmid == ap_msg->psmid) { ap_dev->pendingq_count--; goto found; } ap_dev->requestq_count--; found: list_del_init(&ap_msg->list); } spin_unlock_bh(&ap_dev->lock); } EXPORT_SYMBOL(ap_cancel_message); /** * ap_poll_timeout(): AP receive polling for finished AP requests. * @unused: Unused pointer. * * Schedules the AP tasklet using a high resolution timer. */ static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused) { tasklet_schedule(&ap_tasklet); return HRTIMER_NORESTART; } /** * ap_reset(): Reset a not responding AP device. * @ap_dev: Pointer to the AP device * * Reset a not responding AP device and move all requests from the * pending queue to the request queue. */ static void ap_reset(struct ap_device *ap_dev) { int rc; ap_dev->reset = AP_RESET_IGNORE; atomic_sub(ap_dev->queue_count, &ap_poll_requests); ap_dev->queue_count = 0; list_splice_init(&ap_dev->pendingq, &ap_dev->requestq); ap_dev->requestq_count += ap_dev->pendingq_count; ap_dev->pendingq_count = 0; rc = ap_init_queue(ap_dev->qid); if (rc == -ENODEV) ap_dev->unregistered = 1; } static int __ap_poll_device(struct ap_device *ap_dev, unsigned long *flags) { spin_lock(&ap_dev->lock); if (!ap_dev->unregistered) { if (ap_poll_queue(ap_dev, flags)) ap_dev->unregistered = 1; if (ap_dev->reset == AP_RESET_DO) ap_reset(ap_dev); } spin_unlock(&ap_dev->lock); return 0; } /** * ap_poll_all(): Poll all AP devices. * @dummy: Unused variable * * Poll all AP devices on the bus in a round robin fashion. Continue * polling until bit 2^0 of the control flags is not set. If bit 2^1 * of the control flags has been set arm the poll timer. */ static void ap_poll_all(unsigned long dummy) { unsigned long flags; struct ap_device *ap_dev; /* Reset the indicator if interrupts are used. Thus new interrupts can * be received. Doing it in the beginning of the tasklet is therefor * important that no requests on any AP get lost. */ if (ap_using_interrupts()) xchg((u8 *)ap_interrupt_indicator, 0); do { flags = 0; spin_lock(&ap_device_list_lock); list_for_each_entry(ap_dev, &ap_device_list, list) { __ap_poll_device(ap_dev, &flags); } spin_unlock(&ap_device_list_lock); } while (flags & 1); if (flags & 2) ap_schedule_poll_timer(); } /** * ap_poll_thread(): Thread that polls for finished requests. * @data: Unused pointer * * AP bus poll thread. The purpose of this thread is to poll for * finished requests in a loop if there is a "free" cpu - that is * a cpu that doesn't have anything better to do. The polling stops * as soon as there is another task or if all messages have been * delivered. */ static int ap_poll_thread(void *data) { DECLARE_WAITQUEUE(wait, current); unsigned long flags; int requests; struct ap_device *ap_dev; set_user_nice(current, 19); while (1) { if (need_resched()) { schedule(); continue; } add_wait_queue(&ap_poll_wait, &wait); set_current_state(TASK_INTERRUPTIBLE); if (kthread_should_stop()) break; requests = atomic_read(&ap_poll_requests); if (requests <= 0) schedule(); set_current_state(TASK_RUNNING); remove_wait_queue(&ap_poll_wait, &wait); flags = 0; spin_lock_bh(&ap_device_list_lock); list_for_each_entry(ap_dev, &ap_device_list, list) { __ap_poll_device(ap_dev, &flags); } spin_unlock_bh(&ap_device_list_lock); } set_current_state(TASK_RUNNING); remove_wait_queue(&ap_poll_wait, &wait); return 0; } static int ap_poll_thread_start(void) { int rc; if (ap_using_interrupts()) return 0; mutex_lock(&ap_poll_thread_mutex); if (!ap_poll_kthread) { ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll"); rc = IS_ERR(ap_poll_kthread) ? PTR_ERR(ap_poll_kthread) : 0; if (rc) ap_poll_kthread = NULL; } else rc = 0; mutex_unlock(&ap_poll_thread_mutex); return rc; } static void ap_poll_thread_stop(void) { mutex_lock(&ap_poll_thread_mutex); if (ap_poll_kthread) { kthread_stop(ap_poll_kthread); ap_poll_kthread = NULL; } mutex_unlock(&ap_poll_thread_mutex); } /** * ap_request_timeout(): Handling of request timeouts * @data: Holds the AP device. * * Handles request timeouts. */ static void ap_request_timeout(unsigned long data) { struct ap_device *ap_dev = (struct ap_device *) data; if (ap_dev->reset == AP_RESET_ARMED) { ap_dev->reset = AP_RESET_DO; if (ap_using_interrupts()) tasklet_schedule(&ap_tasklet); } } static void ap_reset_domain(void) { int i; if (ap_domain_index != -1) for (i = 0; i < AP_DEVICES; i++) ap_reset_queue(AP_MKQID(i, ap_domain_index)); } static void ap_reset_all(void) { int i, j; for (i = 0; i < AP_DOMAINS; i++) for (j = 0; j < AP_DEVICES; j++) ap_reset_queue(AP_MKQID(j, i)); } static struct reset_call ap_reset_call = { .fn = ap_reset_all, }; /** * ap_module_init(): The module initialization code. * * Initializes the module. */ int __init ap_module_init(void) { int rc, i; if (ap_domain_index < -1 || ap_domain_index >= AP_DOMAINS) { pr_warning("%d is not a valid cryptographic domain\n", ap_domain_index); return -EINVAL; } if (ap_instructions_available() != 0) { pr_warning("The hardware system does not support " "AP instructions\n"); return -ENODEV; } if (ap_interrupts_available()) { isc_register(AP_ISC); ap_interrupt_indicator = s390_register_adapter_interrupt( &ap_interrupt_handler, NULL, AP_ISC); if (IS_ERR(ap_interrupt_indicator)) { ap_interrupt_indicator = NULL; isc_unregister(AP_ISC); } } register_reset_call(&ap_reset_call); /* Create /sys/bus/ap. */ rc = bus_register(&ap_bus_type); if (rc) goto out; for (i = 0; ap_bus_attrs[i]; i++) { rc = bus_create_file(&ap_bus_type, ap_bus_attrs[i]); if (rc) goto out_bus; } /* Create /sys/devices/ap. */ ap_root_device = root_device_register("ap"); rc = IS_ERR(ap_root_device) ? PTR_ERR(ap_root_device) : 0; if (rc) goto out_bus; ap_work_queue = create_singlethread_workqueue("kapwork"); if (!ap_work_queue) { rc = -ENOMEM; goto out_root; } if (ap_select_domain() == 0) ap_scan_bus(NULL); /* Setup the AP bus rescan timer. */ init_timer(&ap_config_timer); ap_config_timer.function = ap_config_timeout; ap_config_timer.data = 0; ap_config_timer.expires = jiffies + ap_config_time * HZ; add_timer(&ap_config_timer); /* Setup the high resultion poll timer. * If we are running under z/VM adjust polling to z/VM polling rate. */ if (MACHINE_IS_VM) poll_timeout = 1500000; hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); ap_poll_timer.function = ap_poll_timeout; /* Start the low priority AP bus poll thread. */ if (ap_thread_flag) { rc = ap_poll_thread_start(); if (rc) goto out_work; } return 0; out_work: del_timer_sync(&ap_config_timer); hrtimer_cancel(&ap_poll_timer); destroy_workqueue(ap_work_queue); out_root: root_device_unregister(ap_root_device); out_bus: while (i--) bus_remove_file(&ap_bus_type, ap_bus_attrs[i]); bus_unregister(&ap_bus_type); out: unregister_reset_call(&ap_reset_call); if (ap_using_interrupts()) { s390_unregister_adapter_interrupt(ap_interrupt_indicator, AP_ISC); isc_unregister(AP_ISC); } return rc; } static int __ap_match_all(struct device *dev, void *data) { return 1; } /** * ap_modules_exit(): The module termination code * * Terminates the module. */ void ap_module_exit(void) { int i; struct device *dev; ap_reset_domain(); ap_poll_thread_stop(); del_timer_sync(&ap_config_timer); hrtimer_cancel(&ap_poll_timer); destroy_workqueue(ap_work_queue); tasklet_kill(&ap_tasklet); root_device_unregister(ap_root_device); while ((dev = bus_find_device(&ap_bus_type, NULL, NULL, __ap_match_all))) { device_unregister(dev); put_device(dev); } for (i = 0; ap_bus_attrs[i]; i++) bus_remove_file(&ap_bus_type, ap_bus_attrs[i]); bus_unregister(&ap_bus_type); unregister_reset_call(&ap_reset_call); if (ap_using_interrupts()) { s390_unregister_adapter_interrupt(ap_interrupt_indicator, AP_ISC); isc_unregister(AP_ISC); } } #ifndef CONFIG_ZCRYPT_MONOLITHIC module_init(ap_module_init); module_exit(ap_module_exit); #endif