/* Copyright (C) 2004 - 2009 Ivo van Doorn This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Module: rt2500pci Abstract: rt2500pci device specific routines. Supported chipsets: RT2560. */ #include #include #include #include #include #include #include #include #include "rt2x00.h" #include "rt2x00pci.h" #include "rt2500pci.h" /* * Register access. * All access to the CSR registers will go through the methods * rt2x00pci_register_read and rt2x00pci_register_write. * BBP and RF register require indirect register access, * and use the CSR registers BBPCSR and RFCSR to achieve this. * These indirect registers work with busy bits, * and we will try maximal REGISTER_BUSY_COUNT times to access * the register while taking a REGISTER_BUSY_DELAY us delay * between each attampt. When the busy bit is still set at that time, * the access attempt is considered to have failed, * and we will print an error. */ #define WAIT_FOR_BBP(__dev, __reg) \ rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg)) #define WAIT_FOR_RF(__dev, __reg) \ rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg)) static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev, const unsigned int word, const u8 value) { u32 reg; mutex_lock(&rt2x00dev->csr_mutex); /* * Wait until the BBP becomes available, afterwards we * can safely write the new data into the register. */ if (WAIT_FOR_BBP(rt2x00dev, ®)) { reg = 0; rt2x00_set_field32(®, BBPCSR_VALUE, value); rt2x00_set_field32(®, BBPCSR_REGNUM, word); rt2x00_set_field32(®, BBPCSR_BUSY, 1); rt2x00_set_field32(®, BBPCSR_WRITE_CONTROL, 1); rt2x00pci_register_write(rt2x00dev, BBPCSR, reg); } mutex_unlock(&rt2x00dev->csr_mutex); } static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev, const unsigned int word, u8 *value) { u32 reg; mutex_lock(&rt2x00dev->csr_mutex); /* * Wait until the BBP becomes available, afterwards we * can safely write the read request into the register. * After the data has been written, we wait until hardware * returns the correct value, if at any time the register * doesn't become available in time, reg will be 0xffffffff * which means we return 0xff to the caller. */ if (WAIT_FOR_BBP(rt2x00dev, ®)) { reg = 0; rt2x00_set_field32(®, BBPCSR_REGNUM, word); rt2x00_set_field32(®, BBPCSR_BUSY, 1); rt2x00_set_field32(®, BBPCSR_WRITE_CONTROL, 0); rt2x00pci_register_write(rt2x00dev, BBPCSR, reg); WAIT_FOR_BBP(rt2x00dev, ®); } *value = rt2x00_get_field32(reg, BBPCSR_VALUE); mutex_unlock(&rt2x00dev->csr_mutex); } static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev, const unsigned int word, const u32 value) { u32 reg; mutex_lock(&rt2x00dev->csr_mutex); /* * Wait until the RF becomes available, afterwards we * can safely write the new data into the register. */ if (WAIT_FOR_RF(rt2x00dev, ®)) { reg = 0; rt2x00_set_field32(®, RFCSR_VALUE, value); rt2x00_set_field32(®, RFCSR_NUMBER_OF_BITS, 20); rt2x00_set_field32(®, RFCSR_IF_SELECT, 0); rt2x00_set_field32(®, RFCSR_BUSY, 1); rt2x00pci_register_write(rt2x00dev, RFCSR, reg); rt2x00_rf_write(rt2x00dev, word, value); } mutex_unlock(&rt2x00dev->csr_mutex); } static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom) { struct rt2x00_dev *rt2x00dev = eeprom->data; u32 reg; rt2x00pci_register_read(rt2x00dev, CSR21, ®); eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN); eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT); eeprom->reg_data_clock = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK); eeprom->reg_chip_select = !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT); } static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom) { struct rt2x00_dev *rt2x00dev = eeprom->data; u32 reg = 0; rt2x00_set_field32(®, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in); rt2x00_set_field32(®, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out); rt2x00_set_field32(®, CSR21_EEPROM_DATA_CLOCK, !!eeprom->reg_data_clock); rt2x00_set_field32(®, CSR21_EEPROM_CHIP_SELECT, !!eeprom->reg_chip_select); rt2x00pci_register_write(rt2x00dev, CSR21, reg); } #ifdef CONFIG_RT2X00_LIB_DEBUGFS static const struct rt2x00debug rt2500pci_rt2x00debug = { .owner = THIS_MODULE, .csr = { .read = rt2x00pci_register_read, .write = rt2x00pci_register_write, .flags = RT2X00DEBUGFS_OFFSET, .word_base = CSR_REG_BASE, .word_size = sizeof(u32), .word_count = CSR_REG_SIZE / sizeof(u32), }, .eeprom = { .read = rt2x00_eeprom_read, .write = rt2x00_eeprom_write, .word_base = EEPROM_BASE, .word_size = sizeof(u16), .word_count = EEPROM_SIZE / sizeof(u16), }, .bbp = { .read = rt2500pci_bbp_read, .write = rt2500pci_bbp_write, .word_base = BBP_BASE, .word_size = sizeof(u8), .word_count = BBP_SIZE / sizeof(u8), }, .rf = { .read = rt2x00_rf_read, .write = rt2500pci_rf_write, .word_base = RF_BASE, .word_size = sizeof(u32), .word_count = RF_SIZE / sizeof(u32), }, }; #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev) { u32 reg; rt2x00pci_register_read(rt2x00dev, GPIOCSR, ®); return rt2x00_get_field32(reg, GPIOCSR_BIT0); } #ifdef CONFIG_RT2X00_LIB_LEDS static void rt2500pci_brightness_set(struct led_classdev *led_cdev, enum led_brightness brightness) { struct rt2x00_led *led = container_of(led_cdev, struct rt2x00_led, led_dev); unsigned int enabled = brightness != LED_OFF; u32 reg; rt2x00pci_register_read(led->rt2x00dev, LEDCSR, ®); if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC) rt2x00_set_field32(®, LEDCSR_LINK, enabled); else if (led->type == LED_TYPE_ACTIVITY) rt2x00_set_field32(®, LEDCSR_ACTIVITY, enabled); rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg); } static int rt2500pci_blink_set(struct led_classdev *led_cdev, unsigned long *delay_on, unsigned long *delay_off) { struct rt2x00_led *led = container_of(led_cdev, struct rt2x00_led, led_dev); u32 reg; rt2x00pci_register_read(led->rt2x00dev, LEDCSR, ®); rt2x00_set_field32(®, LEDCSR_ON_PERIOD, *delay_on); rt2x00_set_field32(®, LEDCSR_OFF_PERIOD, *delay_off); rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg); return 0; } static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev, struct rt2x00_led *led, enum led_type type) { led->rt2x00dev = rt2x00dev; led->type = type; led->led_dev.brightness_set = rt2500pci_brightness_set; led->led_dev.blink_set = rt2500pci_blink_set; led->flags = LED_INITIALIZED; } #endif /* CONFIG_RT2X00_LIB_LEDS */ /* * Configuration handlers. */ static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev, const unsigned int filter_flags) { u32 reg; /* * Start configuration steps. * Note that the version error will always be dropped * and broadcast frames will always be accepted since * there is no filter for it at this time. */ rt2x00pci_register_read(rt2x00dev, RXCSR0, ®); rt2x00_set_field32(®, RXCSR0_DROP_CRC, !(filter_flags & FIF_FCSFAIL)); rt2x00_set_field32(®, RXCSR0_DROP_PHYSICAL, !(filter_flags & FIF_PLCPFAIL)); rt2x00_set_field32(®, RXCSR0_DROP_CONTROL, !(filter_flags & FIF_CONTROL)); rt2x00_set_field32(®, RXCSR0_DROP_NOT_TO_ME, !(filter_flags & FIF_PROMISC_IN_BSS)); rt2x00_set_field32(®, RXCSR0_DROP_TODS, !(filter_flags & FIF_PROMISC_IN_BSS) && !rt2x00dev->intf_ap_count); rt2x00_set_field32(®, RXCSR0_DROP_VERSION_ERROR, 1); rt2x00_set_field32(®, RXCSR0_DROP_MCAST, !(filter_flags & FIF_ALLMULTI)); rt2x00_set_field32(®, RXCSR0_DROP_BCAST, 0); rt2x00pci_register_write(rt2x00dev, RXCSR0, reg); } static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev, struct rt2x00_intf *intf, struct rt2x00intf_conf *conf, const unsigned int flags) { struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, QID_BEACON); unsigned int bcn_preload; u32 reg; if (flags & CONFIG_UPDATE_TYPE) { /* * Enable beacon config */ bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20); rt2x00pci_register_read(rt2x00dev, BCNCSR1, ®); rt2x00_set_field32(®, BCNCSR1_PRELOAD, bcn_preload); rt2x00_set_field32(®, BCNCSR1_BEACON_CWMIN, queue->cw_min); rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg); /* * Enable synchronisation. */ rt2x00pci_register_read(rt2x00dev, CSR14, ®); rt2x00_set_field32(®, CSR14_TSF_COUNT, 1); rt2x00_set_field32(®, CSR14_TSF_SYNC, conf->sync); rt2x00_set_field32(®, CSR14_TBCN, 1); rt2x00pci_register_write(rt2x00dev, CSR14, reg); } if (flags & CONFIG_UPDATE_MAC) rt2x00pci_register_multiwrite(rt2x00dev, CSR3, conf->mac, sizeof(conf->mac)); if (flags & CONFIG_UPDATE_BSSID) rt2x00pci_register_multiwrite(rt2x00dev, CSR5, conf->bssid, sizeof(conf->bssid)); } static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_erp *erp) { int preamble_mask; u32 reg; /* * When short preamble is enabled, we should set bit 0x08 */ preamble_mask = erp->short_preamble << 3; rt2x00pci_register_read(rt2x00dev, TXCSR1, ®); rt2x00_set_field32(®, TXCSR1_ACK_TIMEOUT, 0x162); rt2x00_set_field32(®, TXCSR1_ACK_CONSUME_TIME, 0xa2); rt2x00_set_field32(®, TXCSR1_TSF_OFFSET, IEEE80211_HEADER); rt2x00_set_field32(®, TXCSR1_AUTORESPONDER, 1); rt2x00pci_register_write(rt2x00dev, TXCSR1, reg); rt2x00pci_register_read(rt2x00dev, ARCSR2, ®); rt2x00_set_field32(®, ARCSR2_SIGNAL, 0x00); rt2x00_set_field32(®, ARCSR2_SERVICE, 0x04); rt2x00_set_field32(®, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 10)); rt2x00pci_register_write(rt2x00dev, ARCSR2, reg); rt2x00pci_register_read(rt2x00dev, ARCSR3, ®); rt2x00_set_field32(®, ARCSR3_SIGNAL, 0x01 | preamble_mask); rt2x00_set_field32(®, ARCSR3_SERVICE, 0x04); rt2x00_set_field32(®, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 20)); rt2x00pci_register_write(rt2x00dev, ARCSR3, reg); rt2x00pci_register_read(rt2x00dev, ARCSR4, ®); rt2x00_set_field32(®, ARCSR4_SIGNAL, 0x02 | preamble_mask); rt2x00_set_field32(®, ARCSR4_SERVICE, 0x04); rt2x00_set_field32(®, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 55)); rt2x00pci_register_write(rt2x00dev, ARCSR4, reg); rt2x00pci_register_read(rt2x00dev, ARCSR5, ®); rt2x00_set_field32(®, ARCSR5_SIGNAL, 0x03 | preamble_mask); rt2x00_set_field32(®, ARCSR5_SERVICE, 0x84); rt2x00_set_field32(®, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 110)); rt2x00pci_register_write(rt2x00dev, ARCSR5, reg); rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates); rt2x00pci_register_read(rt2x00dev, CSR11, ®); rt2x00_set_field32(®, CSR11_SLOT_TIME, erp->slot_time); rt2x00pci_register_write(rt2x00dev, CSR11, reg); rt2x00pci_register_read(rt2x00dev, CSR12, ®); rt2x00_set_field32(®, CSR12_BEACON_INTERVAL, erp->beacon_int * 16); rt2x00_set_field32(®, CSR12_CFP_MAX_DURATION, erp->beacon_int * 16); rt2x00pci_register_write(rt2x00dev, CSR12, reg); rt2x00pci_register_read(rt2x00dev, CSR18, ®); rt2x00_set_field32(®, CSR18_SIFS, erp->sifs); rt2x00_set_field32(®, CSR18_PIFS, erp->pifs); rt2x00pci_register_write(rt2x00dev, CSR18, reg); rt2x00pci_register_read(rt2x00dev, CSR19, ®); rt2x00_set_field32(®, CSR19_DIFS, erp->difs); rt2x00_set_field32(®, CSR19_EIFS, erp->eifs); rt2x00pci_register_write(rt2x00dev, CSR19, reg); } static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev, struct antenna_setup *ant) { u32 reg; u8 r14; u8 r2; /* * We should never come here because rt2x00lib is supposed * to catch this and send us the correct antenna explicitely. */ BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY || ant->tx == ANTENNA_SW_DIVERSITY); rt2x00pci_register_read(rt2x00dev, BBPCSR1, ®); rt2500pci_bbp_read(rt2x00dev, 14, &r14); rt2500pci_bbp_read(rt2x00dev, 2, &r2); /* * Configure the TX antenna. */ switch (ant->tx) { case ANTENNA_A: rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0); rt2x00_set_field32(®, BBPCSR1_CCK, 0); rt2x00_set_field32(®, BBPCSR1_OFDM, 0); break; case ANTENNA_B: default: rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2); rt2x00_set_field32(®, BBPCSR1_CCK, 2); rt2x00_set_field32(®, BBPCSR1_OFDM, 2); break; } /* * Configure the RX antenna. */ switch (ant->rx) { case ANTENNA_A: rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0); break; case ANTENNA_B: default: rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2); break; } /* * RT2525E and RT5222 need to flip TX I/Q */ if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) { rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1); rt2x00_set_field32(®, BBPCSR1_CCK_FLIP, 1); rt2x00_set_field32(®, BBPCSR1_OFDM_FLIP, 1); /* * RT2525E does not need RX I/Q Flip. */ if (rt2x00_rf(rt2x00dev, RF2525E)) rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0); } else { rt2x00_set_field32(®, BBPCSR1_CCK_FLIP, 0); rt2x00_set_field32(®, BBPCSR1_OFDM_FLIP, 0); } rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg); rt2500pci_bbp_write(rt2x00dev, 14, r14); rt2500pci_bbp_write(rt2x00dev, 2, r2); } static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev, struct rf_channel *rf, const int txpower) { u8 r70; /* * Set TXpower. */ rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); /* * Switch on tuning bits. * For RT2523 devices we do not need to update the R1 register. */ if (!rt2x00_rf(rt2x00dev, RF2523)) rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1); rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1); /* * For RT2525 we should first set the channel to half band higher. */ if (rt2x00_rf(rt2x00dev, RF2525)) { static const u32 vals[] = { 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a, 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a, 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a, 0x00080d2e, 0x00080d3a }; rt2500pci_rf_write(rt2x00dev, 1, rf->rf1); rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]); rt2500pci_rf_write(rt2x00dev, 3, rf->rf3); if (rf->rf4) rt2500pci_rf_write(rt2x00dev, 4, rf->rf4); } rt2500pci_rf_write(rt2x00dev, 1, rf->rf1); rt2500pci_rf_write(rt2x00dev, 2, rf->rf2); rt2500pci_rf_write(rt2x00dev, 3, rf->rf3); if (rf->rf4) rt2500pci_rf_write(rt2x00dev, 4, rf->rf4); /* * Channel 14 requires the Japan filter bit to be set. */ r70 = 0x46; rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14); rt2500pci_bbp_write(rt2x00dev, 70, r70); msleep(1); /* * Switch off tuning bits. * For RT2523 devices we do not need to update the R1 register. */ if (!rt2x00_rf(rt2x00dev, RF2523)) { rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0); rt2500pci_rf_write(rt2x00dev, 1, rf->rf1); } rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0); rt2500pci_rf_write(rt2x00dev, 3, rf->rf3); /* * Clear false CRC during channel switch. */ rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1); } static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev, const int txpower) { u32 rf3; rt2x00_rf_read(rt2x00dev, 3, &rf3); rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); rt2500pci_rf_write(rt2x00dev, 3, rf3); } static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_conf *libconf) { u32 reg; rt2x00pci_register_read(rt2x00dev, CSR11, ®); rt2x00_set_field32(®, CSR11_LONG_RETRY, libconf->conf->long_frame_max_tx_count); rt2x00_set_field32(®, CSR11_SHORT_RETRY, libconf->conf->short_frame_max_tx_count); rt2x00pci_register_write(rt2x00dev, CSR11, reg); } static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_conf *libconf) { enum dev_state state = (libconf->conf->flags & IEEE80211_CONF_PS) ? STATE_SLEEP : STATE_AWAKE; u32 reg; if (state == STATE_SLEEP) { rt2x00pci_register_read(rt2x00dev, CSR20, ®); rt2x00_set_field32(®, CSR20_DELAY_AFTER_TBCN, (rt2x00dev->beacon_int - 20) * 16); rt2x00_set_field32(®, CSR20_TBCN_BEFORE_WAKEUP, libconf->conf->listen_interval - 1); /* We must first disable autowake before it can be enabled */ rt2x00_set_field32(®, CSR20_AUTOWAKE, 0); rt2x00pci_register_write(rt2x00dev, CSR20, reg); rt2x00_set_field32(®, CSR20_AUTOWAKE, 1); rt2x00pci_register_write(rt2x00dev, CSR20, reg); } else { rt2x00pci_register_read(rt2x00dev, CSR20, ®); rt2x00_set_field32(®, CSR20_AUTOWAKE, 0); rt2x00pci_register_write(rt2x00dev, CSR20, reg); } rt2x00dev->ops->lib->set_device_state(rt2x00dev, state); } static void rt2500pci_config(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_conf *libconf, const unsigned int flags) { if (flags & IEEE80211_CONF_CHANGE_CHANNEL) rt2500pci_config_channel(rt2x00dev, &libconf->rf, libconf->conf->power_level); if ((flags & IEEE80211_CONF_CHANGE_POWER) && !(flags & IEEE80211_CONF_CHANGE_CHANNEL)) rt2500pci_config_txpower(rt2x00dev, libconf->conf->power_level); if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS) rt2500pci_config_retry_limit(rt2x00dev, libconf); if (flags & IEEE80211_CONF_CHANGE_PS) rt2500pci_config_ps(rt2x00dev, libconf); } /* * Link tuning */ static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev, struct link_qual *qual) { u32 reg; /* * Update FCS error count from register. */ rt2x00pci_register_read(rt2x00dev, CNT0, ®); qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR); /* * Update False CCA count from register. */ rt2x00pci_register_read(rt2x00dev, CNT3, ®); qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA); } static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev, struct link_qual *qual, u8 vgc_level) { if (qual->vgc_level_reg != vgc_level) { rt2500pci_bbp_write(rt2x00dev, 17, vgc_level); qual->vgc_level_reg = vgc_level; } } static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual) { rt2500pci_set_vgc(rt2x00dev, qual, 0x48); } static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual, const u32 count) { /* * To prevent collisions with MAC ASIC on chipsets * up to version C the link tuning should halt after 20 * seconds while being associated. */ if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D && rt2x00dev->intf_associated && count > 20) return; /* * Chipset versions C and lower should directly continue * to the dynamic CCA tuning. Chipset version D and higher * should go straight to dynamic CCA tuning when they * are not associated. */ if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D || !rt2x00dev->intf_associated) goto dynamic_cca_tune; /* * A too low RSSI will cause too much false CCA which will * then corrupt the R17 tuning. To remidy this the tuning should * be stopped (While making sure the R17 value will not exceed limits) */ if (qual->rssi < -80 && count > 20) { if (qual->vgc_level_reg >= 0x41) rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level); return; } /* * Special big-R17 for short distance */ if (qual->rssi >= -58) { rt2500pci_set_vgc(rt2x00dev, qual, 0x50); return; } /* * Special mid-R17 for middle distance */ if (qual->rssi >= -74) { rt2500pci_set_vgc(rt2x00dev, qual, 0x41); return; } /* * Leave short or middle distance condition, restore r17 * to the dynamic tuning range. */ if (qual->vgc_level_reg >= 0x41) { rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level); return; } dynamic_cca_tune: /* * R17 is inside the dynamic tuning range, * start tuning the link based on the false cca counter. */ if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40) { rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg); qual->vgc_level = qual->vgc_level_reg; } else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32) { rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg); qual->vgc_level = qual->vgc_level_reg; } } /* * Initialization functions. */ static bool rt2500pci_get_entry_state(struct queue_entry *entry) { struct queue_entry_priv_pci *entry_priv = entry->priv_data; u32 word; if (entry->queue->qid == QID_RX) { rt2x00_desc_read(entry_priv->desc, 0, &word); return rt2x00_get_field32(word, RXD_W0_OWNER_NIC); } else { rt2x00_desc_read(entry_priv->desc, 0, &word); return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) || rt2x00_get_field32(word, TXD_W0_VALID)); } } static void rt2500pci_clear_entry(struct queue_entry *entry) { struct queue_entry_priv_pci *entry_priv = entry->priv_data; struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); u32 word; if (entry->queue->qid == QID_RX) { rt2x00_desc_read(entry_priv->desc, 1, &word); rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma); rt2x00_desc_write(entry_priv->desc, 1, word); rt2x00_desc_read(entry_priv->desc, 0, &word); rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1); rt2x00_desc_write(entry_priv->desc, 0, word); } else { rt2x00_desc_read(entry_priv->desc, 0, &word); rt2x00_set_field32(&word, TXD_W0_VALID, 0); rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0); rt2x00_desc_write(entry_priv->desc, 0, word); } } static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev) { struct queue_entry_priv_pci *entry_priv; u32 reg; /* * Initialize registers. */ rt2x00pci_register_read(rt2x00dev, TXCSR2, ®); rt2x00_set_field32(®, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size); rt2x00_set_field32(®, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit); rt2x00_set_field32(®, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit); rt2x00_set_field32(®, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit); rt2x00pci_register_write(rt2x00dev, TXCSR2, reg); entry_priv = rt2x00dev->tx[1].entries[0].priv_data; rt2x00pci_register_read(rt2x00dev, TXCSR3, ®); rt2x00_set_field32(®, TXCSR3_TX_RING_REGISTER, entry_priv->desc_dma); rt2x00pci_register_write(rt2x00dev, TXCSR3, reg); entry_priv = rt2x00dev->tx[0].entries[0].priv_data; rt2x00pci_register_read(rt2x00dev, TXCSR5, ®); rt2x00_set_field32(®, TXCSR5_PRIO_RING_REGISTER, entry_priv->desc_dma); rt2x00pci_register_write(rt2x00dev, TXCSR5, reg); entry_priv = rt2x00dev->bcn[1].entries[0].priv_data; rt2x00pci_register_read(rt2x00dev, TXCSR4, ®); rt2x00_set_field32(®, TXCSR4_ATIM_RING_REGISTER, entry_priv->desc_dma); rt2x00pci_register_write(rt2x00dev, TXCSR4, reg); entry_priv = rt2x00dev->bcn[0].entries[0].priv_data; rt2x00pci_register_read(rt2x00dev, TXCSR6, ®); rt2x00_set_field32(®, TXCSR6_BEACON_RING_REGISTER, entry_priv->desc_dma); rt2x00pci_register_write(rt2x00dev, TXCSR6, reg); rt2x00pci_register_read(rt2x00dev, RXCSR1, ®); rt2x00_set_field32(®, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size); rt2x00_set_field32(®, RXCSR1_NUM_RXD, rt2x00dev->rx->limit); rt2x00pci_register_write(rt2x00dev, RXCSR1, reg); entry_priv = rt2x00dev->rx->entries[0].priv_data; rt2x00pci_register_read(rt2x00dev, RXCSR2, ®); rt2x00_set_field32(®, RXCSR2_RX_RING_REGISTER, entry_priv->desc_dma); rt2x00pci_register_write(rt2x00dev, RXCSR2, reg); return 0; } static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev) { u32 reg; rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002); rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002); rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002); rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002); rt2x00pci_register_read(rt2x00dev, TIMECSR, ®); rt2x00_set_field32(®, TIMECSR_US_COUNT, 33); rt2x00_set_field32(®, TIMECSR_US_64_COUNT, 63); rt2x00_set_field32(®, TIMECSR_BEACON_EXPECT, 0); rt2x00pci_register_write(rt2x00dev, TIMECSR, reg); rt2x00pci_register_read(rt2x00dev, CSR9, ®); rt2x00_set_field32(®, CSR9_MAX_FRAME_UNIT, rt2x00dev->rx->data_size / 128); rt2x00pci_register_write(rt2x00dev, CSR9, reg); /* * Always use CWmin and CWmax set in descriptor. */ rt2x00pci_register_read(rt2x00dev, CSR11, ®); rt2x00_set_field32(®, CSR11_CW_SELECT, 0); rt2x00pci_register_write(rt2x00dev, CSR11, reg); rt2x00pci_register_read(rt2x00dev, CSR14, ®); rt2x00_set_field32(®, CSR14_TSF_COUNT, 0); rt2x00_set_field32(®, CSR14_TSF_SYNC, 0); rt2x00_set_field32(®, CSR14_TBCN, 0); rt2x00_set_field32(®, CSR14_TCFP, 0); rt2x00_set_field32(®, CSR14_TATIMW, 0); rt2x00_set_field32(®, CSR14_BEACON_GEN, 0); rt2x00_set_field32(®, CSR14_CFP_COUNT_PRELOAD, 0); rt2x00_set_field32(®, CSR14_TBCM_PRELOAD, 0); rt2x00pci_register_write(rt2x00dev, CSR14, reg); rt2x00pci_register_write(rt2x00dev, CNT3, 0); rt2x00pci_register_read(rt2x00dev, TXCSR8, ®); rt2x00_set_field32(®, TXCSR8_BBP_ID0, 10); rt2x00_set_field32(®, TXCSR8_BBP_ID0_VALID, 1); rt2x00_set_field32(®, TXCSR8_BBP_ID1, 11); rt2x00_set_field32(®, TXCSR8_BBP_ID1_VALID, 1); rt2x00_set_field32(®, TXCSR8_BBP_ID2, 13); rt2x00_set_field32(®, TXCSR8_BBP_ID2_VALID, 1); rt2x00_set_field32(®, TXCSR8_BBP_ID3, 12); rt2x00_set_field32(®, TXCSR8_BBP_ID3_VALID, 1); rt2x00pci_register_write(rt2x00dev, TXCSR8, reg); rt2x00pci_register_read(rt2x00dev, ARTCSR0, ®); rt2x00_set_field32(®, ARTCSR0_ACK_CTS_1MBS, 112); rt2x00_set_field32(®, ARTCSR0_ACK_CTS_2MBS, 56); rt2x00_set_field32(®, ARTCSR0_ACK_CTS_5_5MBS, 20); rt2x00_set_field32(®, ARTCSR0_ACK_CTS_11MBS, 10); rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg); rt2x00pci_register_read(rt2x00dev, ARTCSR1, ®); rt2x00_set_field32(®, ARTCSR1_ACK_CTS_6MBS, 45); rt2x00_set_field32(®, ARTCSR1_ACK_CTS_9MBS, 37); rt2x00_set_field32(®, ARTCSR1_ACK_CTS_12MBS, 33); rt2x00_set_field32(®, ARTCSR1_ACK_CTS_18MBS, 29); rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg); rt2x00pci_register_read(rt2x00dev, ARTCSR2, ®); rt2x00_set_field32(®, ARTCSR2_ACK_CTS_24MBS, 29); rt2x00_set_field32(®, ARTCSR2_ACK_CTS_36MBS, 25); rt2x00_set_field32(®, ARTCSR2_ACK_CTS_48MBS, 25); rt2x00_set_field32(®, ARTCSR2_ACK_CTS_54MBS, 25); rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg); rt2x00pci_register_read(rt2x00dev, RXCSR3, ®); rt2x00_set_field32(®, RXCSR3_BBP_ID0, 47); /* CCK Signal */ rt2x00_set_field32(®, RXCSR3_BBP_ID0_VALID, 1); rt2x00_set_field32(®, RXCSR3_BBP_ID1, 51); /* Rssi */ rt2x00_set_field32(®, RXCSR3_BBP_ID1_VALID, 1); rt2x00_set_field32(®, RXCSR3_BBP_ID2, 42); /* OFDM Rate */ rt2x00_set_field32(®, RXCSR3_BBP_ID2_VALID, 1); rt2x00_set_field32(®, RXCSR3_BBP_ID3, 51); /* RSSI */ rt2x00_set_field32(®, RXCSR3_BBP_ID3_VALID, 1); rt2x00pci_register_write(rt2x00dev, RXCSR3, reg); rt2x00pci_register_read(rt2x00dev, PCICSR, ®); rt2x00_set_field32(®, PCICSR_BIG_ENDIAN, 0); rt2x00_set_field32(®, PCICSR_RX_TRESHOLD, 0); rt2x00_set_field32(®, PCICSR_TX_TRESHOLD, 3); rt2x00_set_field32(®, PCICSR_BURST_LENTH, 1); rt2x00_set_field32(®, PCICSR_ENABLE_CLK, 1); rt2x00_set_field32(®, PCICSR_READ_MULTIPLE, 1); rt2x00_set_field32(®, PCICSR_WRITE_INVALID, 1); rt2x00pci_register_write(rt2x00dev, PCICSR, reg); rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100); rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00); rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0); if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) return -EBUSY; rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223); rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518); rt2x00pci_register_read(rt2x00dev, MACCSR2, ®); rt2x00_set_field32(®, MACCSR2_DELAY, 64); rt2x00pci_register_write(rt2x00dev, MACCSR2, reg); rt2x00pci_register_read(rt2x00dev, RALINKCSR, ®); rt2x00_set_field32(®, RALINKCSR_AR_BBP_DATA0, 17); rt2x00_set_field32(®, RALINKCSR_AR_BBP_ID0, 26); rt2x00_set_field32(®, RALINKCSR_AR_BBP_VALID0, 1); rt2x00_set_field32(®, RALINKCSR_AR_BBP_DATA1, 0); rt2x00_set_field32(®, RALINKCSR_AR_BBP_ID1, 26); rt2x00_set_field32(®, RALINKCSR_AR_BBP_VALID1, 1); rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg); rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200); rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020); rt2x00pci_register_read(rt2x00dev, CSR1, ®); rt2x00_set_field32(®, CSR1_SOFT_RESET, 1); rt2x00_set_field32(®, CSR1_BBP_RESET, 0); rt2x00_set_field32(®, CSR1_HOST_READY, 0); rt2x00pci_register_write(rt2x00dev, CSR1, reg); rt2x00pci_register_read(rt2x00dev, CSR1, ®); rt2x00_set_field32(®, CSR1_SOFT_RESET, 0); rt2x00_set_field32(®, CSR1_HOST_READY, 1); rt2x00pci_register_write(rt2x00dev, CSR1, reg); /* * We must clear the FCS and FIFO error count. * These registers are cleared on read, * so we may pass a useless variable to store the value. */ rt2x00pci_register_read(rt2x00dev, CNT0, ®); rt2x00pci_register_read(rt2x00dev, CNT4, ®); return 0; } static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev) { unsigned int i; u8 value; for (i = 0; i < REGISTER_BUSY_COUNT; i++) { rt2500pci_bbp_read(rt2x00dev, 0, &value); if ((value != 0xff) && (value != 0x00)) return 0; udelay(REGISTER_BUSY_DELAY); } ERROR(rt2x00dev, "BBP register access failed, aborting.\n"); return -EACCES; } static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev) { unsigned int i; u16 eeprom; u8 reg_id; u8 value; if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev))) return -EACCES; rt2500pci_bbp_write(rt2x00dev, 3, 0x02); rt2500pci_bbp_write(rt2x00dev, 4, 0x19); rt2500pci_bbp_write(rt2x00dev, 14, 0x1c); rt2500pci_bbp_write(rt2x00dev, 15, 0x30); rt2500pci_bbp_write(rt2x00dev, 16, 0xac); rt2500pci_bbp_write(rt2x00dev, 18, 0x18); rt2500pci_bbp_write(rt2x00dev, 19, 0xff); rt2500pci_bbp_write(rt2x00dev, 20, 0x1e); rt2500pci_bbp_write(rt2x00dev, 21, 0x08); rt2500pci_bbp_write(rt2x00dev, 22, 0x08); rt2500pci_bbp_write(rt2x00dev, 23, 0x08); rt2500pci_bbp_write(rt2x00dev, 24, 0x70); rt2500pci_bbp_write(rt2x00dev, 25, 0x40); rt2500pci_bbp_write(rt2x00dev, 26, 0x08); rt2500pci_bbp_write(rt2x00dev, 27, 0x23); rt2500pci_bbp_write(rt2x00dev, 30, 0x10); rt2500pci_bbp_write(rt2x00dev, 31, 0x2b); rt2500pci_bbp_write(rt2x00dev, 32, 0xb9); rt2500pci_bbp_write(rt2x00dev, 34, 0x12); rt2500pci_bbp_write(rt2x00dev, 35, 0x50); rt2500pci_bbp_write(rt2x00dev, 39, 0xc4); rt2500pci_bbp_write(rt2x00dev, 40, 0x02); rt2500pci_bbp_write(rt2x00dev, 41, 0x60); rt2500pci_bbp_write(rt2x00dev, 53, 0x10); rt2500pci_bbp_write(rt2x00dev, 54, 0x18); rt2500pci_bbp_write(rt2x00dev, 56, 0x08); rt2500pci_bbp_write(rt2x00dev, 57, 0x10); rt2500pci_bbp_write(rt2x00dev, 58, 0x08); rt2500pci_bbp_write(rt2x00dev, 61, 0x6d); rt2500pci_bbp_write(rt2x00dev, 62, 0x10); for (i = 0; i < EEPROM_BBP_SIZE; i++) { rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom); if (eeprom != 0xffff && eeprom != 0x0000) { reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID); value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE); rt2500pci_bbp_write(rt2x00dev, reg_id, value); } } return 0; } /* * Device state switch handlers. */ static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state) { u32 reg; rt2x00pci_register_read(rt2x00dev, RXCSR0, ®); rt2x00_set_field32(®, RXCSR0_DISABLE_RX, (state == STATE_RADIO_RX_OFF) || (state == STATE_RADIO_RX_OFF_LINK)); rt2x00pci_register_write(rt2x00dev, RXCSR0, reg); } static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev, enum dev_state state) { int mask = (state == STATE_RADIO_IRQ_OFF); u32 reg; /* * When interrupts are being enabled, the interrupt registers * should clear the register to assure a clean state. */ if (state == STATE_RADIO_IRQ_ON) { rt2x00pci_register_read(rt2x00dev, CSR7, ®); rt2x00pci_register_write(rt2x00dev, CSR7, reg); } /* * Only toggle the interrupts bits we are going to use. * Non-checked interrupt bits are disabled by default. */ rt2x00pci_register_read(rt2x00dev, CSR8, ®); rt2x00_set_field32(®, CSR8_TBCN_EXPIRE, mask); rt2x00_set_field32(®, CSR8_TXDONE_TXRING, mask); rt2x00_set_field32(®, CSR8_TXDONE_ATIMRING, mask); rt2x00_set_field32(®, CSR8_TXDONE_PRIORING, mask); rt2x00_set_field32(®, CSR8_RXDONE, mask); rt2x00pci_register_write(rt2x00dev, CSR8, reg); } static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev) { /* * Initialize all registers. */ if (unlikely(rt2500pci_init_queues(rt2x00dev) || rt2500pci_init_registers(rt2x00dev) || rt2500pci_init_bbp(rt2x00dev))) return -EIO; return 0; } static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev) { /* * Disable power */ rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0); } static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state) { u32 reg, reg2; unsigned int i; char put_to_sleep; char bbp_state; char rf_state; put_to_sleep = (state != STATE_AWAKE); rt2x00pci_register_read(rt2x00dev, PWRCSR1, ®); rt2x00_set_field32(®, PWRCSR1_SET_STATE, 1); rt2x00_set_field32(®, PWRCSR1_BBP_DESIRE_STATE, state); rt2x00_set_field32(®, PWRCSR1_RF_DESIRE_STATE, state); rt2x00_set_field32(®, PWRCSR1_PUT_TO_SLEEP, put_to_sleep); rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg); /* * Device is not guaranteed to be in the requested state yet. * We must wait until the register indicates that the * device has entered the correct state. */ for (i = 0; i < REGISTER_BUSY_COUNT; i++) { rt2x00pci_register_read(rt2x00dev, PWRCSR1, ®2); bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE); rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE); if (bbp_state == state && rf_state == state) return 0; rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg); msleep(10); } return -EBUSY; } static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev, enum dev_state state) { int retval = 0; switch (state) { case STATE_RADIO_ON: retval = rt2500pci_enable_radio(rt2x00dev); break; case STATE_RADIO_OFF: rt2500pci_disable_radio(rt2x00dev); break; case STATE_RADIO_RX_ON: case STATE_RADIO_RX_ON_LINK: case STATE_RADIO_RX_OFF: case STATE_RADIO_RX_OFF_LINK: rt2500pci_toggle_rx(rt2x00dev, state); break; case STATE_RADIO_IRQ_ON: case STATE_RADIO_IRQ_OFF: rt2500pci_toggle_irq(rt2x00dev, state); break; case STATE_DEEP_SLEEP: case STATE_SLEEP: case STATE_STANDBY: case STATE_AWAKE: retval = rt2500pci_set_state(rt2x00dev, state); break; default: retval = -ENOTSUPP; break; } if (unlikely(retval)) ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n", state, retval); return retval; } /* * TX descriptor initialization */ static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb, struct txentry_desc *txdesc) { struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb); struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data; __le32 *txd = entry_priv->desc; u32 word; /* * Start writing the descriptor words. */ rt2x00_desc_read(txd, 1, &word); rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma); rt2x00_desc_write(txd, 1, word); rt2x00_desc_read(txd, 2, &word); rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER); rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs); rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min); rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max); rt2x00_desc_write(txd, 2, word); rt2x00_desc_read(txd, 3, &word); rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal); rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service); rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low); rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high); rt2x00_desc_write(txd, 3, word); rt2x00_desc_read(txd, 10, &word); rt2x00_set_field32(&word, TXD_W10_RTS, test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)); rt2x00_desc_write(txd, 10, word); /* * Writing TXD word 0 must the last to prevent a race condition with * the device, whereby the device may take hold of the TXD before we * finished updating it. */ rt2x00_desc_read(txd, 0, &word); rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1); rt2x00_set_field32(&word, TXD_W0_VALID, 1); rt2x00_set_field32(&word, TXD_W0_MORE_FRAG, test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W0_ACK, test_bit(ENTRY_TXD_ACK, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W0_TIMESTAMP, test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W0_OFDM, (txdesc->rate_mode == RATE_MODE_OFDM)); rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1); rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs); rt2x00_set_field32(&word, TXD_W0_RETRY_MODE, test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length); rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE); rt2x00_desc_write(txd, 0, word); /* * Register descriptor details in skb frame descriptor. */ skbdesc->desc = txd; skbdesc->desc_len = TXD_DESC_SIZE; } /* * TX data initialization */ static void rt2500pci_write_beacon(struct queue_entry *entry, struct txentry_desc *txdesc) { struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; u32 reg; /* * Disable beaconing while we are reloading the beacon data, * otherwise we might be sending out invalid data. */ rt2x00pci_register_read(rt2x00dev, CSR14, ®); rt2x00_set_field32(®, CSR14_BEACON_GEN, 0); rt2x00pci_register_write(rt2x00dev, CSR14, reg); rt2x00queue_map_txskb(rt2x00dev, entry->skb); /* * Write the TX descriptor for the beacon. */ rt2500pci_write_tx_desc(rt2x00dev, entry->skb, txdesc); /* * Dump beacon to userspace through debugfs. */ rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb); /* * Enable beaconing again. */ rt2x00_set_field32(®, CSR14_TSF_COUNT, 1); rt2x00_set_field32(®, CSR14_TBCN, 1); rt2x00_set_field32(®, CSR14_BEACON_GEN, 1); rt2x00pci_register_write(rt2x00dev, CSR14, reg); } static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev, const enum data_queue_qid queue) { u32 reg; rt2x00pci_register_read(rt2x00dev, TXCSR0, ®); rt2x00_set_field32(®, TXCSR0_KICK_PRIO, (queue == QID_AC_BE)); rt2x00_set_field32(®, TXCSR0_KICK_TX, (queue == QID_AC_BK)); rt2x00_set_field32(®, TXCSR0_KICK_ATIM, (queue == QID_ATIM)); rt2x00pci_register_write(rt2x00dev, TXCSR0, reg); } static void rt2500pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev, const enum data_queue_qid qid) { u32 reg; if (qid == QID_BEACON) { rt2x00pci_register_write(rt2x00dev, CSR14, 0); } else { rt2x00pci_register_read(rt2x00dev, TXCSR0, ®); rt2x00_set_field32(®, TXCSR0_ABORT, 1); rt2x00pci_register_write(rt2x00dev, TXCSR0, reg); } } /* * RX control handlers */ static void rt2500pci_fill_rxdone(struct queue_entry *entry, struct rxdone_entry_desc *rxdesc) { struct queue_entry_priv_pci *entry_priv = entry->priv_data; u32 word0; u32 word2; rt2x00_desc_read(entry_priv->desc, 0, &word0); rt2x00_desc_read(entry_priv->desc, 2, &word2); if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR)) rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR)) rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC; /* * Obtain the status about this packet. * When frame was received with an OFDM bitrate, * the signal is the PLCP value. If it was received with * a CCK bitrate the signal is the rate in 100kbit/s. */ rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL); rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) - entry->queue->rt2x00dev->rssi_offset; rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT); if (rt2x00_get_field32(word0, RXD_W0_OFDM)) rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP; else rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE; if (rt2x00_get_field32(word0, RXD_W0_MY_BSS)) rxdesc->dev_flags |= RXDONE_MY_BSS; } /* * Interrupt functions. */ static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev, const enum data_queue_qid queue_idx) { struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx); struct queue_entry_priv_pci *entry_priv; struct queue_entry *entry; struct txdone_entry_desc txdesc; u32 word; while (!rt2x00queue_empty(queue)) { entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE); entry_priv = entry->priv_data; rt2x00_desc_read(entry_priv->desc, 0, &word); if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) || !rt2x00_get_field32(word, TXD_W0_VALID)) break; /* * Obtain the status about this packet. */ txdesc.flags = 0; switch (rt2x00_get_field32(word, TXD_W0_RESULT)) { case 0: /* Success */ case 1: /* Success with retry */ __set_bit(TXDONE_SUCCESS, &txdesc.flags); break; case 2: /* Failure, excessive retries */ __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags); /* Don't break, this is a failed frame! */ default: /* Failure */ __set_bit(TXDONE_FAILURE, &txdesc.flags); } txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT); rt2x00lib_txdone(entry, &txdesc); } } static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance) { struct rt2x00_dev *rt2x00dev = dev_instance; u32 reg; /* * Get the interrupt sources & saved to local variable. * Write register value back to clear pending interrupts. */ rt2x00pci_register_read(rt2x00dev, CSR7, ®); rt2x00pci_register_write(rt2x00dev, CSR7, reg); if (!reg) return IRQ_NONE; if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) return IRQ_HANDLED; /* * Handle interrupts, walk through all bits * and run the tasks, the bits are checked in order of * priority. */ /* * 1 - Beacon timer expired interrupt. */ if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE)) rt2x00lib_beacondone(rt2x00dev); /* * 2 - Rx ring done interrupt. */ if (rt2x00_get_field32(reg, CSR7_RXDONE)) rt2x00pci_rxdone(rt2x00dev); /* * 3 - Atim ring transmit done interrupt. */ if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING)) rt2500pci_txdone(rt2x00dev, QID_ATIM); /* * 4 - Priority ring transmit done interrupt. */ if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING)) rt2500pci_txdone(rt2x00dev, QID_AC_BE); /* * 5 - Tx ring transmit done interrupt. */ if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) rt2500pci_txdone(rt2x00dev, QID_AC_BK); return IRQ_HANDLED; } /* * Device probe functions. */ static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev) { struct eeprom_93cx6 eeprom; u32 reg; u16 word; u8 *mac; rt2x00pci_register_read(rt2x00dev, CSR21, ®); eeprom.data = rt2x00dev; eeprom.register_read = rt2500pci_eepromregister_read; eeprom.register_write = rt2500pci_eepromregister_write; eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ? PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66; eeprom.reg_data_in = 0; eeprom.reg_data_out = 0; eeprom.reg_data_clock = 0; eeprom.reg_chip_select = 0; eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom, EEPROM_SIZE / sizeof(u16)); /* * Start validation of the data that has been read. */ mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0); if (!is_valid_ether_addr(mac)) { random_ether_addr(mac); EEPROM(rt2x00dev, "MAC: %pM\n", mac); } rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word); if (word == 0xffff) { rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2); rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, ANTENNA_SW_DIVERSITY); rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, ANTENNA_SW_DIVERSITY); rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE, LED_MODE_DEFAULT); rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0); rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0); rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522); rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word); } rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word); if (word == 0xffff) { rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0); rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0); rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0); rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word); EEPROM(rt2x00dev, "NIC: 0x%04x\n", word); } rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word); if (word == 0xffff) { rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI, DEFAULT_RSSI_OFFSET); rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word); EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word); } return 0; } static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev) { u32 reg; u16 value; u16 eeprom; /* * Read EEPROM word for configuration. */ rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom); /* * Identify RF chipset. */ value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE); rt2x00pci_register_read(rt2x00dev, CSR0, ®); rt2x00_set_chip(rt2x00dev, RT2560, value, rt2x00_get_field32(reg, CSR0_REVISION)); if (!rt2x00_rf(rt2x00dev, RF2522) && !rt2x00_rf(rt2x00dev, RF2523) && !rt2x00_rf(rt2x00dev, RF2524) && !rt2x00_rf(rt2x00dev, RF2525) && !rt2x00_rf(rt2x00dev, RF2525E) && !rt2x00_rf(rt2x00dev, RF5222)) { ERROR(rt2x00dev, "Invalid RF chipset detected.\n"); return -ENODEV; } /* * Identify default antenna configuration. */ rt2x00dev->default_ant.tx = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT); rt2x00dev->default_ant.rx = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT); /* * Store led mode, for correct led behaviour. */ #ifdef CONFIG_RT2X00_LIB_LEDS value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE); rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO); if (value == LED_MODE_TXRX_ACTIVITY || value == LED_MODE_DEFAULT || value == LED_MODE_ASUS) rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual, LED_TYPE_ACTIVITY); #endif /* CONFIG_RT2X00_LIB_LEDS */ /* * Detect if this device has an hardware controlled radio. */ if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags); /* * Check if the BBP tuning should be enabled. */ rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom); if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE)) __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags); /* * Read the RSSI <-> dBm offset information. */ rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom); rt2x00dev->rssi_offset = rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI); return 0; } /* * RF value list for RF2522 * Supports: 2.4 GHz */ static const struct rf_channel rf_vals_bg_2522[] = { { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 }, { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 }, { 3, 0x00002050, 0x000c2002, 0x00000101, 0 }, { 4, 0x00002050, 0x000c2016, 0x00000101, 0 }, { 5, 0x00002050, 0x000c202a, 0x00000101, 0 }, { 6, 0x00002050, 0x000c203e, 0x00000101, 0 }, { 7, 0x00002050, 0x000c2052, 0x00000101, 0 }, { 8, 0x00002050, 0x000c2066, 0x00000101, 0 }, { 9, 0x00002050, 0x000c207a, 0x00000101, 0 }, { 10, 0x00002050, 0x000c208e, 0x00000101, 0 }, { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 }, { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 }, { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 }, { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 }, }; /* * RF value list for RF2523 * Supports: 2.4 GHz */ static const struct rf_channel rf_vals_bg_2523[] = { { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b }, { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b }, { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b }, { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b }, { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b }, { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b }, { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b }, { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b }, { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b }, { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b }, { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b }, { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b }, { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b }, { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 }, }; /* * RF value list for RF2524 * Supports: 2.4 GHz */ static const struct rf_channel rf_vals_bg_2524[] = { { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b }, { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b }, { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b }, { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b }, { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b }, { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b }, { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b }, { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b }, { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b }, { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b }, { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b }, { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b }, { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b }, { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 }, }; /* * RF value list for RF2525 * Supports: 2.4 GHz */ static const struct rf_channel rf_vals_bg_2525[] = { { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b }, { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b }, { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b }, { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b }, { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b }, { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b }, { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b }, { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b }, { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b }, { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b }, { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b }, { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b }, { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b }, { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 }, }; /* * RF value list for RF2525e * Supports: 2.4 GHz */ static const struct rf_channel rf_vals_bg_2525e[] = { { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b }, { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b }, { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b }, { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b }, { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b }, { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b }, { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b }, { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b }, { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b }, { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b }, { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b }, { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b }, { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b }, { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b }, }; /* * RF value list for RF5222 * Supports: 2.4 GHz & 5.2 GHz */ static const struct rf_channel rf_vals_5222[] = { { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b }, { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b }, { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b }, { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b }, { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b }, { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b }, { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b }, { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b }, { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b }, { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b }, { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b }, { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b }, { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b }, { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b }, /* 802.11 UNI / HyperLan 2 */ { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f }, { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f }, { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f }, { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f }, { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f }, { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f }, { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f }, { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f }, /* 802.11 HyperLan 2 */ { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f }, { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f }, { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f }, { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f }, { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f }, { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f }, { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f }, { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f }, { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f }, { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f }, /* 802.11 UNII */ { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f }, { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 }, { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 }, { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 }, { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 }, }; static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev) { struct hw_mode_spec *spec = &rt2x00dev->spec; struct channel_info *info; char *tx_power; unsigned int i; /* * Initialize all hw fields. */ rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING | IEEE80211_HW_SIGNAL_DBM | IEEE80211_HW_SUPPORTS_PS | IEEE80211_HW_PS_NULLFUNC_STACK; SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev); SET_IEEE80211_PERM_ADDR(rt2x00dev->hw, rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0)); /* * Initialize hw_mode information. */ spec->supported_bands = SUPPORT_BAND_2GHZ; spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM; if (rt2x00_rf(rt2x00dev, RF2522)) { spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522); spec->channels = rf_vals_bg_2522; } else if (rt2x00_rf(rt2x00dev, RF2523)) { spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523); spec->channels = rf_vals_bg_2523; } else if (rt2x00_rf(rt2x00dev, RF2524)) { spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524); spec->channels = rf_vals_bg_2524; } else if (rt2x00_rf(rt2x00dev, RF2525)) { spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525); spec->channels = rf_vals_bg_2525; } else if (rt2x00_rf(rt2x00dev, RF2525E)) { spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e); spec->channels = rf_vals_bg_2525e; } else if (rt2x00_rf(rt2x00dev, RF5222)) { spec->supported_bands |= SUPPORT_BAND_5GHZ; spec->num_channels = ARRAY_SIZE(rf_vals_5222); spec->channels = rf_vals_5222; } /* * Create channel information array */ info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL); if (!info) return -ENOMEM; spec->channels_info = info; tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START); for (i = 0; i < 14; i++) info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]); if (spec->num_channels > 14) { for (i = 14; i < spec->num_channels; i++) info[i].tx_power1 = DEFAULT_TXPOWER; } return 0; } static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev) { int retval; /* * Allocate eeprom data. */ retval = rt2500pci_validate_eeprom(rt2x00dev); if (retval) return retval; retval = rt2500pci_init_eeprom(rt2x00dev); if (retval) return retval; /* * Initialize hw specifications. */ retval = rt2500pci_probe_hw_mode(rt2x00dev); if (retval) return retval; /* * This device requires the atim queue and DMA-mapped skbs. */ __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags); __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags); /* * Set the rssi offset. */ rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET; return 0; } /* * IEEE80211 stack callback functions. */ static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw) { struct rt2x00_dev *rt2x00dev = hw->priv; u64 tsf; u32 reg; rt2x00pci_register_read(rt2x00dev, CSR17, ®); tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32; rt2x00pci_register_read(rt2x00dev, CSR16, ®); tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER); return tsf; } static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw) { struct rt2x00_dev *rt2x00dev = hw->priv; u32 reg; rt2x00pci_register_read(rt2x00dev, CSR15, ®); return rt2x00_get_field32(reg, CSR15_BEACON_SENT); } static const struct ieee80211_ops rt2500pci_mac80211_ops = { .tx = rt2x00mac_tx, .start = rt2x00mac_start, .stop = rt2x00mac_stop, .add_interface = rt2x00mac_add_interface, .remove_interface = rt2x00mac_remove_interface, .config = rt2x00mac_config, .configure_filter = rt2x00mac_configure_filter, .set_tim = rt2x00mac_set_tim, .get_stats = rt2x00mac_get_stats, .bss_info_changed = rt2x00mac_bss_info_changed, .conf_tx = rt2x00mac_conf_tx, .get_tsf = rt2500pci_get_tsf, .tx_last_beacon = rt2500pci_tx_last_beacon, .rfkill_poll = rt2x00mac_rfkill_poll, }; static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = { .irq_handler = rt2500pci_interrupt, .probe_hw = rt2500pci_probe_hw, .initialize = rt2x00pci_initialize, .uninitialize = rt2x00pci_uninitialize, .get_entry_state = rt2500pci_get_entry_state, .clear_entry = rt2500pci_clear_entry, .set_device_state = rt2500pci_set_device_state, .rfkill_poll = rt2500pci_rfkill_poll, .link_stats = rt2500pci_link_stats, .reset_tuner = rt2500pci_reset_tuner, .link_tuner = rt2500pci_link_tuner, .write_tx_desc = rt2500pci_write_tx_desc, .write_beacon = rt2500pci_write_beacon, .kick_tx_queue = rt2500pci_kick_tx_queue, .kill_tx_queue = rt2500pci_kill_tx_queue, .fill_rxdone = rt2500pci_fill_rxdone, .config_filter = rt2500pci_config_filter, .config_intf = rt2500pci_config_intf, .config_erp = rt2500pci_config_erp, .config_ant = rt2500pci_config_ant, .config = rt2500pci_config, }; static const struct data_queue_desc rt2500pci_queue_rx = { .entry_num = RX_ENTRIES, .data_size = DATA_FRAME_SIZE, .desc_size = RXD_DESC_SIZE, .priv_size = sizeof(struct queue_entry_priv_pci), }; static const struct data_queue_desc rt2500pci_queue_tx = { .entry_num = TX_ENTRIES, .data_size = DATA_FRAME_SIZE, .desc_size = TXD_DESC_SIZE, .priv_size = sizeof(struct queue_entry_priv_pci), }; static const struct data_queue_desc rt2500pci_queue_bcn = { .entry_num = BEACON_ENTRIES, .data_size = MGMT_FRAME_SIZE, .desc_size = TXD_DESC_SIZE, .priv_size = sizeof(struct queue_entry_priv_pci), }; static const struct data_queue_desc rt2500pci_queue_atim = { .entry_num = ATIM_ENTRIES, .data_size = DATA_FRAME_SIZE, .desc_size = TXD_DESC_SIZE, .priv_size = sizeof(struct queue_entry_priv_pci), }; static const struct rt2x00_ops rt2500pci_ops = { .name = KBUILD_MODNAME, .max_sta_intf = 1, .max_ap_intf = 1, .eeprom_size = EEPROM_SIZE, .rf_size = RF_SIZE, .tx_queues = NUM_TX_QUEUES, .extra_tx_headroom = 0, .rx = &rt2500pci_queue_rx, .tx = &rt2500pci_queue_tx, .bcn = &rt2500pci_queue_bcn, .atim = &rt2500pci_queue_atim, .lib = &rt2500pci_rt2x00_ops, .hw = &rt2500pci_mac80211_ops, #ifdef CONFIG_RT2X00_LIB_DEBUGFS .debugfs = &rt2500pci_rt2x00debug, #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ }; /* * RT2500pci module information. */ static DEFINE_PCI_DEVICE_TABLE(rt2500pci_device_table) = { { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) }, { 0, } }; MODULE_AUTHOR(DRV_PROJECT); MODULE_VERSION(DRV_VERSION); MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver."); MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards"); MODULE_DEVICE_TABLE(pci, rt2500pci_device_table); MODULE_LICENSE("GPL"); static struct pci_driver rt2500pci_driver = { .name = KBUILD_MODNAME, .id_table = rt2500pci_device_table, .probe = rt2x00pci_probe, .remove = __devexit_p(rt2x00pci_remove), .suspend = rt2x00pci_suspend, .resume = rt2x00pci_resume, }; static int __init rt2500pci_init(void) { return pci_register_driver(&rt2500pci_driver); } static void __exit rt2500pci_exit(void) { pci_unregister_driver(&rt2500pci_driver); } module_init(rt2500pci_init); module_exit(rt2500pci_exit);