/* * Broadcom BCMSDH to gSPI Protocol Conversion Layer * * Copyright (C) 1999-2014, Broadcom Corporation * * Unless you and Broadcom execute a separate written software license * agreement governing use of this software, this software is licensed to you * under the terms of the GNU General Public License version 2 (the "GPL"), * available at http://www.broadcom.com/licenses/GPLv2.php, with the * following added to such license: * * As a special exception, the copyright holders of this software give you * permission to link this software with independent modules, and to copy and * distribute the resulting executable under terms of your choice, provided that * you also meet, for each linked independent module, the terms and conditions of * the license of that module. An independent module is a module which is not * derived from this software. The special exception does not apply to any * modifications of the software. * * Notwithstanding the above, under no circumstances may you combine this * software in any way with any other Broadcom software provided under a license * other than the GPL, without Broadcom's express prior written consent. * * $Id: bcmspibrcm.c 373331 2012-12-07 04:46:22Z $ */ #define HSMODE #include #include #include #include #include #include #include #include #include /* SDIO device core hardware definitions. */ #include #include /* bcmsdh to/from specific controller APIs */ #include /* ioctl/iovars */ #include /* SDIO Device and Protocol Specs */ #include #include #ifdef BCMSPI_ANDROID extern void spi_sendrecv(sdioh_info_t *sd, uint8 *msg_out, uint8 *msg_in, int msglen); #else #include #endif /* BCMSPI_ANDROID */ /* these are for the older cores... for newer cores we have control for each of them */ #define F0_RESPONSE_DELAY 16 #define F1_RESPONSE_DELAY 16 #define F2_RESPONSE_DELAY F0_RESPONSE_DELAY #define GSPI_F0_RESP_DELAY 0 #define GSPI_F1_RESP_DELAY F1_RESPONSE_DELAY #define GSPI_F2_RESP_DELAY 0 #define GSPI_F3_RESP_DELAY 0 #define CMDLEN 4 #define DWORDMODE_ON (sd->chip == BCM4329_CHIP_ID) && (sd->chiprev == 2) && (sd->dwordmode == TRUE) /* Globals */ #if defined(DHD_DEBUG) uint sd_msglevel = SDH_ERROR_VAL; #else uint sd_msglevel = 0; #endif uint sd_hiok = FALSE; /* Use hi-speed mode if available? */ uint sd_sdmode = SDIOH_MODE_SPI; /* Use SD4 mode by default */ uint sd_f2_blocksize = 64; /* Default blocksize */ uint sd_divisor = 2; uint sd_power = 1; /* Default to SD Slot powered ON */ uint sd_clock = 1; /* Default to SD Clock turned ON */ uint sd_crc = 0; /* Default to SPI CRC Check turned OFF */ uint sd_pci_slot = 0xFFFFffff; /* Used to force selection of a particular PCI slot */ uint8 spi_outbuf[SPI_MAX_PKT_LEN]; uint8 spi_inbuf[SPI_MAX_PKT_LEN]; /* 128bytes buffer is enough to clear data-not-available and program response-delay F0 bits * assuming we will not exceed F0 response delay > 100 bytes at 48MHz. */ #define BUF2_PKT_LEN 128 uint8 spi_outbuf2[BUF2_PKT_LEN]; uint8 spi_inbuf2[BUF2_PKT_LEN]; #ifdef BCMSPI_ANDROID uint *dhd_spi_lockcount = NULL; #endif /* BCMSPI_ANDROID */ #if !(defined(SPI_PIO_RW_BIGENDIAN) && defined(SPI_PIO_32BIT_RW)) #define SPISWAP_WD4(x) bcmswap32(x); #define SPISWAP_WD2(x) (bcmswap16(x & 0xffff)) | \ (bcmswap16((x & 0xffff0000) >> 16) << 16); #else #define SPISWAP_WD4(x) x; #define SPISWAP_WD2(x) bcmswap32by16(x); #endif /* Prototypes */ static bool bcmspi_test_card(sdioh_info_t *sd); static bool bcmspi_host_device_init_adapt(sdioh_info_t *sd); static int bcmspi_set_highspeed_mode(sdioh_info_t *sd, bool hsmode); static int bcmspi_cmd_issue(sdioh_info_t *sd, bool use_dma, uint32 cmd_arg, uint32 *data, uint32 datalen); static int bcmspi_card_regread(sdioh_info_t *sd, int func, uint32 regaddr, int regsize, uint32 *data); static int bcmspi_card_regwrite(sdioh_info_t *sd, int func, uint32 regaddr, int regsize, uint32 data); static int bcmspi_card_bytewrite(sdioh_info_t *sd, int func, uint32 regaddr, uint8 *data); static int bcmspi_driver_init(sdioh_info_t *sd); static int bcmspi_card_buf(sdioh_info_t *sd, int rw, int func, bool fifo, uint32 addr, int nbytes, uint32 *data); static int bcmspi_card_regread_fixedaddr(sdioh_info_t *sd, int func, uint32 regaddr, int regsize, uint32 *data); static void bcmspi_cmd_getdstatus(sdioh_info_t *sd, uint32 *dstatus_buffer); static int bcmspi_update_stats(sdioh_info_t *sd, uint32 cmd_arg); /* * Public entry points & extern's */ extern sdioh_info_t * sdioh_attach(osl_t *osh, void *bar0, uint irq) { sdioh_info_t *sd; sd_trace(("%s\n", __FUNCTION__)); if ((sd = (sdioh_info_t *)MALLOC(osh, sizeof(sdioh_info_t))) == NULL) { sd_err(("%s: out of memory, malloced %d bytes\n", __FUNCTION__, MALLOCED(osh))); return NULL; } bzero((char *)sd, sizeof(sdioh_info_t)); sd->osh = osh; if (spi_osinit(sd) != 0) { sd_err(("%s: spi_osinit() failed\n", __FUNCTION__)); MFREE(sd->osh, sd, sizeof(sdioh_info_t)); return NULL; } #ifndef BCMSPI_ANDROID sd->bar0 = bar0; #endif /* !BCMSPI_ANDROID */ sd->irq = irq; #ifndef BCMSPI_ANDROID sd->intr_handler = NULL; sd->intr_handler_arg = NULL; sd->intr_handler_valid = FALSE; #endif /* !BCMSPI_ANDROID */ /* Set defaults */ sd->use_client_ints = TRUE; sd->sd_use_dma = FALSE; /* DMA Not supported */ /* Spi device default is 16bit mode, change to 4 when device is changed to 32bit * mode */ sd->wordlen = 2; #ifdef BCMSPI_ANDROID dhd_spi_lockcount = &sd->lockcount; #endif /* BCMSPI_ANDROID */ #ifndef BCMSPI_ANDROID if (!spi_hw_attach(sd)) { sd_err(("%s: spi_hw_attach() failed\n", __FUNCTION__)); spi_osfree(sd); MFREE(sd->osh, sd, sizeof(sdioh_info_t)); return (NULL); } #endif /* !BCMSPI_ANDROID */ if (bcmspi_driver_init(sd) != SUCCESS) { sd_err(("%s: bcmspi_driver_init() failed()\n", __FUNCTION__)); #ifndef BCMSPI_ANDROID spi_hw_detach(sd); #endif /* !BCMSPI_ANDROID */ spi_osfree(sd); MFREE(sd->osh, sd, sizeof(sdioh_info_t)); return (NULL); } if (spi_register_irq(sd, irq) != SUCCESS) { sd_err(("%s: spi_register_irq() failed for irq = %d\n", __FUNCTION__, irq)); #ifndef BCMSPI_ANDROID spi_hw_detach(sd); #endif /* !BCMSPI_ANDROID */ spi_osfree(sd); MFREE(sd->osh, sd, sizeof(sdioh_info_t)); return (NULL); } sd_trace(("%s: Done\n", __FUNCTION__)); return sd; } extern SDIOH_API_RC sdioh_detach(osl_t *osh, sdioh_info_t *sd) { sd_trace(("%s\n", __FUNCTION__)); if (sd) { sd_err(("%s: detaching from hardware\n", __FUNCTION__)); spi_free_irq(sd->irq, sd); #ifndef BCMSPI_ANDROID spi_hw_detach(sd); #endif /* !BCMSPI_ANDROID */ spi_osfree(sd); #ifdef BCMSPI_ANDROID dhd_spi_lockcount = NULL; #endif /* !BCMSPI_ANDROID */ MFREE(sd->osh, sd, sizeof(sdioh_info_t)); } return SDIOH_API_RC_SUCCESS; } /* Configure callback to client when we recieve client interrupt */ extern SDIOH_API_RC sdioh_interrupt_register(sdioh_info_t *sd, sdioh_cb_fn_t fn, void *argh) { sd_trace(("%s: Entering\n", __FUNCTION__)); #if !defined(OOB_INTR_ONLY) sd->intr_handler = fn; sd->intr_handler_arg = argh; sd->intr_handler_valid = TRUE; #endif /* !defined(OOB_INTR_ONLY) */ return SDIOH_API_RC_SUCCESS; } extern SDIOH_API_RC sdioh_interrupt_deregister(sdioh_info_t *sd) { sd_trace(("%s: Entering\n", __FUNCTION__)); #if !defined(OOB_INTR_ONLY) sd->intr_handler_valid = FALSE; sd->intr_handler = NULL; sd->intr_handler_arg = NULL; #endif /* !defined(OOB_INTR_ONLY) */ return SDIOH_API_RC_SUCCESS; } extern SDIOH_API_RC sdioh_interrupt_query(sdioh_info_t *sd, bool *onoff) { #ifndef BCMSPI_ANDROID sd_trace(("%s: Entering\n", __FUNCTION__)); *onoff = sd->client_intr_enabled; #endif /* !BCMSPI_ANDROID */ return SDIOH_API_RC_SUCCESS; } #if defined(DHD_DEBUG) extern bool sdioh_interrupt_pending(sdioh_info_t *sd) { return 0; } #endif extern SDIOH_API_RC sdioh_query_device(sdioh_info_t *sd) { /* Return a BRCM ID appropriate to the dongle class */ return (sd->num_funcs > 1) ? BCM4329_D11N_ID : BCM4318_D11G_ID; } /* Provide dstatus bits of spi-transaction for dhd layers. */ extern uint32 sdioh_get_dstatus(sdioh_info_t *sd) { return sd->card_dstatus; } extern void sdioh_chipinfo(sdioh_info_t *sd, uint32 chip, uint32 chiprev) { sd->chip = chip; sd->chiprev = chiprev; } extern void sdioh_dwordmode(sdioh_info_t *sd, bool set) { uint8 reg = 0; int status; if ((status = sdioh_request_byte(sd, SDIOH_READ, SPI_FUNC_0, SPID_STATUS_ENABLE, ®)) != SUCCESS) { sd_err(("%s: Failed to set dwordmode in gSPI\n", __FUNCTION__)); return; } if (set) { reg |= DWORD_PKT_LEN_EN; sd->dwordmode = TRUE; sd->client_block_size[SPI_FUNC_2] = 4096; /* h2spi's limit is 4KB, we support 8KB */ } else { reg &= ~DWORD_PKT_LEN_EN; sd->dwordmode = FALSE; sd->client_block_size[SPI_FUNC_2] = 2048; } if ((status = sdioh_request_byte(sd, SDIOH_WRITE, SPI_FUNC_0, SPID_STATUS_ENABLE, ®)) != SUCCESS) { sd_err(("%s: Failed to set dwordmode in gSPI\n", __FUNCTION__)); return; } } uint sdioh_query_iofnum(sdioh_info_t *sd) { return sd->num_funcs; } /* IOVar table */ enum { IOV_MSGLEVEL = 1, IOV_BLOCKMODE, IOV_BLOCKSIZE, IOV_DMA, IOV_USEINTS, IOV_NUMINTS, IOV_NUMLOCALINTS, IOV_HOSTREG, IOV_DEVREG, IOV_DIVISOR, IOV_SDMODE, IOV_HISPEED, IOV_HCIREGS, IOV_POWER, IOV_CLOCK, IOV_SPIERRSTATS, IOV_RESP_DELAY_ALL }; const bcm_iovar_t sdioh_iovars[] = { {"sd_msglevel", IOV_MSGLEVEL, 0, IOVT_UINT32, 0 }, {"sd_blocksize", IOV_BLOCKSIZE, 0, IOVT_UINT32, 0 }, /* ((fn << 16) | size) */ {"sd_dma", IOV_DMA, 0, IOVT_BOOL, 0 }, {"sd_ints", IOV_USEINTS, 0, IOVT_BOOL, 0 }, {"sd_numints", IOV_NUMINTS, 0, IOVT_UINT32, 0 }, {"sd_numlocalints", IOV_NUMLOCALINTS, 0, IOVT_UINT32, 0 }, {"sd_hostreg", IOV_HOSTREG, 0, IOVT_BUFFER, sizeof(sdreg_t) }, {"sd_devreg", IOV_DEVREG, 0, IOVT_BUFFER, sizeof(sdreg_t) }, {"sd_divisor", IOV_DIVISOR, 0, IOVT_UINT32, 0 }, {"sd_power", IOV_POWER, 0, IOVT_UINT32, 0 }, {"sd_clock", IOV_CLOCK, 0, IOVT_UINT32, 0 }, {"sd_mode", IOV_SDMODE, 0, IOVT_UINT32, 100}, {"sd_highspeed", IOV_HISPEED, 0, IOVT_UINT32, 0}, {"spi_errstats", IOV_SPIERRSTATS, 0, IOVT_BUFFER, sizeof(struct spierrstats_t) }, {"spi_respdelay", IOV_RESP_DELAY_ALL, 0, IOVT_BOOL, 0 }, {NULL, 0, 0, 0, 0 } }; int sdioh_iovar_op(sdioh_info_t *si, const char *name, void *params, int plen, void *arg, int len, bool set) { const bcm_iovar_t *vi = NULL; int bcmerror = 0; int val_size; int32 int_val = 0; bool bool_val; uint32 actionid; /* sdioh_regs_t *regs; */ ASSERT(name); ASSERT(len >= 0); /* Get must have return space; Set does not take qualifiers */ ASSERT(set || (arg && len)); ASSERT(!set || (!params && !plen)); sd_trace(("%s: Enter (%s %s)\n", __FUNCTION__, (set ? "set" : "get"), name)); if ((vi = bcm_iovar_lookup(sdioh_iovars, name)) == NULL) { bcmerror = BCME_UNSUPPORTED; goto exit; } if ((bcmerror = bcm_iovar_lencheck(vi, arg, len, set)) != 0) goto exit; /* Set up params so get and set can share the convenience variables */ if (params == NULL) { params = arg; plen = len; } if (vi->type == IOVT_VOID) val_size = 0; else if (vi->type == IOVT_BUFFER) val_size = len; else val_size = sizeof(int); if (plen >= (int)sizeof(int_val)) bcopy(params, &int_val, sizeof(int_val)); bool_val = (int_val != 0) ? TRUE : FALSE; actionid = set ? IOV_SVAL(vi->varid) : IOV_GVAL(vi->varid); switch (actionid) { case IOV_GVAL(IOV_MSGLEVEL): int_val = (int32)sd_msglevel; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_MSGLEVEL): sd_msglevel = int_val; break; case IOV_GVAL(IOV_BLOCKSIZE): if ((uint32)int_val > si->num_funcs) { bcmerror = BCME_BADARG; break; } int_val = (int32)si->client_block_size[int_val]; bcopy(&int_val, arg, val_size); break; case IOV_GVAL(IOV_DMA): int_val = (int32)si->sd_use_dma; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_DMA): si->sd_use_dma = (bool)int_val; break; case IOV_GVAL(IOV_USEINTS): int_val = (int32)si->use_client_ints; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_USEINTS): break; case IOV_GVAL(IOV_DIVISOR): int_val = (uint32)sd_divisor; bcopy(&int_val, arg, val_size); break; #ifndef BCMSPI_ANDROID case IOV_SVAL(IOV_DIVISOR): sd_divisor = int_val; if (!spi_start_clock(si, (uint16)sd_divisor)) { sd_err(("%s: set clock failed\n", __FUNCTION__)); bcmerror = BCME_ERROR; } break; #endif /* !BCMSPI_ANDROID */ case IOV_GVAL(IOV_POWER): int_val = (uint32)sd_power; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_POWER): sd_power = int_val; break; case IOV_GVAL(IOV_CLOCK): int_val = (uint32)sd_clock; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_CLOCK): sd_clock = int_val; break; case IOV_GVAL(IOV_SDMODE): int_val = (uint32)sd_sdmode; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_SDMODE): sd_sdmode = int_val; break; case IOV_GVAL(IOV_HISPEED): int_val = (uint32)sd_hiok; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_HISPEED): sd_hiok = int_val; if (!bcmspi_set_highspeed_mode(si, (bool)sd_hiok)) { sd_err(("%s: Failed changing highspeed mode to %d.\n", __FUNCTION__, sd_hiok)); bcmerror = BCME_ERROR; return ERROR; } break; case IOV_GVAL(IOV_NUMINTS): int_val = (int32)si->intrcount; bcopy(&int_val, arg, val_size); break; case IOV_GVAL(IOV_NUMLOCALINTS): int_val = (int32)si->local_intrcount; bcopy(&int_val, arg, val_size); break; case IOV_GVAL(IOV_DEVREG): { sdreg_t *sd_ptr = (sdreg_t *)params; uint8 data; if (sdioh_cfg_read(si, sd_ptr->func, sd_ptr->offset, &data)) { bcmerror = BCME_SDIO_ERROR; break; } int_val = (int)data; bcopy(&int_val, arg, sizeof(int_val)); break; } case IOV_SVAL(IOV_DEVREG): { sdreg_t *sd_ptr = (sdreg_t *)params; uint8 data = (uint8)sd_ptr->value; if (sdioh_cfg_write(si, sd_ptr->func, sd_ptr->offset, &data)) { bcmerror = BCME_SDIO_ERROR; break; } break; } case IOV_GVAL(IOV_SPIERRSTATS): { bcopy(&si->spierrstats, arg, sizeof(struct spierrstats_t)); break; } case IOV_SVAL(IOV_SPIERRSTATS): { bzero(&si->spierrstats, sizeof(struct spierrstats_t)); break; } case IOV_GVAL(IOV_RESP_DELAY_ALL): int_val = (int32)si->resp_delay_all; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_RESP_DELAY_ALL): si->resp_delay_all = (bool)int_val; int_val = STATUS_ENABLE|INTR_WITH_STATUS; if (si->resp_delay_all) int_val |= RESP_DELAY_ALL; else { if (bcmspi_card_regwrite(si, SPI_FUNC_0, SPID_RESPONSE_DELAY, 1, F1_RESPONSE_DELAY) != SUCCESS) { sd_err(("%s: Unable to set response delay.\n", __FUNCTION__)); bcmerror = BCME_SDIO_ERROR; break; } } if (bcmspi_card_regwrite(si, SPI_FUNC_0, SPID_STATUS_ENABLE, 1, int_val) != SUCCESS) { sd_err(("%s: Unable to set response delay.\n", __FUNCTION__)); bcmerror = BCME_SDIO_ERROR; break; } break; default: bcmerror = BCME_UNSUPPORTED; break; } exit: return bcmerror; } extern SDIOH_API_RC sdioh_cfg_read(sdioh_info_t *sd, uint fnc_num, uint32 addr, uint8 *data) { SDIOH_API_RC status; /* No lock needed since sdioh_request_byte does locking */ status = sdioh_request_byte(sd, SDIOH_READ, fnc_num, addr, data); return status; } extern SDIOH_API_RC sdioh_cfg_write(sdioh_info_t *sd, uint fnc_num, uint32 addr, uint8 *data) { /* No lock needed since sdioh_request_byte does locking */ SDIOH_API_RC status; if ((fnc_num == SPI_FUNC_1) && (addr == SBSDIO_FUNC1_FRAMECTRL)) { uint8 dummy_data; status = sdioh_cfg_read(sd, fnc_num, addr, &dummy_data); if (status) { sd_err(("sdioh_cfg_read() failed.\n")); return status; } } status = sdioh_request_byte(sd, SDIOH_WRITE, fnc_num, addr, data); return status; } extern SDIOH_API_RC sdioh_cis_read(sdioh_info_t *sd, uint func, uint8 *cisd, uint32 length) { uint32 count; int offset; uint32 cis_byte; uint16 *cis = (uint16 *)cisd; uint bar0 = SI_ENUM_BASE; int status; uint8 data; sd_trace(("%s: Func %d\n", __FUNCTION__, func)); spi_lock(sd); /* Set sb window address to 0x18000000 */ data = (bar0 >> 8) & SBSDIO_SBADDRLOW_MASK; status = bcmspi_card_bytewrite(sd, SDIO_FUNC_1, SBSDIO_FUNC1_SBADDRLOW, &data); if (status == SUCCESS) { data = (bar0 >> 16) & SBSDIO_SBADDRMID_MASK; status = bcmspi_card_bytewrite(sd, SDIO_FUNC_1, SBSDIO_FUNC1_SBADDRMID, &data); } else { sd_err(("%s: Unable to set sb-addr-windows\n", __FUNCTION__)); spi_unlock(sd); return (BCME_ERROR); } if (status == SUCCESS) { data = (bar0 >> 24) & SBSDIO_SBADDRHIGH_MASK; status = bcmspi_card_bytewrite(sd, SDIO_FUNC_1, SBSDIO_FUNC1_SBADDRHIGH, &data); } else { sd_err(("%s: Unable to set sb-addr-windows\n", __FUNCTION__)); spi_unlock(sd); return (BCME_ERROR); } offset = CC_SROM_OTP; /* OTP offset in chipcommon. */ for (count = 0; count < length/2; count++) { if (bcmspi_card_regread (sd, SDIO_FUNC_1, offset, 2, &cis_byte) < 0) { sd_err(("%s: regread failed: Can't read CIS\n", __FUNCTION__)); spi_unlock(sd); return (BCME_ERROR); } *cis = (uint16)cis_byte; cis++; offset += 2; } spi_unlock(sd); return (BCME_OK); } extern SDIOH_API_RC sdioh_request_byte(sdioh_info_t *sd, uint rw, uint func, uint regaddr, uint8 *byte) { int status; uint32 cmd_arg; uint32 dstatus; uint32 data = (uint32)(*byte); spi_lock(sd); cmd_arg = 0; cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func); cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1); /* Incremental access */ cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr); cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, rw == SDIOH_READ ? 0 : 1); cmd_arg = SFIELD(cmd_arg, SPI_LEN, 1); if (rw == SDIOH_READ) { sd_trace(("%s: RD cmd_arg=0x%x func=%d regaddr=0x%x\n", __FUNCTION__, cmd_arg, func, regaddr)); } else { sd_trace(("%s: WR cmd_arg=0x%x func=%d regaddr=0x%x data=0x%x\n", __FUNCTION__, cmd_arg, func, regaddr, data)); } if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, &data, 1)) != SUCCESS) { spi_unlock(sd); return status; } if (rw == SDIOH_READ) { *byte = (uint8)data; sd_trace(("%s: RD result=0x%x\n", __FUNCTION__, *byte)); } bcmspi_cmd_getdstatus(sd, &dstatus); if (dstatus) sd_trace(("dstatus=0x%x\n", dstatus)); spi_unlock(sd); return SDIOH_API_RC_SUCCESS; } extern SDIOH_API_RC sdioh_request_word(sdioh_info_t *sd, uint cmd_type, uint rw, uint func, uint addr, uint32 *word, uint nbytes) { int status; spi_lock(sd); if (rw == SDIOH_READ) status = bcmspi_card_regread(sd, func, addr, nbytes, word); else status = bcmspi_card_regwrite(sd, func, addr, nbytes, *word); spi_unlock(sd); return (status == SUCCESS ? SDIOH_API_RC_SUCCESS : SDIOH_API_RC_FAIL); } extern SDIOH_API_RC sdioh_request_buffer(sdioh_info_t *sd, uint pio_dma, uint fix_inc, uint rw, uint func, uint addr, uint reg_width, uint buflen_u, uint8 *buffer, void *pkt) { int len; int buflen = (int)buflen_u; bool fifo = (fix_inc == SDIOH_DATA_FIX); spi_lock(sd); ASSERT(reg_width == 4); ASSERT(buflen_u < (1 << 30)); ASSERT(sd->client_block_size[func]); sd_data(("%s: %c len %d r_cnt %d t_cnt %d, pkt @0x%p\n", __FUNCTION__, rw == SDIOH_READ ? 'R' : 'W', buflen_u, sd->r_cnt, sd->t_cnt, pkt)); /* Break buffer down into blocksize chunks. */ while (buflen > 0) { len = MIN(sd->client_block_size[func], buflen); if (bcmspi_card_buf(sd, rw, func, fifo, addr, len, (uint32 *)buffer) != SUCCESS) { sd_err(("%s: bcmspi_card_buf %s failed\n", __FUNCTION__, rw == SDIOH_READ ? "Read" : "Write")); spi_unlock(sd); return SDIOH_API_RC_FAIL; } buffer += len; buflen -= len; if (!fifo) addr += len; } spi_unlock(sd); return SDIOH_API_RC_SUCCESS; } /* This function allows write to gspi bus when another rd/wr function is deep down the call stack. * Its main aim is to have simpler spi writes rather than recursive writes. * e.g. When there is a need to program response delay on the fly after detecting the SPI-func * this call will allow to program the response delay. */ static int bcmspi_card_byterewrite(sdioh_info_t *sd, int func, uint32 regaddr, uint8 byte) { uint32 cmd_arg; uint32 datalen = 1; uint32 hostlen; cmd_arg = 0; cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, 1); cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1); /* Incremental access */ cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func); cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr); cmd_arg = SFIELD(cmd_arg, SPI_LEN, datalen); sd_trace(("%s cmd_arg = 0x%x\n", __FUNCTION__, cmd_arg)); /* Set up and issue the SPI command. MSByte goes out on bus first. Increase datalen * according to the wordlen mode(16/32bit) the device is in. */ ASSERT(sd->wordlen == 4 || sd->wordlen == 2); datalen = ROUNDUP(datalen, sd->wordlen); /* Start by copying command in the spi-outbuffer */ if (sd->wordlen == 4) { /* 32bit spid */ *(uint32 *)spi_outbuf2 = SPISWAP_WD4(cmd_arg); if (datalen & 0x3) datalen += (4 - (datalen & 0x3)); } else if (sd->wordlen == 2) { /* 16bit spid */ *(uint32 *)spi_outbuf2 = SPISWAP_WD2(cmd_arg); if (datalen & 0x1) datalen++; } else { sd_err(("%s: Host is %d bit spid, could not create SPI command.\n", __FUNCTION__, 8 * sd->wordlen)); return ERROR; } /* for Write, put the data into the output buffer */ if (datalen != 0) { if (sd->wordlen == 4) { /* 32bit spid */ *(uint32 *)&spi_outbuf2[CMDLEN] = SPISWAP_WD4(byte); } else if (sd->wordlen == 2) { /* 16bit spid */ *(uint32 *)&spi_outbuf2[CMDLEN] = SPISWAP_WD2(byte); } } /* +4 for cmd, +4 for dstatus */ hostlen = datalen + 8; hostlen += (4 - (hostlen & 0x3)); spi_sendrecv(sd, spi_outbuf2, spi_inbuf2, hostlen); /* Last 4bytes are dstatus. Device is configured to return status bits. */ if (sd->wordlen == 4) { /* 32bit spid */ sd->card_dstatus = SPISWAP_WD4(*(uint32 *)&spi_inbuf2[datalen + CMDLEN ]); } else if (sd->wordlen == 2) { /* 16bit spid */ sd->card_dstatus = SPISWAP_WD2(*(uint32 *)&spi_inbuf2[datalen + CMDLEN ]); } else { sd_err(("%s: Host is %d bit machine, could not read SPI dstatus.\n", __FUNCTION__, 8 * sd->wordlen)); return ERROR; } if (sd->card_dstatus) sd_trace(("dstatus after byte rewrite = 0x%x\n", sd->card_dstatus)); return (BCME_OK); } /* Program the response delay corresponding to the spi function */ static int bcmspi_prog_resp_delay(sdioh_info_t *sd, int func, uint8 resp_delay) { if (sd->resp_delay_all == FALSE) return (BCME_OK); if (sd->prev_fun == func) return (BCME_OK); if (F0_RESPONSE_DELAY == F1_RESPONSE_DELAY) return (BCME_OK); bcmspi_card_byterewrite(sd, SPI_FUNC_0, SPID_RESPONSE_DELAY, resp_delay); /* Remember function for which to avoid reprogramming resp-delay in next iteration */ sd->prev_fun = func; return (BCME_OK); } #define GSPI_RESYNC_PATTERN 0x0 /* A resync pattern is a 32bit MOSI line with all zeros. Its a special command in gSPI. * It resets the spi-bkplane logic so that all F1 related ping-pong buffer logic is * synchronised and all queued resuests are cancelled. */ static int bcmspi_resync_f1(sdioh_info_t *sd) { uint32 cmd_arg = GSPI_RESYNC_PATTERN, data = 0, datalen = 0; /* Set up and issue the SPI command. MSByte goes out on bus first. Increase datalen * according to the wordlen mode(16/32bit) the device is in. */ ASSERT(sd->wordlen == 4 || sd->wordlen == 2); datalen = ROUNDUP(datalen, sd->wordlen); /* Start by copying command in the spi-outbuffer */ *(uint32 *)spi_outbuf2 = cmd_arg; /* for Write, put the data into the output buffer */ *(uint32 *)&spi_outbuf2[CMDLEN] = data; /* +4 for cmd, +4 for dstatus */ spi_sendrecv(sd, spi_outbuf2, spi_inbuf2, datalen + 8); /* Last 4bytes are dstatus. Device is configured to return status bits. */ if (sd->wordlen == 4) { /* 32bit spid */ sd->card_dstatus = SPISWAP_WD4(*(uint32 *)&spi_inbuf2[datalen + CMDLEN ]); } else if (sd->wordlen == 2) { /* 16bit spid */ sd->card_dstatus = SPISWAP_WD2(*(uint32 *)&spi_inbuf2[datalen + CMDLEN ]); } else { sd_err(("%s: Host is %d bit machine, could not read SPI dstatus.\n", __FUNCTION__, 8 * sd->wordlen)); return ERROR; } if (sd->card_dstatus) sd_trace(("dstatus after resync pattern write = 0x%x\n", sd->card_dstatus)); return (BCME_OK); } uint32 dstatus_count = 0; static int bcmspi_update_stats(sdioh_info_t *sd, uint32 cmd_arg) { uint32 dstatus = sd->card_dstatus; struct spierrstats_t *spierrstats = &sd->spierrstats; int err = SUCCESS; sd_trace(("cmd = 0x%x, dstatus = 0x%x\n", cmd_arg, dstatus)); /* Store dstatus of last few gSPI transactions */ spierrstats->dstatus[dstatus_count % NUM_PREV_TRANSACTIONS] = dstatus; spierrstats->spicmd[dstatus_count % NUM_PREV_TRANSACTIONS] = cmd_arg; dstatus_count++; if (sd->card_init_done == FALSE) return err; if (dstatus & STATUS_DATA_NOT_AVAILABLE) { spierrstats->dna++; sd_trace(("Read data not available on F1 addr = 0x%x\n", GFIELD(cmd_arg, SPI_REG_ADDR))); /* Clear dna bit */ bcmspi_card_byterewrite(sd, SPI_FUNC_0, SPID_INTR_REG, DATA_UNAVAILABLE); } if (dstatus & STATUS_UNDERFLOW) { spierrstats->rdunderflow++; sd_err(("FIFO underflow happened due to current F2 read command.\n")); } if (dstatus & STATUS_OVERFLOW) { spierrstats->wroverflow++; sd_err(("FIFO overflow happened due to current (F1/F2) write command.\n")); bcmspi_card_byterewrite(sd, SPI_FUNC_0, SPID_INTR_REG, F1_OVERFLOW); bcmspi_resync_f1(sd); sd_err(("Recovering from F1 FIFO overflow.\n")); } if (dstatus & STATUS_F2_INTR) { spierrstats->f2interrupt++; sd_trace(("Interrupt from F2. SW should clear corresponding IntStatus bits\n")); } if (dstatus & STATUS_F3_INTR) { spierrstats->f3interrupt++; sd_err(("Interrupt from F3. SW should clear corresponding IntStatus bits\n")); } if (dstatus & STATUS_HOST_CMD_DATA_ERR) { spierrstats->hostcmddataerr++; sd_err(("Error in CMD or Host data, detected by CRC/Checksum (optional)\n")); } if (dstatus & STATUS_F2_PKT_AVAILABLE) { spierrstats->f2pktavailable++; sd_trace(("Packet is available/ready in F2 TX FIFO\n")); sd_trace(("Packet length = %d\n", sd->dwordmode ? ((dstatus & STATUS_F2_PKT_LEN_MASK) >> (STATUS_F2_PKT_LEN_SHIFT - 2)) : ((dstatus & STATUS_F2_PKT_LEN_MASK) >> STATUS_F2_PKT_LEN_SHIFT))); } if (dstatus & STATUS_F3_PKT_AVAILABLE) { spierrstats->f3pktavailable++; sd_err(("Packet is available/ready in F3 TX FIFO\n")); sd_err(("Packet length = %d\n", (dstatus & STATUS_F3_PKT_LEN_MASK) >> STATUS_F3_PKT_LEN_SHIFT)); } return err; } extern int sdioh_abort(sdioh_info_t *sd, uint func) { return 0; } int sdioh_start(sdioh_info_t *sd, int stage) { return SUCCESS; } int sdioh_stop(sdioh_info_t *sd) { return SUCCESS; } int sdioh_waitlockfree(sdioh_info_t *sd) { return SUCCESS; } /* * Private/Static work routines */ static int bcmspi_host_init(sdioh_info_t *sd) { /* Default power on mode */ sd->sd_mode = SDIOH_MODE_SPI; sd->polled_mode = TRUE; sd->host_init_done = TRUE; sd->card_init_done = FALSE; sd->adapter_slot = 1; return (SUCCESS); } static int get_client_blocksize(sdioh_info_t *sd) { uint32 regdata[2]; int status; /* Find F1/F2/F3 max packet size */ if ((status = bcmspi_card_regread(sd, 0, SPID_F1_INFO_REG, 8, regdata)) != SUCCESS) { return status; } sd_trace(("pkt_size regdata[0] = 0x%x, regdata[1] = 0x%x\n", regdata[0], regdata[1])); sd->client_block_size[1] = (regdata[0] & F1_MAX_PKT_SIZE) >> 2; sd_trace(("Func1 blocksize = %d\n", sd->client_block_size[1])); ASSERT(sd->client_block_size[1] == BLOCK_SIZE_F1); sd->client_block_size[2] = ((regdata[0] >> 16) & F2_MAX_PKT_SIZE) >> 2; sd_trace(("Func2 blocksize = %d\n", sd->client_block_size[2])); ASSERT(sd->client_block_size[2] == BLOCK_SIZE_F2); sd->client_block_size[3] = (regdata[1] & F3_MAX_PKT_SIZE) >> 2; sd_trace(("Func3 blocksize = %d\n", sd->client_block_size[3])); ASSERT(sd->client_block_size[3] == BLOCK_SIZE_F3); return 0; } static int bcmspi_client_init(sdioh_info_t *sd) { uint32 status_en_reg = 0; sd_trace(("%s: Powering up slot %d\n", __FUNCTION__, sd->adapter_slot)); #ifndef BCMSPI_ANDROID #ifdef HSMODE if (!spi_start_clock(sd, (uint16)sd_divisor)) { sd_err(("spi_start_clock failed\n")); return ERROR; } #else /* Start at ~400KHz clock rate for initialization */ if (!spi_start_clock(sd, 128)) { sd_err(("spi_start_clock failed\n")); return ERROR; } #endif /* HSMODE */ #endif /* !BCMSPI_ANDROID */ if (!bcmspi_host_device_init_adapt(sd)) { sd_err(("bcmspi_host_device_init_adapt failed\n")); return ERROR; } if (!bcmspi_test_card(sd)) { sd_err(("bcmspi_test_card failed\n")); return ERROR; } sd->num_funcs = SPI_MAX_IOFUNCS; get_client_blocksize(sd); /* Apply resync pattern cmd with all zeros to reset spi-bkplane F1 logic */ bcmspi_resync_f1(sd); sd->dwordmode = FALSE; bcmspi_card_regread(sd, 0, SPID_STATUS_ENABLE, 1, &status_en_reg); sd_trace(("%s: Enabling interrupt with dstatus \n", __FUNCTION__)); status_en_reg |= INTR_WITH_STATUS; if (bcmspi_card_regwrite(sd, SPI_FUNC_0, SPID_STATUS_ENABLE, 1, status_en_reg & 0xff) != SUCCESS) { sd_err(("%s: Unable to set response delay for all fun's.\n", __FUNCTION__)); return ERROR; } #ifndef HSMODE #ifndef BCMSPI_ANDROID /* After configuring for High-Speed mode, set the desired clock rate. */ if (!spi_start_clock(sd, 4)) { sd_err(("spi_start_clock failed\n")); return ERROR; } #endif /* !BCMSPI_ANDROID */ #endif /* HSMODE */ /* check to see if the response delay needs to be programmed properly */ { uint32 f1_respdelay = 0; bcmspi_card_regread(sd, 0, SPID_RESP_DELAY_F1, 1, &f1_respdelay); if ((f1_respdelay == 0) || (f1_respdelay == 0xFF)) { /* older sdiodevice core and has no separte resp delay for each of */ sd_err(("older corerev < 4 so use the same resp delay for all funcs\n")); sd->resp_delay_new = FALSE; } else { /* older sdiodevice core and has no separte resp delay for each of */ int ret_val; sd->resp_delay_new = TRUE; sd_err(("new corerev >= 4 so set the resp delay for each of the funcs\n")); sd_trace(("resp delay for funcs f0(%d), f1(%d), f2(%d), f3(%d)\n", GSPI_F0_RESP_DELAY, GSPI_F1_RESP_DELAY, GSPI_F2_RESP_DELAY, GSPI_F3_RESP_DELAY)); ret_val = bcmspi_card_regwrite(sd, SPI_FUNC_0, SPID_RESP_DELAY_F0, 1, GSPI_F0_RESP_DELAY); if (ret_val != SUCCESS) { sd_err(("%s: Unable to set response delay for F0\n", __FUNCTION__)); return ERROR; } ret_val = bcmspi_card_regwrite(sd, SPI_FUNC_0, SPID_RESP_DELAY_F1, 1, GSPI_F1_RESP_DELAY); if (ret_val != SUCCESS) { sd_err(("%s: Unable to set response delay for F1\n", __FUNCTION__)); return ERROR; } ret_val = bcmspi_card_regwrite(sd, SPI_FUNC_0, SPID_RESP_DELAY_F2, 1, GSPI_F2_RESP_DELAY); if (ret_val != SUCCESS) { sd_err(("%s: Unable to set response delay for F2\n", __FUNCTION__)); return ERROR; } ret_val = bcmspi_card_regwrite(sd, SPI_FUNC_0, SPID_RESP_DELAY_F3, 1, GSPI_F3_RESP_DELAY); if (ret_val != SUCCESS) { sd_err(("%s: Unable to set response delay for F2\n", __FUNCTION__)); return ERROR; } } } sd->card_init_done = TRUE; /* get the device rev to program the prop respdelays */ return SUCCESS; } static int bcmspi_set_highspeed_mode(sdioh_info_t *sd, bool hsmode) { uint32 regdata; int status; if ((status = bcmspi_card_regread(sd, 0, SPID_CONFIG, 4, ®data)) != SUCCESS) return status; sd_trace(("In %s spih-ctrl = 0x%x \n", __FUNCTION__, regdata)); if (hsmode == TRUE) { sd_trace(("Attempting to enable High-Speed mode.\n")); if (regdata & HIGH_SPEED_MODE) { sd_trace(("Device is already in High-Speed mode.\n")); return status; } else { regdata |= HIGH_SPEED_MODE; sd_trace(("Writing %08x to device at %08x\n", regdata, SPID_CONFIG)); if ((status = bcmspi_card_regwrite(sd, 0, SPID_CONFIG, 4, regdata)) != SUCCESS) { return status; } } } else { sd_trace(("Attempting to disable High-Speed mode.\n")); if (regdata & HIGH_SPEED_MODE) { regdata &= ~HIGH_SPEED_MODE; sd_trace(("Writing %08x to device at %08x\n", regdata, SPID_CONFIG)); if ((status = bcmspi_card_regwrite(sd, 0, SPID_CONFIG, 4, regdata)) != SUCCESS) return status; } else { sd_trace(("Device is already in Low-Speed mode.\n")); return status; } } #ifndef BCMSPI_ANDROID spi_controller_highspeed_mode(sd, hsmode); #endif /* !BCMSPI_ANDROID */ return TRUE; } #define bcmspi_find_curr_mode(sd) { \ sd->wordlen = 2; \ status = bcmspi_card_regread_fixedaddr(sd, 0, SPID_TEST_READ, 4, ®data); \ regdata &= 0xff; \ if ((regdata == 0xad) || (regdata == 0x5b) || \ (regdata == 0x5d) || (regdata == 0x5a)) \ break; \ sd->wordlen = 4; \ status = bcmspi_card_regread_fixedaddr(sd, 0, SPID_TEST_READ, 4, ®data); \ regdata &= 0xff; \ if ((regdata == 0xad) || (regdata == 0x5b) || \ (regdata == 0x5d) || (regdata == 0x5a)) \ break; \ sd_trace(("Silicon testability issue: regdata = 0x%x." \ " Expected 0xad, 0x5a, 0x5b or 0x5d.\n", regdata)); \ OSL_DELAY(100000); \ } #define INIT_ADAPT_LOOP 100 /* Adapt clock-phase-speed-bitwidth between host and device */ static bool bcmspi_host_device_init_adapt(sdioh_info_t *sd) { uint32 wrregdata, regdata = 0; int status; int i; /* Due to a silicon testability issue, the first command from the Host * to the device will get corrupted (first bit will be lost). So the * Host should poll the device with a safe read request. ie: The Host * should try to read F0 addr 0x14 using the Fixed address mode * (This will prevent a unintended write command to be detected by device) */ for (i = 0; i < INIT_ADAPT_LOOP; i++) { /* If device was not power-cycled it will stay in 32bit mode with * response-delay-all bit set. Alternate the iteration so that * read either with or without response-delay for F0 to succeed. */ bcmspi_find_curr_mode(sd); sd->resp_delay_all = (i & 0x1) ? TRUE : FALSE; bcmspi_find_curr_mode(sd); sd->dwordmode = TRUE; bcmspi_find_curr_mode(sd); sd->dwordmode = FALSE; } /* Bail out, device not detected */ if (i == INIT_ADAPT_LOOP) return FALSE; /* Softreset the spid logic */ if ((sd->dwordmode) || (sd->wordlen == 4)) { bcmspi_card_regwrite(sd, 0, SPID_RESET_BP, 1, RESET_ON_WLAN_BP_RESET|RESET_SPI); bcmspi_card_regread(sd, 0, SPID_RESET_BP, 1, ®data); sd_trace(("reset reg read = 0x%x\n", regdata)); sd_trace(("dwordmode = %d, wordlen = %d, resp_delay_all = %d\n", sd->dwordmode, sd->wordlen, sd->resp_delay_all)); /* Restore default state after softreset */ sd->wordlen = 2; sd->dwordmode = FALSE; } if (sd->wordlen == 4) { if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_READ, 4, ®data)) != SUCCESS) return FALSE; if (regdata == TEST_RO_DATA_32BIT_LE) { sd_trace(("Spid is already in 32bit LE mode. Value read = 0x%x\n", regdata)); sd_trace(("Spid power was left on.\n")); } else { sd_err(("Spid power was left on but signature read failed." " Value read = 0x%x\n", regdata)); return FALSE; } } else { sd->wordlen = 2; #define CTRL_REG_DEFAULT 0x00010430 /* according to the host m/c */ wrregdata = (CTRL_REG_DEFAULT); if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_READ, 4, ®data)) != SUCCESS) return FALSE; sd_trace(("(we are still in 16bit mode) 32bit READ LE regdata = 0x%x\n", regdata)); #ifndef HSMODE wrregdata |= (CLOCK_PHASE | CLOCK_POLARITY); wrregdata &= ~HIGH_SPEED_MODE; bcmspi_card_regwrite(sd, 0, SPID_CONFIG, 4, wrregdata); #endif /* HSMODE */ for (i = 0; i < INIT_ADAPT_LOOP; i++) { if ((regdata == 0xfdda7d5b) || (regdata == 0xfdda7d5a)) { sd_trace(("0xfeedbead was leftshifted by 1-bit.\n")); if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_READ, 4, ®data)) != SUCCESS) return FALSE; } OSL_DELAY(1000); } #ifndef CUSTOMER_HW4 /* Change to host controller intr-polarity of active-low */ wrregdata &= ~INTR_POLARITY; #else /* Change to host controller intr-polarity of active-high */ wrregdata |= INTR_POLARITY; #endif sd_trace(("(we are still in 16bit mode) 32bit Write LE reg-ctrl-data = 0x%x\n", wrregdata)); /* Change to 32bit mode */ wrregdata |= WORD_LENGTH_32; bcmspi_card_regwrite(sd, 0, SPID_CONFIG, 4, wrregdata); /* Change command/data packaging in 32bit LE mode */ sd->wordlen = 4; if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_READ, 4, ®data)) != SUCCESS) return FALSE; if (regdata == TEST_RO_DATA_32BIT_LE) { sd_trace(("Read spid passed. Value read = 0x%x\n", regdata)); sd_trace(("Spid had power-on cycle OR spi was soft-resetted \n")); } else { sd_err(("Stale spid reg values read as it was kept powered. Value read =" "0x%x\n", regdata)); return FALSE; } } return TRUE; } static bool bcmspi_test_card(sdioh_info_t *sd) { uint32 regdata; int status; if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_READ, 4, ®data)) != SUCCESS) return FALSE; if (regdata == (TEST_RO_DATA_32BIT_LE)) sd_trace(("32bit LE regdata = 0x%x\n", regdata)); else { sd_trace(("Incorrect 32bit LE regdata = 0x%x\n", regdata)); return FALSE; } #define RW_PATTERN1 0xA0A1A2A3 #define RW_PATTERN2 0x4B5B6B7B regdata = RW_PATTERN1; if ((status = bcmspi_card_regwrite(sd, 0, SPID_TEST_RW, 4, regdata)) != SUCCESS) return FALSE; regdata = 0; if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_RW, 4, ®data)) != SUCCESS) return FALSE; if (regdata != RW_PATTERN1) { sd_err(("Write-Read spid failed. Value wrote = 0x%x, Value read = 0x%x\n", RW_PATTERN1, regdata)); return FALSE; } else sd_trace(("R/W spid passed. Value read = 0x%x\n", regdata)); regdata = RW_PATTERN2; if ((status = bcmspi_card_regwrite(sd, 0, SPID_TEST_RW, 4, regdata)) != SUCCESS) return FALSE; regdata = 0; if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_RW, 4, ®data)) != SUCCESS) return FALSE; if (regdata != RW_PATTERN2) { sd_err(("Write-Read spid failed. Value wrote = 0x%x, Value read = 0x%x\n", RW_PATTERN2, regdata)); return FALSE; } else sd_trace(("R/W spid passed. Value read = 0x%x\n", regdata)); return TRUE; } static int bcmspi_driver_init(sdioh_info_t *sd) { sd_trace(("%s\n", __FUNCTION__)); if ((bcmspi_host_init(sd)) != SUCCESS) { return ERROR; } if (bcmspi_client_init(sd) != SUCCESS) { return ERROR; } return SUCCESS; } /* Read device reg */ static int bcmspi_card_regread(sdioh_info_t *sd, int func, uint32 regaddr, int regsize, uint32 *data) { int status; uint32 cmd_arg, dstatus; ASSERT(regsize); if (func == 2) sd_trace(("Reg access on F2 will generate error indication in dstatus bits.\n")); cmd_arg = 0; cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, 0); cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1); /* Incremental access */ cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func); cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr); cmd_arg = SFIELD(cmd_arg, SPI_LEN, regsize == BLOCK_SIZE_F2 ? 0 : regsize); sd_trace(("%s: RD cmd_arg=0x%x func=%d regaddr=0x%x regsize=%d\n", __FUNCTION__, cmd_arg, func, regaddr, regsize)); if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, data, regsize)) != SUCCESS) return status; bcmspi_cmd_getdstatus(sd, &dstatus); if (dstatus) sd_trace(("dstatus =0x%x\n", dstatus)); return SUCCESS; } static int bcmspi_card_regread_fixedaddr(sdioh_info_t *sd, int func, uint32 regaddr, int regsize, uint32 *data) { int status; uint32 cmd_arg; uint32 dstatus; ASSERT(regsize); if (func == 2) sd_trace(("Reg access on F2 will generate error indication in dstatus bits.\n")); cmd_arg = 0; cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, 0); cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 0); /* Fixed access */ cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func); cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr); cmd_arg = SFIELD(cmd_arg, SPI_LEN, regsize); sd_trace(("%s: RD cmd_arg=0x%x func=%d regaddr=0x%x regsize=%d\n", __FUNCTION__, cmd_arg, func, regaddr, regsize)); if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, data, regsize)) != SUCCESS) return status; sd_trace(("%s: RD result=0x%x\n", __FUNCTION__, *data)); bcmspi_cmd_getdstatus(sd, &dstatus); sd_trace(("dstatus =0x%x\n", dstatus)); return SUCCESS; } /* write a device register */ static int bcmspi_card_regwrite(sdioh_info_t *sd, int func, uint32 regaddr, int regsize, uint32 data) { int status; uint32 cmd_arg, dstatus; ASSERT(regsize); cmd_arg = 0; cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, 1); cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1); /* Incremental access */ cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func); cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr); cmd_arg = SFIELD(cmd_arg, SPI_LEN, regsize == BLOCK_SIZE_F2 ? 0 : regsize); sd_trace(("%s: WR cmd_arg=0x%x func=%d regaddr=0x%x regsize=%d data=0x%x\n", __FUNCTION__, cmd_arg, func, regaddr, regsize, data)); if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, &data, regsize)) != SUCCESS) return status; bcmspi_cmd_getdstatus(sd, &dstatus); if (dstatus) sd_trace(("dstatus=0x%x\n", dstatus)); return SUCCESS; } /* write a device register - 1 byte */ static int bcmspi_card_bytewrite(sdioh_info_t *sd, int func, uint32 regaddr, uint8 *byte) { int status; uint32 cmd_arg; uint32 dstatus; uint32 data = (uint32)(*byte); cmd_arg = 0; cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func); cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1); /* Incremental access */ cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr); cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, 1); cmd_arg = SFIELD(cmd_arg, SPI_LEN, 1); sd_trace(("%s: WR cmd_arg=0x%x func=%d regaddr=0x%x data=0x%x\n", __FUNCTION__, cmd_arg, func, regaddr, data)); if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, &data, 1)) != SUCCESS) return status; bcmspi_cmd_getdstatus(sd, &dstatus); if (dstatus) sd_trace(("dstatus =0x%x\n", dstatus)); return SUCCESS; } void bcmspi_cmd_getdstatus(sdioh_info_t *sd, uint32 *dstatus_buffer) { *dstatus_buffer = sd->card_dstatus; } /* 'data' is of type uint32 whereas other buffers are of type uint8 */ static int bcmspi_cmd_issue(sdioh_info_t *sd, bool use_dma, uint32 cmd_arg, uint32 *data, uint32 datalen) { uint32 i, j; uint8 resp_delay = 0; int err = SUCCESS; uint32 hostlen; uint32 spilen = 0; uint32 dstatus_idx = 0; uint16 templen, buslen, len, *ptr = NULL; sd_trace(("spi cmd = 0x%x\n", cmd_arg)); if (DWORDMODE_ON) { spilen = GFIELD(cmd_arg, SPI_LEN); if ((GFIELD(cmd_arg, SPI_FUNCTION) == SPI_FUNC_0) || (GFIELD(cmd_arg, SPI_FUNCTION) == SPI_FUNC_1)) dstatus_idx = spilen * 3; if ((GFIELD(cmd_arg, SPI_FUNCTION) == SPI_FUNC_2) && (GFIELD(cmd_arg, SPI_RW_FLAG) == 1)) { spilen = spilen << 2; dstatus_idx = (spilen % 16) ? (16 - (spilen % 16)) : 0; /* convert len to mod16 size */ spilen = ROUNDUP(spilen, 16); cmd_arg = SFIELD(cmd_arg, SPI_LEN, (spilen >> 2)); } } /* Set up and issue the SPI command. MSByte goes out on bus first. Increase datalen * according to the wordlen mode(16/32bit) the device is in. */ if (sd->wordlen == 4) { /* 32bit spid */ *(uint32 *)spi_outbuf = SPISWAP_WD4(cmd_arg); if (datalen & 0x3) datalen += (4 - (datalen & 0x3)); } else if (sd->wordlen == 2) { /* 16bit spid */ *(uint32 *)spi_outbuf = SPISWAP_WD2(cmd_arg); if (datalen & 0x1) datalen++; if (datalen < 4) datalen = ROUNDUP(datalen, 4); } else { sd_err(("Host is %d bit spid, could not create SPI command.\n", 8 * sd->wordlen)); return ERROR; } /* for Write, put the data into the output buffer */ if (GFIELD(cmd_arg, SPI_RW_FLAG) == 1) { /* We send len field of hw-header always a mod16 size, both from host and dongle */ if (DWORDMODE_ON) { if (GFIELD(cmd_arg, SPI_FUNCTION) == SPI_FUNC_2) { ptr = (uint16 *)&data[0]; templen = *ptr; /* ASSERT(*ptr == ~*(ptr + 1)); */ templen = ROUNDUP(templen, 16); *ptr = templen; sd_trace(("actual tx len = %d\n", (uint16)(~*(ptr+1)))); } } if (datalen != 0) { for (i = 0; i < datalen/4; i++) { if (sd->wordlen == 4) { /* 32bit spid */ *(uint32 *)&spi_outbuf[i * 4 + CMDLEN] = SPISWAP_WD4(data[i]); } else if (sd->wordlen == 2) { /* 16bit spid */ *(uint32 *)&spi_outbuf[i * 4 + CMDLEN] = SPISWAP_WD2(data[i]); } } } } /* Append resp-delay number of bytes and clock them out for F0/1/2 reads. */ if ((GFIELD(cmd_arg, SPI_RW_FLAG) == 0)) { int func = GFIELD(cmd_arg, SPI_FUNCTION); switch (func) { case 0: if (sd->resp_delay_new) resp_delay = GSPI_F0_RESP_DELAY; else resp_delay = sd->resp_delay_all ? F0_RESPONSE_DELAY : 0; break; case 1: if (sd->resp_delay_new) resp_delay = GSPI_F1_RESP_DELAY; else resp_delay = F1_RESPONSE_DELAY; break; case 2: if (sd->resp_delay_new) resp_delay = GSPI_F2_RESP_DELAY; else resp_delay = sd->resp_delay_all ? F2_RESPONSE_DELAY : 0; break; default: ASSERT(0); break; } /* Program response delay */ if (sd->resp_delay_new == FALSE) bcmspi_prog_resp_delay(sd, func, resp_delay); } /* +4 for cmd and +4 for dstatus */ hostlen = datalen + 8 + resp_delay; hostlen += dstatus_idx; #ifdef BCMSPI_ANDROID if (hostlen%4) { sd_err(("Unaligned data len %d, hostlen %d\n", datalen, hostlen)); #endif /* BCMSPI_ANDROID */ hostlen += (4 - (hostlen & 0x3)); #ifdef BCMSPI_ANDROID } #endif /* BCMSPI_ANDROID */ spi_sendrecv(sd, spi_outbuf, spi_inbuf, hostlen); /* for Read, get the data into the input buffer */ if (datalen != 0) { if (GFIELD(cmd_arg, SPI_RW_FLAG) == 0) { /* if read cmd */ for (j = 0; j < datalen/4; j++) { if (sd->wordlen == 4) { /* 32bit spid */ data[j] = SPISWAP_WD4(*(uint32 *)&spi_inbuf[j * 4 + CMDLEN + resp_delay]); } else if (sd->wordlen == 2) { /* 16bit spid */ data[j] = SPISWAP_WD2(*(uint32 *)&spi_inbuf[j * 4 + CMDLEN + resp_delay]); } } if ((DWORDMODE_ON) && (GFIELD(cmd_arg, SPI_FUNCTION) == SPI_FUNC_2)) { ptr = (uint16 *)&data[0]; templen = *ptr; buslen = len = ~(*(ptr + 1)); buslen = ROUNDUP(buslen, 16); /* populate actual len in hw-header */ if (templen == buslen) *ptr = len; } } } /* Restore back the len field of the hw header */ if (DWORDMODE_ON) { if ((GFIELD(cmd_arg, SPI_FUNCTION) == SPI_FUNC_2) && (GFIELD(cmd_arg, SPI_RW_FLAG) == 1)) { ptr = (uint16 *)&data[0]; *ptr = (uint16)(~*(ptr+1)); } } dstatus_idx += (datalen + CMDLEN + resp_delay); /* Last 4bytes are dstatus. Device is configured to return status bits. */ if (sd->wordlen == 4) { /* 32bit spid */ sd->card_dstatus = SPISWAP_WD4(*(uint32 *)&spi_inbuf[dstatus_idx]); } else if (sd->wordlen == 2) { /* 16bit spid */ sd->card_dstatus = SPISWAP_WD2(*(uint32 *)&spi_inbuf[dstatus_idx]); } else { sd_err(("Host is %d bit machine, could not read SPI dstatus.\n", 8 * sd->wordlen)); return ERROR; } if (sd->card_dstatus == 0xffffffff) { sd_err(("looks like not a GSPI device or device is not powered.\n")); } err = bcmspi_update_stats(sd, cmd_arg); return err; } static int bcmspi_card_buf(sdioh_info_t *sd, int rw, int func, bool fifo, uint32 addr, int nbytes, uint32 *data) { int status; uint32 cmd_arg; bool write = rw == SDIOH_READ ? 0 : 1; uint retries = 0; bool enable; uint32 spilen; cmd_arg = 0; ASSERT(nbytes); ASSERT(nbytes <= sd->client_block_size[func]); if (write) sd->t_cnt++; else sd->r_cnt++; if (func == 2) { /* Frame len check limited by gSPI. */ if ((nbytes > 2000) && write) { sd_trace((">2KB write: F2 wr of %d bytes\n", nbytes)); } /* ASSERT(nbytes <= 2048); Fix bigger len gspi issue and uncomment. */ /* If F2 fifo on device is not ready to receive data, don't do F2 transfer */ if (write) { uint32 dstatus; /* check F2 ready with cached one */ bcmspi_cmd_getdstatus(sd, &dstatus); if ((dstatus & STATUS_F2_RX_READY) == 0) { retries = WAIT_F2RXFIFORDY; enable = 0; while (retries-- && !enable) { OSL_DELAY(WAIT_F2RXFIFORDY_DELAY * 1000); bcmspi_card_regread(sd, SPI_FUNC_0, SPID_STATUS_REG, 4, &dstatus); if (dstatus & STATUS_F2_RX_READY) enable = TRUE; } if (!enable) { struct spierrstats_t *spierrstats = &sd->spierrstats; spierrstats->f2rxnotready++; sd_err(("F2 FIFO is not ready to receive data.\n")); return ERROR; } sd_trace(("No of retries on F2 ready %d\n", (WAIT_F2RXFIFORDY - retries))); } } } /* F2 transfers happen on 0 addr */ addr = (func == 2) ? 0 : addr; /* In pio mode buffer is read using fixed address fifo in func 1 */ if ((func == 1) && (fifo)) cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 0); else cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1); cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func); cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, addr); cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, write); spilen = sd->data_xfer_count = MIN(sd->client_block_size[func], nbytes); if ((sd->dwordmode == TRUE) && (GFIELD(cmd_arg, SPI_FUNCTION) == SPI_FUNC_2)) { /* convert len to mod4 size */ spilen = spilen + ((spilen & 0x3) ? (4 - (spilen & 0x3)): 0); cmd_arg = SFIELD(cmd_arg, SPI_LEN, (spilen >> 2)); } else cmd_arg = SFIELD(cmd_arg, SPI_LEN, spilen); if ((func == 2) && (fifo == 1)) { sd_data(("%s: %s func %d, %s, addr 0x%x, len %d bytes, r_cnt %d t_cnt %d\n", __FUNCTION__, write ? "Wr" : "Rd", func, "INCR", addr, nbytes, sd->r_cnt, sd->t_cnt)); } sd_trace(("%s cmd_arg = 0x%x\n", __FUNCTION__, cmd_arg)); sd_data(("%s: %s func %d, %s, addr 0x%x, len %d bytes, r_cnt %d t_cnt %d\n", __FUNCTION__, write ? "Wd" : "Rd", func, "INCR", addr, nbytes, sd->r_cnt, sd->t_cnt)); if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, data, nbytes)) != SUCCESS) { sd_err(("%s: cmd_issue failed for %s\n", __FUNCTION__, (write ? "write" : "read"))); return status; } /* gSPI expects that hw-header-len is equal to spi-command-len */ if ((func == 2) && (rw == SDIOH_WRITE) && (sd->dwordmode == FALSE)) { ASSERT((uint16)sd->data_xfer_count == (uint16)(*data & 0xffff)); ASSERT((uint16)sd->data_xfer_count == (uint16)(~((*data & 0xffff0000) >> 16))); } if ((nbytes > 2000) && !write) { sd_trace((">2KB read: F2 rd of %d bytes\n", nbytes)); } return SUCCESS; } /* Reset and re-initialize the device */ int sdioh_sdio_reset(sdioh_info_t *si) { si->card_init_done = FALSE; return bcmspi_client_init(si); } SDIOH_API_RC sdioh_gpioouten(sdioh_info_t *sd, uint32 gpio) { return SDIOH_API_RC_FAIL; } SDIOH_API_RC sdioh_gpioout(sdioh_info_t *sd, uint32 gpio, bool enab) { return SDIOH_API_RC_FAIL; } bool sdioh_gpioin(sdioh_info_t *sd, uint32 gpio) { return FALSE; } SDIOH_API_RC sdioh_gpio_init(sdioh_info_t *sd) { return SDIOH_API_RC_FAIL; }