/* * IPv4 over IEEE 1394, per RFC 2734 * * Copyright (C) 2009 Jay Fenlason * * based on eth1394 by Ben Collins et al */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Things to potentially make runtime cofigurable */ /* must be at least as large as our maximum receive size */ #define FIFO_SIZE 4096 /* Network timeout in glibbles */ #define IPV4_TIMEOUT 100000 /* Runitme configurable paramaters */ static int ipv4_mpd = 25; static int ipv4_max_xmt = 0; /* 16k for receiving arp and broadcast packets. Enough? */ static int ipv4_iso_page_count = 4; MODULE_AUTHOR("Jay Fenlason (fenlason@redhat.com)"); MODULE_DESCRIPTION("Firewire IPv4 Driver (IPv4-over-IEEE1394 as per RFC 2734)"); MODULE_LICENSE("GPL"); MODULE_DEVICE_TABLE(ieee1394, ipv4_id_table); module_param_named(max_partial_datagrams, ipv4_mpd, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(max_partial_datagrams, "Maximum number of received" " incomplete fragmented datagrams (default = 25)."); /* Max xmt is useful for forcing fragmentation, which makes testing easier. */ module_param_named(max_transmit, ipv4_max_xmt, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(max_transmit, "Maximum datagram size to transmit" " (larger datagrams will be fragmented) (default = 0 (use hardware defaults)."); /* iso page count controls how many pages will be used for receiving broadcast packets. */ module_param_named(iso_pages, ipv4_iso_page_count, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(iso_pages, "Number of pages to use for receiving broadcast packets" " (default = 4)."); /* uncomment this line to do debugging */ #define fw_debug(s, args...) printk(KERN_DEBUG KBUILD_MODNAME ": " s, ## args) /* comment out these lines to do debugging. */ /* #undef fw_debug */ /* #define fw_debug(s...) */ /* #define print_hex_dump(l...) */ /* Define a fake hardware header format for the networking core. Note that * header size cannot exceed 16 bytes as that is the size of the header cache. * Also, we do not need the source address in the header so we omit it and * keep the header to under 16 bytes */ #define IPV4_ALEN (8) /* This must equal sizeof(struct ipv4_ether_hdr) */ #define IPV4_HLEN (10) /* FIXME: what's a good size for this? */ #define INVALID_FIFO_ADDR (u64)~0ULL /* Things specified by standards */ #define BROADCAST_CHANNEL 31 #define S100_BUFFER_SIZE 512 #define MAX_BUFFER_SIZE 4096 #define IPV4_GASP_SPECIFIER_ID 0x00005EU #define IPV4_GASP_VERSION 0x00000001U #define IPV4_GASP_OVERHEAD (2 * sizeof(u32)) /* for GASP header */ #define IPV4_UNFRAG_HDR_SIZE sizeof(u32) #define IPV4_FRAG_HDR_SIZE (2 * sizeof(u32)) #define IPV4_FRAG_OVERHEAD sizeof(u32) #define ALL_NODES (0xffc0 | 0x003f) #define IPV4_HDR_UNFRAG 0 /* unfragmented */ #define IPV4_HDR_FIRSTFRAG 1 /* first fragment */ #define IPV4_HDR_LASTFRAG 2 /* last fragment */ #define IPV4_HDR_INTFRAG 3 /* interior fragment */ /* Our arp packet (ARPHRD_IEEE1394) */ /* FIXME: note that this is probably bogus on weird-endian machines */ struct ipv4_arp { u16 hw_type; /* 0x0018 */ u16 proto_type; /* 0x0806 */ u8 hw_addr_len; /* 16 */ u8 ip_addr_len; /* 4 */ u16 opcode; /* ARP Opcode */ /* Above is exactly the same format as struct arphdr */ u64 s_uniq_id; /* Sender's 64bit EUI */ u8 max_rec; /* Sender's max packet size */ u8 sspd; /* Sender's max speed */ u16 fifo_hi; /* hi 16bits of sender's FIFO addr */ u32 fifo_lo; /* lo 32bits of sender's FIFO addr */ u32 sip; /* Sender's IP Address */ u32 tip; /* IP Address of requested hw addr */ } __attribute__((packed)); struct ipv4_ether_hdr { unsigned char h_dest[IPV4_ALEN]; /* destination address */ unsigned short h_proto; /* packet type ID field */ } __attribute__((packed)); static inline struct ipv4_ether_hdr *ipv4_ether_hdr(const struct sk_buff *skb) { return (struct ipv4_ether_hdr *)skb_mac_header(skb); } enum ipv4_tx_type { IPV4_UNKNOWN = 0, IPV4_GASP = 1, IPV4_WRREQ = 2, }; enum ipv4_broadcast_state { IPV4_BROADCAST_ERROR, IPV4_BROADCAST_RUNNING, IPV4_BROADCAST_STOPPED, }; #define ipv4_get_hdr_lf(h) (((h)->w0&0xC0000000)>>30) #define ipv4_get_hdr_ether_type(h) (((h)->w0&0x0000FFFF) ) #define ipv4_get_hdr_dg_size(h) (((h)->w0&0x0FFF0000)>>16) #define ipv4_get_hdr_fg_off(h) (((h)->w0&0x00000FFF) ) #define ipv4_get_hdr_dgl(h) (((h)->w1&0xFFFF0000)>>16) #define ipv4_set_hdr_lf(lf) (( lf)<<30) #define ipv4_set_hdr_ether_type(et) (( et) ) #define ipv4_set_hdr_dg_size(dgs) ((dgs)<<16) #define ipv4_set_hdr_fg_off(fgo) ((fgo) ) #define ipv4_set_hdr_dgl(dgl) ((dgl)<<16) struct ipv4_hdr { u32 w0; u32 w1; }; static inline void ipv4_make_uf_hdr( struct ipv4_hdr *hdr, unsigned ether_type) { hdr->w0 = ipv4_set_hdr_lf(IPV4_HDR_UNFRAG) |ipv4_set_hdr_ether_type(ether_type); fw_debug ( "Setting unfragmented header %p to %x\n", hdr, hdr->w0 ); } static inline void ipv4_make_ff_hdr ( struct ipv4_hdr *hdr, unsigned ether_type, unsigned dg_size, unsigned dgl ) { hdr->w0 = ipv4_set_hdr_lf(IPV4_HDR_FIRSTFRAG) |ipv4_set_hdr_dg_size(dg_size) |ipv4_set_hdr_ether_type(ether_type); hdr->w1 = ipv4_set_hdr_dgl(dgl); fw_debug ( "Setting fragmented header %p to first_frag %x,%x (et %x, dgs %x, dgl %x)\n", hdr, hdr->w0, hdr->w1, ether_type, dg_size, dgl ); } static inline void ipv4_make_sf_hdr ( struct ipv4_hdr *hdr, unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl) { hdr->w0 = ipv4_set_hdr_lf(lf) |ipv4_set_hdr_dg_size(dg_size) |ipv4_set_hdr_fg_off(fg_off); hdr->w1 = ipv4_set_hdr_dgl(dgl); fw_debug ( "Setting fragmented header %p to %x,%x (lf %x, dgs %x, fo %x dgl %x)\n", hdr, hdr->w0, hdr->w1, lf, dg_size, fg_off, dgl ); } /* End of IP1394 headers */ /* Fragment types */ #define ETH1394_HDR_LF_UF 0 /* unfragmented */ #define ETH1394_HDR_LF_FF 1 /* first fragment */ #define ETH1394_HDR_LF_LF 2 /* last fragment */ #define ETH1394_HDR_LF_IF 3 /* interior fragment */ #define IP1394_HW_ADDR_LEN 16 /* As per RFC */ /* This list keeps track of what parts of the datagram have been filled in */ struct ipv4_fragment_info { struct list_head fragment_info; u16 offset; u16 len; }; struct ipv4_partial_datagram { struct list_head pdg_list; struct list_head fragment_info; struct sk_buff *skb; /* FIXME Why not use skb->data? */ char *pbuf; u16 datagram_label; u16 ether_type; u16 datagram_size; }; /* * We keep one of these for each IPv4 capable device attached to a fw_card. * The list of them is stored in the fw_card structure rather than in the * ipv4_priv because the remote IPv4 nodes may be probed before the card is, * so we need a place to store them before the ipv4_priv structure is * allocated. */ struct ipv4_node { struct list_head ipv4_nodes; /* guid of the remote node */ u64 guid; /* FIFO address to transmit datagrams to, or INVALID_FIFO_ADDR */ u64 fifo; spinlock_t pdg_lock; /* partial datagram lock */ /* List of partial datagrams received from this node */ struct list_head pdg_list; /* Number of entries in pdg_list at the moment */ unsigned pdg_size; /* max payload to transmit to this remote node */ /* This already includes the IPV4_FRAG_HDR_SIZE overhead */ u16 max_payload; /* outgoing datagram label */ u16 datagram_label; /* Current node_id of the remote node */ u16 nodeid; /* current generation of the remote node */ u8 generation; /* max speed that this node can receive at */ u8 xmt_speed; }; struct ipv4_priv { spinlock_t lock; enum ipv4_broadcast_state broadcast_state; struct fw_iso_context *broadcast_rcv_context; struct fw_iso_buffer broadcast_rcv_buffer; void **broadcast_rcv_buffer_ptrs; unsigned broadcast_rcv_next_ptr; unsigned num_broadcast_rcv_ptrs; unsigned rcv_buffer_size; /* * This value is the maximum unfragmented datagram size that can be * sent by the hardware. It already has the GASP overhead and the * unfragmented datagram header overhead calculated into it. */ unsigned broadcast_xmt_max_payload; u16 broadcast_xmt_datagramlabel; /* * The csr address that remote nodes must send datagrams to for us to * receive them. */ struct fw_address_handler handler; u64 local_fifo; /* Wake up to xmt */ /* struct work_struct wake;*/ /* List of packets to be sent */ struct list_head packet_list; /* * List of packets that were broadcasted. When we get an ISO interrupt * one of them has been sent */ struct list_head broadcasted_list; /* List of packets that have been sent but not yet acked */ struct list_head sent_list; struct fw_card *card; }; /* This is our task struct. It's used for the packet complete callback. */ struct ipv4_packet_task { /* * ptask can actually be on priv->packet_list, priv->broadcasted_list, * or priv->sent_list depending on its current state. */ struct list_head packet_list; struct fw_transaction transaction; struct ipv4_hdr hdr; struct sk_buff *skb; struct ipv4_priv *priv; enum ipv4_tx_type tx_type; int outstanding_pkts; unsigned max_payload; u64 fifo_addr; u16 dest_node; u8 generation; u8 speed; }; static struct kmem_cache *ipv4_packet_task_cache; static const char ipv4_driver_name[] = "firewire-ipv4"; static const struct ieee1394_device_id ipv4_id_table[] = { { .match_flags = IEEE1394_MATCH_SPECIFIER_ID | IEEE1394_MATCH_VERSION, .specifier_id = IPV4_GASP_SPECIFIER_ID, .version = IPV4_GASP_VERSION, }, { } }; static u32 ipv4_unit_directory_data[] = { 0x00040000, /* unit directory */ 0x12000000 | IPV4_GASP_SPECIFIER_ID, /* specifier ID */ 0x81000003, /* text descriptor */ 0x13000000 | IPV4_GASP_VERSION, /* version */ 0x81000005, /* text descriptor */ 0x00030000, /* Three quadlets */ 0x00000000, /* Text */ 0x00000000, /* Language 0 */ 0x49414e41, /* I A N A */ 0x00030000, /* Three quadlets */ 0x00000000, /* Text */ 0x00000000, /* Language 0 */ 0x49507634, /* I P v 4 */ }; static struct fw_descriptor ipv4_unit_directory = { .length = ARRAY_SIZE(ipv4_unit_directory_data), .key = 0xd1000000, .data = ipv4_unit_directory_data }; static int ipv4_send_packet(struct ipv4_packet_task *ptask ); /* ------------------------------------------------------------------ */ /****************************************** * HW Header net device functions ******************************************/ /* These functions have been adapted from net/ethernet/eth.c */ /* Create a fake MAC header for an arbitrary protocol layer. * saddr=NULL means use device source address * daddr=NULL means leave destination address (eg unresolved arp). */ static int ipv4_header ( struct sk_buff *skb, struct net_device *dev, unsigned short type, const void *daddr, const void *saddr, unsigned len) { struct ipv4_ether_hdr *eth; eth = (struct ipv4_ether_hdr *)skb_push(skb, sizeof(*eth)); eth->h_proto = htons(type); if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) { memset(eth->h_dest, 0, dev->addr_len); return dev->hard_header_len; } if (daddr) { memcpy(eth->h_dest, daddr, dev->addr_len); return dev->hard_header_len; } return -dev->hard_header_len; } /* Rebuild the faked MAC header. This is called after an ARP * (or in future other address resolution) has completed on this * sk_buff. We now let ARP fill in the other fields. * * This routine CANNOT use cached dst->neigh! * Really, it is used only when dst->neigh is wrong. */ static int ipv4_rebuild_header(struct sk_buff *skb) { struct ipv4_ether_hdr *eth; eth = (struct ipv4_ether_hdr *)skb->data; if (eth->h_proto == htons(ETH_P_IP)) return arp_find((unsigned char *)ð->h_dest, skb); fw_notify ( "%s: unable to resolve type %04x addresses\n", skb->dev->name,ntohs(eth->h_proto) ); return 0; } static int ipv4_header_cache(const struct neighbour *neigh, struct hh_cache *hh) { unsigned short type = hh->hh_type; struct net_device *dev; struct ipv4_ether_hdr *eth; if (type == htons(ETH_P_802_3)) return -1; dev = neigh->dev; eth = (struct ipv4_ether_hdr *)((u8 *)hh->hh_data + 16 - sizeof(*eth)); eth->h_proto = type; memcpy(eth->h_dest, neigh->ha, dev->addr_len); hh->hh_len = IPV4_HLEN; return 0; } /* Called by Address Resolution module to notify changes in address. */ static void ipv4_header_cache_update(struct hh_cache *hh, const struct net_device *dev, const unsigned char * haddr ) { memcpy((u8 *)hh->hh_data + 16 - IPV4_HLEN, haddr, dev->addr_len); } static int ipv4_header_parse(const struct sk_buff *skb, unsigned char *haddr) { memcpy(haddr, skb->dev->dev_addr, IPV4_ALEN); return IPV4_ALEN; } static const struct header_ops ipv4_header_ops = { .create = ipv4_header, .rebuild = ipv4_rebuild_header, .cache = ipv4_header_cache, .cache_update = ipv4_header_cache_update, .parse = ipv4_header_parse, }; /* ------------------------------------------------------------------ */ /* FIXME: is this correct for all cases? */ static bool ipv4_frag_overlap(struct ipv4_partial_datagram *pd, unsigned offset, unsigned len) { struct ipv4_fragment_info *fi; unsigned end = offset + len; list_for_each_entry(fi, &pd->fragment_info, fragment_info) { if (offset < fi->offset + fi->len && end > fi->offset) { fw_debug ( "frag_overlap pd %p fi %p (%x@%x) with %x@%x\n", pd, fi, fi->len, fi->offset, len, offset ); return true; } } fw_debug ( "frag_overlap %p does not overlap with %x@%x\n", pd, len, offset ); return false; } /* Assumes that new fragment does not overlap any existing fragments */ static struct ipv4_fragment_info *ipv4_frag_new ( struct ipv4_partial_datagram *pd, unsigned offset, unsigned len ) { struct ipv4_fragment_info *fi, *fi2, *new; struct list_head *list; fw_debug ( "frag_new pd %p %x@%x\n", pd, len, offset ); list = &pd->fragment_info; list_for_each_entry(fi, &pd->fragment_info, fragment_info) { if (fi->offset + fi->len == offset) { /* The new fragment can be tacked on to the end */ /* Did the new fragment plug a hole? */ fi2 = list_entry(fi->fragment_info.next, struct ipv4_fragment_info, fragment_info); if (fi->offset + fi->len == fi2->offset) { fw_debug ( "pd %p: hole filling %p (%x@%x) and %p(%x@%x): now %x@%x\n", pd, fi, fi->len, fi->offset, fi2, fi2->len, fi2->offset, fi->len + len + fi2->len, fi->offset ); /* glue fragments together */ fi->len += len + fi2->len; list_del(&fi2->fragment_info); kfree(fi2); } else { fw_debug ( "pd %p: extending %p from %x@%x to %x@%x\n", pd, fi, fi->len, fi->offset, fi->len+len, fi->offset ); fi->len += len; } return fi; } if (offset + len == fi->offset) { /* The new fragment can be tacked on to the beginning */ /* Did the new fragment plug a hole? */ fi2 = list_entry(fi->fragment_info.prev, struct ipv4_fragment_info, fragment_info); if (fi2->offset + fi2->len == fi->offset) { /* glue fragments together */ fw_debug ( "pd %p: extending %p and merging with %p from %x@%x to %x@%x\n", pd, fi2, fi, fi2->len, fi2->offset, fi2->len + fi->len + len, fi2->offset ); fi2->len += fi->len + len; list_del(&fi->fragment_info); kfree(fi); return fi2; } fw_debug ( "pd %p: extending %p from %x@%x to %x@%x\n", pd, fi, fi->len, fi->offset, offset, fi->len + len ); fi->offset = offset; fi->len += len; return fi; } if (offset > fi->offset + fi->len) { list = &fi->fragment_info; break; } if (offset + len < fi->offset) { list = fi->fragment_info.prev; break; } } new = kmalloc(sizeof(*new), GFP_ATOMIC); if (!new) { fw_error ( "out of memory in fragment handling!\n" ); return NULL; } new->offset = offset; new->len = len; list_add(&new->fragment_info, list); fw_debug ( "pd %p: new frag %p %x@%x\n", pd, new, new->len, new->offset ); list_for_each_entry( fi, &pd->fragment_info, fragment_info ) fw_debug ( "fi %p %x@%x\n", fi, fi->len, fi->offset ); return new; } /* ------------------------------------------------------------------ */ static struct ipv4_partial_datagram *ipv4_pd_new(struct net_device *netdev, struct ipv4_node *node, u16 datagram_label, unsigned dg_size, u32 *frag_buf, unsigned frag_off, unsigned frag_len) { struct ipv4_partial_datagram *new; struct ipv4_fragment_info *fi; new = kmalloc(sizeof(*new), GFP_ATOMIC); if (!new) goto fail; INIT_LIST_HEAD(&new->fragment_info); fi = ipv4_frag_new ( new, frag_off, frag_len); if ( fi == NULL ) goto fail_w_new; new->datagram_label = datagram_label; new->datagram_size = dg_size; new->skb = dev_alloc_skb(dg_size + netdev->hard_header_len + 15); if ( new->skb == NULL ) goto fail_w_fi; skb_reserve(new->skb, (netdev->hard_header_len + 15) & ~15); new->pbuf = skb_put(new->skb, dg_size); memcpy(new->pbuf + frag_off, frag_buf, frag_len); list_add_tail(&new->pdg_list, &node->pdg_list); fw_debug ( "pd_new: new pd %p { dgl %u, dg_size %u, skb %p, pbuf %p } on node %p\n", new, new->datagram_label, new->datagram_size, new->skb, new->pbuf, node ); return new; fail_w_fi: kfree(fi); fail_w_new: kfree(new); fail: fw_error("ipv4_pd_new: no memory\n"); return NULL; } static struct ipv4_partial_datagram *ipv4_pd_find(struct ipv4_node *node, u16 datagram_label) { struct ipv4_partial_datagram *pd; list_for_each_entry(pd, &node->pdg_list, pdg_list) { if ( pd->datagram_label == datagram_label ) { fw_debug ( "pd_find(node %p, label %u): pd %p\n", node, datagram_label, pd ); return pd; } } fw_debug ( "pd_find(node %p, label %u) no entry\n", node, datagram_label ); return NULL; } static void ipv4_pd_delete ( struct ipv4_partial_datagram *old ) { struct ipv4_fragment_info *fi, *n; fw_debug ( "pd_delete %p\n", old ); list_for_each_entry_safe(fi, n, &old->fragment_info, fragment_info) { fw_debug ( "Freeing fi %p\n", fi ); kfree(fi); } list_del(&old->pdg_list); dev_kfree_skb_any(old->skb); kfree(old); } static bool ipv4_pd_update ( struct ipv4_node *node, struct ipv4_partial_datagram *pd, u32 *frag_buf, unsigned frag_off, unsigned frag_len) { fw_debug ( "pd_update node %p, pd %p, frag_buf %p, %x@%x\n", node, pd, frag_buf, frag_len, frag_off ); if ( ipv4_frag_new ( pd, frag_off, frag_len ) == NULL) return false; memcpy(pd->pbuf + frag_off, frag_buf, frag_len); /* * Move list entry to beginnig of list so that oldest partial * datagrams percolate to the end of the list */ list_move_tail(&pd->pdg_list, &node->pdg_list); fw_debug ( "New pd list:\n" ); list_for_each_entry ( pd, &node->pdg_list, pdg_list ) { fw_debug ( "pd %p\n", pd ); } return true; } static bool ipv4_pd_is_complete ( struct ipv4_partial_datagram *pd ) { struct ipv4_fragment_info *fi; bool ret; fi = list_entry(pd->fragment_info.next, struct ipv4_fragment_info, fragment_info); ret = (fi->len == pd->datagram_size); fw_debug ( "pd_is_complete (pd %p, dgs %x): fi %p (%x@%x) %s\n", pd, pd->datagram_size, fi, fi->len, fi->offset, ret ? "yes" : "no" ); return ret; } /* ------------------------------------------------------------------ */ static int ipv4_node_new ( struct fw_card *card, struct fw_device *device ) { struct ipv4_node *node; node = kmalloc ( sizeof(*node), GFP_KERNEL ); if ( ! node ) { fw_error ( "allocate new node failed\n" ); return -ENOMEM; } node->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4]; node->fifo = INVALID_FIFO_ADDR; INIT_LIST_HEAD(&node->pdg_list); spin_lock_init(&node->pdg_lock); node->pdg_size = 0; node->generation = device->generation; rmb(); node->nodeid = device->node_id; /* FIXME what should it really be? */ node->max_payload = S100_BUFFER_SIZE - IPV4_UNFRAG_HDR_SIZE; node->datagram_label = 0U; node->xmt_speed = device->max_speed; list_add_tail ( &node->ipv4_nodes, &card->ipv4_nodes ); fw_debug ( "node_new: %p { guid %016llx, generation %u, nodeid %x, max_payload %x, xmt_speed %x } added\n", node, (unsigned long long)node->guid, node->generation, node->nodeid, node->max_payload, node->xmt_speed ); return 0; } static struct ipv4_node *ipv4_node_find_by_guid(struct ipv4_priv *priv, u64 guid) { struct ipv4_node *node; unsigned long flags; spin_lock_irqsave(&priv->lock, flags); list_for_each_entry(node, &priv->card->ipv4_nodes, ipv4_nodes) if (node->guid == guid) { /* FIXME: lock the node first? */ spin_unlock_irqrestore ( &priv->lock, flags ); fw_debug ( "node_find_by_guid (%016llx) found %p\n", (unsigned long long)guid, node ); return node; } spin_unlock_irqrestore ( &priv->lock, flags ); fw_debug ( "node_find_by_guid (%016llx) not found\n", (unsigned long long)guid ); return NULL; } static struct ipv4_node *ipv4_node_find_by_nodeid(struct ipv4_priv *priv, u16 nodeid) { struct ipv4_node *node; unsigned long flags; spin_lock_irqsave(&priv->lock, flags); list_for_each_entry(node, &priv->card->ipv4_nodes, ipv4_nodes) if (node->nodeid == nodeid) { /* FIXME: lock the node first? */ spin_unlock_irqrestore ( &priv->lock, flags ); fw_debug ( "node_find_by_nodeid (%x) found %p\n", nodeid, node ); return node; } fw_debug ( "node_find_by_nodeid (%x) not found\n", nodeid ); spin_unlock_irqrestore ( &priv->lock, flags ); return NULL; } /* This is only complicated because we can't assume priv exists */ static void ipv4_node_delete ( struct fw_card *card, struct fw_device *device ) { struct net_device *netdev; struct ipv4_priv *priv; struct ipv4_node *node; u64 guid; unsigned long flags; struct ipv4_partial_datagram *pd, *pd_next; guid = (u64)device->config_rom[3] << 32 | device->config_rom[4]; netdev = card->netdev; if ( netdev ) priv = netdev_priv ( netdev ); else priv = NULL; if ( priv ) spin_lock_irqsave ( &priv->lock, flags ); list_for_each_entry( node, &card->ipv4_nodes, ipv4_nodes ) { if ( node->guid == guid ) { list_del ( &node->ipv4_nodes ); list_for_each_entry_safe( pd, pd_next, &node->pdg_list, pdg_list ) ipv4_pd_delete ( pd ); break; } } if ( priv ) spin_unlock_irqrestore ( &priv->lock, flags ); } /* ------------------------------------------------------------------ */ static int ipv4_finish_incoming_packet ( struct net_device *netdev, struct sk_buff *skb, u16 source_node_id, bool is_broadcast, u16 ether_type ) { struct ipv4_priv *priv; static u64 broadcast_hw = ~0ULL; int status; u64 guid; fw_debug ( "ipv4_finish_incoming_packet(%p, %p, %x, %s, %x\n", netdev, skb, source_node_id, is_broadcast ? "true" : "false", ether_type ); priv = netdev_priv(netdev); /* Write metadata, and then pass to the receive level */ skb->dev = netdev; skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */ /* * Parse the encapsulation header. This actually does the job of * converting to an ethernet frame header, as well as arp * conversion if needed. ARP conversion is easier in this * direction, since we are using ethernet as our backend. */ /* * If this is an ARP packet, convert it. First, we want to make * use of some of the fields, since they tell us a little bit * about the sending machine. */ if (ether_type == ETH_P_ARP) { struct ipv4_arp *arp1394; struct arphdr *arp; unsigned char *arp_ptr; u64 fifo_addr; u8 max_rec; u8 sspd; u16 max_payload; struct ipv4_node *node; static const u16 ipv4_speed_to_max_payload[] = { /* S100, S200, S400, S800, S1600, S3200 */ 512, 1024, 2048, 4096, 4096, 4096 }; /* fw_debug ( "ARP packet\n" ); */ arp1394 = (struct ipv4_arp *)skb->data; arp = (struct arphdr *)skb->data; arp_ptr = (unsigned char *)(arp + 1); fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 | ntohl(arp1394->fifo_lo); max_rec = priv->card->max_receive; if ( arp1394->max_rec < max_rec ) max_rec = arp1394->max_rec; sspd = arp1394->sspd; /* * Sanity check. MacOSX seems to be sending us 131 in this * field (atleast on my Panther G5). Not sure why. */ if (sspd > 5 ) { fw_notify ( "sspd %x out of range\n", sspd ); sspd = 0; } max_payload = min(ipv4_speed_to_max_payload[sspd], (u16)(1 << (max_rec + 1))) - IPV4_UNFRAG_HDR_SIZE; guid = be64_to_cpu(get_unaligned(&arp1394->s_uniq_id)); node = ipv4_node_find_by_guid(priv, guid); if (!node) { fw_notify ( "No node for ARP packet from %llx\n", guid ); goto failed_proto; } if ( node->nodeid != source_node_id || node->generation != priv->card->generation ) { fw_notify ( "Internal error: node->nodeid (%x) != soucre_node_id (%x) or node->generation (%x) != priv->card->generation(%x)\n", node->nodeid, source_node_id, node->generation, priv->card->generation ); node->nodeid = source_node_id; node->generation = priv->card->generation; } /* FIXME: for debugging */ if ( sspd > SCODE_400 ) sspd = SCODE_400; /* Update our speed/payload/fifo_offset table */ /* * FIXME: this does not handle cases where two high-speed endpoints must use a slower speed because of * a lower speed hub between them. We need to look at the actual topology map here. */ fw_debug ( "Setting node %p fifo %llx (was %llx), max_payload %x (was %x), speed %x (was %x)\n", node, fifo_addr, node->fifo, max_payload, node->max_payload, sspd, node->xmt_speed ); node->fifo = fifo_addr; node->max_payload = max_payload; /* * Only allow speeds to go down from their initial value. * Otherwise a local node that can only do S400 or slower may * be told to transmit at S800 to a faster remote node. */ if ( node->xmt_speed > sspd ) node->xmt_speed = sspd; /* * Now that we're done with the 1394 specific stuff, we'll * need to alter some of the data. Believe it or not, all * that needs to be done is sender_IP_address needs to be * moved, the destination hardware address get stuffed * in and the hardware address length set to 8. * * IMPORTANT: The code below overwrites 1394 specific data * needed above so keep the munging of the data for the * higher level IP stack last. */ arp->ar_hln = 8; arp_ptr += arp->ar_hln; /* skip over sender unique id */ *(u32 *)arp_ptr = arp1394->sip; /* move sender IP addr */ arp_ptr += arp->ar_pln; /* skip over sender IP addr */ if (arp->ar_op == htons(ARPOP_REQUEST)) memset(arp_ptr, 0, sizeof(u64)); else memcpy(arp_ptr, netdev->dev_addr, sizeof(u64)); } /* Now add the ethernet header. */ guid = cpu_to_be64(priv->card->guid); if (dev_hard_header(skb, netdev, ether_type, is_broadcast ? &broadcast_hw : &guid, NULL, skb->len) >= 0) { struct ipv4_ether_hdr *eth; u16 *rawp; __be16 protocol; skb_reset_mac_header(skb); skb_pull(skb, sizeof(*eth)); eth = ipv4_ether_hdr(skb); if (*eth->h_dest & 1) { if (memcmp(eth->h_dest, netdev->broadcast, netdev->addr_len) == 0) { fw_debug ( "Broadcast\n" ); skb->pkt_type = PACKET_BROADCAST; } #if 0 else skb->pkt_type = PACKET_MULTICAST; #endif } else { if (memcmp(eth->h_dest, netdev->dev_addr, netdev->addr_len)) { u64 a1, a2; memcpy ( &a1, eth->h_dest, sizeof(u64)); memcpy ( &a2, netdev->dev_addr, sizeof(u64)); fw_debug ( "Otherhost %llx %llx %x\n", a1, a2, netdev->addr_len ); skb->pkt_type = PACKET_OTHERHOST; } } if (ntohs(eth->h_proto) >= 1536) { fw_debug ( " proto %x %x\n", eth->h_proto, ntohs(eth->h_proto) ); protocol = eth->h_proto; } else { rawp = (u16 *)skb->data; if (*rawp == 0xFFFF) { fw_debug ( "proto 802_3\n" ); protocol = htons(ETH_P_802_3); } else { fw_debug ( "proto 802_2\n" ); protocol = htons(ETH_P_802_2); } } skb->protocol = protocol; } status = netif_rx(skb); if ( status == NET_RX_DROP) { netdev->stats.rx_errors++; netdev->stats.rx_dropped++; } else { netdev->stats.rx_packets++; netdev->stats.rx_bytes += skb->len; } if (netif_queue_stopped(netdev)) netif_wake_queue(netdev); return 0; failed_proto: netdev->stats.rx_errors++; netdev->stats.rx_dropped++; dev_kfree_skb_any(skb); if (netif_queue_stopped(netdev)) netif_wake_queue(netdev); netdev->last_rx = jiffies; return 0; } /* ------------------------------------------------------------------ */ static int ipv4_incoming_packet ( struct ipv4_priv *priv, u32 *buf, int len, u16 source_node_id, bool is_broadcast ) { struct sk_buff *skb; struct net_device *netdev; struct ipv4_hdr hdr; unsigned lf; unsigned long flags; struct ipv4_node *node; struct ipv4_partial_datagram *pd; int fg_off; int dg_size; u16 datagram_label; int retval; u16 ether_type; fw_debug ( "ipv4_incoming_packet(%p, %p, %d, %x, %s)\n", priv, buf, len, source_node_id, is_broadcast ? "true" : "false" ); netdev = priv->card->netdev; hdr.w0 = ntohl(buf[0]); lf = ipv4_get_hdr_lf(&hdr); if ( lf == IPV4_HDR_UNFRAG ) { /* * An unfragmented datagram has been received by the ieee1394 * bus. Build an skbuff around it so we can pass it to the * high level network layer. */ ether_type = ipv4_get_hdr_ether_type(&hdr); fw_debug ( "header w0 = %x, lf = %x, ether_type = %x\n", hdr.w0, lf, ether_type ); buf++; len -= IPV4_UNFRAG_HDR_SIZE; skb = dev_alloc_skb(len + netdev->hard_header_len + 15); if (unlikely(!skb)) { fw_error ( "Out of memory for incoming packet\n"); netdev->stats.rx_dropped++; return -1; } skb_reserve(skb, (netdev->hard_header_len + 15) & ~15); memcpy(skb_put(skb, len), buf, len ); return ipv4_finish_incoming_packet(netdev, skb, source_node_id, is_broadcast, ether_type ); } /* A datagram fragment has been received, now the fun begins. */ hdr.w1 = ntohl(buf[1]); buf +=2; len -= IPV4_FRAG_HDR_SIZE; if ( lf ==IPV4_HDR_FIRSTFRAG ) { ether_type = ipv4_get_hdr_ether_type(&hdr); fg_off = 0; } else { fg_off = ipv4_get_hdr_fg_off(&hdr); ether_type = 0; /* Shut up compiler! */ } datagram_label = ipv4_get_hdr_dgl(&hdr); dg_size = ipv4_get_hdr_dg_size(&hdr); /* ??? + 1 */ fw_debug ( "fragmented: %x.%x = lf %x, ether_type %x, fg_off %x, dgl %x, dg_size %x\n", hdr.w0, hdr.w1, lf, ether_type, fg_off, datagram_label, dg_size ); node = ipv4_node_find_by_nodeid ( priv, source_node_id); spin_lock_irqsave(&node->pdg_lock, flags); pd = ipv4_pd_find( node, datagram_label ); if (pd == NULL) { while ( node->pdg_size >= ipv4_mpd ) { /* remove the oldest */ ipv4_pd_delete ( list_first_entry(&node->pdg_list, struct ipv4_partial_datagram, pdg_list) ); node->pdg_size--; } pd = ipv4_pd_new ( netdev, node, datagram_label, dg_size, buf, fg_off, len); if ( pd == NULL) { retval = -ENOMEM; goto bad_proto; } node->pdg_size++; } else { if (ipv4_frag_overlap(pd, fg_off, len) || pd->datagram_size != dg_size) { /* * Differing datagram sizes or overlapping fragments, * Either way the remote machine is playing silly buggers * with us: obliterate the old datagram and start a new one. */ ipv4_pd_delete ( pd ); pd = ipv4_pd_new ( netdev, node, datagram_label, dg_size, buf, fg_off, len); if ( pd == NULL ) { retval = -ENOMEM; node->pdg_size--; goto bad_proto; } } else { bool worked; worked = ipv4_pd_update ( node, pd, buf, fg_off, len ); if ( ! worked ) { /* * Couldn't save off fragment anyway * so might as well obliterate the * datagram now. */ ipv4_pd_delete ( pd ); node->pdg_size--; goto bad_proto; } } } /* new datagram or add to existing one */ if ( lf == IPV4_HDR_FIRSTFRAG ) pd->ether_type = ether_type; if ( ipv4_pd_is_complete ( pd ) ) { ether_type = pd->ether_type; node->pdg_size--; skb = skb_get(pd->skb); ipv4_pd_delete ( pd ); spin_unlock_irqrestore(&node->pdg_lock, flags); return ipv4_finish_incoming_packet ( netdev, skb, source_node_id, false, ether_type ); } /* * Datagram is not complete, we're done for the * moment. */ spin_unlock_irqrestore(&node->pdg_lock, flags); return 0; bad_proto: spin_unlock_irqrestore(&node->pdg_lock, flags); if (netif_queue_stopped(netdev)) netif_wake_queue(netdev); return 0; } static void ipv4_receive_packet ( struct fw_card *card, struct fw_request *r, int tcode, int destination, int source, int generation, int speed, unsigned long long offset, void *payload, size_t length, void *callback_data ) { struct ipv4_priv *priv; int status; fw_debug ( "ipv4_receive_packet(%p,%p,%x,%x,%x,%x,%x,%llx,%p,%lx,%p)\n", card, r, tcode, destination, source, generation, speed, offset, payload, (unsigned long)length, callback_data); print_hex_dump ( KERN_DEBUG, "header: ", DUMP_PREFIX_OFFSET, 32, 1, payload, length, false ); priv = callback_data; if ( tcode != TCODE_WRITE_BLOCK_REQUEST || destination != card->node_id || generation != card->generation || offset != priv->handler.offset ) { fw_send_response(card, r, RCODE_CONFLICT_ERROR); fw_debug("Conflict error card node_id=%x, card generation=%x, local offset %llx\n", card->node_id, card->generation, (unsigned long long)priv->handler.offset ); return; } status = ipv4_incoming_packet ( priv, payload, length, source, false ); if ( status != 0 ) { fw_error ( "Incoming packet failure\n" ); fw_send_response ( card, r, RCODE_CONFLICT_ERROR ); return; } fw_send_response ( card, r, RCODE_COMPLETE ); } static void ipv4_receive_broadcast(struct fw_iso_context *context, u32 cycle, size_t header_length, void *header, void *data) { struct ipv4_priv *priv; struct fw_iso_packet packet; struct fw_card *card; u16 *hdr_ptr; u32 *buf_ptr; int retval; u32 length; u16 source_node_id; u32 specifier_id; u32 ver; unsigned long offset; unsigned long flags; fw_debug ( "ipv4_receive_broadcast ( context=%p, cycle=%x, header_length=%lx, header=%p, data=%p )\n", context, cycle, (unsigned long)header_length, header, data ); print_hex_dump ( KERN_DEBUG, "header: ", DUMP_PREFIX_OFFSET, 32, 1, header, header_length, false ); priv = data; card = priv->card; hdr_ptr = header; length = ntohs(hdr_ptr[0]); spin_lock_irqsave(&priv->lock,flags); offset = priv->rcv_buffer_size * priv->broadcast_rcv_next_ptr; buf_ptr = priv->broadcast_rcv_buffer_ptrs[priv->broadcast_rcv_next_ptr++]; if ( priv->broadcast_rcv_next_ptr == priv->num_broadcast_rcv_ptrs ) priv->broadcast_rcv_next_ptr = 0; spin_unlock_irqrestore(&priv->lock,flags); fw_debug ( "length %u at %p\n", length, buf_ptr ); print_hex_dump ( KERN_DEBUG, "buffer: ", DUMP_PREFIX_OFFSET, 32, 1, buf_ptr, length, false ); specifier_id = (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8 | (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24; ver = be32_to_cpu(buf_ptr[1]) & 0xFFFFFF; source_node_id = be32_to_cpu(buf_ptr[0]) >> 16; /* fw_debug ( "source %x SpecID %x ver %x\n", source_node_id, specifier_id, ver ); */ if ( specifier_id == IPV4_GASP_SPECIFIER_ID && ver == IPV4_GASP_VERSION ) { buf_ptr += 2; length -= IPV4_GASP_OVERHEAD; ipv4_incoming_packet(priv, buf_ptr, length, source_node_id, true); } else fw_debug ( "Ignoring packet: not GASP\n" ); packet.payload_length = priv->rcv_buffer_size; packet.interrupt = 1; packet.skip = 0; packet.tag = 3; packet.sy = 0; packet.header_length = IPV4_GASP_OVERHEAD; spin_lock_irqsave(&priv->lock,flags); retval = fw_iso_context_queue ( priv->broadcast_rcv_context, &packet, &priv->broadcast_rcv_buffer, offset ); spin_unlock_irqrestore(&priv->lock,flags); if ( retval < 0 ) fw_error ( "requeue failed\n" ); } static void debug_ptask ( struct ipv4_packet_task *ptask ) { static const char *tx_types[] = { "Unknown", "GASP", "Write" }; fw_debug ( "packet %p { hdr { w0 %x w1 %x }, skb %p, priv %p," " tx_type %s, outstanding_pkts %d, max_payload %x, fifo %llx," " speed %x, dest_node %x, generation %x }\n", ptask, ptask->hdr.w0, ptask->hdr.w1, ptask->skb, ptask->priv, ptask->tx_type > IPV4_WRREQ ? "Invalid" : tx_types[ptask->tx_type], ptask->outstanding_pkts, ptask->max_payload, ptask->fifo_addr, ptask->speed, ptask->dest_node, ptask->generation ); print_hex_dump ( KERN_DEBUG, "packet :", DUMP_PREFIX_OFFSET, 32, 1, ptask->skb->data, ptask->skb->len, false ); } static void ipv4_transmit_packet_done ( struct ipv4_packet_task *ptask ) { struct ipv4_priv *priv; unsigned long flags; priv = ptask->priv; spin_lock_irqsave ( &priv->lock, flags ); list_del ( &ptask->packet_list ); spin_unlock_irqrestore ( &priv->lock, flags ); ptask->outstanding_pkts--; if ( ptask->outstanding_pkts > 0 ) { u16 dg_size; u16 fg_off; u16 datagram_label; u16 lf; struct sk_buff *skb; /* Update the ptask to point to the next fragment and send it */ lf = ipv4_get_hdr_lf(&ptask->hdr); switch (lf) { case IPV4_HDR_LASTFRAG: case IPV4_HDR_UNFRAG: default: fw_error ( "Outstanding packet %x lf %x, header %x,%x\n", ptask->outstanding_pkts, lf, ptask->hdr.w0, ptask->hdr.w1 ); BUG(); case IPV4_HDR_FIRSTFRAG: /* Set frag type here for future interior fragments */ dg_size = ipv4_get_hdr_dg_size(&ptask->hdr); fg_off = ptask->max_payload - IPV4_FRAG_HDR_SIZE; datagram_label = ipv4_get_hdr_dgl(&ptask->hdr); break; case IPV4_HDR_INTFRAG: dg_size = ipv4_get_hdr_dg_size(&ptask->hdr); fg_off = ipv4_get_hdr_fg_off(&ptask->hdr) + ptask->max_payload - IPV4_FRAG_HDR_SIZE; datagram_label = ipv4_get_hdr_dgl(&ptask->hdr); break; } skb = ptask->skb; skb_pull ( skb, ptask->max_payload ); if ( ptask->outstanding_pkts > 1 ) { ipv4_make_sf_hdr ( &ptask->hdr, IPV4_HDR_INTFRAG, dg_size, fg_off, datagram_label ); } else { ipv4_make_sf_hdr ( &ptask->hdr, IPV4_HDR_LASTFRAG, dg_size, fg_off, datagram_label ); ptask->max_payload = skb->len + IPV4_FRAG_HDR_SIZE; } ipv4_send_packet ( ptask ); } else { dev_kfree_skb_any ( ptask->skb ); kmem_cache_free( ipv4_packet_task_cache, ptask ); } } static void ipv4_write_complete ( struct fw_card *card, int rcode, void *payload, size_t length, void *data ) { struct ipv4_packet_task *ptask; ptask = data; fw_debug ( "ipv4_write_complete ( %p, %x, %p, %lx, %p )\n", card, rcode, payload, (unsigned long)length, data ); debug_ptask ( ptask ); if ( rcode == RCODE_COMPLETE ) { ipv4_transmit_packet_done ( ptask ); } else { fw_error ( "ipv4_write_complete: failed: %x\n", rcode ); /* ??? error recovery */ } } static int ipv4_send_packet ( struct ipv4_packet_task *ptask ) { struct ipv4_priv *priv; unsigned tx_len; struct ipv4_hdr *bufhdr; unsigned long flags; struct net_device *netdev; #if 0 /* stefanr */ int retval; #endif fw_debug ( "ipv4_send_packet\n" ); debug_ptask ( ptask ); priv = ptask->priv; tx_len = ptask->max_payload; switch (ipv4_get_hdr_lf(&ptask->hdr)) { case IPV4_HDR_UNFRAG: bufhdr = (struct ipv4_hdr *)skb_push(ptask->skb, IPV4_UNFRAG_HDR_SIZE); bufhdr->w0 = htonl(ptask->hdr.w0); break; case IPV4_HDR_FIRSTFRAG: case IPV4_HDR_INTFRAG: case IPV4_HDR_LASTFRAG: bufhdr = (struct ipv4_hdr *)skb_push(ptask->skb, IPV4_FRAG_HDR_SIZE); bufhdr->w0 = htonl(ptask->hdr.w0); bufhdr->w1 = htonl(ptask->hdr.w1); break; default: BUG(); } if ( ptask->tx_type == IPV4_GASP ) { u32 *packets; int generation; int nodeid; /* ptask->generation may not have been set yet */ generation = priv->card->generation; smp_rmb(); nodeid = priv->card->node_id; packets = (u32 *)skb_push(ptask->skb, sizeof(u32)*2); packets[0] = htonl(nodeid << 16 | (IPV4_GASP_SPECIFIER_ID>>8)); packets[1] = htonl((IPV4_GASP_SPECIFIER_ID & 0xFF) << 24 | IPV4_GASP_VERSION); fw_send_request ( priv->card, &ptask->transaction, TCODE_STREAM_DATA, fw_stream_packet_destination_id(3, BROADCAST_CHANNEL, 0), generation, SCODE_100, 0ULL, ptask->skb->data, tx_len + 8, ipv4_write_complete, ptask ); spin_lock_irqsave(&priv->lock,flags); list_add_tail ( &ptask->packet_list, &priv->broadcasted_list ); spin_unlock_irqrestore(&priv->lock,flags); #if 0 /* stefanr */ return retval; #else return 0; #endif } fw_debug("send_request (%p, %p, WRITE_BLOCK, %x, %x, %x, %llx, %p, %d, %p, %p\n", priv->card, &ptask->transaction, ptask->dest_node, ptask->generation, ptask->speed, (unsigned long long)ptask->fifo_addr, ptask->skb->data, tx_len, ipv4_write_complete, ptask ); fw_send_request ( priv->card, &ptask->transaction, TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node, ptask->generation, ptask->speed, ptask->fifo_addr, ptask->skb->data, tx_len, ipv4_write_complete, ptask ); spin_lock_irqsave(&priv->lock,flags); list_add_tail ( &ptask->packet_list, &priv->sent_list ); spin_unlock_irqrestore(&priv->lock,flags); netdev = priv->card->netdev; netdev->trans_start = jiffies; return 0; } static int ipv4_broadcast_start ( struct ipv4_priv *priv ) { struct fw_iso_context *context; int retval; unsigned num_packets; unsigned max_receive; struct fw_iso_packet packet; unsigned long offset; unsigned u; /* unsigned transmit_speed; */ #if 0 /* stefanr */ if ( priv->card->broadcast_channel != (BROADCAST_CHANNEL_VALID|BROADCAST_CHANNEL_INITIAL)) { fw_notify ( "Invalid broadcast channel %x\n", priv->card->broadcast_channel ); /* FIXME: try again later? */ /* return -EINVAL; */ } #endif if ( priv->local_fifo == INVALID_FIFO_ADDR ) { struct fw_address_region region; priv->handler.length = FIFO_SIZE; priv->handler.address_callback = ipv4_receive_packet; priv->handler.callback_data = priv; /* FIXME: this is OHCI, but what about others? */ region.start = 0xffff00000000ULL; region.end = 0xfffffffffffcULL; retval = fw_core_add_address_handler ( &priv->handler, ®ion ); if ( retval < 0 ) goto failed_initial; priv->local_fifo = priv->handler.offset; } /* * FIXME: rawiso limits us to PAGE_SIZE. This only matters if we ever have * a machine with PAGE_SIZE < 4096 */ max_receive = 1U << (priv->card->max_receive + 1); num_packets = ( ipv4_iso_page_count * PAGE_SIZE ) / max_receive; if ( ! priv->broadcast_rcv_context ) { void **ptrptr; context = fw_iso_context_create ( priv->card, FW_ISO_CONTEXT_RECEIVE, BROADCAST_CHANNEL, priv->card->link_speed, 8, ipv4_receive_broadcast, priv ); if (IS_ERR(context)) { retval = PTR_ERR(context); goto failed_context_create; } retval = fw_iso_buffer_init ( &priv->broadcast_rcv_buffer, priv->card, ipv4_iso_page_count, DMA_FROM_DEVICE ); if ( retval < 0 ) goto failed_buffer_init; ptrptr = kmalloc ( sizeof(void*)*num_packets, GFP_KERNEL ); if ( ! ptrptr ) { retval = -ENOMEM; goto failed_ptrs_alloc; } priv->broadcast_rcv_buffer_ptrs = ptrptr; for ( u = 0; u < ipv4_iso_page_count; u++ ) { void *ptr; unsigned v; ptr = kmap ( priv->broadcast_rcv_buffer.pages[u] ); for ( v = 0; v < num_packets / ipv4_iso_page_count; v++ ) *ptrptr++ = (void *)((char *)ptr + v * max_receive); } priv->broadcast_rcv_context = context; } else context = priv->broadcast_rcv_context; packet.payload_length = max_receive; packet.interrupt = 1; packet.skip = 0; packet.tag = 3; packet.sy = 0; packet.header_length = IPV4_GASP_OVERHEAD; offset = 0; for ( u = 0; u < num_packets; u++ ) { retval = fw_iso_context_queue ( context, &packet, &priv->broadcast_rcv_buffer, offset ); if ( retval < 0 ) goto failed_rcv_queue; offset += max_receive; } priv->num_broadcast_rcv_ptrs = num_packets; priv->rcv_buffer_size = max_receive; priv->broadcast_rcv_next_ptr = 0U; retval = fw_iso_context_start ( context, -1, 0, FW_ISO_CONTEXT_MATCH_ALL_TAGS ); /* ??? sync */ if ( retval < 0 ) goto failed_rcv_queue; /* FIXME: adjust this when we know the max receive speeds of all other IP nodes on the bus. */ /* since we only xmt at S100 ??? */ priv->broadcast_xmt_max_payload = S100_BUFFER_SIZE - IPV4_GASP_OVERHEAD - IPV4_UNFRAG_HDR_SIZE; priv->broadcast_state = IPV4_BROADCAST_RUNNING; return 0; failed_rcv_queue: kfree ( priv->broadcast_rcv_buffer_ptrs ); priv->broadcast_rcv_buffer_ptrs = NULL; failed_ptrs_alloc: fw_iso_buffer_destroy ( &priv->broadcast_rcv_buffer, priv->card ); failed_buffer_init: fw_iso_context_destroy ( context ); priv->broadcast_rcv_context = NULL; failed_context_create: fw_core_remove_address_handler ( &priv->handler ); failed_initial: priv->local_fifo = INVALID_FIFO_ADDR; return retval; } /* This is called after an "ifup" */ static int ipv4_open(struct net_device *dev) { struct ipv4_priv *priv; int ret; priv = netdev_priv(dev); if (priv->broadcast_state == IPV4_BROADCAST_ERROR) { ret = ipv4_broadcast_start ( priv ); if (ret) return ret; } netif_start_queue(dev); return 0; } /* This is called after an "ifdown" */ static int ipv4_stop(struct net_device *netdev) { /* flush priv->wake */ /* flush_scheduled_work(); */ netif_stop_queue(netdev); return 0; } /* Transmit a packet (called by kernel) */ static int ipv4_tx(struct sk_buff *skb, struct net_device *netdev) { struct ipv4_ether_hdr hdr_buf; struct ipv4_priv *priv = netdev_priv(netdev); __be16 proto; u16 dest_node; enum ipv4_tx_type tx_type; unsigned max_payload; u16 dg_size; u16 *datagram_label_ptr; struct ipv4_packet_task *ptask; struct ipv4_node *node = NULL; ptask = kmem_cache_alloc(ipv4_packet_task_cache, GFP_ATOMIC); if (ptask == NULL) goto fail; skb = skb_share_check(skb, GFP_ATOMIC); if (!skb) goto fail; /* * Get rid of the fake ipv4 header, but first make a copy. * We might need to rebuild the header on tx failure. */ memcpy(&hdr_buf, skb->data, sizeof(hdr_buf)); skb_pull(skb, sizeof(hdr_buf)); proto = hdr_buf.h_proto; dg_size = skb->len; /* * Set the transmission type for the packet. ARP packets and IP * broadcast packets are sent via GASP. */ if ( memcmp(hdr_buf.h_dest, netdev->broadcast, IPV4_ALEN) == 0 || proto == htons(ETH_P_ARP) || ( proto == htons(ETH_P_IP) && IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)) ) ) { /* fw_debug ( "transmitting arp or multicast packet\n" );*/ tx_type = IPV4_GASP; dest_node = ALL_NODES; max_payload = priv->broadcast_xmt_max_payload; /* BUG_ON(max_payload < S100_BUFFER_SIZE - IPV4_GASP_OVERHEAD); */ datagram_label_ptr = &priv->broadcast_xmt_datagramlabel; ptask->fifo_addr = INVALID_FIFO_ADDR; ptask->generation = 0U; ptask->dest_node = 0U; ptask->speed = 0; } else { __be64 guid = get_unaligned((u64 *)hdr_buf.h_dest); u8 generation; node = ipv4_node_find_by_guid(priv, be64_to_cpu(guid)); if (!node) { fw_debug ( "Normal packet but no node\n" ); goto fail; } if (node->fifo == INVALID_FIFO_ADDR) { fw_debug ( "Normal packet but no fifo addr\n" ); goto fail; } /* fw_debug ( "Transmitting normal packet to %x at %llxx\n", node->nodeid, node->fifo ); */ generation = node->generation; dest_node = node->nodeid; max_payload = node->max_payload; /* BUG_ON(max_payload < S100_BUFFER_SIZE - IPV4_FRAG_HDR_SIZE); */ datagram_label_ptr = &node->datagram_label; tx_type = IPV4_WRREQ; ptask->fifo_addr = node->fifo; ptask->generation = generation; ptask->dest_node = dest_node; ptask->speed = node->xmt_speed; } /* If this is an ARP packet, convert it */ if (proto == htons(ETH_P_ARP)) { /* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire * arphdr) is the same format as the ip1394 header, so they overlap. The rest * needs to be munged a bit. The remainder of the arphdr is formatted based * on hwaddr len and ipaddr len. We know what they'll be, so it's easy to * judge. * * Now that the EUI is used for the hardware address all we need to do to make * this work for 1394 is to insert 2 quadlets that contain max_rec size, * speed, and unicast FIFO address information between the sender_unique_id * and the IP addresses. */ struct arphdr *arp = (struct arphdr *)skb->data; unsigned char *arp_ptr = (unsigned char *)(arp + 1); struct ipv4_arp *arp1394 = (struct ipv4_arp *)skb->data; u32 ipaddr; ipaddr = *(u32*)(arp_ptr + IPV4_ALEN); arp1394->hw_addr_len = 16; arp1394->max_rec = priv->card->max_receive; arp1394->sspd = priv->card->link_speed; arp1394->fifo_hi = htons(priv->local_fifo >> 32); arp1394->fifo_lo = htonl(priv->local_fifo & 0xFFFFFFFF); arp1394->sip = ipaddr; } if ( ipv4_max_xmt && max_payload > ipv4_max_xmt ) max_payload = ipv4_max_xmt; ptask->hdr.w0 = 0; ptask->hdr.w1 = 0; ptask->skb = skb; ptask->priv = priv; ptask->tx_type = tx_type; /* Does it all fit in one packet? */ if ( dg_size <= max_payload ) { ipv4_make_uf_hdr(&ptask->hdr, be16_to_cpu(proto)); ptask->outstanding_pkts = 1; max_payload = dg_size + IPV4_UNFRAG_HDR_SIZE; } else { u16 datagram_label; max_payload -= IPV4_FRAG_OVERHEAD; datagram_label = (*datagram_label_ptr)++; ipv4_make_ff_hdr(&ptask->hdr, be16_to_cpu(proto), dg_size, datagram_label ); ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload); max_payload += IPV4_FRAG_HDR_SIZE; } ptask->max_payload = max_payload; ipv4_send_packet ( ptask ); return NETDEV_TX_OK; fail: if (ptask) kmem_cache_free(ipv4_packet_task_cache, ptask); if (skb != NULL) dev_kfree_skb(skb); netdev->stats.tx_dropped++; netdev->stats.tx_errors++; /* * FIXME: According to a patch from 2003-02-26, "returning non-zero * causes serious problems" here, allegedly. Before that patch, * -ERRNO was returned which is not appropriate under Linux 2.6. * Perhaps more needs to be done? Stop the queue in serious * conditions and restart it elsewhere? */ return NETDEV_TX_OK; } /* * FIXME: What to do if we timeout? I think a host reset is probably in order, * so that's what we do. Should we increment the stat counters too? */ static void ipv4_tx_timeout(struct net_device *dev) { struct ipv4_priv *priv; priv = netdev_priv(dev); fw_error ( "%s: Timeout, resetting host\n", dev->name ); #if 0 /* stefanr */ fw_core_initiate_bus_reset ( priv->card, 1 ); #endif } static int ipv4_change_mtu ( struct net_device *dev, int new_mtu ) { #if 0 int max_mtu; struct ipv4_priv *priv; #endif if (new_mtu < 68) return -EINVAL; #if 0 priv = netdev_priv(dev); /* This is not actually true because we can fragment packets at the firewire layer */ max_mtu = (1 << (priv->card->max_receive + 1)) - sizeof(struct ipv4_hdr) - IPV4_GASP_OVERHEAD; if (new_mtu > max_mtu) { fw_notify ( "%s: Local node constrains MTU to %d\n", dev->name, max_mtu); return -ERANGE; } #endif dev->mtu = new_mtu; return 0; } static void ipv4_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { strcpy(info->driver, ipv4_driver_name); strcpy(info->bus_info, "ieee1394"); /* FIXME provide more detail? */ } static struct ethtool_ops ipv4_ethtool_ops = { .get_drvinfo = ipv4_get_drvinfo, }; static const struct net_device_ops ipv4_netdev_ops = { .ndo_open = ipv4_open, .ndo_stop = ipv4_stop, .ndo_start_xmit = ipv4_tx, .ndo_tx_timeout = ipv4_tx_timeout, .ndo_change_mtu = ipv4_change_mtu, }; static void ipv4_init_dev ( struct net_device *dev ) { dev->header_ops = &ipv4_header_ops; dev->netdev_ops = &ipv4_netdev_ops; SET_ETHTOOL_OPS(dev, &ipv4_ethtool_ops); dev->watchdog_timeo = IPV4_TIMEOUT; dev->flags = IFF_BROADCAST | IFF_MULTICAST; dev->features = NETIF_F_HIGHDMA; dev->addr_len = IPV4_ALEN; dev->hard_header_len = IPV4_HLEN; dev->type = ARPHRD_IEEE1394; /* FIXME: This value was copied from ether_setup(). Is it too much? */ dev->tx_queue_len = 1000; } static int ipv4_probe ( struct device *dev ) { struct fw_unit * unit; struct fw_device *device; struct fw_card *card; struct net_device *netdev; struct ipv4_priv *priv; unsigned max_mtu; __be64 guid; fw_debug("ipv4 Probing\n" ); unit = fw_unit ( dev ); device = fw_device ( unit->device.parent ); card = device->card; if ( ! device->is_local ) { int added; fw_debug ( "Non-local, adding remote node entry\n" ); added = ipv4_node_new ( card, device ); return added; } fw_debug("ipv4 Local: adding netdev\n" ); netdev = alloc_netdev ( sizeof(*priv), "fw-ipv4-%d", ipv4_init_dev ); if ( netdev == NULL) { fw_error( "Out of memory\n"); goto out; } SET_NETDEV_DEV(netdev, card->device); priv = netdev_priv(netdev); spin_lock_init(&priv->lock); priv->broadcast_state = IPV4_BROADCAST_ERROR; priv->broadcast_rcv_context = NULL; priv->broadcast_xmt_max_payload = 0; priv->broadcast_xmt_datagramlabel = 0; priv->local_fifo = INVALID_FIFO_ADDR; /* INIT_WORK(&priv->wake, ipv4_handle_queue);*/ INIT_LIST_HEAD(&priv->packet_list); INIT_LIST_HEAD(&priv->broadcasted_list); INIT_LIST_HEAD(&priv->sent_list ); priv->card = card; /* * Use the RFC 2734 default 1500 octets or the maximum payload * as initial MTU */ max_mtu = (1 << (card->max_receive + 1)) - sizeof(struct ipv4_hdr) - IPV4_GASP_OVERHEAD; netdev->mtu = min(1500U, max_mtu); /* Set our hardware address while we're at it */ guid = cpu_to_be64(card->guid); memcpy(netdev->dev_addr, &guid, sizeof(u64)); memset(netdev->broadcast, 0xff, sizeof(u64)); if ( register_netdev ( netdev ) ) { fw_error ( "Cannot register the driver\n"); goto out; } fw_notify ( "%s: IPv4 over Firewire on device %016llx\n", netdev->name, card->guid ); card->netdev = netdev; return 0 /* ipv4_new_node ( ud ) */; out: if ( netdev ) free_netdev ( netdev ); return -ENOENT; } static int ipv4_remove ( struct device *dev ) { struct fw_unit * unit; struct fw_device *device; struct fw_card *card; struct net_device *netdev; struct ipv4_priv *priv; struct ipv4_node *node; struct ipv4_partial_datagram *pd, *pd_next; struct ipv4_packet_task *ptask, *pt_next; fw_debug("ipv4 Removing\n" ); unit = fw_unit ( dev ); device = fw_device ( unit->device.parent ); card = device->card; if ( ! device->is_local ) { fw_debug ( "Node %x is non-local, removing remote node entry\n", device->node_id ); ipv4_node_delete ( card, device ); return 0; } netdev = card->netdev; if ( netdev ) { fw_debug ( "Node %x is local: deleting netdev\n", device->node_id ); priv = netdev_priv ( netdev ); unregister_netdev ( netdev ); fw_debug ( "unregistered\n" ); if ( priv->local_fifo != INVALID_FIFO_ADDR ) fw_core_remove_address_handler ( &priv->handler ); fw_debug ( "address handler gone\n" ); if ( priv->broadcast_rcv_context ) { fw_iso_context_stop ( priv->broadcast_rcv_context ); fw_iso_buffer_destroy ( &priv->broadcast_rcv_buffer, priv->card ); fw_iso_context_destroy ( priv->broadcast_rcv_context ); fw_debug ( "rcv stopped\n" ); } list_for_each_entry_safe( ptask, pt_next, &priv->packet_list, packet_list ) { dev_kfree_skb_any ( ptask->skb ); kmem_cache_free( ipv4_packet_task_cache, ptask ); } list_for_each_entry_safe( ptask, pt_next, &priv->broadcasted_list, packet_list ) { dev_kfree_skb_any ( ptask->skb ); kmem_cache_free( ipv4_packet_task_cache, ptask ); } list_for_each_entry_safe( ptask, pt_next, &priv->sent_list, packet_list ) { dev_kfree_skb_any ( ptask->skb ); kmem_cache_free( ipv4_packet_task_cache, ptask ); } fw_debug ( "lists emptied\n" ); list_for_each_entry( node, &card->ipv4_nodes, ipv4_nodes ) { if ( node->pdg_size ) { list_for_each_entry_safe( pd, pd_next, &node->pdg_list, pdg_list ) ipv4_pd_delete ( pd ); node->pdg_size = 0; } node->fifo = INVALID_FIFO_ADDR; } fw_debug ( "nodes cleaned up\n" ); free_netdev ( netdev ); card->netdev = NULL; fw_debug ( "done\n" ); } return 0; } static void ipv4_update ( struct fw_unit *unit ) { struct fw_device *device; struct fw_card *card; fw_debug ( "ipv4_update unit %p\n", unit ); device = fw_device ( unit->device.parent ); card = device->card; if ( ! device->is_local ) { struct ipv4_node *node; u64 guid; struct net_device *netdev; struct ipv4_priv *priv; netdev = card->netdev; if ( netdev ) { priv = netdev_priv ( netdev ); guid = (u64)device->config_rom[3] << 32 | device->config_rom[4]; node = ipv4_node_find_by_guid ( priv, guid ); if ( ! node ) { fw_error ( "ipv4_update: no node for device %llx\n", guid ); return; } fw_debug ( "Non-local, updating remote node entry for guid %llx old generation %x, old nodeid %x\n", guid, node->generation, node->nodeid ); node->generation = device->generation; rmb(); node->nodeid = device->node_id; fw_debug ( "New generation %x, new nodeid %x\n", node->generation, node->nodeid ); } else fw_error ( "nonlocal, but no netdev? How can that be?\n" ); } else { /* FIXME: What do we need to do on bus reset? */ fw_debug ( "Local, doing nothing\n" ); } } static struct fw_driver ipv4_driver = { .driver = { .owner = THIS_MODULE, .name = ipv4_driver_name, .bus = &fw_bus_type, .probe = ipv4_probe, .remove = ipv4_remove, }, .update = ipv4_update, .id_table = ipv4_id_table, }; static int __init ipv4_init ( void ) { int added; added = fw_core_add_descriptor ( &ipv4_unit_directory ); if ( added < 0 ) fw_error ( "Failed to add descriptor" ); ipv4_packet_task_cache = kmem_cache_create("packet_task", sizeof(struct ipv4_packet_task), 0, 0, NULL); fw_debug("Adding ipv4 module\n" ); return driver_register ( &ipv4_driver.driver ); } static void __exit ipv4_cleanup ( void ) { fw_core_remove_descriptor ( &ipv4_unit_directory ); fw_debug("Removing ipv4 module\n" ); driver_unregister ( &ipv4_driver.driver ); } module_init(ipv4_init); module_exit(ipv4_cleanup);