/* * Copyright (C) 2000 Jens Axboe <axboe@suse.de> * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com> * * May be copied or modified under the terms of the GNU General Public * License. See linux/COPYING for more information. * * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and * DVD-RAM devices. * * Theory of operation: * * At the lowest level, there is the standard driver for the CD/DVD device, * typically ide-cd.c or sr.c. This driver can handle read and write requests, * but it doesn't know anything about the special restrictions that apply to * packet writing. One restriction is that write requests must be aligned to * packet boundaries on the physical media, and the size of a write request * must be equal to the packet size. Another restriction is that a * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read * command, if the previous command was a write. * * The purpose of the packet writing driver is to hide these restrictions from * higher layers, such as file systems, and present a block device that can be * randomly read and written using 2kB-sized blocks. * * The lowest layer in the packet writing driver is the packet I/O scheduler. * Its data is defined by the struct packet_iosched and includes two bio * queues with pending read and write requests. These queues are processed * by the pkt_iosched_process_queue() function. The write requests in this * queue are already properly aligned and sized. This layer is responsible for * issuing the flush cache commands and scheduling the I/O in a good order. * * The next layer transforms unaligned write requests to aligned writes. This * transformation requires reading missing pieces of data from the underlying * block device, assembling the pieces to full packets and queuing them to the * packet I/O scheduler. * * At the top layer there is a custom make_request_fn function that forwards * read requests directly to the iosched queue and puts write requests in the * unaligned write queue. A kernel thread performs the necessary read * gathering to convert the unaligned writes to aligned writes and then feeds * them to the packet I/O scheduler. * *************************************************************************/ #include <linux/pktcdvd.h> #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/kthread.h> #include <linux/errno.h> #include <linux/spinlock.h> #include <linux/file.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/miscdevice.h> #include <linux/suspend.h> #include <linux/mutex.h> #include <scsi/scsi_cmnd.h> #include <scsi/scsi_ioctl.h> #include <scsi/scsi.h> #include <asm/uaccess.h> #if PACKET_DEBUG #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args) #else #define DPRINTK(fmt, args...) #endif #if PACKET_DEBUG > 1 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args) #else #define VPRINTK(fmt, args...) #endif #define MAX_SPEED 0xffff #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1)) static struct pktcdvd_device *pkt_devs[MAX_WRITERS]; static struct proc_dir_entry *pkt_proc; static int pkt_major; static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */ static mempool_t *psd_pool; static void pkt_bio_finished(struct pktcdvd_device *pd) { BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0); if (atomic_dec_and_test(&pd->cdrw.pending_bios)) { VPRINTK("pktcdvd: queue empty\n"); atomic_set(&pd->iosched.attention, 1); wake_up(&pd->wqueue); } } static void pkt_bio_destructor(struct bio *bio) { kfree(bio->bi_io_vec); kfree(bio); } static struct bio *pkt_bio_alloc(int nr_iovecs) { struct bio_vec *bvl = NULL; struct bio *bio; bio = kmalloc(sizeof(struct bio), GFP_KERNEL); if (!bio) goto no_bio; bio_init(bio); bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL); if (!bvl) goto no_bvl; bio->bi_max_vecs = nr_iovecs; bio->bi_io_vec = bvl; bio->bi_destructor = pkt_bio_destructor; return bio; no_bvl: kfree(bio); no_bio: return NULL; } /* * Allocate a packet_data struct */ static struct packet_data *pkt_alloc_packet_data(int frames) { int i; struct packet_data *pkt; pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL); if (!pkt) goto no_pkt; pkt->frames = frames; pkt->w_bio = pkt_bio_alloc(frames); if (!pkt->w_bio) goto no_bio; for (i = 0; i < frames / FRAMES_PER_PAGE; i++) { pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO); if (!pkt->pages[i]) goto no_page; } spin_lock_init(&pkt->lock); for (i = 0; i < frames; i++) { struct bio *bio = pkt_bio_alloc(1); if (!bio) goto no_rd_bio; pkt->r_bios[i] = bio; } return pkt; no_rd_bio: for (i = 0; i < frames; i++) { struct bio *bio = pkt->r_bios[i]; if (bio) bio_put(bio); } no_page: for (i = 0; i < frames / FRAMES_PER_PAGE; i++) if (pkt->pages[i]) __free_page(pkt->pages[i]); bio_put(pkt->w_bio); no_bio: kfree(pkt); no_pkt: return NULL; } /* * Free a packet_data struct */ static void pkt_free_packet_data(struct packet_data *pkt) { int i; for (i = 0; i < pkt->frames; i++) { struct bio *bio = pkt->r_bios[i]; if (bio) bio_put(bio); } for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++) __free_page(pkt->pages[i]); bio_put(pkt->w_bio); kfree(pkt); } static void pkt_shrink_pktlist(struct pktcdvd_device *pd) { struct packet_data *pkt, *next; BUG_ON(!list_empty(&pd->cdrw.pkt_active_list)); list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) { pkt_free_packet_data(pkt); } INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); } static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets) { struct packet_data *pkt; BUG_ON(!list_empty(&pd->cdrw.pkt_free_list)); while (nr_packets > 0) { pkt = pkt_alloc_packet_data(pd->settings.size >> 2); if (!pkt) { pkt_shrink_pktlist(pd); return 0; } pkt->id = nr_packets; pkt->pd = pd; list_add(&pkt->list, &pd->cdrw.pkt_free_list); nr_packets--; } return 1; } static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node) { struct rb_node *n = rb_next(&node->rb_node); if (!n) return NULL; return rb_entry(n, struct pkt_rb_node, rb_node); } static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node) { rb_erase(&node->rb_node, &pd->bio_queue); mempool_free(node, pd->rb_pool); pd->bio_queue_size--; BUG_ON(pd->bio_queue_size < 0); } /* * Find the first node in the pd->bio_queue rb tree with a starting sector >= s. */ static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s) { struct rb_node *n = pd->bio_queue.rb_node; struct rb_node *next; struct pkt_rb_node *tmp; if (!n) { BUG_ON(pd->bio_queue_size > 0); return NULL; } for (;;) { tmp = rb_entry(n, struct pkt_rb_node, rb_node); if (s <= tmp->bio->bi_sector) next = n->rb_left; else next = n->rb_right; if (!next) break; n = next; } if (s > tmp->bio->bi_sector) { tmp = pkt_rbtree_next(tmp); if (!tmp) return NULL; } BUG_ON(s > tmp->bio->bi_sector); return tmp; } /* * Insert a node into the pd->bio_queue rb tree. */ static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node) { struct rb_node **p = &pd->bio_queue.rb_node; struct rb_node *parent = NULL; sector_t s = node->bio->bi_sector; struct pkt_rb_node *tmp; while (*p) { parent = *p; tmp = rb_entry(parent, struct pkt_rb_node, rb_node); if (s < tmp->bio->bi_sector) p = &(*p)->rb_left; else p = &(*p)->rb_right; } rb_link_node(&node->rb_node, parent, p); rb_insert_color(&node->rb_node, &pd->bio_queue); pd->bio_queue_size++; } /* * Add a bio to a single linked list defined by its head and tail pointers. */ static void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail) { bio->bi_next = NULL; if (*list_tail) { BUG_ON((*list_head) == NULL); (*list_tail)->bi_next = bio; (*list_tail) = bio; } else { BUG_ON((*list_head) != NULL); (*list_head) = bio; (*list_tail) = bio; } } /* * Remove and return the first bio from a single linked list defined by its * head and tail pointers. */ static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail) { struct bio *bio; if (*list_head == NULL) return NULL; bio = *list_head; *list_head = bio->bi_next; if (*list_head == NULL) *list_tail = NULL; bio->bi_next = NULL; return bio; } /* * Send a packet_command to the underlying block device and * wait for completion. */ static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc) { char sense[SCSI_SENSE_BUFFERSIZE]; request_queue_t *q; struct request *rq; DECLARE_COMPLETION(wait); int err = 0; q = bdev_get_queue(pd->bdev); rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? WRITE : READ, __GFP_WAIT); rq->errors = 0; rq->rq_disk = pd->bdev->bd_disk; rq->bio = NULL; rq->buffer = NULL; rq->timeout = 60*HZ; rq->data = cgc->buffer; rq->data_len = cgc->buflen; rq->sense = sense; memset(sense, 0, sizeof(sense)); rq->sense_len = 0; rq->flags |= REQ_BLOCK_PC | REQ_HARDBARRIER; if (cgc->quiet) rq->flags |= REQ_QUIET; memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE); if (sizeof(rq->cmd) > CDROM_PACKET_SIZE) memset(rq->cmd + CDROM_PACKET_SIZE, 0, sizeof(rq->cmd) - CDROM_PACKET_SIZE); rq->cmd_len = COMMAND_SIZE(rq->cmd[0]); rq->ref_count++; rq->flags |= REQ_NOMERGE; rq->waiting = &wait; rq->end_io = blk_end_sync_rq; elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1); generic_unplug_device(q); wait_for_completion(&wait); if (rq->errors) err = -EIO; blk_put_request(rq); return err; } /* * A generic sense dump / resolve mechanism should be implemented across * all ATAPI + SCSI devices. */ static void pkt_dump_sense(struct packet_command *cgc) { static char *info[9] = { "No sense", "Recovered error", "Not ready", "Medium error", "Hardware error", "Illegal request", "Unit attention", "Data protect", "Blank check" }; int i; struct request_sense *sense = cgc->sense; printk("pktcdvd:"); for (i = 0; i < CDROM_PACKET_SIZE; i++) printk(" %02x", cgc->cmd[i]); printk(" - "); if (sense == NULL) { printk("no sense\n"); return; } printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq); if (sense->sense_key > 8) { printk(" (INVALID)\n"); return; } printk(" (%s)\n", info[sense->sense_key]); } /* * flush the drive cache to media */ static int pkt_flush_cache(struct pktcdvd_device *pd) { struct packet_command cgc; init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); cgc.cmd[0] = GPCMD_FLUSH_CACHE; cgc.quiet = 1; /* * the IMMED bit -- we default to not setting it, although that * would allow a much faster close, this is safer */ #if 0 cgc.cmd[1] = 1 << 1; #endif return pkt_generic_packet(pd, &cgc); } /* * speed is given as the normal factor, e.g. 4 for 4x */ static int pkt_set_speed(struct pktcdvd_device *pd, unsigned write_speed, unsigned read_speed) { struct packet_command cgc; struct request_sense sense; int ret; init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); cgc.sense = &sense; cgc.cmd[0] = GPCMD_SET_SPEED; cgc.cmd[2] = (read_speed >> 8) & 0xff; cgc.cmd[3] = read_speed & 0xff; cgc.cmd[4] = (write_speed >> 8) & 0xff; cgc.cmd[5] = write_speed & 0xff; if ((ret = pkt_generic_packet(pd, &cgc))) pkt_dump_sense(&cgc); return ret; } /* * Queue a bio for processing by the low-level CD device. Must be called * from process context. */ static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio) { spin_lock(&pd->iosched.lock); if (bio_data_dir(bio) == READ) { pkt_add_list_last(bio, &pd->iosched.read_queue, &pd->iosched.read_queue_tail); } else { pkt_add_list_last(bio, &pd->iosched.write_queue, &pd->iosched.write_queue_tail); } spin_unlock(&pd->iosched.lock); atomic_set(&pd->iosched.attention, 1); wake_up(&pd->wqueue); } /* * Process the queued read/write requests. This function handles special * requirements for CDRW drives: * - A cache flush command must be inserted before a read request if the * previous request was a write. * - Switching between reading and writing is slow, so don't do it more often * than necessary. * - Optimize for throughput at the expense of latency. This means that streaming * writes will never be interrupted by a read, but if the drive has to seek * before the next write, switch to reading instead if there are any pending * read requests. * - Set the read speed according to current usage pattern. When only reading * from the device, it's best to use the highest possible read speed, but * when switching often between reading and writing, it's better to have the * same read and write speeds. */ static void pkt_iosched_process_queue(struct pktcdvd_device *pd) { if (atomic_read(&pd->iosched.attention) == 0) return; atomic_set(&pd->iosched.attention, 0); for (;;) { struct bio *bio; int reads_queued, writes_queued; spin_lock(&pd->iosched.lock); reads_queued = (pd->iosched.read_queue != NULL); writes_queued = (pd->iosched.write_queue != NULL); spin_unlock(&pd->iosched.lock); if (!reads_queued && !writes_queued) break; if (pd->iosched.writing) { int need_write_seek = 1; spin_lock(&pd->iosched.lock); bio = pd->iosched.write_queue; spin_unlock(&pd->iosched.lock); if (bio && (bio->bi_sector == pd->iosched.last_write)) need_write_seek = 0; if (need_write_seek && reads_queued) { if (atomic_read(&pd->cdrw.pending_bios) > 0) { VPRINTK("pktcdvd: write, waiting\n"); break; } pkt_flush_cache(pd); pd->iosched.writing = 0; } } else { if (!reads_queued && writes_queued) { if (atomic_read(&pd->cdrw.pending_bios) > 0) { VPRINTK("pktcdvd: read, waiting\n"); break; } pd->iosched.writing = 1; } } spin_lock(&pd->iosched.lock); if (pd->iosched.writing) { bio = pkt_get_list_first(&pd->iosched.write_queue, &pd->iosched.write_queue_tail); } else { bio = pkt_get_list_first(&pd->iosched.read_queue, &pd->iosched.read_queue_tail); } spin_unlock(&pd->iosched.lock); if (!bio) continue; if (bio_data_dir(bio) == READ) pd->iosched.successive_reads += bio->bi_size >> 10; else { pd->iosched.successive_reads = 0; pd->iosched.last_write = bio->bi_sector + bio_sectors(bio); } if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) { if (pd->read_speed == pd->write_speed) { pd->read_speed = MAX_SPEED; pkt_set_speed(pd, pd->write_speed, pd->read_speed); } } else { if (pd->read_speed != pd->write_speed) { pd->read_speed = pd->write_speed; pkt_set_speed(pd, pd->write_speed, pd->read_speed); } } atomic_inc(&pd->cdrw.pending_bios); generic_make_request(bio); } } /* * Special care is needed if the underlying block device has a small * max_phys_segments value. */ static int pkt_set_segment_merging(struct pktcdvd_device *pd, request_queue_t *q) { if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) { /* * The cdrom device can handle one segment/frame */ clear_bit(PACKET_MERGE_SEGS, &pd->flags); return 0; } else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) { /* * We can handle this case at the expense of some extra memory * copies during write operations */ set_bit(PACKET_MERGE_SEGS, &pd->flags); return 0; } else { printk("pktcdvd: cdrom max_phys_segments too small\n"); return -EIO; } } /* * Copy CD_FRAMESIZE bytes from src_bio into a destination page */ static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs) { unsigned int copy_size = CD_FRAMESIZE; while (copy_size > 0) { struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg); void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) + src_bvl->bv_offset + offs; void *vto = page_address(dst_page) + dst_offs; int len = min_t(int, copy_size, src_bvl->bv_len - offs); BUG_ON(len < 0); memcpy(vto, vfrom, len); kunmap_atomic(vfrom, KM_USER0); seg++; offs = 0; dst_offs += len; copy_size -= len; } } /* * Copy all data for this packet to pkt->pages[], so that * a) The number of required segments for the write bio is minimized, which * is necessary for some scsi controllers. * b) The data can be used as cache to avoid read requests if we receive a * new write request for the same zone. */ static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec) { int f, p, offs; /* Copy all data to pkt->pages[] */ p = 0; offs = 0; for (f = 0; f < pkt->frames; f++) { if (bvec[f].bv_page != pkt->pages[p]) { void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset; void *vto = page_address(pkt->pages[p]) + offs; memcpy(vto, vfrom, CD_FRAMESIZE); kunmap_atomic(vfrom, KM_USER0); bvec[f].bv_page = pkt->pages[p]; bvec[f].bv_offset = offs; } else { BUG_ON(bvec[f].bv_offset != offs); } offs += CD_FRAMESIZE; if (offs >= PAGE_SIZE) { offs = 0; p++; } } } static int pkt_end_io_read(struct bio *bio, unsigned int bytes_done, int err) { struct packet_data *pkt = bio->bi_private; struct pktcdvd_device *pd = pkt->pd; BUG_ON(!pd); if (bio->bi_size) return 1; VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio, (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err); if (err) atomic_inc(&pkt->io_errors); if (atomic_dec_and_test(&pkt->io_wait)) { atomic_inc(&pkt->run_sm); wake_up(&pd->wqueue); } pkt_bio_finished(pd); return 0; } static int pkt_end_io_packet_write(struct bio *bio, unsigned int bytes_done, int err) { struct packet_data *pkt = bio->bi_private; struct pktcdvd_device *pd = pkt->pd; BUG_ON(!pd); if (bio->bi_size) return 1; VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err); pd->stats.pkt_ended++; pkt_bio_finished(pd); atomic_dec(&pkt->io_wait); atomic_inc(&pkt->run_sm); wake_up(&pd->wqueue); return 0; } /* * Schedule reads for the holes in a packet */ static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt) { int frames_read = 0; struct bio *bio; int f; char written[PACKET_MAX_SIZE]; BUG_ON(!pkt->orig_bios); atomic_set(&pkt->io_wait, 0); atomic_set(&pkt->io_errors, 0); /* * Figure out which frames we need to read before we can write. */ memset(written, 0, sizeof(written)); spin_lock(&pkt->lock); for (bio = pkt->orig_bios; bio; bio = bio->bi_next) { int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9); int num_frames = bio->bi_size / CD_FRAMESIZE; pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9); BUG_ON(first_frame < 0); BUG_ON(first_frame + num_frames > pkt->frames); for (f = first_frame; f < first_frame + num_frames; f++) written[f] = 1; } spin_unlock(&pkt->lock); if (pkt->cache_valid) { VPRINTK("pkt_gather_data: zone %llx cached\n", (unsigned long long)pkt->sector); goto out_account; } /* * Schedule reads for missing parts of the packet. */ for (f = 0; f < pkt->frames; f++) { int p, offset; if (written[f]) continue; bio = pkt->r_bios[f]; bio_init(bio); bio->bi_max_vecs = 1; bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9); bio->bi_bdev = pd->bdev; bio->bi_end_io = pkt_end_io_read; bio->bi_private = pkt; p = (f * CD_FRAMESIZE) / PAGE_SIZE; offset = (f * CD_FRAMESIZE) % PAGE_SIZE; VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n", f, pkt->pages[p], offset); if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset)) BUG(); atomic_inc(&pkt->io_wait); bio->bi_rw = READ; pkt_queue_bio(pd, bio); frames_read++; } out_account: VPRINTK("pkt_gather_data: need %d frames for zone %llx\n", frames_read, (unsigned long long)pkt->sector); pd->stats.pkt_started++; pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9); } /* * Find a packet matching zone, or the least recently used packet if * there is no match. */ static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone) { struct packet_data *pkt; list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) { if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) { list_del_init(&pkt->list); if (pkt->sector != zone) pkt->cache_valid = 0; return pkt; } } BUG(); return NULL; } static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt) { if (pkt->cache_valid) { list_add(&pkt->list, &pd->cdrw.pkt_free_list); } else { list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list); } } /* * recover a failed write, query for relocation if possible * * returns 1 if recovery is possible, or 0 if not * */ static int pkt_start_recovery(struct packet_data *pkt) { /* * FIXME. We need help from the file system to implement * recovery handling. */ return 0; #if 0 struct request *rq = pkt->rq; struct pktcdvd_device *pd = rq->rq_disk->private_data; struct block_device *pkt_bdev; struct super_block *sb = NULL; unsigned long old_block, new_block; sector_t new_sector; pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev)); if (pkt_bdev) { sb = get_super(pkt_bdev); bdput(pkt_bdev); } if (!sb) return 0; if (!sb->s_op || !sb->s_op->relocate_blocks) goto out; old_block = pkt->sector / (CD_FRAMESIZE >> 9); if (sb->s_op->relocate_blocks(sb, old_block, &new_block)) goto out; new_sector = new_block * (CD_FRAMESIZE >> 9); pkt->sector = new_sector; pkt->bio->bi_sector = new_sector; pkt->bio->bi_next = NULL; pkt->bio->bi_flags = 1 << BIO_UPTODATE; pkt->bio->bi_idx = 0; BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW)); BUG_ON(pkt->bio->bi_vcnt != pkt->frames); BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE); BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write); BUG_ON(pkt->bio->bi_private != pkt); drop_super(sb); return 1; out: drop_super(sb); return 0; #endif } static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state) { #if PACKET_DEBUG > 1 static const char *state_name[] = { "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED" }; enum packet_data_state old_state = pkt->state; VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector, state_name[old_state], state_name[state]); #endif pkt->state = state; } /* * Scan the work queue to see if we can start a new packet. * returns non-zero if any work was done. */ static int pkt_handle_queue(struct pktcdvd_device *pd) { struct packet_data *pkt, *p; struct bio *bio = NULL; sector_t zone = 0; /* Suppress gcc warning */ struct pkt_rb_node *node, *first_node; struct rb_node *n; VPRINTK("handle_queue\n"); atomic_set(&pd->scan_queue, 0); if (list_empty(&pd->cdrw.pkt_free_list)) { VPRINTK("handle_queue: no pkt\n"); return 0; } /* * Try to find a zone we are not already working on. */ spin_lock(&pd->lock); first_node = pkt_rbtree_find(pd, pd->current_sector); if (!first_node) { n = rb_first(&pd->bio_queue); if (n) first_node = rb_entry(n, struct pkt_rb_node, rb_node); } node = first_node; while (node) { bio = node->bio; zone = ZONE(bio->bi_sector, pd); list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) { if (p->sector == zone) { bio = NULL; goto try_next_bio; } } break; try_next_bio: node = pkt_rbtree_next(node); if (!node) { n = rb_first(&pd->bio_queue); if (n) node = rb_entry(n, struct pkt_rb_node, rb_node); } if (node == first_node) node = NULL; } spin_unlock(&pd->lock); if (!bio) { VPRINTK("handle_queue: no bio\n"); return 0; } pkt = pkt_get_packet_data(pd, zone); pd->current_sector = zone + pd->settings.size; pkt->sector = zone; BUG_ON(pkt->frames != pd->settings.size >> 2); pkt->write_size = 0; /* * Scan work queue for bios in the same zone and link them * to this packet. */ spin_lock(&pd->lock); VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone); while ((node = pkt_rbtree_find(pd, zone)) != NULL) { bio = node->bio; VPRINTK("pkt_handle_queue: found zone=%llx\n", (unsigned long long)ZONE(bio->bi_sector, pd)); if (ZONE(bio->bi_sector, pd) != zone) break; pkt_rbtree_erase(pd, node); spin_lock(&pkt->lock); pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail); pkt->write_size += bio->bi_size / CD_FRAMESIZE; spin_unlock(&pkt->lock); } spin_unlock(&pd->lock); pkt->sleep_time = max(PACKET_WAIT_TIME, 1); pkt_set_state(pkt, PACKET_WAITING_STATE); atomic_set(&pkt->run_sm, 1); spin_lock(&pd->cdrw.active_list_lock); list_add(&pkt->list, &pd->cdrw.pkt_active_list); spin_unlock(&pd->cdrw.active_list_lock); return 1; } /* * Assemble a bio to write one packet and queue the bio for processing * by the underlying block device. */ static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt) { struct bio *bio; int f; int frames_write; struct bio_vec *bvec = pkt->w_bio->bi_io_vec; for (f = 0; f < pkt->frames; f++) { bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE]; bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE; } /* * Fill-in bvec with data from orig_bios. */ frames_write = 0; spin_lock(&pkt->lock); for (bio = pkt->orig_bios; bio; bio = bio->bi_next) { int segment = bio->bi_idx; int src_offs = 0; int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9); int num_frames = bio->bi_size / CD_FRAMESIZE; BUG_ON(first_frame < 0); BUG_ON(first_frame + num_frames > pkt->frames); for (f = first_frame; f < first_frame + num_frames; f++) { struct bio_vec *src_bvl = bio_iovec_idx(bio, segment); while (src_offs >= src_bvl->bv_len) { src_offs -= src_bvl->bv_len; segment++; BUG_ON(segment >= bio->bi_vcnt); src_bvl = bio_iovec_idx(bio, segment); } if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) { bvec[f].bv_page = src_bvl->bv_page; bvec[f].bv_offset = src_bvl->bv_offset + src_offs; } else { pkt_copy_bio_data(bio, segment, src_offs, bvec[f].bv_page, bvec[f].bv_offset); } src_offs += CD_FRAMESIZE; frames_write++; } } pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE); spin_unlock(&pkt->lock); VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n", frames_write, (unsigned long long)pkt->sector); BUG_ON(frames_write != pkt->write_size); if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) { pkt_make_local_copy(pkt, bvec); pkt->cache_valid = 1; } else { pkt->cache_valid = 0; } /* Start the write request */ bio_init(pkt->w_bio); pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE; pkt->w_bio->bi_sector = pkt->sector; pkt->w_bio->bi_bdev = pd->bdev; pkt->w_bio->bi_end_io = pkt_end_io_packet_write; pkt->w_bio->bi_private = pkt; for (f = 0; f < pkt->frames; f++) if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset)) BUG(); VPRINTK("pktcdvd: vcnt=%d\n", pkt->w_bio->bi_vcnt); atomic_set(&pkt->io_wait, 1); pkt->w_bio->bi_rw = WRITE; pkt_queue_bio(pd, pkt->w_bio); } static void pkt_finish_packet(struct packet_data *pkt, int uptodate) { struct bio *bio, *next; if (!uptodate) pkt->cache_valid = 0; /* Finish all bios corresponding to this packet */ bio = pkt->orig_bios; while (bio) { next = bio->bi_next; bio->bi_next = NULL; bio_endio(bio, bio->bi_size, uptodate ? 0 : -EIO); bio = next; } pkt->orig_bios = pkt->orig_bios_tail = NULL; } static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt) { int uptodate; VPRINTK("run_state_machine: pkt %d\n", pkt->id); for (;;) { switch (pkt->state) { case PACKET_WAITING_STATE: if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0)) return; pkt->sleep_time = 0; pkt_gather_data(pd, pkt); pkt_set_state(pkt, PACKET_READ_WAIT_STATE); break; case PACKET_READ_WAIT_STATE: if (atomic_read(&pkt->io_wait) > 0) return; if (atomic_read(&pkt->io_errors) > 0) { pkt_set_state(pkt, PACKET_RECOVERY_STATE); } else { pkt_start_write(pd, pkt); } break; case PACKET_WRITE_WAIT_STATE: if (atomic_read(&pkt->io_wait) > 0) return; if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) { pkt_set_state(pkt, PACKET_FINISHED_STATE); } else { pkt_set_state(pkt, PACKET_RECOVERY_STATE); } break; case PACKET_RECOVERY_STATE: if (pkt_start_recovery(pkt)) { pkt_start_write(pd, pkt); } else { VPRINTK("No recovery possible\n"); pkt_set_state(pkt, PACKET_FINISHED_STATE); } break; case PACKET_FINISHED_STATE: uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags); pkt_finish_packet(pkt, uptodate); return; default: BUG(); break; } } } static void pkt_handle_packets(struct pktcdvd_device *pd) { struct packet_data *pkt, *next; VPRINTK("pkt_handle_packets\n"); /* * Run state machine for active packets */ list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { if (atomic_read(&pkt->run_sm) > 0) { atomic_set(&pkt->run_sm, 0); pkt_run_state_machine(pd, pkt); } } /* * Move no longer active packets to the free list */ spin_lock(&pd->cdrw.active_list_lock); list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) { if (pkt->state == PACKET_FINISHED_STATE) { list_del(&pkt->list); pkt_put_packet_data(pd, pkt); pkt_set_state(pkt, PACKET_IDLE_STATE); atomic_set(&pd->scan_queue, 1); } } spin_unlock(&pd->cdrw.active_list_lock); } static void pkt_count_states(struct pktcdvd_device *pd, int *states) { struct packet_data *pkt; int i; for (i = 0; i < PACKET_NUM_STATES; i++) states[i] = 0; spin_lock(&pd->cdrw.active_list_lock); list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { states[pkt->state]++; } spin_unlock(&pd->cdrw.active_list_lock); } /* * kcdrwd is woken up when writes have been queued for one of our * registered devices */ static int kcdrwd(void *foobar) { struct pktcdvd_device *pd = foobar; struct packet_data *pkt; long min_sleep_time, residue; set_user_nice(current, -20); for (;;) { DECLARE_WAITQUEUE(wait, current); /* * Wait until there is something to do */ add_wait_queue(&pd->wqueue, &wait); for (;;) { set_current_state(TASK_INTERRUPTIBLE); /* Check if we need to run pkt_handle_queue */ if (atomic_read(&pd->scan_queue) > 0) goto work_to_do; /* Check if we need to run the state machine for some packet */ list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { if (atomic_read(&pkt->run_sm) > 0) goto work_to_do; } /* Check if we need to process the iosched queues */ if (atomic_read(&pd->iosched.attention) != 0) goto work_to_do; /* Otherwise, go to sleep */ if (PACKET_DEBUG > 1) { int states[PACKET_NUM_STATES]; pkt_count_states(pd, states); VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", states[0], states[1], states[2], states[3], states[4], states[5]); } min_sleep_time = MAX_SCHEDULE_TIMEOUT; list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { if (pkt->sleep_time && pkt->sleep_time < min_sleep_time) min_sleep_time = pkt->sleep_time; } generic_unplug_device(bdev_get_queue(pd->bdev)); VPRINTK("kcdrwd: sleeping\n"); residue = schedule_timeout(min_sleep_time); VPRINTK("kcdrwd: wake up\n"); /* make swsusp happy with our thread */ try_to_freeze(); list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { if (!pkt->sleep_time) continue; pkt->sleep_time -= min_sleep_time - residue; if (pkt->sleep_time <= 0) { pkt->sleep_time = 0; atomic_inc(&pkt->run_sm); } } if (signal_pending(current)) { flush_signals(current); } if (kthread_should_stop()) break; } work_to_do: set_current_state(TASK_RUNNING); remove_wait_queue(&pd->wqueue, &wait); if (kthread_should_stop()) break; /* * if pkt_handle_queue returns true, we can queue * another request. */ while (pkt_handle_queue(pd)) ; /* * Handle packet state machine */ pkt_handle_packets(pd); /* * Handle iosched queues */ pkt_iosched_process_queue(pd); } return 0; } static void pkt_print_settings(struct pktcdvd_device *pd) { printk("pktcdvd: %s packets, ", pd->settings.fp ? "Fixed" : "Variable"); printk("%u blocks, ", pd->settings.size >> 2); printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2'); } static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control) { memset(cgc->cmd, 0, sizeof(cgc->cmd)); cgc->cmd[0] = GPCMD_MODE_SENSE_10; cgc->cmd[2] = page_code | (page_control << 6); cgc->cmd[7] = cgc->buflen >> 8; cgc->cmd[8] = cgc->buflen & 0xff; cgc->data_direction = CGC_DATA_READ; return pkt_generic_packet(pd, cgc); } static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc) { memset(cgc->cmd, 0, sizeof(cgc->cmd)); memset(cgc->buffer, 0, 2); cgc->cmd[0] = GPCMD_MODE_SELECT_10; cgc->cmd[1] = 0x10; /* PF */ cgc->cmd[7] = cgc->buflen >> 8; cgc->cmd[8] = cgc->buflen & 0xff; cgc->data_direction = CGC_DATA_WRITE; return pkt_generic_packet(pd, cgc); } static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di) { struct packet_command cgc; int ret; /* set up command and get the disc info */ init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ); cgc.cmd[0] = GPCMD_READ_DISC_INFO; cgc.cmd[8] = cgc.buflen = 2; cgc.quiet = 1; if ((ret = pkt_generic_packet(pd, &cgc))) return ret; /* not all drives have the same disc_info length, so requeue * packet with the length the drive tells us it can supply */ cgc.buflen = be16_to_cpu(di->disc_information_length) + sizeof(di->disc_information_length); if (cgc.buflen > sizeof(disc_information)) cgc.buflen = sizeof(disc_information); cgc.cmd[8] = cgc.buflen; return pkt_generic_packet(pd, &cgc); } static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti) { struct packet_command cgc; int ret; init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ); cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO; cgc.cmd[1] = type & 3; cgc.cmd[4] = (track & 0xff00) >> 8; cgc.cmd[5] = track & 0xff; cgc.cmd[8] = 8; cgc.quiet = 1; if ((ret = pkt_generic_packet(pd, &cgc))) return ret; cgc.buflen = be16_to_cpu(ti->track_information_length) + sizeof(ti->track_information_length); if (cgc.buflen > sizeof(track_information)) cgc.buflen = sizeof(track_information); cgc.cmd[8] = cgc.buflen; return pkt_generic_packet(pd, &cgc); } static int pkt_get_last_written(struct pktcdvd_device *pd, long *last_written) { disc_information di; track_information ti; __u32 last_track; int ret = -1; if ((ret = pkt_get_disc_info(pd, &di))) return ret; last_track = (di.last_track_msb << 8) | di.last_track_lsb; if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) return ret; /* if this track is blank, try the previous. */ if (ti.blank) { last_track--; if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) return ret; } /* if last recorded field is valid, return it. */ if (ti.lra_v) { *last_written = be32_to_cpu(ti.last_rec_address); } else { /* make it up instead */ *last_written = be32_to_cpu(ti.track_start) + be32_to_cpu(ti.track_size); if (ti.free_blocks) *last_written -= (be32_to_cpu(ti.free_blocks) + 7); } return 0; } /* * write mode select package based on pd->settings */ static int pkt_set_write_settings(struct pktcdvd_device *pd) { struct packet_command cgc; struct request_sense sense; write_param_page *wp; char buffer[128]; int ret, size; /* doesn't apply to DVD+RW or DVD-RAM */ if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12)) return 0; memset(buffer, 0, sizeof(buffer)); init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ); cgc.sense = &sense; if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { pkt_dump_sense(&cgc); return ret; } size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff)); pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff); if (size > sizeof(buffer)) size = sizeof(buffer); /* * now get it all */ init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ); cgc.sense = &sense; if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { pkt_dump_sense(&cgc); return ret; } /* * write page is offset header + block descriptor length */ wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset]; wp->fp = pd->settings.fp; wp->track_mode = pd->settings.track_mode; wp->write_type = pd->settings.write_type; wp->data_block_type = pd->settings.block_mode; wp->multi_session = 0; #ifdef PACKET_USE_LS wp->link_size = 7; wp->ls_v = 1; #endif if (wp->data_block_type == PACKET_BLOCK_MODE1) { wp->session_format = 0; wp->subhdr2 = 0x20; } else if (wp->data_block_type == PACKET_BLOCK_MODE2) { wp->session_format = 0x20; wp->subhdr2 = 8; #if 0 wp->mcn[0] = 0x80; memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1); #endif } else { /* * paranoia */ printk("pktcdvd: write mode wrong %d\n", wp->data_block_type); return 1; } wp->packet_size = cpu_to_be32(pd->settings.size >> 2); cgc.buflen = cgc.cmd[8] = size; if ((ret = pkt_mode_select(pd, &cgc))) { pkt_dump_sense(&cgc); return ret; } pkt_print_settings(pd); return 0; } /* * 1 -- we can write to this track, 0 -- we can't */ static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti) { switch (pd->mmc3_profile) { case 0x1a: /* DVD+RW */ case 0x12: /* DVD-RAM */ /* The track is always writable on DVD+RW/DVD-RAM */ return 1; default: break; } if (!ti->packet || !ti->fp) return 0; /* * "good" settings as per Mt Fuji. */ if (ti->rt == 0 && ti->blank == 0) return 1; if (ti->rt == 0 && ti->blank == 1) return 1; if (ti->rt == 1 && ti->blank == 0) return 1; printk("pktcdvd: bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet); return 0; } /* * 1 -- we can write to this disc, 0 -- we can't */ static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di) { switch (pd->mmc3_profile) { case 0x0a: /* CD-RW */ case 0xffff: /* MMC3 not supported */ break; case 0x1a: /* DVD+RW */ case 0x13: /* DVD-RW */ case 0x12: /* DVD-RAM */ return 1; default: VPRINTK("pktcdvd: Wrong disc profile (%x)\n", pd->mmc3_profile); return 0; } /* * for disc type 0xff we should probably reserve a new track. * but i'm not sure, should we leave this to user apps? probably. */ if (di->disc_type == 0xff) { printk("pktcdvd: Unknown disc. No track?\n"); return 0; } if (di->disc_type != 0x20 && di->disc_type != 0) { printk("pktcdvd: Wrong disc type (%x)\n", di->disc_type); return 0; } if (di->erasable == 0) { printk("pktcdvd: Disc not erasable\n"); return 0; } if (di->border_status == PACKET_SESSION_RESERVED) { printk("pktcdvd: Can't write to last track (reserved)\n"); return 0; } return 1; } static int pkt_probe_settings(struct pktcdvd_device *pd) { struct packet_command cgc; unsigned char buf[12]; disc_information di; track_information ti; int ret, track; init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); cgc.cmd[0] = GPCMD_GET_CONFIGURATION; cgc.cmd[8] = 8; ret = pkt_generic_packet(pd, &cgc); pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7]; memset(&di, 0, sizeof(disc_information)); memset(&ti, 0, sizeof(track_information)); if ((ret = pkt_get_disc_info(pd, &di))) { printk("failed get_disc\n"); return ret; } if (!pkt_writable_disc(pd, &di)) return -EROFS; pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR; track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */ if ((ret = pkt_get_track_info(pd, track, 1, &ti))) { printk("pktcdvd: failed get_track\n"); return ret; } if (!pkt_writable_track(pd, &ti)) { printk("pktcdvd: can't write to this track\n"); return -EROFS; } /* * we keep packet size in 512 byte units, makes it easier to * deal with request calculations. */ pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2; if (pd->settings.size == 0) { printk("pktcdvd: detected zero packet size!\n"); return -ENXIO; } if (pd->settings.size > PACKET_MAX_SECTORS) { printk("pktcdvd: packet size is too big\n"); return -EROFS; } pd->settings.fp = ti.fp; pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1); if (ti.nwa_v) { pd->nwa = be32_to_cpu(ti.next_writable); set_bit(PACKET_NWA_VALID, &pd->flags); } /* * in theory we could use lra on -RW media as well and just zero * blocks that haven't been written yet, but in practice that * is just a no-go. we'll use that for -R, naturally. */ if (ti.lra_v) { pd->lra = be32_to_cpu(ti.last_rec_address); set_bit(PACKET_LRA_VALID, &pd->flags); } else { pd->lra = 0xffffffff; set_bit(PACKET_LRA_VALID, &pd->flags); } /* * fine for now */ pd->settings.link_loss = 7; pd->settings.write_type = 0; /* packet */ pd->settings.track_mode = ti.track_mode; /* * mode1 or mode2 disc */ switch (ti.data_mode) { case PACKET_MODE1: pd->settings.block_mode = PACKET_BLOCK_MODE1; break; case PACKET_MODE2: pd->settings.block_mode = PACKET_BLOCK_MODE2; break; default: printk("pktcdvd: unknown data mode\n"); return -EROFS; } return 0; } /* * enable/disable write caching on drive */ static int pkt_write_caching(struct pktcdvd_device *pd, int set) { struct packet_command cgc; struct request_sense sense; unsigned char buf[64]; int ret; memset(buf, 0, sizeof(buf)); init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); cgc.sense = &sense; cgc.buflen = pd->mode_offset + 12; /* * caching mode page might not be there, so quiet this command */ cgc.quiet = 1; if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0))) return ret; buf[pd->mode_offset + 10] |= (!!set << 2); cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff)); ret = pkt_mode_select(pd, &cgc); if (ret) { printk("pktcdvd: write caching control failed\n"); pkt_dump_sense(&cgc); } else if (!ret && set) printk("pktcdvd: enabled write caching on %s\n", pd->name); return ret; } static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag) { struct packet_command cgc; init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL; cgc.cmd[4] = lockflag ? 1 : 0; return pkt_generic_packet(pd, &cgc); } /* * Returns drive maximum write speed */ static int pkt_get_max_speed(struct pktcdvd_device *pd, unsigned *write_speed) { struct packet_command cgc; struct request_sense sense; unsigned char buf[256+18]; unsigned char *cap_buf; int ret, offset; memset(buf, 0, sizeof(buf)); cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset]; init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN); cgc.sense = &sense; ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); if (ret) { cgc.buflen = pd->mode_offset + cap_buf[1] + 2 + sizeof(struct mode_page_header); ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); if (ret) { pkt_dump_sense(&cgc); return ret; } } offset = 20; /* Obsoleted field, used by older drives */ if (cap_buf[1] >= 28) offset = 28; /* Current write speed selected */ if (cap_buf[1] >= 30) { /* If the drive reports at least one "Logical Unit Write * Speed Performance Descriptor Block", use the information * in the first block. (contains the highest speed) */ int num_spdb = (cap_buf[30] << 8) + cap_buf[31]; if (num_spdb > 0) offset = 34; } *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1]; return 0; } /* These tables from cdrecord - I don't have orange book */ /* standard speed CD-RW (1-4x) */ static char clv_to_speed[16] = { /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; /* high speed CD-RW (-10x) */ static char hs_clv_to_speed[16] = { /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; /* ultra high speed CD-RW */ static char us_clv_to_speed[16] = { /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0 }; /* * reads the maximum media speed from ATIP */ static int pkt_media_speed(struct pktcdvd_device *pd, unsigned *speed) { struct packet_command cgc; struct request_sense sense; unsigned char buf[64]; unsigned int size, st, sp; int ret; init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ); cgc.sense = &sense; cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; cgc.cmd[1] = 2; cgc.cmd[2] = 4; /* READ ATIP */ cgc.cmd[8] = 2; ret = pkt_generic_packet(pd, &cgc); if (ret) { pkt_dump_sense(&cgc); return ret; } size = ((unsigned int) buf[0]<<8) + buf[1] + 2; if (size > sizeof(buf)) size = sizeof(buf); init_cdrom_command(&cgc, buf, size, CGC_DATA_READ); cgc.sense = &sense; cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; cgc.cmd[1] = 2; cgc.cmd[2] = 4; cgc.cmd[8] = size; ret = pkt_generic_packet(pd, &cgc); if (ret) { pkt_dump_sense(&cgc); return ret; } if (!buf[6] & 0x40) { printk("pktcdvd: Disc type is not CD-RW\n"); return 1; } if (!buf[6] & 0x4) { printk("pktcdvd: A1 values on media are not valid, maybe not CDRW?\n"); return 1; } st = (buf[6] >> 3) & 0x7; /* disc sub-type */ sp = buf[16] & 0xf; /* max speed from ATIP A1 field */ /* Info from cdrecord */ switch (st) { case 0: /* standard speed */ *speed = clv_to_speed[sp]; break; case 1: /* high speed */ *speed = hs_clv_to_speed[sp]; break; case 2: /* ultra high speed */ *speed = us_clv_to_speed[sp]; break; default: printk("pktcdvd: Unknown disc sub-type %d\n",st); return 1; } if (*speed) { printk("pktcdvd: Max. media speed: %d\n",*speed); return 0; } else { printk("pktcdvd: Unknown speed %d for sub-type %d\n",sp,st); return 1; } } static int pkt_perform_opc(struct pktcdvd_device *pd) { struct packet_command cgc; struct request_sense sense; int ret; VPRINTK("pktcdvd: Performing OPC\n"); init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); cgc.sense = &sense; cgc.timeout = 60*HZ; cgc.cmd[0] = GPCMD_SEND_OPC; cgc.cmd[1] = 1; if ((ret = pkt_generic_packet(pd, &cgc))) pkt_dump_sense(&cgc); return ret; } static int pkt_open_write(struct pktcdvd_device *pd) { int ret; unsigned int write_speed, media_write_speed, read_speed; if ((ret = pkt_probe_settings(pd))) { VPRINTK("pktcdvd: %s failed probe\n", pd->name); return ret; } if ((ret = pkt_set_write_settings(pd))) { DPRINTK("pktcdvd: %s failed saving write settings\n", pd->name); return -EIO; } pkt_write_caching(pd, USE_WCACHING); if ((ret = pkt_get_max_speed(pd, &write_speed))) write_speed = 16 * 177; switch (pd->mmc3_profile) { case 0x13: /* DVD-RW */ case 0x1a: /* DVD+RW */ case 0x12: /* DVD-RAM */ DPRINTK("pktcdvd: write speed %ukB/s\n", write_speed); break; default: if ((ret = pkt_media_speed(pd, &media_write_speed))) media_write_speed = 16; write_speed = min(write_speed, media_write_speed * 177); DPRINTK("pktcdvd: write speed %ux\n", write_speed / 176); break; } read_speed = write_speed; if ((ret = pkt_set_speed(pd, write_speed, read_speed))) { DPRINTK("pktcdvd: %s couldn't set write speed\n", pd->name); return -EIO; } pd->write_speed = write_speed; pd->read_speed = read_speed; if ((ret = pkt_perform_opc(pd))) { DPRINTK("pktcdvd: %s Optimum Power Calibration failed\n", pd->name); } return 0; } /* * called at open time. */ static int pkt_open_dev(struct pktcdvd_device *pd, int write) { int ret; long lba; request_queue_t *q; /* * We need to re-open the cdrom device without O_NONBLOCK to be able * to read/write from/to it. It is already opened in O_NONBLOCK mode * so bdget() can't fail. */ bdget(pd->bdev->bd_dev); if ((ret = blkdev_get(pd->bdev, FMODE_READ, O_RDONLY))) goto out; if ((ret = bd_claim(pd->bdev, pd))) goto out_putdev; if ((ret = pkt_get_last_written(pd, &lba))) { printk("pktcdvd: pkt_get_last_written failed\n"); goto out_unclaim; } set_capacity(pd->disk, lba << 2); set_capacity(pd->bdev->bd_disk, lba << 2); bd_set_size(pd->bdev, (loff_t)lba << 11); q = bdev_get_queue(pd->bdev); if (write) { if ((ret = pkt_open_write(pd))) goto out_unclaim; /* * Some CDRW drives can not handle writes larger than one packet, * even if the size is a multiple of the packet size. */ spin_lock_irq(q->queue_lock); blk_queue_max_sectors(q, pd->settings.size); spin_unlock_irq(q->queue_lock); set_bit(PACKET_WRITABLE, &pd->flags); } else { pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); clear_bit(PACKET_WRITABLE, &pd->flags); } if ((ret = pkt_set_segment_merging(pd, q))) goto out_unclaim; if (write) { if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) { printk("pktcdvd: not enough memory for buffers\n"); ret = -ENOMEM; goto out_unclaim; } printk("pktcdvd: %lukB available on disc\n", lba << 1); } return 0; out_unclaim: bd_release(pd->bdev); out_putdev: blkdev_put(pd->bdev); out: return ret; } /* * called when the device is closed. makes sure that the device flushes * the internal cache before we close. */ static void pkt_release_dev(struct pktcdvd_device *pd, int flush) { if (flush && pkt_flush_cache(pd)) DPRINTK("pktcdvd: %s not flushing cache\n", pd->name); pkt_lock_door(pd, 0); pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); bd_release(pd->bdev); blkdev_put(pd->bdev); pkt_shrink_pktlist(pd); } static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor) { if (dev_minor >= MAX_WRITERS) return NULL; return pkt_devs[dev_minor]; } static int pkt_open(struct inode *inode, struct file *file) { struct pktcdvd_device *pd = NULL; int ret; VPRINTK("pktcdvd: entering open\n"); mutex_lock(&ctl_mutex); pd = pkt_find_dev_from_minor(iminor(inode)); if (!pd) { ret = -ENODEV; goto out; } BUG_ON(pd->refcnt < 0); pd->refcnt++; if (pd->refcnt > 1) { if ((file->f_mode & FMODE_WRITE) && !test_bit(PACKET_WRITABLE, &pd->flags)) { ret = -EBUSY; goto out_dec; } } else { ret = pkt_open_dev(pd, file->f_mode & FMODE_WRITE); if (ret) goto out_dec; /* * needed here as well, since ext2 (among others) may change * the blocksize at mount time */ set_blocksize(inode->i_bdev, CD_FRAMESIZE); } mutex_unlock(&ctl_mutex); return 0; out_dec: pd->refcnt--; out: VPRINTK("pktcdvd: failed open (%d)\n", ret); mutex_unlock(&ctl_mutex); return ret; } static int pkt_close(struct inode *inode, struct file *file) { struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data; int ret = 0; mutex_lock(&ctl_mutex); pd->refcnt--; BUG_ON(pd->refcnt < 0); if (pd->refcnt == 0) { int flush = test_bit(PACKET_WRITABLE, &pd->flags); pkt_release_dev(pd, flush); } mutex_unlock(&ctl_mutex); return ret; } static int pkt_end_io_read_cloned(struct bio *bio, unsigned int bytes_done, int err) { struct packet_stacked_data *psd = bio->bi_private; struct pktcdvd_device *pd = psd->pd; if (bio->bi_size) return 1; bio_put(bio); bio_endio(psd->bio, psd->bio->bi_size, err); mempool_free(psd, psd_pool); pkt_bio_finished(pd); return 0; } static int pkt_make_request(request_queue_t *q, struct bio *bio) { struct pktcdvd_device *pd; char b[BDEVNAME_SIZE]; sector_t zone; struct packet_data *pkt; int was_empty, blocked_bio; struct pkt_rb_node *node; pd = q->queuedata; if (!pd) { printk("pktcdvd: %s incorrect request queue\n", bdevname(bio->bi_bdev, b)); goto end_io; } /* * Clone READ bios so we can have our own bi_end_io callback. */ if (bio_data_dir(bio) == READ) { struct bio *cloned_bio = bio_clone(bio, GFP_NOIO); struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO); psd->pd = pd; psd->bio = bio; cloned_bio->bi_bdev = pd->bdev; cloned_bio->bi_private = psd; cloned_bio->bi_end_io = pkt_end_io_read_cloned; pd->stats.secs_r += bio->bi_size >> 9; pkt_queue_bio(pd, cloned_bio); return 0; } if (!test_bit(PACKET_WRITABLE, &pd->flags)) { printk("pktcdvd: WRITE for ro device %s (%llu)\n", pd->name, (unsigned long long)bio->bi_sector); goto end_io; } if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) { printk("pktcdvd: wrong bio size\n"); goto end_io; } blk_queue_bounce(q, &bio); zone = ZONE(bio->bi_sector, pd); VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n", (unsigned long long)bio->bi_sector, (unsigned long long)(bio->bi_sector + bio_sectors(bio))); /* Check if we have to split the bio */ { struct bio_pair *bp; sector_t last_zone; int first_sectors; last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd); if (last_zone != zone) { BUG_ON(last_zone != zone + pd->settings.size); first_sectors = last_zone - bio->bi_sector; bp = bio_split(bio, bio_split_pool, first_sectors); BUG_ON(!bp); pkt_make_request(q, &bp->bio1); pkt_make_request(q, &bp->bio2); bio_pair_release(bp); return 0; } } /* * If we find a matching packet in state WAITING or READ_WAIT, we can * just append this bio to that packet. */ spin_lock(&pd->cdrw.active_list_lock); blocked_bio = 0; list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { if (pkt->sector == zone) { spin_lock(&pkt->lock); if ((pkt->state == PACKET_WAITING_STATE) || (pkt->state == PACKET_READ_WAIT_STATE)) { pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail); pkt->write_size += bio->bi_size / CD_FRAMESIZE; if ((pkt->write_size >= pkt->frames) && (pkt->state == PACKET_WAITING_STATE)) { atomic_inc(&pkt->run_sm); wake_up(&pd->wqueue); } spin_unlock(&pkt->lock); spin_unlock(&pd->cdrw.active_list_lock); return 0; } else { blocked_bio = 1; } spin_unlock(&pkt->lock); } } spin_unlock(&pd->cdrw.active_list_lock); /* * No matching packet found. Store the bio in the work queue. */ node = mempool_alloc(pd->rb_pool, GFP_NOIO); node->bio = bio; spin_lock(&pd->lock); BUG_ON(pd->bio_queue_size < 0); was_empty = (pd->bio_queue_size == 0); pkt_rbtree_insert(pd, node); spin_unlock(&pd->lock); /* * Wake up the worker thread. */ atomic_set(&pd->scan_queue, 1); if (was_empty) { /* This wake_up is required for correct operation */ wake_up(&pd->wqueue); } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) { /* * This wake up is not required for correct operation, * but improves performance in some cases. */ wake_up(&pd->wqueue); } return 0; end_io: bio_io_error(bio, bio->bi_size); return 0; } static int pkt_merge_bvec(request_queue_t *q, struct bio *bio, struct bio_vec *bvec) { struct pktcdvd_device *pd = q->queuedata; sector_t zone = ZONE(bio->bi_sector, pd); int used = ((bio->bi_sector - zone) << 9) + bio->bi_size; int remaining = (pd->settings.size << 9) - used; int remaining2; /* * A bio <= PAGE_SIZE must be allowed. If it crosses a packet * boundary, pkt_make_request() will split the bio. */ remaining2 = PAGE_SIZE - bio->bi_size; remaining = max(remaining, remaining2); BUG_ON(remaining < 0); return remaining; } static void pkt_init_queue(struct pktcdvd_device *pd) { request_queue_t *q = pd->disk->queue; blk_queue_make_request(q, pkt_make_request); blk_queue_hardsect_size(q, CD_FRAMESIZE); blk_queue_max_sectors(q, PACKET_MAX_SECTORS); blk_queue_merge_bvec(q, pkt_merge_bvec); q->queuedata = pd; } static int pkt_seq_show(struct seq_file *m, void *p) { struct pktcdvd_device *pd = m->private; char *msg; char bdev_buf[BDEVNAME_SIZE]; int states[PACKET_NUM_STATES]; seq_printf(m, "Writer %s mapped to %s:\n", pd->name, bdevname(pd->bdev, bdev_buf)); seq_printf(m, "\nSettings:\n"); seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2); if (pd->settings.write_type == 0) msg = "Packet"; else msg = "Unknown"; seq_printf(m, "\twrite type:\t\t%s\n", msg); seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable"); seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss); seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode); if (pd->settings.block_mode == PACKET_BLOCK_MODE1) msg = "Mode 1"; else if (pd->settings.block_mode == PACKET_BLOCK_MODE2) msg = "Mode 2"; else msg = "Unknown"; seq_printf(m, "\tblock mode:\t\t%s\n", msg); seq_printf(m, "\nStatistics:\n"); seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started); seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended); seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1); seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1); seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1); seq_printf(m, "\nMisc:\n"); seq_printf(m, "\treference count:\t%d\n", pd->refcnt); seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags); seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed); seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed); seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset); seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset); seq_printf(m, "\nQueue state:\n"); seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size); seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios)); seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector); pkt_count_states(pd, states); seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", states[0], states[1], states[2], states[3], states[4], states[5]); return 0; } static int pkt_seq_open(struct inode *inode, struct file *file) { return single_open(file, pkt_seq_show, PDE(inode)->data); } static struct file_operations pkt_proc_fops = { .open = pkt_seq_open, .read = seq_read, .llseek = seq_lseek, .release = single_release }; static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev) { int i; int ret = 0; char b[BDEVNAME_SIZE]; struct proc_dir_entry *proc; struct block_device *bdev; if (pd->pkt_dev == dev) { printk("pktcdvd: Recursive setup not allowed\n"); return -EBUSY; } for (i = 0; i < MAX_WRITERS; i++) { struct pktcdvd_device *pd2 = pkt_devs[i]; if (!pd2) continue; if (pd2->bdev->bd_dev == dev) { printk("pktcdvd: %s already setup\n", bdevname(pd2->bdev, b)); return -EBUSY; } if (pd2->pkt_dev == dev) { printk("pktcdvd: Can't chain pktcdvd devices\n"); return -EBUSY; } } bdev = bdget(dev); if (!bdev) return -ENOMEM; ret = blkdev_get(bdev, FMODE_READ, O_RDONLY | O_NONBLOCK); if (ret) return ret; /* This is safe, since we have a reference from open(). */ __module_get(THIS_MODULE); pd->bdev = bdev; set_blocksize(bdev, CD_FRAMESIZE); pkt_init_queue(pd); atomic_set(&pd->cdrw.pending_bios, 0); pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name); if (IS_ERR(pd->cdrw.thread)) { printk("pktcdvd: can't start kernel thread\n"); ret = -ENOMEM; goto out_mem; } proc = create_proc_entry(pd->name, 0, pkt_proc); if (proc) { proc->data = pd; proc->proc_fops = &pkt_proc_fops; } DPRINTK("pktcdvd: writer %s mapped to %s\n", pd->name, bdevname(bdev, b)); return 0; out_mem: blkdev_put(bdev); /* This is safe: open() is still holding a reference. */ module_put(THIS_MODULE); return ret; } static int pkt_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data; VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, imajor(inode), iminor(inode)); switch (cmd) { /* * forward selected CDROM ioctls to CD-ROM, for UDF */ case CDROMMULTISESSION: case CDROMREADTOCENTRY: case CDROM_LAST_WRITTEN: case CDROM_SEND_PACKET: case SCSI_IOCTL_SEND_COMMAND: return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg); case CDROMEJECT: /* * The door gets locked when the device is opened, so we * have to unlock it or else the eject command fails. */ if (pd->refcnt == 1) pkt_lock_door(pd, 0); return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg); default: VPRINTK("pktcdvd: Unknown ioctl for %s (%x)\n", pd->name, cmd); return -ENOTTY; } return 0; } static int pkt_media_changed(struct gendisk *disk) { struct pktcdvd_device *pd = disk->private_data; struct gendisk *attached_disk; if (!pd) return 0; if (!pd->bdev) return 0; attached_disk = pd->bdev->bd_disk; if (!attached_disk) return 0; return attached_disk->fops->media_changed(attached_disk); } static struct block_device_operations pktcdvd_ops = { .owner = THIS_MODULE, .open = pkt_open, .release = pkt_close, .ioctl = pkt_ioctl, .media_changed = pkt_media_changed, }; /* * Set up mapping from pktcdvd device to CD-ROM device. */ static int pkt_setup_dev(struct pkt_ctrl_command *ctrl_cmd) { int idx; int ret = -ENOMEM; struct pktcdvd_device *pd; struct gendisk *disk; dev_t dev = new_decode_dev(ctrl_cmd->dev); for (idx = 0; idx < MAX_WRITERS; idx++) if (!pkt_devs[idx]) break; if (idx == MAX_WRITERS) { printk("pktcdvd: max %d writers supported\n", MAX_WRITERS); return -EBUSY; } pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL); if (!pd) return ret; pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE, sizeof(struct pkt_rb_node)); if (!pd->rb_pool) goto out_mem; disk = alloc_disk(1); if (!disk) goto out_mem; pd->disk = disk; INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); INIT_LIST_HEAD(&pd->cdrw.pkt_active_list); spin_lock_init(&pd->cdrw.active_list_lock); spin_lock_init(&pd->lock); spin_lock_init(&pd->iosched.lock); sprintf(pd->name, "pktcdvd%d", idx); init_waitqueue_head(&pd->wqueue); pd->bio_queue = RB_ROOT; disk->major = pkt_major; disk->first_minor = idx; disk->fops = &pktcdvd_ops; disk->flags = GENHD_FL_REMOVABLE; sprintf(disk->disk_name, "pktcdvd%d", idx); disk->private_data = pd; disk->queue = blk_alloc_queue(GFP_KERNEL); if (!disk->queue) goto out_mem2; pd->pkt_dev = MKDEV(disk->major, disk->first_minor); ret = pkt_new_dev(pd, dev); if (ret) goto out_new_dev; add_disk(disk); pkt_devs[idx] = pd; ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev); return 0; out_new_dev: blk_cleanup_queue(disk->queue); out_mem2: put_disk(disk); out_mem: if (pd->rb_pool) mempool_destroy(pd->rb_pool); kfree(pd); return ret; } /* * Tear down mapping from pktcdvd device to CD-ROM device. */ static int pkt_remove_dev(struct pkt_ctrl_command *ctrl_cmd) { struct pktcdvd_device *pd; int idx; dev_t pkt_dev = new_decode_dev(ctrl_cmd->pkt_dev); for (idx = 0; idx < MAX_WRITERS; idx++) { pd = pkt_devs[idx]; if (pd && (pd->pkt_dev == pkt_dev)) break; } if (idx == MAX_WRITERS) { DPRINTK("pktcdvd: dev not setup\n"); return -ENXIO; } if (pd->refcnt > 0) return -EBUSY; if (!IS_ERR(pd->cdrw.thread)) kthread_stop(pd->cdrw.thread); blkdev_put(pd->bdev); remove_proc_entry(pd->name, pkt_proc); DPRINTK("pktcdvd: writer %s unmapped\n", pd->name); del_gendisk(pd->disk); blk_cleanup_queue(pd->disk->queue); put_disk(pd->disk); pkt_devs[idx] = NULL; mempool_destroy(pd->rb_pool); kfree(pd); /* This is safe: open() is still holding a reference. */ module_put(THIS_MODULE); return 0; } static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd) { struct pktcdvd_device *pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index); if (pd) { ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev); ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev); } else { ctrl_cmd->dev = 0; ctrl_cmd->pkt_dev = 0; } ctrl_cmd->num_devices = MAX_WRITERS; } static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { void __user *argp = (void __user *)arg; struct pkt_ctrl_command ctrl_cmd; int ret = 0; if (cmd != PACKET_CTRL_CMD) return -ENOTTY; if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command))) return -EFAULT; switch (ctrl_cmd.command) { case PKT_CTRL_CMD_SETUP: if (!capable(CAP_SYS_ADMIN)) return -EPERM; mutex_lock(&ctl_mutex); ret = pkt_setup_dev(&ctrl_cmd); mutex_unlock(&ctl_mutex); break; case PKT_CTRL_CMD_TEARDOWN: if (!capable(CAP_SYS_ADMIN)) return -EPERM; mutex_lock(&ctl_mutex); ret = pkt_remove_dev(&ctrl_cmd); mutex_unlock(&ctl_mutex); break; case PKT_CTRL_CMD_STATUS: mutex_lock(&ctl_mutex); pkt_get_status(&ctrl_cmd); mutex_unlock(&ctl_mutex); break; default: return -ENOTTY; } if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command))) return -EFAULT; return ret; } static struct file_operations pkt_ctl_fops = { .ioctl = pkt_ctl_ioctl, .owner = THIS_MODULE, }; static struct miscdevice pkt_misc = { .minor = MISC_DYNAMIC_MINOR, .name = "pktcdvd", .fops = &pkt_ctl_fops }; static int __init pkt_init(void) { int ret; psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE, sizeof(struct packet_stacked_data)); if (!psd_pool) return -ENOMEM; ret = register_blkdev(pkt_major, "pktcdvd"); if (ret < 0) { printk("pktcdvd: Unable to register block device\n"); goto out2; } if (!pkt_major) pkt_major = ret; ret = misc_register(&pkt_misc); if (ret) { printk("pktcdvd: Unable to register misc device\n"); goto out; } mutex_init(&ctl_mutex); pkt_proc = proc_mkdir("pktcdvd", proc_root_driver); return 0; out: unregister_blkdev(pkt_major, "pktcdvd"); out2: mempool_destroy(psd_pool); return ret; } static void __exit pkt_exit(void) { remove_proc_entry("pktcdvd", proc_root_driver); misc_deregister(&pkt_misc); unregister_blkdev(pkt_major, "pktcdvd"); mempool_destroy(psd_pool); } MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives"); MODULE_AUTHOR("Jens Axboe <axboe@suse.de>"); MODULE_LICENSE("GPL"); module_init(pkt_init); module_exit(pkt_exit);