/* * Copyright (C) 1991, 1992, 1995 Linus Torvalds * * Adapted for PowerPC (PReP) by Gary Thomas * Modified by Cort Dougan (cort@cs.nmt.edu). * Copied and modified from arch/i386/kernel/time.c * */ #include <linux/errno.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/param.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/time.h> #include <linux/timex.h> #include <linux/kernel_stat.h> #include <linux/mc146818rtc.h> #include <linux/init.h> #include <linux/bcd.h> #include <linux/ioport.h> #include <asm/io.h> #include <asm/nvram.h> #include <asm/prom.h> #include <asm/sections.h> #include <asm/time.h> extern spinlock_t rtc_lock; static int nvram_as1 = NVRAM_AS1; static int nvram_as0 = NVRAM_AS0; static int nvram_data = NVRAM_DATA; long __init chrp_time_init(void) { struct device_node *rtcs; struct resource r; int base; rtcs = of_find_compatible_node(NULL, "rtc", "pnpPNP,b00"); if (rtcs == NULL) rtcs = of_find_compatible_node(NULL, "rtc", "ds1385-rtc"); if (rtcs == NULL) return 0; if (of_address_to_resource(rtcs, 0, &r)) { of_node_put(rtcs); return 0; } of_node_put(rtcs); base = r.start; nvram_as1 = 0; nvram_as0 = base; nvram_data = base + 1; return 0; } int chrp_cmos_clock_read(int addr) { if (nvram_as1 != 0) outb(addr>>8, nvram_as1); outb(addr, nvram_as0); return (inb(nvram_data)); } void chrp_cmos_clock_write(unsigned long val, int addr) { if (nvram_as1 != 0) outb(addr>>8, nvram_as1); outb(addr, nvram_as0); outb(val, nvram_data); return; } /* * Set the hardware clock. -- Cort */ int chrp_set_rtc_time(struct rtc_time *tmarg) { unsigned char save_control, save_freq_select; struct rtc_time tm = *tmarg; spin_lock(&rtc_lock); save_control = chrp_cmos_clock_read(RTC_CONTROL); /* tell the clock it's being set */ chrp_cmos_clock_write((save_control|RTC_SET), RTC_CONTROL); save_freq_select = chrp_cmos_clock_read(RTC_FREQ_SELECT); /* stop and reset prescaler */ chrp_cmos_clock_write((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT); if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { tm.tm_sec = bin2bcd(tm.tm_sec); tm.tm_min = bin2bcd(tm.tm_min); tm.tm_hour = bin2bcd(tm.tm_hour); tm.tm_mon = bin2bcd(tm.tm_mon); tm.tm_mday = bin2bcd(tm.tm_mday); tm.tm_year = bin2bcd(tm.tm_year); } chrp_cmos_clock_write(tm.tm_sec,RTC_SECONDS); chrp_cmos_clock_write(tm.tm_min,RTC_MINUTES); chrp_cmos_clock_write(tm.tm_hour,RTC_HOURS); chrp_cmos_clock_write(tm.tm_mon,RTC_MONTH); chrp_cmos_clock_write(tm.tm_mday,RTC_DAY_OF_MONTH); chrp_cmos_clock_write(tm.tm_year,RTC_YEAR); /* The following flags have to be released exactly in this order, * otherwise the DS12887 (popular MC146818A clone with integrated * battery and quartz) will not reset the oscillator and will not * update precisely 500 ms later. You won't find this mentioned in * the Dallas Semiconductor data sheets, but who believes data * sheets anyway ... -- Markus Kuhn */ chrp_cmos_clock_write(save_control, RTC_CONTROL); chrp_cmos_clock_write(save_freq_select, RTC_FREQ_SELECT); spin_unlock(&rtc_lock); return 0; } void chrp_get_rtc_time(struct rtc_time *tm) { unsigned int year, mon, day, hour, min, sec; do { sec = chrp_cmos_clock_read(RTC_SECONDS); min = chrp_cmos_clock_read(RTC_MINUTES); hour = chrp_cmos_clock_read(RTC_HOURS); day = chrp_cmos_clock_read(RTC_DAY_OF_MONTH); mon = chrp_cmos_clock_read(RTC_MONTH); year = chrp_cmos_clock_read(RTC_YEAR); } while (sec != chrp_cmos_clock_read(RTC_SECONDS)); if (!(chrp_cmos_clock_read(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { sec = bcd2bin(sec); min = bcd2bin(min); hour = bcd2bin(hour); day = bcd2bin(day); mon = bcd2bin(mon); year = bcd2bin(year); } if (year < 70) year += 100; tm->tm_sec = sec; tm->tm_min = min; tm->tm_hour = hour; tm->tm_mday = day; tm->tm_mon = mon; tm->tm_year = year; }