From 228c54ef7a028d5a4b6606eb0c8035874d9b6788 Mon Sep 17 00:00:00 2001 From: Dmitry Torokhov Date: Mon, 15 Mar 2010 21:44:41 +0100 Subject: PM: pm_wakeup - switch to using bool Also change couple of stubs implemented as macros in !CONFIG_PM case in statinc inline functions to provide proper typechecking of arguments regardless of config. Signed-off-by: Dmitry Torokhov Signed-off-by: Rafael J. Wysocki --- include/linux/pm_wakeup.h | 38 ++++++++++++++++++++++++-------------- 1 file changed, 24 insertions(+), 14 deletions(-) diff --git a/include/linux/pm_wakeup.h b/include/linux/pm_wakeup.h index 0aae7776185..22d64c18056 100644 --- a/include/linux/pm_wakeup.h +++ b/include/linux/pm_wakeup.h @@ -25,32 +25,34 @@ # error "please don't include this file directly" #endif +#include + #ifdef CONFIG_PM /* changes to device_may_wakeup take effect on the next pm state change. * by default, devices should wakeup if they can. */ -static inline void device_init_wakeup(struct device *dev, int val) +static inline void device_init_wakeup(struct device *dev, bool val) { - dev->power.can_wakeup = dev->power.should_wakeup = !!val; + dev->power.can_wakeup = dev->power.should_wakeup = val; } -static inline void device_set_wakeup_capable(struct device *dev, int val) +static inline void device_set_wakeup_capable(struct device *dev, bool capable) { - dev->power.can_wakeup = !!val; + dev->power.can_wakeup = capable; } -static inline int device_can_wakeup(struct device *dev) +static inline bool device_can_wakeup(struct device *dev) { return dev->power.can_wakeup; } -static inline void device_set_wakeup_enable(struct device *dev, int val) +static inline void device_set_wakeup_enable(struct device *dev, bool enable) { - dev->power.should_wakeup = !!val; + dev->power.should_wakeup = enable; } -static inline int device_may_wakeup(struct device *dev) +static inline bool device_may_wakeup(struct device *dev) { return dev->power.can_wakeup && dev->power.should_wakeup; } @@ -58,20 +60,28 @@ static inline int device_may_wakeup(struct device *dev) #else /* !CONFIG_PM */ /* For some reason the next two routines work even without CONFIG_PM */ -static inline void device_init_wakeup(struct device *dev, int val) +static inline void device_init_wakeup(struct device *dev, bool val) { - dev->power.can_wakeup = !!val; + dev->power.can_wakeup = val; } -static inline void device_set_wakeup_capable(struct device *dev, int val) { } +static inline void device_set_wakeup_capable(struct device *dev, bool capable) +{ +} -static inline int device_can_wakeup(struct device *dev) +static inline bool device_can_wakeup(struct device *dev) { return dev->power.can_wakeup; } -#define device_set_wakeup_enable(dev, val) do {} while (0) -#define device_may_wakeup(dev) 0 +static inline void device_set_wakeup_enable(struct device *dev, bool enable) +{ +} + +static inline bool device_may_wakeup(struct device *dev) +{ + return false; +} #endif /* !CONFIG_PM */ -- cgit v1.2.3 From 240c7337a4cd3d91b196c5ef97ad461b3a22fa09 Mon Sep 17 00:00:00 2001 From: Alan Stern Date: Tue, 23 Mar 2010 00:50:07 +0100 Subject: PM: Allow runtime_suspend methods to call pm_schedule_suspend() This patch (as1361) changes the runtime PM interface slightly; it allows suspend requests to be scheduled while the runtime_suspend method is running. If the method succeeds then the scheduled request is cancelled, whereas if the method fails then an idle notification is sent only if no request was scheduled. Being able to schedule suspend requests from within a runtime_suspend method is useful for drivers that need to test for idleness and suspend the device all while holding a single spinlock, or for drivers that want to check for idleness by polling. Signed-off-by: Alan Stern Signed-off-by: Rafael J. Wysocki --- drivers/base/power/runtime.c | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/drivers/base/power/runtime.c b/drivers/base/power/runtime.c index 626dd147b75..b0ec0e9f27e 100644 --- a/drivers/base/power/runtime.c +++ b/drivers/base/power/runtime.c @@ -229,14 +229,16 @@ int __pm_runtime_suspend(struct device *dev, bool from_wq) if (retval) { dev->power.runtime_status = RPM_ACTIVE; - pm_runtime_cancel_pending(dev); - if (retval == -EAGAIN || retval == -EBUSY) { - notify = true; + if (dev->power.timer_expires == 0) + notify = true; dev->power.runtime_error = 0; + } else { + pm_runtime_cancel_pending(dev); } } else { dev->power.runtime_status = RPM_SUSPENDED; + pm_runtime_deactivate_timer(dev); if (dev->parent) { parent = dev->parent; @@ -659,8 +661,6 @@ int pm_schedule_suspend(struct device *dev, unsigned int delay) if (dev->power.runtime_status == RPM_SUSPENDED) retval = 1; - else if (dev->power.runtime_status == RPM_SUSPENDING) - retval = -EINPROGRESS; else if (atomic_read(&dev->power.usage_count) > 0 || dev->power.disable_depth > 0) retval = -EAGAIN; -- cgit v1.2.3 From 624f6ec871886525ca19cf7841f918da91d4315e Mon Sep 17 00:00:00 2001 From: "Rafael J. Wysocki" Date: Fri, 26 Mar 2010 23:53:42 +0100 Subject: PM: Update device power management document The device PM document, Documentation/power/devices.txt, is badly outdated and requires total rework to fit the current design of the PM framework. Make it more up to date. Signed-off-by: Rafael J. Wysocki Reviewed-by: Randy Dunlap --- Documentation/power/devices.txt | 698 +++++++++++++++++++++++++--------------- 1 file changed, 431 insertions(+), 267 deletions(-) diff --git a/Documentation/power/devices.txt b/Documentation/power/devices.txt index c9abbd86bc1..10018d19e0b 100644 --- a/Documentation/power/devices.txt +++ b/Documentation/power/devices.txt @@ -1,3 +1,7 @@ +Device Power Management + +(C) 2010 Rafael J. Wysocki , Novell Inc. + Most of the code in Linux is device drivers, so most of the Linux power management code is also driver-specific. Most drivers will do very little; others, especially for platforms with small batteries (like cell phones), @@ -25,31 +29,39 @@ states: them without loss of data. Some drivers can manage hardware wakeup events, which make the system - leave that low-power state. This feature may be disabled using the - relevant /sys/devices/.../power/wakeup file; enabling it may cost some - power usage, but let the whole system enter low power states more often. + leave that low-power state. This feature may be enabled or disabled + using the relevant /sys/devices/.../power/wakeup file (for Ethernet + drivers the ioctl interface used by ethtool may also be used for this + purpose); enabling it may cost some power usage, but let the whole + system enter low power states more often. Runtime Power Management model: - Drivers may also enter low power states while the system is running, - independently of other power management activity. Upstream drivers - will normally not know (or care) if the device is in some low power - state when issuing requests; the driver will auto-resume anything - that's needed when it gets a request. - - This doesn't have, or need much infrastructure; it's just something you - should do when writing your drivers. For example, clk_disable() unused - clocks as part of minimizing power drain for currently-unused hardware. - Of course, sometimes clusters of drivers will collaborate with each - other, which could involve task-specific power management. + Devices may also be put into low power states while the system is + running, independently of other power management activity in principle. + However, devices are not generally independent of each other (for + example, parent device cannot be suspended unless all of its child + devices have been suspended). Moreover, depending on the bus type the + device is on, it may be necessary to carry out some bus-specific + operations on the device for this purpose. Also, devices put into low + power states at run time may require special handling during system-wide + power transitions, like suspend to RAM. + + For these reasons not only the device driver itself, but also the + appropriate subsystem (bus type, device type or device class) driver + and the PM core are involved in the runtime power management of devices. + Like in the system sleep power management case, they need to collaborate + by implementing various role-specific suspend and resume methods, so + that the hardware is cleanly powered down and reactivated without data + or service loss. There's not a lot to be said about those low power states except that they are very system-specific, and often device-specific. Also, that if enough -drivers put themselves into low power states (at "runtime"), the effect may be -the same as entering some system-wide low-power state (system sleep) ... and -that synergies exist, so that several drivers using runtime pm might put the +devices have been put into low power states (at "run time"), the effect may be +very similar to entering some system-wide low-power state (system sleep) ... and +that synergies exist, so that several drivers using runtime PM might put the system into a state where even deeper power saving options are available. -Most suspended devices will have quiesced all I/O: no more DMA or irqs, no +Most suspended devices will have quiesced all I/O: no more DMA or IRQs, no more data read or written, and requests from upstream drivers are no longer accepted. A given bus or platform may have different requirements though. @@ -60,34 +72,67 @@ or removal (for PCMCIA, MMC/SD, USB, and so on). Interfaces for Entering System Sleep States =========================================== -Most of the programming interfaces a device driver needs to know about -relate to that first model: entering a system-wide low power state, -rather than just minimizing power consumption by one device. +There are programming interfaces provided for subsystem (bus type, device type, +device class) and device drivers in order to allow them to participate in the +power management of devices they are concerned with. They cover the system +sleep power management as well as the runtime power management of devices. + + +Device Power Management Operations +---------------------------------- +Device power management operations, at the subsystem level as well as at the +device driver level, are implemented by defining and populating objects of type +struct dev_pm_ops: + +struct dev_pm_ops { + int (*prepare)(struct device *dev); + void (*complete)(struct device *dev); + int (*suspend)(struct device *dev); + int (*resume)(struct device *dev); + int (*freeze)(struct device *dev); + int (*thaw)(struct device *dev); + int (*poweroff)(struct device *dev); + int (*restore)(struct device *dev); + int (*suspend_noirq)(struct device *dev); + int (*resume_noirq)(struct device *dev); + int (*freeze_noirq)(struct device *dev); + int (*thaw_noirq)(struct device *dev); + int (*poweroff_noirq)(struct device *dev); + int (*restore_noirq)(struct device *dev); + int (*runtime_suspend)(struct device *dev); + int (*runtime_resume)(struct device *dev); + int (*runtime_idle)(struct device *dev); +}; +This structure is defined in include/linux/pm.h and the methods included in it +are also described in that file. Their roles will be explained in what follows. +For now, it should be sufficient to remember that the last three of them are +specific to runtime power management, while the remaining ones are used during +system-wide power transitions. -Bus Driver Methods ------------------- -The core methods to suspend and resume devices reside in struct bus_type. -These are mostly of interest to people writing infrastructure for busses -like PCI or USB, or because they define the primitives that device drivers -may need to apply in domain-specific ways to their devices: - -struct bus_type { - ... - int (*suspend)(struct device *dev, pm_message_t state); - int (*resume)(struct device *dev); -}; +There also is an "old" or "legacy", deprecated way of implementing power +management operations available at least for some subsystems. This approach +does not use struct dev_pm_ops objects and it only is suitable for implementing +system sleep power management methods. Therefore it is not described in this +document, so please refer directly to the source code for more information about +it. + + +Subsystem-Level Methods +----------------------- +The core methods to suspend and resume devices reside in struct dev_pm_ops +pointed to by the pm member of struct bus_type, struct device_type and +struct class. They are mostly of interest to the people writing infrastructure +for buses, like PCI or USB, or device type and device class drivers. -Bus drivers implement those methods as appropriate for the hardware and +Bus drivers implement these methods as appropriate for the hardware and the drivers using it; PCI works differently from USB, and so on. Not many -people write bus drivers; most driver code is a "device driver" that +people write subsystem-level drivers; most driver code is a "device driver" that builds on top of bus-specific framework code. For more information on these driver calls, see the description later; they are called in phases for every device, respecting the parent-child -sequencing in the driver model tree. Note that as this is being written, -only the suspend() and resume() are widely available; not many bus drivers -leverage all of those phases, or pass them down to lower driver levels. +sequencing in the driver model tree. /sys/devices/.../power/wakeup files @@ -95,7 +140,7 @@ leverage all of those phases, or pass them down to lower driver levels. All devices in the driver model have two flags to control handling of wakeup events, which are hardware signals that can force the device and/or system out of a low power state. These are initialized by bus or device -driver code using device_init_wakeup(dev,can_wakeup). +driver code using device_init_wakeup(). The "can_wakeup" flag just records whether the device (and its driver) can physically support wakeup events. When that flag is clear, the sysfs @@ -103,64 +148,44 @@ physically support wakeup events. When that flag is clear, the sysfs For devices that can issue wakeup events, a separate flag controls whether that device should try to use its wakeup mechanism. The initial value of -device_may_wakeup() will be true, so that the device's "wakeup" file holds -the value "enabled". Userspace can change that to "disabled" so that -device_may_wakeup() returns false; or change it back to "enabled" (so that -it returns true again). - - -EXAMPLE: PCI Device Driver Methods ------------------------------------ -PCI framework software calls these methods when the PCI device driver bound -to a device device has provided them: - -struct pci_driver { - ... - int (*suspend)(struct pci_device *pdev, pm_message_t state); - int (*suspend_late)(struct pci_device *pdev, pm_message_t state); - - int (*resume_early)(struct pci_device *pdev); - int (*resume)(struct pci_device *pdev); -}; - -Drivers will implement those methods, and call PCI-specific procedures -like pci_set_power_state(), pci_enable_wake(), pci_save_state(), and -pci_restore_state() to manage PCI-specific mechanisms. (PCI config space -could be saved during driver probe, if it weren't for the fact that some -systems rely on userspace tweaking using setpci.) Devices are suspended -before their bridges enter low power states, and likewise bridges resume -before their devices. - - -Upper Layers of Driver Stacks ------------------------------ -Device drivers generally have at least two interfaces, and the methods -sketched above are the ones which apply to the lower level (nearer PCI, USB, -or other bus hardware). The network and block layers are examples of upper -level interfaces, as is a character device talking to userspace. - -Power management requests normally need to flow through those upper levels, -which often use domain-oriented requests like "blank that screen". In -some cases those upper levels will have power management intelligence that -relates to end-user activity, or other devices that work in cooperation. - -When those interfaces are structured using class interfaces, there is a -standard way to have the upper layer stop issuing requests to a given -class device (and restart later): - -struct class { - ... - int (*suspend)(struct device *dev, pm_message_t state); - int (*resume)(struct device *dev); -}; - -Those calls are issued in specific phases of the process by which the -system enters a low power "suspend" state, or resumes from it. +device_may_wakeup() will be false for the majority of devices, except for +power buttons, keyboards, and Ethernet adapters whose WoL (wake-on-LAN) feature +has been set up with ethtool. Thus in the majority of cases the device's +"wakeup" file will initially hold the value "disabled". Userspace can change +that to "enabled", so that device_may_wakeup() returns true, or change it back +to "disabled", so that it returns false again. + + +/sys/devices/.../power/control files +------------------------------------ +All devices in the driver model have a flag to control the desired behavior of +its driver with respect to runtime power management. This flag, called +runtime_auto, is initialized by the bus type (or generally subsystem) code using +pm_runtime_allow() or pm_runtime_forbid(), depending on whether or not the +driver is supposed to power manage the device at run time by default, +respectively. + +This setting may be adjusted by user space by writing either "on" or "auto" to +the device's "control" file. If "auto" is written, the device's runtime_auto +flag will be set and the driver will be allowed to power manage the device if +capable of doing that. If "on" is written, the driver is not allowed to power +manage the device which in turn is supposed to remain in the full power state at +run time. User space can check the current value of the runtime_auto flag by +reading from the device's "control" file. + +The device's runtime_auto flag has no effect on the handling of system-wide +power transitions by its driver. In particular, the device can (and in the +majority of cases should and will) be put into a low power state during a +system-wide transition to a sleep state (like "suspend-to-RAM") even though its +runtime_auto flag is unset (in which case its "control" file contains "on"). + +For more information about the runtime power management framework for devices +refer to Documentation/power/runtime_pm.txt. Calling Drivers to Enter System Sleep States ============================================ -When the system enters a low power state, each device's driver is asked +When the system goes into a sleep state, each device's driver is asked to suspend the device by putting it into state compatible with the target system state. That's usually some version of "off", but the details are system-specific. Also, wakeup-enabled devices will usually stay partly @@ -175,14 +200,13 @@ and then turn its hardware as "off" as possible with late_suspend. The matching resume calls would then completely reinitialize the hardware before reactivating its class I/O queues. -More power-aware drivers drivers will use more than one device low power -state, either at runtime or during system sleep states, and might trigger -system wakeup events. +More power-aware drivers might prepare the devices for triggering system wakeup +events. Call Sequence Guarantees ------------------------ -To ensure that bridges and similar links needed to talk to a device are +To ensure that bridges and similar links needing to talk to a device are available when the device is suspended or resumed, the device tree is walked in a bottom-up order to suspend devices. A top-down order is used to resume those devices. @@ -194,7 +218,7 @@ its parent; and can't be removed or suspended after that parent. The policy is that the device tree should match hardware bus topology. (Or at least the control bus, for devices which use multiple busses.) In particular, this means that a device registration may fail if the parent of -the device is suspending (ie. has been chosen by the PM core as the next +the device is suspending (i.e. has been chosen by the PM core as the next device to suspend) or has already suspended, as well as after all of the other devices have been suspended. Device drivers must be prepared to cope with such situations. @@ -207,54 +231,166 @@ system always includes every phase, executing calls for every device before the next phase begins. Not all busses or classes support all these callbacks; and not all drivers use all the callbacks. -The phases are seen by driver notifications issued in this order: +Generally, different callbacks are used depending on whether the system is +going to the standby or memory sleep state ("suspend-to-RAM") or it is going to +be hibernated ("suspend-to-disk"). + +If the system goes to the standby or memory sleep state the phases are seen by +driver notifications issued in this order: + + 1 bus->pm.prepare(dev) is called after tasks are frozen and it is supposed + to call the device driver's ->pm.prepare() method. + + The purpose of this method is mainly to prevent new children of the + device from being registered after it has returned. It also may be used + to generally prepare the device for the upcoming system transition, but + it should not put the device into a low power state. - 1 class.suspend(dev, message) is called after tasks are frozen, for - devices associated with a class that has such a method. This - method may sleep. + 2 class->pm.suspend(dev) is called if dev is associated with a class that + has such a method. It may invoke the device driver's ->pm.suspend() + method, unless type->pm.suspend(dev) or bus->pm.suspend() does that. - Since I/O activity usually comes from such higher layers, this is - a good place to quiesce all drivers of a given type (and keep such - code out of those drivers). + 3 type->pm.suspend(dev) is called if dev is associated with a device type + that has such a method. It may invoke the device driver's + ->pm.suspend() method, unless class->pm.suspend(dev) or + bus->pm.suspend() does that. - 2 bus.suspend(dev, message) is called next. This method may sleep, - and is often morphed into a device driver call with bus-specific - parameters and/or rules. + 4 bus->pm.suspend(dev) is called, if implemented. It usually calls the + device driver's ->pm.suspend() method. - This call should handle parts of device suspend logic that require - sleeping. It probably does work to quiesce the device which hasn't - been abstracted into class.suspend(). + This call should generally quiesce the device so that it doesn't do any + I/O after the call has returned. It also may save the device registers + and put it into the appropriate low power state, depending on the bus + type the device is on. -The pm_message_t parameter is currently used to refine those semantics -(described later). + 5 bus->pm.suspend_noirq(dev) is called, if implemented. It may call the + device driver's ->pm.suspend_noirq() method, depending on the bus type + in question. + + This method is invoked after device interrupts have been suspended, + which means that the driver's interrupt handler will not be called + while it is running. It should save the values of the device's + registers that weren't saved previously and finally put the device into + the appropriate low power state. + + The majority of subsystems and device drivers need not implement this + method. However, bus types allowing devices to share interrupt vectors, + like PCI, generally need to use it to prevent interrupt handling issues + from happening during suspend. At the end of those phases, drivers should normally have stopped all I/O transactions (DMA, IRQs), saved enough state that they can re-initialize or restore previous state (as needed by the hardware), and placed the device into a low-power state. On many platforms they will also use -clk_disable() to gate off one or more clock sources; sometimes they will -also switch off power supplies, or reduce voltages. Drivers which have -runtime PM support may already have performed some or all of the steps -needed to prepare for the upcoming system sleep state. +gate off one or more clock sources; sometimes they will also switch off power +supplies, or reduce voltages. [Drivers supporting runtime PM may already have +performed some or all of the steps needed to prepare for the upcoming system +state transition.] + +If device_may_wakeup(dev) returns true, the device should be prepared for +generating hardware wakeup signals when the system is in the sleep state to +trigger a system wakeup event. For example, enable_irq_wake() might identify +GPIO signals hooked up to a switch or other external hardware, and +pci_enable_wake() does something similar for the PCI PME signal. + +If a driver (or subsystem) fails it suspend method, the system won't enter the +desired low power state; it will resume all the devices it's suspended so far. + + +Hibernation Phases +------------------ +Hibernating the system is more complicated than putting it into the standby or +memory sleep state, because it involves creating a system image and saving it. +Therefore there are more phases of hibernation and special device PM methods are +used in this case. + +First, it is necessary to prepare the system for creating a hibernation image. +This is similar to putting the system into the standby or memory sleep state, +although it generally doesn't require that devices be put into low power states +(that is even not desirable at this point). Driver notifications are then +issued in the following order: + + 1 bus->pm.prepare(dev) is called after tasks have been frozen and enough + memory has been freed. + + 2 class->pm.freeze(dev) is called if implemented. It may invoke the + device driver's ->pm.freeze() method, unless type->pm.freeze(dev) or + bus->pm.freeze() does that. + + 3 type->pm.freeze(dev) is called if implemented. It may invoke the device + driver's ->pm.suspend() method, unless class->pm.freeze(dev) or + bus->pm.freeze() does that. -When any driver sees that its device_can_wakeup(dev), it should make sure -to use the relevant hardware signals to trigger a system wakeup event. -For example, enable_irq_wake() might identify GPIO signals hooked up to -a switch or other external hardware, and pci_enable_wake() does something -similar for PCI's PME# signal. + 4 bus->pm.freeze(dev) is called, if implemented. It usually calls the + device driver's ->pm.freeze() method. -If a driver (or bus, or class) fails it suspend method, the system won't -enter the desired low power state; it will resume all the devices it's -suspended so far. + 5 bus->pm.freeze_noirq(dev) is called, if implemented. It may call the + device driver's ->pm.freeze_noirq() method, depending on the bus type + in question. -Note that drivers may need to perform different actions based on the target -system lowpower/sleep state. At this writing, there are only platform -specific APIs through which drivers could determine those target states. +The difference between ->pm.freeze() and the corresponding ->pm.suspend() (and +similarly for the "noirq" variants) is that the former should avoid preparing +devices to trigger system wakeup events and putting devices into low power +states, although they generally have to save the values of device registers +so that it's possible to restore them during system resume. + +Second, after the system image has been created, the functionality of devices +has to be restored so that the image can be saved. That is similar to resuming +devices after the system has been woken up from the standby or memory sleep +state, which is described below, and causes the following device notifications +to be issued: + + 1 bus->pm.thaw_noirq(dev), if implemented; may call the device driver's + ->pm.thaw_noirq() method, depending on the bus type in question. + + 2 bus->pm.thaw(dev), if implemented; usually calls the device driver's + ->pm.thaw() method. + + 3 type->pm.thaw(dev), if implemented; may call the device driver's + ->pm.thaw() method if not called by the bus type or class. + + 4 class->pm.thaw(dev), if implemented; may call the device driver's + ->pm.thaw() method if not called by the bus type or device type. + + 5 bus->pm.complete(dev), if implemented; may call the device driver's + ->pm.complete() method. + +Generally, the role of the ->pm.thaw() methods (including the "noirq" variants) +is to bring the device back to the fully functional state, so that it may be +used for saving the image, if necessary. The role of bus->pm.complete() is to +reverse whatever bus->pm.prepare() did (likewise for the analogous device driver +callbacks). + +After the image has been saved, the devices need to be prepared for putting the +system into the low power state. That is analogous to suspending them before +putting the system into the standby or memory sleep state and involves the +following device notifications: + + 1 bus->pm.prepare(dev). + + 2 class->pm.poweroff(dev), if implemented; may invoke the device driver's + ->pm.poweroff() method if not called by the bus type or device type. + + 3 type->pm.poweroff(dev), if implemented; may invoke the device driver's + ->pm.poweroff() method if not called by the bus type or device class. + + 4 bus->pm.poweroff(dev), if implemented; usually calls the device driver's + ->pm.poweroff() method (if not called by the device class or type). + + 5 bus->pm.poweroff_noirq(dev), if implemented; may call the device + driver's ->pm.poweroff_noirq() method, depending on the bus type + in question. + +The difference between ->pm.poweroff() and the corresponding ->pm.suspend() (and +analogously for the "noirq" variants) is that the former need not save the +device's registers. Still, they should prepare the device for triggering +system wakeup events if necessary and finally put it into the appropriate low +power state. Device Low Power (suspend) States --------------------------------- -Device low-power states aren't very standard. One device might only handle +Device low-power states aren't standard. One device might only handle "on" and "off, while another might support a dozen different versions of "on" (how many engines are active?), plus a state that gets back to "on" faster than from a full "off". @@ -265,7 +401,7 @@ PCI device may not perform DMA or issue IRQs, and any wakeup events it issues would be issued through the PME# bus signal. Plus, there are several PCI-standard device states, some of which are optional. -In contrast, integrated system-on-chip processors often use irqs as the +In contrast, integrated system-on-chip processors often use IRQs as the wakeup event sources (so drivers would call enable_irq_wake) and might be able to treat DMA completion as a wakeup event (sometimes DMA can stay active too, it'd only be the CPU and some peripherals that sleep). @@ -284,84 +420,86 @@ ways; the aforementioned LCD might be active in one product's "standby", but a different product using the same SOC might work differently. -Meaning of pm_message_t.event ------------------------------ -Parameters to suspend calls include the device affected and a message of -type pm_message_t, which has one field: the event. If driver does not -recognize the event code, suspend calls may abort the request and return -a negative errno. However, most drivers will be fine if they implement -PM_EVENT_SUSPEND semantics for all messages. +Resuming Devices +---------------- +Resuming is done in multiple phases, much like suspending, with all +devices processing each phase's calls before the next phase begins. -The event codes are used to refine the goal of suspending the device, and -mostly matter when creating or resuming system memory image snapshots, as -used with suspend-to-disk: +Again, however, different callbacks are used depending on whether the system is +waking up from the standby or memory sleep state ("suspend-to-RAM") or from +hibernation ("suspend-to-disk"). - PM_EVENT_SUSPEND -- quiesce the driver and put hardware into a low-power - state. When used with system sleep states like "suspend-to-RAM" or - "standby", the upcoming resume() call will often be able to rely on - state kept in hardware, or issue system wakeup events. +If the system is waking up from the standby or memory sleep state, the phases +are seen by driver notifications issued in this order: - PM_EVENT_HIBERNATE -- Put hardware into a low-power state and enable wakeup - events as appropriate. It is only used with hibernation - (suspend-to-disk) and few devices are able to wake up the system from - this state; most are completely powered off. + 1 bus->pm.resume_noirq(dev) is called, if implemented. It may call the + device driver's ->pm.resume_noirq() method, depending on the bus type in + question. - PM_EVENT_FREEZE -- quiesce the driver, but don't necessarily change into - any low power mode. A system snapshot is about to be taken, often - followed by a call to the driver's resume() method. Neither wakeup - events nor DMA are allowed. + The role of this method is to perform actions that need to be performed + before device drivers' interrupt handlers are allowed to be invoked. If + the given bus type permits devices to share interrupt vectors, like PCI, + this method should bring the device and its driver into a state in which + the driver can recognize if the device is the source of incoming + interrupts, if any, and handle them correctly. - PM_EVENT_PRETHAW -- quiesce the driver, knowing that the upcoming resume() - will restore a suspend-to-disk snapshot from a different kernel image. - Drivers that are smart enough to look at their hardware state during - resume() processing need that state to be correct ... a PRETHAW could - be used to invalidate that state (by resetting the device), like a - shutdown() invocation would before a kexec() or system halt. Other - drivers might handle this the same way as PM_EVENT_FREEZE. Neither - wakeup events nor DMA are allowed. + For example, the PCI bus type's ->pm.resume_noirq() puts the device into + the full power state (D0 in the PCI terminology) and restores the + standard configuration registers of the device. Then, it calls the + device driver's ->pm.resume_noirq() method to perform device-specific + actions needed at this stage of resume. -To enter "standby" (ACPI S1) or "Suspend to RAM" (STR, ACPI S3) states, or -the similarly named APM states, only PM_EVENT_SUSPEND is used; the other event -codes are used for hibernation ("Suspend to Disk", STD, ACPI S4). + 2 bus->pm.resume(dev) is called, if implemented. It usually calls the + device driver's ->pm.resume() method. -There's also PM_EVENT_ON, a value which never appears as a suspend event -but is sometimes used to record the "not suspended" device state. + This call should generally bring the the device back to the working + state, so that it can do I/O as requested after the call has returned. + However, it may be more convenient to use the device class or device + type ->pm.resume() for this purpose, in which case the bus type's + ->pm.resume() method need not be implemented at all. + 3 type->pm.resume(dev) is called, if implemented. It may invoke the + device driver's ->pm.resume() method, unless class->pm.resume(dev) or + bus->pm.resume() does that. -Resuming Devices ----------------- -Resuming is done in multiple phases, much like suspending, with all -devices processing each phase's calls before the next phase begins. + For devices that are not associated with any bus type or device class + this method plays the role of bus->pm.resume(). -The phases are seen by driver notifications issued in this order: + 4 class->pm.resume(dev) is called, if implemented. It may invoke the + device driver's ->pm.resume() method, unless bus->pm.resume(dev) or + type->pm.resume() does that. - 1 bus.resume(dev) reverses the effects of bus.suspend(). This may - be morphed into a device driver call with bus-specific parameters; - implementations may sleep. + For devices that are not associated with any bus type or device type + this method plays the role of bus->pm.resume(). - 2 class.resume(dev) is called for devices associated with a class - that has such a method. Implementations may sleep. + 5 bus->pm.complete(dev) is called, if implemented. It is supposed to + invoke the device driver's ->pm.complete() method. - This reverses the effects of class.suspend(), and would usually - reactivate the device's I/O queue. + The role of this method is to reverse whatever bus->pm.prepare(dev) + (or the driver's ->pm.prepare()) did during suspend, if necessary. At the end of those phases, drivers should normally be as functional as they were before suspending: I/O can be performed using DMA and IRQs, and -the relevant clocks are gated on. The device need not be "fully on"; it -might be in a runtime lowpower/suspend state that acts as if it were. +the relevant clocks are gated on. In principle the device need not be +"fully on"; it might be in a runtime lowpower/suspend state during suspend and +the resume callbacks may try to restore that state, but that need not be +desirable from the user's point of view. In fact, there are multiple reasons +why it's better to always put devices into the "fully working" state in the +system sleep resume callbacks and they are discussed in more detail in +Documentation/power/runtime_pm.txt. However, the details here may again be platform-specific. For example, some systems support multiple "run" states, and the mode in effect at -the end of resume() might not be the one which preceded suspension. +the end of resume might not be the one which preceded suspension. That means availability of certain clocks or power supplies changed, which could easily affect how a driver works. - Drivers need to be able to handle hardware which has been reset since the suspend methods were called, for example by complete reinitialization. This may be the hardest part, and the one most protected by NDA'd documents and chip errata. It's simplest if the hardware state hasn't changed since -the suspend() was called, but that can't always be guaranteed. +the suspend was carried out, but that can't be guaranteed (in fact, it ususally +is not the case). Drivers must also be prepared to notice that the device has been removed while the system was powered off, whenever that's physically possible. @@ -371,11 +509,76 @@ will notice and handle such removals are currently bus-specific, and often involve a separate thread. -Note that the bus-specific runtime PM wakeup mechanism can exist, and might -be defined to share some of the same driver code as for system wakeup. For -example, a bus-specific device driver's resume() method might be used there, -so it wouldn't only be called from bus.resume() during system-wide wakeup. -See bus-specific information about how runtime wakeup events are handled. +Resume From Hibernation +----------------------- +Resuming from hibernation is, again, more complicated than resuming from a sleep +state in which the contents of main memory are preserved, because it requires +a system image to be loaded into memory and the pre-hibernation memory contents +to be restored before control can be passed back to the image kernel. + +In principle, the image might be loaded into memory and the pre-hibernation +memory contents might be restored by the boot loader. For this purpose, +however, the boot loader would need to know the image kernel's entry point and +there's no protocol defined for passing that information to boot loaders. As +a workaround, the boot loader loads a fresh instance of the kernel, called the +boot kernel, into memory and passes control to it in a usual way. Then, the +boot kernel reads the hibernation image, restores the pre-hibernation memory +contents and passes control to the image kernel. Thus, in fact, two different +kernels are involved in resuming from hibernation and in general they are not +only different because they play different roles in this operation. Actually, +the boot kernel may be completely different from the image kernel. Not only +the configuration of it, but also the version of it may be different. +The consequences of this are important to device drivers and their subsystems +(bus types, device classes and device types) too. + +Namely, to be able to load the hibernation image into memory, the boot kernel +needs to include at least the subset of device drivers allowing it to access the +storage medium containing the image, although it generally doesn't need to +include all of the drivers included into the image kernel. After the image has +been loaded the devices handled by those drivers need to be prepared for passing +control back to the image kernel. This is very similar to the preparation of +devices for creating a hibernation image described above. In fact, it is done +in the same way, with the help of the ->pm.prepare(), ->pm.freeze() and +->pm.freeze_noirq() callbacks, but only for device drivers included in the boot +kernel (whose versions may generally be different from the versions of the +analogous drivers from the image kernel). + +Should the restoration of the pre-hibernation memory contents fail, the boot +kernel would carry out the procedure of "thawing" devices described above, using +the ->pm.thaw_noirq(), ->pm.thaw(), and ->pm.complete() callbacks provided by +subsystems and device drivers. This, however, is a very rare condition. Most +often the pre-hibernation memory contents are restored successfully and control +is passed to the image kernel that is now responsible for bringing the system +back to the working state. + +To achieve this goal, among other things, the image kernel restores the +pre-hibernation functionality of devices. This operation is analogous to the +resuming of devices after waking up from the memory sleep state, although it +involves different device notifications which are the following: + + 1 bus->pm.restore_noirq(dev), if implemented; may call the device driver's + ->pm.restore_noirq() method, depending on the bus type in question. + + 2 bus->pm.restore(dev), if implemented; usually calls the device driver's + ->pm.restore() method. + + 3 type->pm.restore(dev), if implemented; may call the device driver's + ->pm.restore() method if not called by the bus type or class. + + 4 class->pm.restore(dev), if implemented; may call the device driver's + ->pm.restore() method if not called by the bus type or device type. + + 5 bus->pm.complete(dev), if implemented; may call the device driver's + ->pm.complete() method. + +The roles of the ->pm.restore_noirq() and ->pm.restore() callbacks are analogous +to the roles of the corresponding resume callbacks, but they must assume that +the device may have been accessed before by the boot kernel. Consequently, the +state of the device before they are called may be different from the state of it +right prior to calling the resume callbacks. That difference usually doesn't +matter, so the majority of device drivers can set their resume and restore +callback pointers to the same routine. Nevertheless, different callback +pointers are used in case there is a situation where it actually matters. System Devices @@ -389,10 +592,13 @@ System devices will only be suspended with interrupts disabled, and after all other devices have been suspended. On resume, they will be resumed before any other devices, and also with interrupts disabled. -That is, IRQs are disabled, the suspend_late() phase begins, then the -sysdev_driver.suspend() phase, and the system enters a sleep state. Then -the sysdev_driver.resume() phase begins, followed by the resume_early() -phase, after which IRQs are enabled. +That is, when the non-boot CPUs are all offline and IRQs are disabled on the +remaining online CPU, then the sysdev_driver.suspend() phase is carried out, and +the system enters a sleep state (or hibernation image is created). During +resume (or after the image has been created) the sysdev_driver.resume() phase +is carried out, IRQs are enabled on the only online CPU, the non-boot CPUs are +enabled and that is followed by the "early resume" phase (in which the "noirq" +callbacks provided by subsystems and device drivers are invoked). Code to actually enter and exit the system-wide low power state sometimes involves hardware details that are only known to the boot firmware, and @@ -400,6 +606,22 @@ may leave a CPU running software (from SRAM or flash memory) that monitors the system and manages its wakeup sequence. +Power Management Notifiers +-------------------------- +As stated in Documentation/power/notifiers.txt, there are some operations that +cannot be carried out by the power management callbacks discussed above, because +carrying them out at these points would be too late or too early. To handle +these cases subsystems and device drivers may register power management +notifiers that are called before tasks are frozen and after they have been +thawed. + +Generally speaking, the PM notifiers are suitable for performing actions that +either require user space to be available, or at least won't interfere with user +space in a wrong way. + +For details refer to Documentation/power/notifiers.txt. + + Runtime Power Management ======================== Many devices are able to dynamically power down while the system is still @@ -410,79 +632,21 @@ as "off", "sleep", "idle", "active", and so on. Those states will in some cases (like PCI) be partially constrained by a bus the device uses, and will usually include hardware states that are also used in system sleep states. -However, note that if a driver puts a device into a runtime low power state -and the system then goes into a system-wide sleep state, it normally ought -to resume into that runtime low power state rather than "full on". Such -distinctions would be part of the driver-internal state machine for that -hardware; the whole point of runtime power management is to be sure that -drivers are decoupled in that way from the state machine governing phases -of the system-wide power/sleep state transitions. - - -Power Saving Techniques ------------------------ -Normally runtime power management is handled by the drivers without specific -userspace or kernel intervention, by device-aware use of techniques like: - - Using information provided by other system layers - - stay deeply "off" except between open() and close() - - if transceiver/PHY indicates "nobody connected", stay "off" - - application protocols may include power commands or hints - - Using fewer CPU cycles - - using DMA instead of PIO - - removing timers, or making them lower frequency - - shortening "hot" code paths - - eliminating cache misses - - (sometimes) offloading work to device firmware - - Reducing other resource costs - - gating off unused clocks in software (or hardware) - - switching off unused power supplies - - eliminating (or delaying/merging) IRQs - - tuning DMA to use word and/or burst modes - - Using device-specific low power states - - using lower voltages - - avoiding needless DMA transfers - -Read your hardware documentation carefully to see the opportunities that -may be available. If you can, measure the actual power usage and check -it against the budget established for your project. - - -Examples: USB hosts, system timer, system CPU ----------------------------------------------- -USB host controllers make interesting, if complex, examples. In many cases -these have no work to do: no USB devices are connected, or all of them are -in the USB "suspend" state. Linux host controller drivers can then disable -periodic DMA transfers that would otherwise be a constant power drain on the -memory subsystem, and enter a suspend state. In power-aware controllers, -entering that suspend state may disable the clock used with USB signaling, -saving a certain amount of power. - -The controller will be woken from that state (with an IRQ) by changes to the -signal state on the data lines of a given port, for example by an existing -peripheral requesting "remote wakeup" or by plugging a new peripheral. The -same wakeup mechanism usually works from "standby" sleep states, and on some -systems also from "suspend to RAM" (or even "suspend to disk") states. -(Except that ACPI may be involved instead of normal IRQs, on some hardware.) - -System devices like timers and CPUs may have special roles in the platform -power management scheme. For example, system timers using a "dynamic tick" -approach don't just save CPU cycles (by eliminating needless timer IRQs), -but they may also open the door to using lower power CPU "idle" states that -cost more than a jiffie to enter and exit. On x86 systems these are states -like "C3"; note that periodic DMA transfers from a USB host controller will -also prevent entry to a C3 state, much like a periodic timer IRQ. - -That kind of runtime mechanism interaction is common. "System On Chip" (SOC) -processors often have low power idle modes that can't be entered unless -certain medium-speed clocks (often 12 or 48 MHz) are gated off. When the -drivers gate those clocks effectively, then the system idle task may be able -to use the lower power idle modes and thereby increase battery life. - -If the CPU can have a "cpufreq" driver, there also may be opportunities -to shift to lower voltage settings and reduce the power cost of executing -a given number of instructions. (Without voltage adjustment, it's rare -for cpufreq to save much power; the cost-per-instruction must go down.) +Note, however, that a system-wide power transition can be started while some +devices are in low power states due to the runtime power management. The system +sleep PM callbacks should generally recognize such situations and react to them +appropriately, but the recommended actions to be taken in that cases are +subsystem-specific. + +In some cases the decision may be made at the subsystem level while in some +other cases the device driver may be left to decide. In some cases it may be +desirable to leave a suspended device in that state during system-wide power +transition, but in some other cases the device ought to be put back into the +full power state, for example to be configured for system wakeup or so that its +system wakeup capability can be disabled. That all depends on the hardware +and the design of the subsystem and device driver in question. + +During system-wide resume from a sleep state it's better to put devices into +the full power state, as explained in Documentation/power/runtime_pm.txt. Refer +to that document for more information regarding this particular issue as well as +for information on the device runtime power management framework in general. -- cgit v1.2.3 From d6f9cda1fd241bc7a1d896da94950fd972eca9b7 Mon Sep 17 00:00:00 2001 From: Alan Stern Date: Fri, 26 Mar 2010 23:53:55 +0100 Subject: PM: Improve device power management document Improve the device power management document after it's been updated by the previous patch. Signed-off-by: Alan Stern Signed-off-by: Rafael J. Wysocki --- Documentation/power/devices.txt | 811 +++++++++++++++++++--------------------- 1 file changed, 383 insertions(+), 428 deletions(-) diff --git a/Documentation/power/devices.txt b/Documentation/power/devices.txt index 10018d19e0b..57080cd7457 100644 --- a/Documentation/power/devices.txt +++ b/Documentation/power/devices.txt @@ -1,11 +1,13 @@ Device Power Management -(C) 2010 Rafael J. Wysocki , Novell Inc. +Copyright (c) 2010 Rafael J. Wysocki , Novell Inc. +Copyright (c) 2010 Alan Stern + Most of the code in Linux is device drivers, so most of the Linux power -management code is also driver-specific. Most drivers will do very little; -others, especially for platforms with small batteries (like cell phones), -will do a lot. +management (PM) code is also driver-specific. Most drivers will do very +little; others, especially for platforms with small batteries (like cell +phones), will do a lot. This writeup gives an overview of how drivers interact with system-wide power management goals, emphasizing the models and interfaces that are @@ -19,9 +21,10 @@ Drivers will use one or both of these models to put devices into low-power states: System Sleep model: - Drivers can enter low power states as part of entering system-wide - low-power states like "suspend-to-ram", or (mostly for systems with - disks) "hibernate" (suspend-to-disk). + Drivers can enter low-power states as part of entering system-wide + low-power states like "suspend" (also known as "suspend-to-RAM"), or + (mostly for systems with disks) "hibernation" (also known as + "suspend-to-disk"). This is something that device, bus, and class drivers collaborate on by implementing various role-specific suspend and resume methods to @@ -29,41 +32,41 @@ states: them without loss of data. Some drivers can manage hardware wakeup events, which make the system - leave that low-power state. This feature may be enabled or disabled + leave the low-power state. This feature may be enabled or disabled using the relevant /sys/devices/.../power/wakeup file (for Ethernet drivers the ioctl interface used by ethtool may also be used for this purpose); enabling it may cost some power usage, but let the whole - system enter low power states more often. + system enter low-power states more often. Runtime Power Management model: - Devices may also be put into low power states while the system is + Devices may also be put into low-power states while the system is running, independently of other power management activity in principle. However, devices are not generally independent of each other (for - example, parent device cannot be suspended unless all of its child - devices have been suspended). Moreover, depending on the bus type the + example, a parent device cannot be suspended unless all of its child + devices have been suspended). Moreover, depending on the bus type the device is on, it may be necessary to carry out some bus-specific - operations on the device for this purpose. Also, devices put into low - power states at run time may require special handling during system-wide - power transitions, like suspend to RAM. + operations on the device for this purpose. Devices put into low power + states at run time may require special handling during system-wide power + transitions (suspend or hibernation). For these reasons not only the device driver itself, but also the - appropriate subsystem (bus type, device type or device class) driver - and the PM core are involved in the runtime power management of devices. - Like in the system sleep power management case, they need to collaborate - by implementing various role-specific suspend and resume methods, so - that the hardware is cleanly powered down and reactivated without data - or service loss. - -There's not a lot to be said about those low power states except that they -are very system-specific, and often device-specific. Also, that if enough -devices have been put into low power states (at "run time"), the effect may be -very similar to entering some system-wide low-power state (system sleep) ... and -that synergies exist, so that several drivers using runtime PM might put the -system into a state where even deeper power saving options are available. - -Most suspended devices will have quiesced all I/O: no more DMA or IRQs, no -more data read or written, and requests from upstream drivers are no longer -accepted. A given bus or platform may have different requirements though. + appropriate subsystem (bus type, device type or device class) driver and + the PM core are involved in runtime power management. As in the system + sleep power management case, they need to collaborate by implementing + various role-specific suspend and resume methods, so that the hardware + is cleanly powered down and reactivated without data or service loss. + +There's not a lot to be said about those low-power states except that they are +very system-specific, and often device-specific. Also, that if enough devices +have been put into low-power states (at runtime), the effect may be very similar +to entering some system-wide low-power state (system sleep) ... and that +synergies exist, so that several drivers using runtime PM might put the system +into a state where even deeper power saving options are available. + +Most suspended devices will have quiesced all I/O: no more DMA or IRQs (except +for wakeup events), no more data read or written, and requests from upstream +drivers are no longer accepted. A given bus or platform may have different +requirements though. Examples of hardware wakeup events include an alarm from a real time clock, network wake-on-LAN packets, keyboard or mouse activity, and media insertion @@ -72,10 +75,10 @@ or removal (for PCMCIA, MMC/SD, USB, and so on). Interfaces for Entering System Sleep States =========================================== -There are programming interfaces provided for subsystem (bus type, device type, -device class) and device drivers in order to allow them to participate in the -power management of devices they are concerned with. They cover the system -sleep power management as well as the runtime power management of devices. +There are programming interfaces provided for subsystems (bus type, device type, +device class) and device drivers to allow them to participate in the power +management of devices they are concerned with. These interfaces cover both +system sleep and runtime power management. Device Power Management Operations @@ -106,16 +109,15 @@ struct dev_pm_ops { This structure is defined in include/linux/pm.h and the methods included in it are also described in that file. Their roles will be explained in what follows. -For now, it should be sufficient to remember that the last three of them are -specific to runtime power management, while the remaining ones are used during +For now, it should be sufficient to remember that the last three methods are +specific to runtime power management while the remaining ones are used during system-wide power transitions. -There also is an "old" or "legacy", deprecated way of implementing power -management operations available at least for some subsystems. This approach -does not use struct dev_pm_ops objects and it only is suitable for implementing -system sleep power management methods. Therefore it is not described in this -document, so please refer directly to the source code for more information about -it. +There also is a deprecated "old" or "legacy" interface for power management +operations available at least for some subsystems. This approach does not use +struct dev_pm_ops objects and it is suitable only for implementing system sleep +power management methods. Therefore it is not described in this document, so +please refer directly to the source code for more information about it. Subsystem-Level Methods @@ -125,10 +127,10 @@ pointed to by the pm member of struct bus_type, struct device_type and struct class. They are mostly of interest to the people writing infrastructure for buses, like PCI or USB, or device type and device class drivers. -Bus drivers implement these methods as appropriate for the hardware and -the drivers using it; PCI works differently from USB, and so on. Not many -people write subsystem-level drivers; most driver code is a "device driver" that -builds on top of bus-specific framework code. +Bus drivers implement these methods as appropriate for the hardware and the +drivers using it; PCI works differently from USB, and so on. Not many people +write subsystem-level drivers; most driver code is a "device driver" that builds +on top of bus-specific framework code. For more information on these driver calls, see the description later; they are called in phases for every device, respecting the parent-child @@ -137,66 +139,78 @@ sequencing in the driver model tree. /sys/devices/.../power/wakeup files ----------------------------------- -All devices in the driver model have two flags to control handling of -wakeup events, which are hardware signals that can force the device and/or -system out of a low power state. These are initialized by bus or device -driver code using device_init_wakeup(). +All devices in the driver model have two flags to control handling of wakeup +events (hardware signals that can force the device and/or system out of a low +power state). These flags are initialized by bus or device driver code using +device_set_wakeup_capable() and device_set_wakeup_enable(), defined in +include/linux/pm_wakeup.h. The "can_wakeup" flag just records whether the device (and its driver) can -physically support wakeup events. When that flag is clear, the sysfs -"wakeup" file is empty, and device_may_wakeup() returns false. - -For devices that can issue wakeup events, a separate flag controls whether -that device should try to use its wakeup mechanism. The initial value of -device_may_wakeup() will be false for the majority of devices, except for -power buttons, keyboards, and Ethernet adapters whose WoL (wake-on-LAN) feature -has been set up with ethtool. Thus in the majority of cases the device's -"wakeup" file will initially hold the value "disabled". Userspace can change -that to "enabled", so that device_may_wakeup() returns true, or change it back -to "disabled", so that it returns false again. +physically support wakeup events. The device_set_wakeup_capable() routine +affects this flag. The "should_wakeup" flag controls whether the device should +try to use its wakeup mechanism. device_set_wakeup_enable() affects this flag; +for the most part drivers should not change its value. The initial value of +should_wakeup is supposed to be false for the majority of devices; the major +exceptions are power buttons, keyboards, and Ethernet adapters whose WoL +(wake-on-LAN) feature has been set up with ethtool. + +Whether or not a device is capable of issuing wakeup events is a hardware +matter, and the kernel is responsible for keeping track of it. By contrast, +whether or not a wakeup-capable device should issue wakeup events is a policy +decision, and it is managed by user space through a sysfs attribute: the +power/wakeup file. User space can write the strings "enabled" or "disabled" to +set or clear the should_wakeup flag, respectively. Reads from the file will +return the corresponding string if can_wakeup is true, but if can_wakeup is +false then reads will return an empty string, to indicate that the device +doesn't support wakeup events. (But even though the file appears empty, writes +will still affect the should_wakeup flag.) + +The device_may_wakeup() routine returns true only if both flags are set. +Drivers should check this routine when putting devices in a low-power state +during a system sleep transition, to see whether or not to enable the devices' +wakeup mechanisms. However for runtime power management, wakeup events should +be enabled whenever the device and driver both support them, regardless of the +should_wakeup flag. /sys/devices/.../power/control files ------------------------------------ -All devices in the driver model have a flag to control the desired behavior of -its driver with respect to runtime power management. This flag, called -runtime_auto, is initialized by the bus type (or generally subsystem) code using -pm_runtime_allow() or pm_runtime_forbid(), depending on whether or not the -driver is supposed to power manage the device at run time by default, -respectively. - -This setting may be adjusted by user space by writing either "on" or "auto" to -the device's "control" file. If "auto" is written, the device's runtime_auto -flag will be set and the driver will be allowed to power manage the device if -capable of doing that. If "on" is written, the driver is not allowed to power -manage the device which in turn is supposed to remain in the full power state at -run time. User space can check the current value of the runtime_auto flag by -reading from the device's "control" file. +Each device in the driver model has a flag to control whether it is subject to +runtime power management. This flag, called runtime_auto, is initialized by the +bus type (or generally subsystem) code using pm_runtime_allow() or +pm_runtime_forbid(); the default is to allow runtime power management. + +The setting can be adjusted by user space by writing either "on" or "auto" to +the device's power/control sysfs file. Writing "auto" calls pm_runtime_allow(), +setting the flag and allowing the device to be runtime power-managed by its +driver. Writing "on" calls pm_runtime_forbid(), clearing the flag, returning +the device to full power if it was in a low-power state, and preventing the +device from being runtime power-managed. User space can check the current value +of the runtime_auto flag by reading the file. The device's runtime_auto flag has no effect on the handling of system-wide -power transitions by its driver. In particular, the device can (and in the -majority of cases should and will) be put into a low power state during a -system-wide transition to a sleep state (like "suspend-to-RAM") even though its -runtime_auto flag is unset (in which case its "control" file contains "on"). +power transitions. In particular, the device can (and in the majority of cases +should and will) be put into a low-power state during a system-wide transition +to a sleep state even though its runtime_auto flag is clear. -For more information about the runtime power management framework for devices -refer to Documentation/power/runtime_pm.txt. +For more information about the runtime power management framework, refer to +Documentation/power/runtime_pm.txt. -Calling Drivers to Enter System Sleep States -============================================ -When the system goes into a sleep state, each device's driver is asked -to suspend the device by putting it into state compatible with the target +Calling Drivers to Enter and Leave System Sleep States +====================================================== +When the system goes into a sleep state, each device's driver is asked to +suspend the device by putting it into a state compatible with the target system state. That's usually some version of "off", but the details are system-specific. Also, wakeup-enabled devices will usually stay partly functional in order to wake the system. -When the system leaves that low power state, the device's driver is asked -to resume it. The suspend and resume operations always go together, and -both are multi-phase operations. +When the system leaves that low-power state, the device's driver is asked to +resume it by returning it to full power. The suspend and resume operations +always go together, and both are multi-phase operations. -For simple drivers, suspend might quiesce the device using the class code -and then turn its hardware as "off" as possible with late_suspend. The +For simple drivers, suspend might quiesce the device using class code +and then turn its hardware as "off" as possible during suspend_noirq. The matching resume calls would then completely reinitialize the hardware before reactivating its class I/O queues. @@ -224,269 +238,129 @@ devices have been suspended. Device drivers must be prepared to cope with such situations. -Suspending Devices ------------------- -Suspending a given device is done in several phases. Suspending the -system always includes every phase, executing calls for every device -before the next phase begins. Not all busses or classes support all -these callbacks; and not all drivers use all the callbacks. - -Generally, different callbacks are used depending on whether the system is -going to the standby or memory sleep state ("suspend-to-RAM") or it is going to -be hibernated ("suspend-to-disk"). +System Power Management Phases +------------------------------ +Suspending or resuming the system is done in several phases. Different phases +are used for standby or memory sleep states ("suspend-to-RAM") and the +hibernation state ("suspend-to-disk"). Each phase involves executing callbacks +for every device before the next phase begins. Not all busses or classes +support all these callbacks and not all drivers use all the callbacks. The +various phases always run after tasks have been frozen and before they are +unfrozen. Furthermore, the *_noirq phases run at a time when IRQ handlers have +been disabled (except for those marked with the IRQ_WAKEUP flag). -If the system goes to the standby or memory sleep state the phases are seen by -driver notifications issued in this order: +Most phases use bus, type, and class callbacks (that is, methods defined in +dev->bus->pm, dev->type->pm, and dev->class->pm). The prepare and complete +phases are exceptions; they use only bus callbacks. When multiple callbacks +are used in a phase, they are invoked in the order: during +power-down transitions and in the opposite order during power-up transitions. +For example, during the suspend phase the PM core invokes - 1 bus->pm.prepare(dev) is called after tasks are frozen and it is supposed - to call the device driver's ->pm.prepare() method. + dev->class->pm.suspend(dev); + dev->type->pm.suspend(dev); + dev->bus->pm.suspend(dev); - The purpose of this method is mainly to prevent new children of the - device from being registered after it has returned. It also may be used - to generally prepare the device for the upcoming system transition, but - it should not put the device into a low power state. +before moving on to the next device, whereas during the resume phase the core +invokes - 2 class->pm.suspend(dev) is called if dev is associated with a class that - has such a method. It may invoke the device driver's ->pm.suspend() - method, unless type->pm.suspend(dev) or bus->pm.suspend() does that. + dev->bus->pm.resume(dev); + dev->type->pm.resume(dev); + dev->class->pm.resume(dev); - 3 type->pm.suspend(dev) is called if dev is associated with a device type - that has such a method. It may invoke the device driver's - ->pm.suspend() method, unless class->pm.suspend(dev) or - bus->pm.suspend() does that. +These callbacks may in turn invoke device- or driver-specific methods stored in +dev->driver->pm, but they don't have to. - 4 bus->pm.suspend(dev) is called, if implemented. It usually calls the - device driver's ->pm.suspend() method. - This call should generally quiesce the device so that it doesn't do any - I/O after the call has returned. It also may save the device registers - and put it into the appropriate low power state, depending on the bus - type the device is on. - - 5 bus->pm.suspend_noirq(dev) is called, if implemented. It may call the - device driver's ->pm.suspend_noirq() method, depending on the bus type - in question. - - This method is invoked after device interrupts have been suspended, - which means that the driver's interrupt handler will not be called - while it is running. It should save the values of the device's - registers that weren't saved previously and finally put the device into - the appropriate low power state. +Entering System Suspend +----------------------- +When the system goes into the standby or memory sleep state, the phases are: + + prepare, suspend, suspend_noirq. + + 1. The prepare phase is meant to prevent races by preventing new devices + from being registered; the PM core would never know that all the + children of a device had been suspended if new children could be + registered at will. (By contrast, devices may be unregistered at any + time.) Unlike the other suspend-related phases, during the prepare + phase the device tree is traversed top-down. + + The prepare phase uses only a bus callback. After the callback method + returns, no new children may be registered below the device. The method + may also prepare the device or driver in some way for the upcoming + system power transition, but it should not put the device into a + low-power state. + + 2. The suspend methods should quiesce the device to stop it from performing + I/O. They also may save the device registers and put it into the + appropriate low-power state, depending on the bus type the device is on, + and they may enable wakeup events. + + 3. The suspend_noirq phase occurs after IRQ handlers have been disabled, + which means that the driver's interrupt handler will not be called while + the callback method is running. The methods should save the values of + the device's registers that weren't saved previously and finally put the + device into the appropriate low-power state. The majority of subsystems and device drivers need not implement this - method. However, bus types allowing devices to share interrupt vectors, - like PCI, generally need to use it to prevent interrupt handling issues - from happening during suspend. - -At the end of those phases, drivers should normally have stopped all I/O -transactions (DMA, IRQs), saved enough state that they can re-initialize -or restore previous state (as needed by the hardware), and placed the -device into a low-power state. On many platforms they will also use -gate off one or more clock sources; sometimes they will also switch off power -supplies, or reduce voltages. [Drivers supporting runtime PM may already have -performed some or all of the steps needed to prepare for the upcoming system -state transition.] + callback. However, bus types allowing devices to share interrupt + vectors, like PCI, generally need it; otherwise a driver might encounter + an error during the suspend phase by fielding a shared interrupt + generated by some other device after its own device had been set to low + power. + +At the end of these phases, drivers should have stopped all I/O transactions +(DMA, IRQs), saved enough state that they can re-initialize or restore previous +state (as needed by the hardware), and placed the device into a low-power state. +On many platforms they will gate off one or more clock sources; sometimes they +will also switch off power supplies or reduce voltages. (Drivers supporting +runtime PM may already have performed some or all of these steps.) If device_may_wakeup(dev) returns true, the device should be prepared for -generating hardware wakeup signals when the system is in the sleep state to -trigger a system wakeup event. For example, enable_irq_wake() might identify +generating hardware wakeup signals to trigger a system wakeup event when the +system is in the sleep state. For example, enable_irq_wake() might identify GPIO signals hooked up to a switch or other external hardware, and pci_enable_wake() does something similar for the PCI PME signal. -If a driver (or subsystem) fails it suspend method, the system won't enter the -desired low power state; it will resume all the devices it's suspended so far. - - -Hibernation Phases ------------------- -Hibernating the system is more complicated than putting it into the standby or -memory sleep state, because it involves creating a system image and saving it. -Therefore there are more phases of hibernation and special device PM methods are -used in this case. - -First, it is necessary to prepare the system for creating a hibernation image. -This is similar to putting the system into the standby or memory sleep state, -although it generally doesn't require that devices be put into low power states -(that is even not desirable at this point). Driver notifications are then -issued in the following order: - - 1 bus->pm.prepare(dev) is called after tasks have been frozen and enough - memory has been freed. - - 2 class->pm.freeze(dev) is called if implemented. It may invoke the - device driver's ->pm.freeze() method, unless type->pm.freeze(dev) or - bus->pm.freeze() does that. - - 3 type->pm.freeze(dev) is called if implemented. It may invoke the device - driver's ->pm.suspend() method, unless class->pm.freeze(dev) or - bus->pm.freeze() does that. - - 4 bus->pm.freeze(dev) is called, if implemented. It usually calls the - device driver's ->pm.freeze() method. - - 5 bus->pm.freeze_noirq(dev) is called, if implemented. It may call the - device driver's ->pm.freeze_noirq() method, depending on the bus type - in question. - -The difference between ->pm.freeze() and the corresponding ->pm.suspend() (and -similarly for the "noirq" variants) is that the former should avoid preparing -devices to trigger system wakeup events and putting devices into low power -states, although they generally have to save the values of device registers -so that it's possible to restore them during system resume. - -Second, after the system image has been created, the functionality of devices -has to be restored so that the image can be saved. That is similar to resuming -devices after the system has been woken up from the standby or memory sleep -state, which is described below, and causes the following device notifications -to be issued: - - 1 bus->pm.thaw_noirq(dev), if implemented; may call the device driver's - ->pm.thaw_noirq() method, depending on the bus type in question. - - 2 bus->pm.thaw(dev), if implemented; usually calls the device driver's - ->pm.thaw() method. - - 3 type->pm.thaw(dev), if implemented; may call the device driver's - ->pm.thaw() method if not called by the bus type or class. - - 4 class->pm.thaw(dev), if implemented; may call the device driver's - ->pm.thaw() method if not called by the bus type or device type. - - 5 bus->pm.complete(dev), if implemented; may call the device driver's - ->pm.complete() method. - -Generally, the role of the ->pm.thaw() methods (including the "noirq" variants) -is to bring the device back to the fully functional state, so that it may be -used for saving the image, if necessary. The role of bus->pm.complete() is to -reverse whatever bus->pm.prepare() did (likewise for the analogous device driver -callbacks). - -After the image has been saved, the devices need to be prepared for putting the -system into the low power state. That is analogous to suspending them before -putting the system into the standby or memory sleep state and involves the -following device notifications: - - 1 bus->pm.prepare(dev). - - 2 class->pm.poweroff(dev), if implemented; may invoke the device driver's - ->pm.poweroff() method if not called by the bus type or device type. - - 3 type->pm.poweroff(dev), if implemented; may invoke the device driver's - ->pm.poweroff() method if not called by the bus type or device class. - - 4 bus->pm.poweroff(dev), if implemented; usually calls the device driver's - ->pm.poweroff() method (if not called by the device class or type). - - 5 bus->pm.poweroff_noirq(dev), if implemented; may call the device - driver's ->pm.poweroff_noirq() method, depending on the bus type - in question. - -The difference between ->pm.poweroff() and the corresponding ->pm.suspend() (and -analogously for the "noirq" variants) is that the former need not save the -device's registers. Still, they should prepare the device for triggering -system wakeup events if necessary and finally put it into the appropriate low -power state. - - -Device Low Power (suspend) States ---------------------------------- -Device low-power states aren't standard. One device might only handle -"on" and "off, while another might support a dozen different versions of -"on" (how many engines are active?), plus a state that gets back to "on" -faster than from a full "off". - -Some busses define rules about what different suspend states mean. PCI -gives one example: after the suspend sequence completes, a non-legacy -PCI device may not perform DMA or issue IRQs, and any wakeup events it -issues would be issued through the PME# bus signal. Plus, there are -several PCI-standard device states, some of which are optional. - -In contrast, integrated system-on-chip processors often use IRQs as the -wakeup event sources (so drivers would call enable_irq_wake) and might -be able to treat DMA completion as a wakeup event (sometimes DMA can stay -active too, it'd only be the CPU and some peripherals that sleep). - -Some details here may be platform-specific. Systems may have devices that -can be fully active in certain sleep states, such as an LCD display that's -refreshed using DMA while most of the system is sleeping lightly ... and -its frame buffer might even be updated by a DSP or other non-Linux CPU while -the Linux control processor stays idle. - -Moreover, the specific actions taken may depend on the target system state. -One target system state might allow a given device to be very operational; -another might require a hard shut down with re-initialization on resume. -And two different target systems might use the same device in different -ways; the aforementioned LCD might be active in one product's "standby", -but a different product using the same SOC might work differently. +If any of these callbacks returns an error, the system won't enter the desired +low-power state. Instead the PM core will unwind its actions by resuming all +the devices that were suspended. -Resuming Devices ----------------- -Resuming is done in multiple phases, much like suspending, with all -devices processing each phase's calls before the next phase begins. +Leaving System Suspend +---------------------- +When resuming from standby or memory sleep, the phases are: -Again, however, different callbacks are used depending on whether the system is -waking up from the standby or memory sleep state ("suspend-to-RAM") or from -hibernation ("suspend-to-disk"). + resume_noirq, resume, complete. -If the system is waking up from the standby or memory sleep state, the phases -are seen by driver notifications issued in this order: - - 1 bus->pm.resume_noirq(dev) is called, if implemented. It may call the - device driver's ->pm.resume_noirq() method, depending on the bus type in - question. - - The role of this method is to perform actions that need to be performed - before device drivers' interrupt handlers are allowed to be invoked. If - the given bus type permits devices to share interrupt vectors, like PCI, - this method should bring the device and its driver into a state in which - the driver can recognize if the device is the source of incoming - interrupts, if any, and handle them correctly. + 1. The resume_noirq callback methods should perform any actions needed + before the driver's interrupt handlers are invoked. This generally + means undoing the actions of the suspend_noirq phase. If the bus type + permits devices to share interrupt vectors, like PCI, the method should + bring the device and its driver into a state in which the driver can + recognize if the device is the source of incoming interrupts, if any, + and handle them correctly. For example, the PCI bus type's ->pm.resume_noirq() puts the device into - the full power state (D0 in the PCI terminology) and restores the - standard configuration registers of the device. Then, it calls the + the full-power state (D0 in the PCI terminology) and restores the + standard configuration registers of the device. Then it calls the device driver's ->pm.resume_noirq() method to perform device-specific - actions needed at this stage of resume. - - 2 bus->pm.resume(dev) is called, if implemented. It usually calls the - device driver's ->pm.resume() method. - - This call should generally bring the the device back to the working - state, so that it can do I/O as requested after the call has returned. - However, it may be more convenient to use the device class or device - type ->pm.resume() for this purpose, in which case the bus type's - ->pm.resume() method need not be implemented at all. - - 3 type->pm.resume(dev) is called, if implemented. It may invoke the - device driver's ->pm.resume() method, unless class->pm.resume(dev) or - bus->pm.resume() does that. - - For devices that are not associated with any bus type or device class - this method plays the role of bus->pm.resume(). - - 4 class->pm.resume(dev) is called, if implemented. It may invoke the - device driver's ->pm.resume() method, unless bus->pm.resume(dev) or - type->pm.resume() does that. - - For devices that are not associated with any bus type or device type - this method plays the role of bus->pm.resume(). + actions. - 5 bus->pm.complete(dev) is called, if implemented. It is supposed to - invoke the device driver's ->pm.complete() method. + 2. The resume methods should bring the the device back to its operating + state, so that it can perform normal I/O. This generally involves + undoing the actions of the suspend phase. - The role of this method is to reverse whatever bus->pm.prepare(dev) - (or the driver's ->pm.prepare()) did during suspend, if necessary. + 3. The complete phase uses only a bus callback. The method should undo the + actions of the prepare phase. Note, however, that new children may be + registered below the device as soon as the resume callbacks occur; it's + not necessary to wait until the complete phase. -At the end of those phases, drivers should normally be as functional as -they were before suspending: I/O can be performed using DMA and IRQs, and -the relevant clocks are gated on. In principle the device need not be -"fully on"; it might be in a runtime lowpower/suspend state during suspend and -the resume callbacks may try to restore that state, but that need not be -desirable from the user's point of view. In fact, there are multiple reasons -why it's better to always put devices into the "fully working" state in the -system sleep resume callbacks and they are discussed in more detail in -Documentation/power/runtime_pm.txt. +At the end of these phases, drivers should be as functional as they were before +suspending: I/O can be performed using DMA and IRQs, and the relevant clocks are +gated on. Even if the device was in a low-power state before the system sleep +because of runtime power management, afterwards it should be back in its +full-power state. There are multiple reasons why it's best to do this; they are +discussed in more detail in Documentation/power/runtime_pm.txt. However, the details here may again be platform-specific. For example, some systems support multiple "run" states, and the mode in effect at @@ -502,103 +376,156 @@ the suspend was carried out, but that can't be guaranteed (in fact, it ususally is not the case). Drivers must also be prepared to notice that the device has been removed -while the system was powered off, whenever that's physically possible. +while the system was powered down, whenever that's physically possible. PCMCIA, MMC, USB, Firewire, SCSI, and even IDE are common examples of busses where common Linux platforms will see such removal. Details of how drivers will notice and handle such removals are currently bus-specific, and often involve a separate thread. +These callbacks may return an error value, but the PM core will ignore such +errors since there's nothing it can do about them other than printing them in +the system log. -Resume From Hibernation ------------------------ + +Entering Hibernation +-------------------- +Hibernating the system is more complicated than putting it into the standby or +memory sleep state, because it involves creating and saving a system image. +Therefore there are more phases for hibernation, with a different set of +callbacks. These phases always run after tasks have been frozen and memory has +been freed. + +The general procedure for hibernation is to quiesce all devices (freeze), create +an image of the system memory while everything is stable, reactivate all +devices (thaw), write the image to permanent storage, and finally shut down the +system (poweroff). The phases used to accomplish this are: + + prepare, freeze, freeze_noirq, thaw_noirq, thaw, complete, + prepare, poweroff, poweroff_noirq + + 1. The prepare phase is discussed in the "Entering System Suspend" section + above. + + 2. The freeze methods should quiesce the device so that it doesn't generate + IRQs or DMA, and they may need to save the values of device registers. + However the device does not have to be put in a low-power state, and to + save time it's best not to do so. Also, the device should not be + prepared to generate wakeup events. + + 3. The freeze_noirq phase is analogous to the suspend_noirq phase discussed + above, except again that the device should not be put in a low-power + state and should not be allowed to generate wakeup events. + +At this point the system image is created. All devices should be inactive and +the contents of memory should remain undisturbed while this happens, so that the +image forms an atomic snapshot of the system state. + + 4. The thaw_noirq phase is analogous to the resume_noirq phase discussed + above. The main difference is that its methods can assume the device is + in the same state as at the end of the freeze_noirq phase. + + 5. The thaw phase is analogous to the resume phase discussed above. Its + methods should bring the device back to an operating state, so that it + can be used for saving the image if necessary. + + 6. The complete phase is discussed in the "Leaving System Suspend" section + above. + +At this point the system image is saved, and the devices then need to be +prepared for the upcoming system shutdown. This is much like suspending them +before putting the system into the standby or memory sleep state, and the phases +are similar. + + 7. The prepare phase is discussed above. + + 8. The poweroff phase is analogous to the suspend phase. + + 9. The poweroff_noirq phase is analogous to the suspend_noirq phase. + +The poweroff and poweroff_noirq callbacks should do essentially the same things +as the suspend and suspend_noirq callbacks. The only notable difference is that +they need not store the device register values, because the registers should +already have been stored during the freeze or freeze_noirq phases. + + +Leaving Hibernation +------------------- Resuming from hibernation is, again, more complicated than resuming from a sleep state in which the contents of main memory are preserved, because it requires a system image to be loaded into memory and the pre-hibernation memory contents to be restored before control can be passed back to the image kernel. -In principle, the image might be loaded into memory and the pre-hibernation -memory contents might be restored by the boot loader. For this purpose, -however, the boot loader would need to know the image kernel's entry point and -there's no protocol defined for passing that information to boot loaders. As -a workaround, the boot loader loads a fresh instance of the kernel, called the -boot kernel, into memory and passes control to it in a usual way. Then, the -boot kernel reads the hibernation image, restores the pre-hibernation memory -contents and passes control to the image kernel. Thus, in fact, two different -kernels are involved in resuming from hibernation and in general they are not -only different because they play different roles in this operation. Actually, -the boot kernel may be completely different from the image kernel. Not only -the configuration of it, but also the version of it may be different. -The consequences of this are important to device drivers and their subsystems -(bus types, device classes and device types) too. - -Namely, to be able to load the hibernation image into memory, the boot kernel -needs to include at least the subset of device drivers allowing it to access the -storage medium containing the image, although it generally doesn't need to -include all of the drivers included into the image kernel. After the image has -been loaded the devices handled by those drivers need to be prepared for passing -control back to the image kernel. This is very similar to the preparation of -devices for creating a hibernation image described above. In fact, it is done -in the same way, with the help of the ->pm.prepare(), ->pm.freeze() and -->pm.freeze_noirq() callbacks, but only for device drivers included in the boot -kernel (whose versions may generally be different from the versions of the -analogous drivers from the image kernel). +Although in principle, the image might be loaded into memory and the +pre-hibernation memory contents restored by the boot loader, in practice this +can't be done because boot loaders aren't smart enough and there is no +established protocol for passing the necessary information. So instead, the +boot loader loads a fresh instance of the kernel, called the boot kernel, into +memory and passes control to it in the usual way. Then the boot kernel reads +the system image, restores the pre-hibernation memory contents, and passes +control to the image kernel. Thus two different kernels are involved in +resuming from hibernation. In fact, the boot kernel may be completely different +from the image kernel: a different configuration and even a different version. +This has important consequences for device drivers and their subsystems. + +To be able to load the system image into memory, the boot kernel needs to +include at least a subset of device drivers allowing it to access the storage +medium containing the image, although it doesn't need to include all of the +drivers present in the image kernel. After the image has been loaded, the +devices managed by the boot kernel need to be prepared for passing control back +to the image kernel. This is very similar to the initial steps involved in +creating a system image, and it is accomplished in the same way, using prepare, +freeze, and freeze_noirq phases. However the devices affected by these phases +are only those having drivers in the boot kernel; other devices will still be in +whatever state the boot loader left them. Should the restoration of the pre-hibernation memory contents fail, the boot -kernel would carry out the procedure of "thawing" devices described above, using -the ->pm.thaw_noirq(), ->pm.thaw(), and ->pm.complete() callbacks provided by -subsystems and device drivers. This, however, is a very rare condition. Most -often the pre-hibernation memory contents are restored successfully and control -is passed to the image kernel that is now responsible for bringing the system -back to the working state. +kernel would go through the "thawing" procedure described above, using the +thaw_noirq, thaw, and complete phases, and then continue running normally. This +happens only rarely. Most often the pre-hibernation memory contents are +restored successfully and control is passed to the image kernel, which then +becomes responsible for bringing the system back to the working state. -To achieve this goal, among other things, the image kernel restores the -pre-hibernation functionality of devices. This operation is analogous to the -resuming of devices after waking up from the memory sleep state, although it -involves different device notifications which are the following: +To achieve this, the image kernel must restore the devices' pre-hibernation +functionality. The operation is much like waking up from the memory sleep +state, although it involves different phases: - 1 bus->pm.restore_noirq(dev), if implemented; may call the device driver's - ->pm.restore_noirq() method, depending on the bus type in question. + restore_noirq, restore, complete - 2 bus->pm.restore(dev), if implemented; usually calls the device driver's - ->pm.restore() method. + 1. The restore_noirq phase is analogous to the resume_noirq phase. - 3 type->pm.restore(dev), if implemented; may call the device driver's - ->pm.restore() method if not called by the bus type or class. + 2. The restore phase is analogous to the resume phase. - 4 class->pm.restore(dev), if implemented; may call the device driver's - ->pm.restore() method if not called by the bus type or device type. + 3. The complete phase is discussed above. - 5 bus->pm.complete(dev), if implemented; may call the device driver's - ->pm.complete() method. - -The roles of the ->pm.restore_noirq() and ->pm.restore() callbacks are analogous -to the roles of the corresponding resume callbacks, but they must assume that -the device may have been accessed before by the boot kernel. Consequently, the -state of the device before they are called may be different from the state of it -right prior to calling the resume callbacks. That difference usually doesn't -matter, so the majority of device drivers can set their resume and restore -callback pointers to the same routine. Nevertheless, different callback -pointers are used in case there is a situation where it actually matters. +The main difference from resume[_noirq] is that restore[_noirq] must assume the +device has been accessed and reconfigured by the boot loader or the boot kernel. +Consequently the state of the device may be different from the state remembered +from the freeze and freeze_noirq phases. The device may even need to be reset +and completely re-initialized. In many cases this difference doesn't matter, so +the resume[_noirq] and restore[_norq] method pointers can be set to the same +routines. Nevertheless, different callback pointers are used in case there is a +situation where it actually matters. System Devices -------------- -System devices follow a slightly different API, which can be found in +System devices (sysdevs) follow a slightly different API, which can be found in include/linux/sysdev.h drivers/base/sys.c -System devices will only be suspended with interrupts disabled, and after -all other devices have been suspended. On resume, they will be resumed -before any other devices, and also with interrupts disabled. +System devices will be suspended with interrupts disabled, and after all other +devices have been suspended. On resume, they will be resumed before any other +devices, and also with interrupts disabled. These things occur in special +"sysdev_driver" phases, which affect only system devices. -That is, when the non-boot CPUs are all offline and IRQs are disabled on the -remaining online CPU, then the sysdev_driver.suspend() phase is carried out, and -the system enters a sleep state (or hibernation image is created). During -resume (or after the image has been created) the sysdev_driver.resume() phase -is carried out, IRQs are enabled on the only online CPU, the non-boot CPUs are -enabled and that is followed by the "early resume" phase (in which the "noirq" -callbacks provided by subsystems and device drivers are invoked). +Thus, after the suspend_noirq (or freeze_noirq or poweroff_noirq) phase, when +the non-boot CPUs are all offline and IRQs are disabled on the remaining online +CPU, then a sysdev_driver.suspend phase is carried out, and the system enters a +sleep state (or a system image is created). During resume (or after the image +has been created or loaded) a sysdev_driver.resume phase is carried out, IRQs +are enabled on the only online CPU, the non-boot CPUs are enabled, and the +resume_noirq (or thaw_noirq or restore_noirq) phase begins. Code to actually enter and exit the system-wide low power state sometimes involves hardware details that are only known to the boot firmware, and @@ -606,18 +533,47 @@ may leave a CPU running software (from SRAM or flash memory) that monitors the system and manages its wakeup sequence. +Device Low Power (suspend) States +--------------------------------- +Device low-power states aren't standard. One device might only handle +"on" and "off, while another might support a dozen different versions of +"on" (how many engines are active?), plus a state that gets back to "on" +faster than from a full "off". + +Some busses define rules about what different suspend states mean. PCI +gives one example: after the suspend sequence completes, a non-legacy +PCI device may not perform DMA or issue IRQs, and any wakeup events it +issues would be issued through the PME# bus signal. Plus, there are +several PCI-standard device states, some of which are optional. + +In contrast, integrated system-on-chip processors often use IRQs as the +wakeup event sources (so drivers would call enable_irq_wake) and might +be able to treat DMA completion as a wakeup event (sometimes DMA can stay +active too, it'd only be the CPU and some peripherals that sleep). + +Some details here may be platform-specific. Systems may have devices that +can be fully active in certain sleep states, such as an LCD display that's +refreshed using DMA while most of the system is sleeping lightly ... and +its frame buffer might even be updated by a DSP or other non-Linux CPU while +the Linux control processor stays idle. + +Moreover, the specific actions taken may depend on the target system state. +One target system state might allow a given device to be very operational; +another might require a hard shut down with re-initialization on resume. +And two different target systems might use the same device in different +ways; the aforementioned LCD might be active in one product's "standby", +but a different product using the same SOC might work differently. + + Power Management Notifiers -------------------------- -As stated in Documentation/power/notifiers.txt, there are some operations that -cannot be carried out by the power management callbacks discussed above, because -carrying them out at these points would be too late or too early. To handle -these cases subsystems and device drivers may register power management -notifiers that are called before tasks are frozen and after they have been -thawed. - -Generally speaking, the PM notifiers are suitable for performing actions that -either require user space to be available, or at least won't interfere with user -space in a wrong way. +There are some operations that cannot be carried out by the power management +callbacks discussed above, because the callbacks occur too late or too early. +To handle these cases, subsystems and device drivers may register power +management notifiers that are called before tasks are frozen and after they have +been thawed. Generally speaking, the PM notifiers are suitable for performing +actions that either require user space to be available, or at least won't +interfere with user space. For details refer to Documentation/power/notifiers.txt. @@ -629,24 +585,23 @@ running. This feature is useful for devices that are not being used, and can offer significant power savings on a running system. These devices often support a range of runtime power states, which might use names such as "off", "sleep", "idle", "active", and so on. Those states will in some -cases (like PCI) be partially constrained by a bus the device uses, and will +cases (like PCI) be partially constrained by the bus the device uses, and will usually include hardware states that are also used in system sleep states. -Note, however, that a system-wide power transition can be started while some -devices are in low power states due to the runtime power management. The system -sleep PM callbacks should generally recognize such situations and react to them -appropriately, but the recommended actions to be taken in that cases are -subsystem-specific. - -In some cases the decision may be made at the subsystem level while in some -other cases the device driver may be left to decide. In some cases it may be -desirable to leave a suspended device in that state during system-wide power -transition, but in some other cases the device ought to be put back into the -full power state, for example to be configured for system wakeup or so that its -system wakeup capability can be disabled. That all depends on the hardware -and the design of the subsystem and device driver in question. - -During system-wide resume from a sleep state it's better to put devices into -the full power state, as explained in Documentation/power/runtime_pm.txt. Refer -to that document for more information regarding this particular issue as well as +A system-wide power transition can be started while some devices are in low +power states due to runtime power management. The system sleep PM callbacks +should recognize such situations and react to them appropriately, but the +necessary actions are subsystem-specific. + +In some cases the decision may be made at the subsystem level while in other +cases the device driver may be left to decide. In some cases it may be +desirable to leave a suspended device in that state during a system-wide power +transition, but in other cases the device must be put back into the full-power +state temporarily, for example so that its system wakeup capability can be +disabled. This all depends on the hardware and the design of the subsystem and +device driver in question. + +During system-wide resume from a sleep state it's best to put devices into the +full-power state, as explained in Documentation/power/runtime_pm.txt. Refer to +that document for more information regarding this particular issue as well as for information on the device runtime power management framework in general. -- cgit v1.2.3 From c92445fadb9179d811b5cb044947ad4712403541 Mon Sep 17 00:00:00 2001 From: Dominik Brodowski Date: Fri, 23 Apr 2010 20:32:23 +0200 Subject: PM / Runtime: Add sysfs debug files Add a few sysfs files relating to runtime power management for advanced debug purposes: runtime_enabled: is runtime PM enabled for this device? States are "enabled", "disabled", "forbidden" or a combination of the latter two. runtime_status: what state is the device in currently? E.g., it reports "suspended" for runtime-suspended devices, and "active" for active devices. NOTE: if runtime_enabled returns "disabled", the value of this file may not reflect its physical state. runtime_usage: the runtime PM usage count of a device runtime_active_kids: the runtime PM children usage count of a device, or 0 if the ignore_children flag is set. Also, CONFIG_PM_SLEEP_ADVANCED_DEBUG is not defined in any Kconfig file, so replace it with CONFIG_PM_ADVANCED_DEBUG. Signed-off-by: Dominik Brodowski Acked-by: Alan Stern Signed-off-by: Rafael J. Wysocki --- drivers/base/power/sysfs.c | 65 +++++++++++++++++++++++++++++++++++++++++++--- 1 file changed, 62 insertions(+), 3 deletions(-) diff --git a/drivers/base/power/sysfs.c b/drivers/base/power/sysfs.c index 86fd9373447..a4c33bc5125 100644 --- a/drivers/base/power/sysfs.c +++ b/drivers/base/power/sysfs.c @@ -5,6 +5,7 @@ #include #include #include +#include #include "power.h" /* @@ -143,7 +144,59 @@ wake_store(struct device * dev, struct device_attribute *attr, static DEVICE_ATTR(wakeup, 0644, wake_show, wake_store); -#ifdef CONFIG_PM_SLEEP_ADVANCED_DEBUG +#ifdef CONFIG_PM_ADVANCED_DEBUG +#ifdef CONFIG_PM_RUNTIME + +static ssize_t rtpm_usagecount_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + return sprintf(buf, "%d\n", atomic_read(&dev->power.usage_count)); +} + +static ssize_t rtpm_children_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + return sprintf(buf, "%d\n", dev->power.ignore_children ? + 0 : atomic_read(&dev->power.child_count)); +} + +static ssize_t rtpm_enabled_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + if ((dev->power.disable_depth) && (dev->power.runtime_auto == false)) + return sprintf(buf, "disabled & forbidden\n"); + else if (dev->power.disable_depth) + return sprintf(buf, "disabled\n"); + else if (dev->power.runtime_auto == false) + return sprintf(buf, "forbidden\n"); + return sprintf(buf, "enabled\n"); +} + +static ssize_t rtpm_status_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + if (dev->power.runtime_error) + return sprintf(buf, "error\n"); + switch (dev->power.runtime_status) { + case RPM_SUSPENDED: + return sprintf(buf, "suspended\n"); + case RPM_SUSPENDING: + return sprintf(buf, "suspending\n"); + case RPM_RESUMING: + return sprintf(buf, "resuming\n"); + case RPM_ACTIVE: + return sprintf(buf, "active\n"); + } + return -EIO; +} + +static DEVICE_ATTR(runtime_usage, 0444, rtpm_usagecount_show, NULL); +static DEVICE_ATTR(runtime_active_kids, 0444, rtpm_children_show, NULL); +static DEVICE_ATTR(runtime_status, 0444, rtpm_status_show, NULL); +static DEVICE_ATTR(runtime_enabled, 0444, rtpm_enabled_show, NULL); + +#endif + static ssize_t async_show(struct device *dev, struct device_attribute *attr, char *buf) { @@ -170,15 +223,21 @@ static ssize_t async_store(struct device *dev, struct device_attribute *attr, } static DEVICE_ATTR(async, 0644, async_show, async_store); -#endif /* CONFIG_PM_SLEEP_ADVANCED_DEBUG */ +#endif /* CONFIG_PM_ADVANCED_DEBUG */ static struct attribute * power_attrs[] = { #ifdef CONFIG_PM_RUNTIME &dev_attr_control.attr, #endif &dev_attr_wakeup.attr, -#ifdef CONFIG_PM_SLEEP_ADVANCED_DEBUG +#ifdef CONFIG_PM_ADVANCED_DEBUG &dev_attr_async.attr, +#ifdef CONFIG_PM_RUNTIME + &dev_attr_runtime_usage.attr, + &dev_attr_runtime_active_kids.attr, + &dev_attr_runtime_status.attr, + &dev_attr_runtime_enabled.attr, +#endif #endif NULL, }; -- cgit v1.2.3 From bc6a0cbd576c66995d782331456f68ae63a50af4 Mon Sep 17 00:00:00 2001 From: Pavel Machek Date: Fri, 23 Apr 2010 20:32:29 +0200 Subject: PM / Hibernate: document open(/dev/snapshot) side effects Opening and closing /dev/snapshot causes the kernel to carry out some hibernate preparations that should be documented. [rjw: Added the changelog.] Signed-off-by: Pavel Machek Signed-off-by: Rafael J. Wysocki --- Documentation/power/userland-swsusp.txt | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/Documentation/power/userland-swsusp.txt b/Documentation/power/userland-swsusp.txt index b967cd9137d..81680f9f590 100644 --- a/Documentation/power/userland-swsusp.txt +++ b/Documentation/power/userland-swsusp.txt @@ -24,6 +24,10 @@ assumed to be in the resume mode. The device cannot be open for simultaneous reading and writing. It is also impossible to have the device open more than once at a time. +Even opening the device has side effects. Data structures are +allocated, and PM_HIBERNATION_PREPARE / PM_RESTORE_PREPARE chains are +called. + The ioctl() commands recognized by the device are: SNAPSHOT_FREEZE - freeze user space processes (the current process is -- cgit v1.2.3 From 6a727b43be8b005609e893a80af980808012cfdb Mon Sep 17 00:00:00 2001 From: Jiri Slaby Date: Sat, 1 May 2010 23:51:22 +0200 Subject: FS / libfs: Implement simple_write_to_buffer It will be used in suspend code and serves as an easy wrap around copy_from_user. Similar to simple_read_from_buffer, it takes care of transfers with proper lengths depending on available and count parameters and advances ppos appropriately. Signed-off-by: Jiri Slaby Signed-off-by: Rafael J. Wysocki --- fs/libfs.c | 35 +++++++++++++++++++++++++++++++++++ include/linux/fs.h | 2 ++ 2 files changed, 37 insertions(+) diff --git a/fs/libfs.c b/fs/libfs.c index ea9a6cc9b35..232bea425b0 100644 --- a/fs/libfs.c +++ b/fs/libfs.c @@ -546,6 +546,40 @@ ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, return count; } +/** + * simple_write_to_buffer - copy data from user space to the buffer + * @to: the buffer to write to + * @available: the size of the buffer + * @ppos: the current position in the buffer + * @from: the user space buffer to read from + * @count: the maximum number of bytes to read + * + * The simple_write_to_buffer() function reads up to @count bytes from the user + * space address starting at @from into the buffer @to at offset @ppos. + * + * On success, the number of bytes written is returned and the offset @ppos is + * advanced by this number, or negative value is returned on error. + **/ +ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, + const void __user *from, size_t count) +{ + loff_t pos = *ppos; + size_t res; + + if (pos < 0) + return -EINVAL; + if (pos >= available || !count) + return 0; + if (count > available - pos) + count = available - pos; + res = copy_from_user(to + pos, from, count); + if (res == count) + return -EFAULT; + count -= res; + *ppos = pos + count; + return count; +} + /** * memory_read_from_buffer - copy data from the buffer * @to: the kernel space buffer to read to @@ -864,6 +898,7 @@ EXPORT_SYMBOL(simple_statfs); EXPORT_SYMBOL(simple_sync_file); EXPORT_SYMBOL(simple_unlink); EXPORT_SYMBOL(simple_read_from_buffer); +EXPORT_SYMBOL(simple_write_to_buffer); EXPORT_SYMBOL(memory_read_from_buffer); EXPORT_SYMBOL(simple_transaction_set); EXPORT_SYMBOL(simple_transaction_get); diff --git a/include/linux/fs.h b/include/linux/fs.h index 44f35aea2f1..948bd2bfb1d 100644 --- a/include/linux/fs.h +++ b/include/linux/fs.h @@ -2362,6 +2362,8 @@ extern void simple_release_fs(struct vfsmount **mount, int *count); extern ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, const void *from, size_t available); +extern ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, + const void __user *from, size_t count); extern int simple_fsync(struct file *, struct dentry *, int); -- cgit v1.2.3 From d3c1b24c50e8b2bbc840322caf26c7eada594d21 Mon Sep 17 00:00:00 2001 From: Jiri Slaby Date: Sat, 1 May 2010 23:52:02 +0200 Subject: PM / Hibernate: Snapshot cleanup Remove support of reads with offset. This means snapshot_read/write_next now does not accept count parameter. It allows to clean up the functions and snapshot handle which no longer needs to care about offsets. /dev/snapshot handler is converted to simple_{read_from,write_to}_buffer which take care of offsets. Signed-off-by: Jiri Slaby Acked-by: Pavel Machek Signed-off-by: Rafael J. Wysocki --- kernel/power/power.h | 18 +----- kernel/power/snapshot.c | 145 +++++++++++++++++++----------------------------- kernel/power/swap.c | 8 +-- kernel/power/user.c | 37 ++++++++---- 4 files changed, 88 insertions(+), 120 deletions(-) diff --git a/kernel/power/power.h b/kernel/power/power.h index 46c5a26630a..b1e207dde1c 100644 --- a/kernel/power/power.h +++ b/kernel/power/power.h @@ -97,24 +97,12 @@ extern int hibernate_preallocate_memory(void); */ struct snapshot_handle { - loff_t offset; /* number of the last byte ready for reading - * or writing in the sequence - */ unsigned int cur; /* number of the block of PAGE_SIZE bytes the * next operation will refer to (ie. current) */ - unsigned int cur_offset; /* offset with respect to the current - * block (for the next operation) - */ - unsigned int prev; /* number of the block of PAGE_SIZE bytes that - * was the current one previously - */ void *buffer; /* address of the block to read from * or write to */ - unsigned int buf_offset; /* location to read from or write to, - * given as a displacement from 'buffer' - */ int sync_read; /* Set to one to notify the caller of * snapshot_write_next() that it may * need to call wait_on_bio_chain() @@ -125,12 +113,12 @@ struct snapshot_handle { * snapshot_read_next()/snapshot_write_next() is allowed to * read/write data after the function returns */ -#define data_of(handle) ((handle).buffer + (handle).buf_offset) +#define data_of(handle) ((handle).buffer) extern unsigned int snapshot_additional_pages(struct zone *zone); extern unsigned long snapshot_get_image_size(void); -extern int snapshot_read_next(struct snapshot_handle *handle, size_t count); -extern int snapshot_write_next(struct snapshot_handle *handle, size_t count); +extern int snapshot_read_next(struct snapshot_handle *handle); +extern int snapshot_write_next(struct snapshot_handle *handle); extern void snapshot_write_finalize(struct snapshot_handle *handle); extern int snapshot_image_loaded(struct snapshot_handle *handle); diff --git a/kernel/power/snapshot.c b/kernel/power/snapshot.c index be861c26dda..25ce010e9f8 100644 --- a/kernel/power/snapshot.c +++ b/kernel/power/snapshot.c @@ -1604,14 +1604,9 @@ pack_pfns(unsigned long *buf, struct memory_bitmap *bm) * snapshot_handle structure. The structure gets updated and a pointer * to it should be passed to this function every next time. * - * The @count parameter should contain the number of bytes the caller - * wants to read from the snapshot. It must not be zero. - * * On success the function returns a positive number. Then, the caller * is allowed to read up to the returned number of bytes from the memory - * location computed by the data_of() macro. The number returned - * may be smaller than @count, but this only happens if the read would - * cross a page boundary otherwise. + * location computed by the data_of() macro. * * The function returns 0 to indicate the end of data stream condition, * and a negative number is returned on error. In such cases the @@ -1619,7 +1614,7 @@ pack_pfns(unsigned long *buf, struct memory_bitmap *bm) * any more. */ -int snapshot_read_next(struct snapshot_handle *handle, size_t count) +int snapshot_read_next(struct snapshot_handle *handle) { if (handle->cur > nr_meta_pages + nr_copy_pages) return 0; @@ -1630,7 +1625,7 @@ int snapshot_read_next(struct snapshot_handle *handle, size_t count) if (!buffer) return -ENOMEM; } - if (!handle->offset) { + if (!handle->cur) { int error; error = init_header((struct swsusp_info *)buffer); @@ -1639,42 +1634,30 @@ int snapshot_read_next(struct snapshot_handle *handle, size_t count) handle->buffer = buffer; memory_bm_position_reset(&orig_bm); memory_bm_position_reset(©_bm); - } - if (handle->prev < handle->cur) { - if (handle->cur <= nr_meta_pages) { - memset(buffer, 0, PAGE_SIZE); - pack_pfns(buffer, &orig_bm); - } else { - struct page *page; + } else if (handle->cur <= nr_meta_pages) { + memset(buffer, 0, PAGE_SIZE); + pack_pfns(buffer, &orig_bm); + } else { + struct page *page; - page = pfn_to_page(memory_bm_next_pfn(©_bm)); - if (PageHighMem(page)) { - /* Highmem pages are copied to the buffer, - * because we can't return with a kmapped - * highmem page (we may not be called again). - */ - void *kaddr; + page = pfn_to_page(memory_bm_next_pfn(©_bm)); + if (PageHighMem(page)) { + /* Highmem pages are copied to the buffer, + * because we can't return with a kmapped + * highmem page (we may not be called again). + */ + void *kaddr; - kaddr = kmap_atomic(page, KM_USER0); - memcpy(buffer, kaddr, PAGE_SIZE); - kunmap_atomic(kaddr, KM_USER0); - handle->buffer = buffer; - } else { - handle->buffer = page_address(page); - } + kaddr = kmap_atomic(page, KM_USER0); + memcpy(buffer, kaddr, PAGE_SIZE); + kunmap_atomic(kaddr, KM_USER0); + handle->buffer = buffer; + } else { + handle->buffer = page_address(page); } - handle->prev = handle->cur; - } - handle->buf_offset = handle->cur_offset; - if (handle->cur_offset + count >= PAGE_SIZE) { - count = PAGE_SIZE - handle->cur_offset; - handle->cur_offset = 0; - handle->cur++; - } else { - handle->cur_offset += count; } - handle->offset += count; - return count; + handle->cur++; + return PAGE_SIZE; } /** @@ -2133,14 +2116,9 @@ static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca) * snapshot_handle structure. The structure gets updated and a pointer * to it should be passed to this function every next time. * - * The @count parameter should contain the number of bytes the caller - * wants to write to the image. It must not be zero. - * * On success the function returns a positive number. Then, the caller * is allowed to write up to the returned number of bytes to the memory - * location computed by the data_of() macro. The number returned - * may be smaller than @count, but this only happens if the write would - * cross a page boundary otherwise. + * location computed by the data_of() macro. * * The function returns 0 to indicate the "end of file" condition, * and a negative number is returned on error. In such cases the @@ -2148,16 +2126,18 @@ static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca) * any more. */ -int snapshot_write_next(struct snapshot_handle *handle, size_t count) +int snapshot_write_next(struct snapshot_handle *handle) { static struct chain_allocator ca; int error = 0; /* Check if we have already loaded the entire image */ - if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) + if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) return 0; - if (handle->offset == 0) { + handle->sync_read = 1; + + if (!handle->cur) { if (!buffer) /* This makes the buffer be freed by swsusp_free() */ buffer = get_image_page(GFP_ATOMIC, PG_ANY); @@ -2166,56 +2146,43 @@ int snapshot_write_next(struct snapshot_handle *handle, size_t count) return -ENOMEM; handle->buffer = buffer; - } - handle->sync_read = 1; - if (handle->prev < handle->cur) { - if (handle->prev == 0) { - error = load_header(buffer); - if (error) - return error; + } else if (handle->cur == 1) { + error = load_header(buffer); + if (error) + return error; - error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY); - if (error) - return error; + error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY); + if (error) + return error; + + } else if (handle->cur <= nr_meta_pages + 1) { + error = unpack_orig_pfns(buffer, ©_bm); + if (error) + return error; - } else if (handle->prev <= nr_meta_pages) { - error = unpack_orig_pfns(buffer, ©_bm); + if (handle->cur == nr_meta_pages + 1) { + error = prepare_image(&orig_bm, ©_bm); if (error) return error; - if (handle->prev == nr_meta_pages) { - error = prepare_image(&orig_bm, ©_bm); - if (error) - return error; - - chain_init(&ca, GFP_ATOMIC, PG_SAFE); - memory_bm_position_reset(&orig_bm); - restore_pblist = NULL; - handle->buffer = get_buffer(&orig_bm, &ca); - handle->sync_read = 0; - if (IS_ERR(handle->buffer)) - return PTR_ERR(handle->buffer); - } - } else { - copy_last_highmem_page(); + chain_init(&ca, GFP_ATOMIC, PG_SAFE); + memory_bm_position_reset(&orig_bm); + restore_pblist = NULL; handle->buffer = get_buffer(&orig_bm, &ca); + handle->sync_read = 0; if (IS_ERR(handle->buffer)) return PTR_ERR(handle->buffer); - if (handle->buffer != buffer) - handle->sync_read = 0; } - handle->prev = handle->cur; - } - handle->buf_offset = handle->cur_offset; - if (handle->cur_offset + count >= PAGE_SIZE) { - count = PAGE_SIZE - handle->cur_offset; - handle->cur_offset = 0; - handle->cur++; } else { - handle->cur_offset += count; + copy_last_highmem_page(); + handle->buffer = get_buffer(&orig_bm, &ca); + if (IS_ERR(handle->buffer)) + return PTR_ERR(handle->buffer); + if (handle->buffer != buffer) + handle->sync_read = 0; } - handle->offset += count; - return count; + handle->cur++; + return PAGE_SIZE; } /** @@ -2230,7 +2197,7 @@ void snapshot_write_finalize(struct snapshot_handle *handle) { copy_last_highmem_page(); /* Free only if we have loaded the image entirely */ - if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) { + if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) { memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR); free_highmem_data(); } diff --git a/kernel/power/swap.c b/kernel/power/swap.c index 66824d71983..7f2a17e4067 100644 --- a/kernel/power/swap.c +++ b/kernel/power/swap.c @@ -431,7 +431,7 @@ static int save_image(struct swap_map_handle *handle, bio = NULL; do_gettimeofday(&start); while (1) { - ret = snapshot_read_next(snapshot, PAGE_SIZE); + ret = snapshot_read_next(snapshot); if (ret <= 0) break; ret = swap_write_page(handle, data_of(*snapshot), &bio); @@ -492,7 +492,7 @@ int swsusp_write(unsigned int flags) return error; } memset(&snapshot, 0, sizeof(struct snapshot_handle)); - error = snapshot_read_next(&snapshot, PAGE_SIZE); + error = snapshot_read_next(&snapshot); if (error < PAGE_SIZE) { if (error >= 0) error = -EFAULT; @@ -615,7 +615,7 @@ static int load_image(struct swap_map_handle *handle, bio = NULL; do_gettimeofday(&start); for ( ; ; ) { - error = snapshot_write_next(snapshot, PAGE_SIZE); + error = snapshot_write_next(snapshot); if (error <= 0) break; error = swap_read_page(handle, data_of(*snapshot), &bio); @@ -660,7 +660,7 @@ int swsusp_read(unsigned int *flags_p) *flags_p = swsusp_header->flags; memset(&snapshot, 0, sizeof(struct snapshot_handle)); - error = snapshot_write_next(&snapshot, PAGE_SIZE); + error = snapshot_write_next(&snapshot); if (error < PAGE_SIZE) return error < 0 ? error : -EFAULT; header = (struct swsusp_info *)data_of(snapshot); diff --git a/kernel/power/user.c b/kernel/power/user.c index a8c96212bc1..e819e17877c 100644 --- a/kernel/power/user.c +++ b/kernel/power/user.c @@ -151,6 +151,7 @@ static ssize_t snapshot_read(struct file *filp, char __user *buf, { struct snapshot_data *data; ssize_t res; + loff_t pg_offp = *offp & ~PAGE_MASK; mutex_lock(&pm_mutex); @@ -159,14 +160,19 @@ static ssize_t snapshot_read(struct file *filp, char __user *buf, res = -ENODATA; goto Unlock; } - res = snapshot_read_next(&data->handle, count); - if (res > 0) { - if (copy_to_user(buf, data_of(data->handle), res)) - res = -EFAULT; - else - *offp = data->handle.offset; + if (!pg_offp) { /* on page boundary? */ + res = snapshot_read_next(&data->handle); + if (res <= 0) + goto Unlock; + } else { + res = PAGE_SIZE - pg_offp; } + res = simple_read_from_buffer(buf, count, &pg_offp, + data_of(data->handle), res); + if (res > 0) + *offp += res; + Unlock: mutex_unlock(&pm_mutex); @@ -178,18 +184,25 @@ static ssize_t snapshot_write(struct file *filp, const char __user *buf, { struct snapshot_data *data; ssize_t res; + loff_t pg_offp = *offp & ~PAGE_MASK; mutex_lock(&pm_mutex); data = filp->private_data; - res = snapshot_write_next(&data->handle, count); - if (res > 0) { - if (copy_from_user(data_of(data->handle), buf, res)) - res = -EFAULT; - else - *offp = data->handle.offset; + + if (!pg_offp) { + res = snapshot_write_next(&data->handle); + if (res <= 0) + goto unlock; + } else { + res = PAGE_SIZE - pg_offp; } + res = simple_write_to_buffer(data_of(data->handle), res, &pg_offp, + buf, count); + if (res > 0) + *offp += res; +unlock: mutex_unlock(&pm_mutex); return res; -- cgit v1.2.3 From 8a0d613fa12e1b7f7f71ca88ed7dc2a3de95121a Mon Sep 17 00:00:00 2001 From: Jiri Slaby Date: Sat, 1 May 2010 23:52:34 +0200 Subject: PM / Hibernate: Separate block_io Move block I/O operations to a separate file. It is because it will be used later not only by the swap writer. Signed-off-by: Jiri Slaby Signed-off-by: Rafael J. Wysocki --- kernel/power/Makefile | 3 +- kernel/power/block_io.c | 103 ++++++++++++++++++++++++++++++++++++ kernel/power/power.h | 9 ++++ kernel/power/swap.c | 136 +++++++++--------------------------------------- 4 files changed, 139 insertions(+), 112 deletions(-) create mode 100644 kernel/power/block_io.c diff --git a/kernel/power/Makefile b/kernel/power/Makefile index 43191815f87..524e058dcf0 100644 --- a/kernel/power/Makefile +++ b/kernel/power/Makefile @@ -8,7 +8,8 @@ obj-$(CONFIG_PM_SLEEP) += console.o obj-$(CONFIG_FREEZER) += process.o obj-$(CONFIG_SUSPEND) += suspend.o obj-$(CONFIG_PM_TEST_SUSPEND) += suspend_test.o -obj-$(CONFIG_HIBERNATION) += hibernate.o snapshot.o swap.o user.o +obj-$(CONFIG_HIBERNATION) += hibernate.o snapshot.o swap.o user.o \ + block_io.o obj-$(CONFIG_HIBERNATION_NVS) += hibernate_nvs.o obj-$(CONFIG_MAGIC_SYSRQ) += poweroff.o diff --git a/kernel/power/block_io.c b/kernel/power/block_io.c new file mode 100644 index 00000000000..2a2f8aed8e5 --- /dev/null +++ b/kernel/power/block_io.c @@ -0,0 +1,103 @@ +/* + * This file provides functions for block I/O operations on swap/file. + * + * Copyright (C) 1998,2001-2005 Pavel Machek + * Copyright (C) 2006 Rafael J. Wysocki + * + * This file is released under the GPLv2. + */ + +#include +#include +#include +#include + +#include "power.h" + +/** + * submit - submit BIO request. + * @rw: READ or WRITE. + * @off physical offset of page. + * @page: page we're reading or writing. + * @bio_chain: list of pending biod (for async reading) + * + * Straight from the textbook - allocate and initialize the bio. + * If we're reading, make sure the page is marked as dirty. + * Then submit it and, if @bio_chain == NULL, wait. + */ +static int submit(int rw, struct block_device *bdev, sector_t sector, + struct page *page, struct bio **bio_chain) +{ + const int bio_rw = rw | (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG); + struct bio *bio; + + bio = bio_alloc(__GFP_WAIT | __GFP_HIGH, 1); + bio->bi_sector = sector; + bio->bi_bdev = bdev; + bio->bi_end_io = end_swap_bio_read; + + if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { + printk(KERN_ERR "PM: Adding page to bio failed at %ld\n", + sector); + bio_put(bio); + return -EFAULT; + } + + lock_page(page); + bio_get(bio); + + if (bio_chain == NULL) { + submit_bio(bio_rw, bio); + wait_on_page_locked(page); + if (rw == READ) + bio_set_pages_dirty(bio); + bio_put(bio); + } else { + if (rw == READ) + get_page(page); /* These pages are freed later */ + bio->bi_private = *bio_chain; + *bio_chain = bio; + submit_bio(bio_rw, bio); + } + return 0; +} + +int hib_bio_read_page(pgoff_t page_off, void *addr, struct bio **bio_chain) +{ + return submit(READ, hib_resume_bdev, page_off * (PAGE_SIZE >> 9), + virt_to_page(addr), bio_chain); +} + +int hib_bio_write_page(pgoff_t page_off, void *addr, struct bio **bio_chain) +{ + return submit(WRITE, hib_resume_bdev, page_off * (PAGE_SIZE >> 9), + virt_to_page(addr), bio_chain); +} + +int hib_wait_on_bio_chain(struct bio **bio_chain) +{ + struct bio *bio; + struct bio *next_bio; + int ret = 0; + + if (bio_chain == NULL) + return 0; + + bio = *bio_chain; + if (bio == NULL) + return 0; + while (bio) { + struct page *page; + + next_bio = bio->bi_private; + page = bio->bi_io_vec[0].bv_page; + wait_on_page_locked(page); + if (!PageUptodate(page) || PageError(page)) + ret = -EIO; + put_page(page); + bio_put(bio); + bio = next_bio; + } + *bio_chain = NULL; + return ret; +} diff --git a/kernel/power/power.h b/kernel/power/power.h index b1e207dde1c..006270fe382 100644 --- a/kernel/power/power.h +++ b/kernel/power/power.h @@ -142,6 +142,15 @@ extern int swsusp_read(unsigned int *flags_p); extern int swsusp_write(unsigned int flags); extern void swsusp_close(fmode_t); +/* kernel/power/block_io.c */ +extern struct block_device *hib_resume_bdev; + +extern int hib_bio_read_page(pgoff_t page_off, void *addr, + struct bio **bio_chain); +extern int hib_bio_write_page(pgoff_t page_off, void *addr, + struct bio **bio_chain); +extern int hib_wait_on_bio_chain(struct bio **bio_chain); + struct timeval; /* kernel/power/swsusp.c */ extern void swsusp_show_speed(struct timeval *, struct timeval *, diff --git a/kernel/power/swap.c b/kernel/power/swap.c index 7f2a17e4067..1b1ab6fcf38 100644 --- a/kernel/power/swap.c +++ b/kernel/power/swap.c @@ -145,93 +145,7 @@ int swsusp_swap_in_use(void) */ static unsigned short root_swap = 0xffff; -static struct block_device *resume_bdev; - -/** - * submit - submit BIO request. - * @rw: READ or WRITE. - * @off physical offset of page. - * @page: page we're reading or writing. - * @bio_chain: list of pending biod (for async reading) - * - * Straight from the textbook - allocate and initialize the bio. - * If we're reading, make sure the page is marked as dirty. - * Then submit it and, if @bio_chain == NULL, wait. - */ -static int submit(int rw, pgoff_t page_off, struct page *page, - struct bio **bio_chain) -{ - const int bio_rw = rw | (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG); - struct bio *bio; - - bio = bio_alloc(__GFP_WAIT | __GFP_HIGH, 1); - bio->bi_sector = page_off * (PAGE_SIZE >> 9); - bio->bi_bdev = resume_bdev; - bio->bi_end_io = end_swap_bio_read; - - if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { - printk(KERN_ERR "PM: Adding page to bio failed at %ld\n", - page_off); - bio_put(bio); - return -EFAULT; - } - - lock_page(page); - bio_get(bio); - - if (bio_chain == NULL) { - submit_bio(bio_rw, bio); - wait_on_page_locked(page); - if (rw == READ) - bio_set_pages_dirty(bio); - bio_put(bio); - } else { - if (rw == READ) - get_page(page); /* These pages are freed later */ - bio->bi_private = *bio_chain; - *bio_chain = bio; - submit_bio(bio_rw, bio); - } - return 0; -} - -static int bio_read_page(pgoff_t page_off, void *addr, struct bio **bio_chain) -{ - return submit(READ, page_off, virt_to_page(addr), bio_chain); -} - -static int bio_write_page(pgoff_t page_off, void *addr, struct bio **bio_chain) -{ - return submit(WRITE, page_off, virt_to_page(addr), bio_chain); -} - -static int wait_on_bio_chain(struct bio **bio_chain) -{ - struct bio *bio; - struct bio *next_bio; - int ret = 0; - - if (bio_chain == NULL) - return 0; - - bio = *bio_chain; - if (bio == NULL) - return 0; - while (bio) { - struct page *page; - - next_bio = bio->bi_private; - page = bio->bi_io_vec[0].bv_page; - wait_on_page_locked(page); - if (!PageUptodate(page) || PageError(page)) - ret = -EIO; - put_page(page); - bio_put(bio); - bio = next_bio; - } - *bio_chain = NULL; - return ret; -} +struct block_device *hib_resume_bdev; /* * Saving part @@ -241,14 +155,14 @@ static int mark_swapfiles(sector_t start, unsigned int flags) { int error; - bio_read_page(swsusp_resume_block, swsusp_header, NULL); + hib_bio_read_page(swsusp_resume_block, swsusp_header, NULL); if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) || !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) { memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10); memcpy(swsusp_header->sig,SWSUSP_SIG, 10); swsusp_header->image = start; swsusp_header->flags = flags; - error = bio_write_page(swsusp_resume_block, + error = hib_bio_write_page(swsusp_resume_block, swsusp_header, NULL); } else { printk(KERN_ERR "PM: Swap header not found!\n"); @@ -267,18 +181,18 @@ static int swsusp_swap_check(void) /* This is called before saving image */ int res; res = swap_type_of(swsusp_resume_device, swsusp_resume_block, - &resume_bdev); + &hib_resume_bdev); if (res < 0) return res; root_swap = res; - res = blkdev_get(resume_bdev, FMODE_WRITE); + res = blkdev_get(hib_resume_bdev, FMODE_WRITE); if (res) return res; - res = set_blocksize(resume_bdev, PAGE_SIZE); + res = set_blocksize(hib_resume_bdev, PAGE_SIZE); if (res < 0) - blkdev_put(resume_bdev, FMODE_WRITE); + blkdev_put(hib_resume_bdev, FMODE_WRITE); return res; } @@ -309,7 +223,7 @@ static int write_page(void *buf, sector_t offset, struct bio **bio_chain) } else { src = buf; } - return bio_write_page(offset, src, bio_chain); + return hib_bio_write_page(offset, src, bio_chain); } /* @@ -380,7 +294,7 @@ static int swap_write_page(struct swap_map_handle *handle, void *buf, return error; handle->cur->entries[handle->k++] = offset; if (handle->k >= MAP_PAGE_ENTRIES) { - error = wait_on_bio_chain(bio_chain); + error = hib_wait_on_bio_chain(bio_chain); if (error) goto out; offset = alloc_swapdev_block(root_swap); @@ -441,7 +355,7 @@ static int save_image(struct swap_map_handle *handle, printk(KERN_CONT "\b\b\b\b%3d%%", nr_pages / m); nr_pages++; } - err2 = wait_on_bio_chain(&bio); + err2 = hib_wait_on_bio_chain(&bio); do_gettimeofday(&stop); if (!ret) ret = err2; @@ -553,7 +467,7 @@ static int get_swap_reader(struct swap_map_handle *handle, sector_t start) if (!handle->cur) return -ENOMEM; - error = bio_read_page(start, handle->cur, NULL); + error = hib_bio_read_page(start, handle->cur, NULL); if (error) { release_swap_reader(handle); return error; @@ -573,17 +487,17 @@ static int swap_read_page(struct swap_map_handle *handle, void *buf, offset = handle->cur->entries[handle->k]; if (!offset) return -EFAULT; - error = bio_read_page(offset, buf, bio_chain); + error = hib_bio_read_page(offset, buf, bio_chain); if (error) return error; if (++handle->k >= MAP_PAGE_ENTRIES) { - error = wait_on_bio_chain(bio_chain); + error = hib_wait_on_bio_chain(bio_chain); handle->k = 0; offset = handle->cur->next_swap; if (!offset) release_swap_reader(handle); else if (!error) - error = bio_read_page(offset, handle->cur, NULL); + error = hib_bio_read_page(offset, handle->cur, NULL); } return error; } @@ -622,14 +536,14 @@ static int load_image(struct swap_map_handle *handle, if (error) break; if (snapshot->sync_read) - error = wait_on_bio_chain(&bio); + error = hib_wait_on_bio_chain(&bio); if (error) break; if (!(nr_pages % m)) printk("\b\b\b\b%3d%%", nr_pages / m); nr_pages++; } - err2 = wait_on_bio_chain(&bio); + err2 = hib_wait_on_bio_chain(&bio); do_gettimeofday(&stop); if (!error) error = err2; @@ -686,11 +600,11 @@ int swsusp_check(void) { int error; - resume_bdev = open_by_devnum(swsusp_resume_device, FMODE_READ); - if (!IS_ERR(resume_bdev)) { - set_blocksize(resume_bdev, PAGE_SIZE); + hib_resume_bdev = open_by_devnum(swsusp_resume_device, FMODE_READ); + if (!IS_ERR(hib_resume_bdev)) { + set_blocksize(hib_resume_bdev, PAGE_SIZE); memset(swsusp_header, 0, PAGE_SIZE); - error = bio_read_page(swsusp_resume_block, + error = hib_bio_read_page(swsusp_resume_block, swsusp_header, NULL); if (error) goto put; @@ -698,7 +612,7 @@ int swsusp_check(void) if (!memcmp(SWSUSP_SIG, swsusp_header->sig, 10)) { memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10); /* Reset swap signature now */ - error = bio_write_page(swsusp_resume_block, + error = hib_bio_write_page(swsusp_resume_block, swsusp_header, NULL); } else { error = -EINVAL; @@ -706,11 +620,11 @@ int swsusp_check(void) put: if (error) - blkdev_put(resume_bdev, FMODE_READ); + blkdev_put(hib_resume_bdev, FMODE_READ); else pr_debug("PM: Signature found, resuming\n"); } else { - error = PTR_ERR(resume_bdev); + error = PTR_ERR(hib_resume_bdev); } if (error) @@ -725,12 +639,12 @@ put: void swsusp_close(fmode_t mode) { - if (IS_ERR(resume_bdev)) { + if (IS_ERR(hib_resume_bdev)) { pr_debug("PM: Image device not initialised\n"); return; } - blkdev_put(resume_bdev, mode); + blkdev_put(hib_resume_bdev, mode); } static int swsusp_header_init(void) -- cgit v1.2.3 From 51fb352b2c586b29c7bba38178b3b5389a7fb074 Mon Sep 17 00:00:00 2001 From: Jiri Slaby Date: Sat, 1 May 2010 23:53:02 +0200 Subject: PM / Hibernate: Move the first_sector out of swsusp_write The first sector knowledge is swap-only specific. Move it into the swap handle. This will be needed for later non-swap specific code moving into snapshot.c. Signed-off-by: Jiri Slaby Acked-by: Pavel Machek Signed-off-by: "Rafael J. Wysocki" --- kernel/power/swap.c | 76 ++++++++++++++++++++++++++--------------------------- 1 file changed, 38 insertions(+), 38 deletions(-) diff --git a/kernel/power/swap.c b/kernel/power/swap.c index 1b1ab6fcf38..63e80628a32 100644 --- a/kernel/power/swap.c +++ b/kernel/power/swap.c @@ -29,6 +29,40 @@ #define SWSUSP_SIG "S1SUSPEND" +/* + * The swap map is a data structure used for keeping track of each page + * written to a swap partition. It consists of many swap_map_page + * structures that contain each an array of MAP_PAGE_SIZE swap entries. + * These structures are stored on the swap and linked together with the + * help of the .next_swap member. + * + * The swap map is created during suspend. The swap map pages are + * allocated and populated one at a time, so we only need one memory + * page to set up the entire structure. + * + * During resume we also only need to use one swap_map_page structure + * at a time. + */ + +#define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1) + +struct swap_map_page { + sector_t entries[MAP_PAGE_ENTRIES]; + sector_t next_swap; +}; + +/** + * The swap_map_handle structure is used for handling swap in + * a file-alike way + */ + +struct swap_map_handle { + struct swap_map_page *cur; + sector_t cur_swap; + sector_t first_sector; + unsigned int k; +}; + struct swsusp_header { char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int)]; sector_t image; @@ -151,7 +185,7 @@ struct block_device *hib_resume_bdev; * Saving part */ -static int mark_swapfiles(sector_t start, unsigned int flags) +static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags) { int error; @@ -160,7 +194,7 @@ static int mark_swapfiles(sector_t start, unsigned int flags) !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) { memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10); memcpy(swsusp_header->sig,SWSUSP_SIG, 10); - swsusp_header->image = start; + swsusp_header->image = handle->first_sector; swsusp_header->flags = flags; error = hib_bio_write_page(swsusp_resume_block, swsusp_header, NULL); @@ -226,39 +260,6 @@ static int write_page(void *buf, sector_t offset, struct bio **bio_chain) return hib_bio_write_page(offset, src, bio_chain); } -/* - * The swap map is a data structure used for keeping track of each page - * written to a swap partition. It consists of many swap_map_page - * structures that contain each an array of MAP_PAGE_SIZE swap entries. - * These structures are stored on the swap and linked together with the - * help of the .next_swap member. - * - * The swap map is created during suspend. The swap map pages are - * allocated and populated one at a time, so we only need one memory - * page to set up the entire structure. - * - * During resume we also only need to use one swap_map_page structure - * at a time. - */ - -#define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1) - -struct swap_map_page { - sector_t entries[MAP_PAGE_ENTRIES]; - sector_t next_swap; -}; - -/** - * The swap_map_handle structure is used for handling swap in - * a file-alike way - */ - -struct swap_map_handle { - struct swap_map_page *cur; - sector_t cur_swap; - unsigned int k; -}; - static void release_swap_writer(struct swap_map_handle *handle) { if (handle->cur) @@ -277,6 +278,7 @@ static int get_swap_writer(struct swap_map_handle *handle) return -ENOSPC; } handle->k = 0; + handle->first_sector = handle->cur_swap; return 0; } @@ -421,8 +423,6 @@ int swsusp_write(unsigned int flags) } error = get_swap_writer(&handle); if (!error) { - sector_t start = handle.cur_swap; - error = swap_write_page(&handle, header, NULL); if (!error) error = save_image(&handle, &snapshot, @@ -431,7 +431,7 @@ int swsusp_write(unsigned int flags) if (!error) { flush_swap_writer(&handle); printk(KERN_INFO "PM: S"); - error = mark_swapfiles(start, flags); + error = mark_swapfiles(&handle, flags); printk("|\n"); } } -- cgit v1.2.3 From 6f612af57821c637b7eaca4374ac7b85f800d6e2 Mon Sep 17 00:00:00 2001 From: Jiri Slaby Date: Sat, 1 May 2010 23:54:02 +0200 Subject: PM / Hibernate: Group swap ops Move all the swap processing into one function. It will make swap calls from a non-swap code easier. Signed-off-by: Jiri Slaby Signed-off-by: Rafael J. Wysocki --- kernel/power/swap.c | 117 +++++++++++++++++++++++++++++++++------------------- 1 file changed, 74 insertions(+), 43 deletions(-) diff --git a/kernel/power/swap.c b/kernel/power/swap.c index 63e80628a32..b0bb2177839 100644 --- a/kernel/power/swap.c +++ b/kernel/power/swap.c @@ -208,9 +208,10 @@ static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags) /** * swsusp_swap_check - check if the resume device is a swap device * and get its index (if so) + * + * This is called before saving image */ - -static int swsusp_swap_check(void) /* This is called before saving image */ +static int swsusp_swap_check(void) { int res; @@ -269,17 +270,33 @@ static void release_swap_writer(struct swap_map_handle *handle) static int get_swap_writer(struct swap_map_handle *handle) { + int ret; + + ret = swsusp_swap_check(); + if (ret) { + if (ret != -ENOSPC) + printk(KERN_ERR "PM: Cannot find swap device, try " + "swapon -a.\n"); + return ret; + } handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL); - if (!handle->cur) - return -ENOMEM; + if (!handle->cur) { + ret = -ENOMEM; + goto err_close; + } handle->cur_swap = alloc_swapdev_block(root_swap); if (!handle->cur_swap) { - release_swap_writer(handle); - return -ENOSPC; + ret = -ENOSPC; + goto err_rel; } handle->k = 0; handle->first_sector = handle->cur_swap; return 0; +err_rel: + release_swap_writer(handle); +err_close: + swsusp_close(FMODE_WRITE); + return ret; } static int swap_write_page(struct swap_map_handle *handle, void *buf, @@ -322,6 +339,24 @@ static int flush_swap_writer(struct swap_map_handle *handle) return -EINVAL; } +static int swap_writer_finish(struct swap_map_handle *handle, + unsigned int flags, int error) +{ + if (!error) { + flush_swap_writer(handle); + printk(KERN_INFO "PM: S"); + error = mark_swapfiles(handle, flags); + printk("|\n"); + } + + if (error) + free_all_swap_pages(root_swap); + release_swap_writer(handle); + swsusp_close(FMODE_WRITE); + + return error; +} + /** * save_image - save the suspend image data */ @@ -399,48 +434,34 @@ int swsusp_write(unsigned int flags) struct swap_map_handle handle; struct snapshot_handle snapshot; struct swsusp_info *header; + unsigned long pages; int error; - error = swsusp_swap_check(); + pages = snapshot_get_image_size(); + error = get_swap_writer(&handle); if (error) { - printk(KERN_ERR "PM: Cannot find swap device, try " - "swapon -a.\n"); + printk(KERN_ERR "PM: Cannot get swap writer\n"); return error; } + if (!enough_swap(pages)) { + printk(KERN_ERR "PM: Not enough free swap\n"); + error = -ENOSPC; + goto out_finish; + } memset(&snapshot, 0, sizeof(struct snapshot_handle)); error = snapshot_read_next(&snapshot); if (error < PAGE_SIZE) { if (error >= 0) error = -EFAULT; - goto out; + goto out_finish; } header = (struct swsusp_info *)data_of(snapshot); - if (!enough_swap(header->pages)) { - printk(KERN_ERR "PM: Not enough free swap\n"); - error = -ENOSPC; - goto out; - } - error = get_swap_writer(&handle); - if (!error) { - error = swap_write_page(&handle, header, NULL); - if (!error) - error = save_image(&handle, &snapshot, - header->pages - 1); - - if (!error) { - flush_swap_writer(&handle); - printk(KERN_INFO "PM: S"); - error = mark_swapfiles(&handle, flags); - printk("|\n"); - } - } - if (error) - free_all_swap_pages(root_swap); - - release_swap_writer(&handle); - out: - swsusp_close(FMODE_WRITE); + error = swap_write_page(&handle, header, NULL); + if (!error) + error = save_image(&handle, &snapshot, pages - 1); +out_finish: + error = swap_writer_finish(&handle, flags, error); return error; } @@ -456,18 +477,21 @@ static void release_swap_reader(struct swap_map_handle *handle) handle->cur = NULL; } -static int get_swap_reader(struct swap_map_handle *handle, sector_t start) +static int get_swap_reader(struct swap_map_handle *handle, + unsigned int *flags_p) { int error; - if (!start) + *flags_p = swsusp_header->flags; + + if (!swsusp_header->image) /* how can this happen? */ return -EINVAL; handle->cur = (struct swap_map_page *)get_zeroed_page(__GFP_WAIT | __GFP_HIGH); if (!handle->cur) return -ENOMEM; - error = hib_bio_read_page(start, handle->cur, NULL); + error = hib_bio_read_page(swsusp_header->image, handle->cur, NULL); if (error) { release_swap_reader(handle); return error; @@ -502,6 +526,13 @@ static int swap_read_page(struct swap_map_handle *handle, void *buf, return error; } +static int swap_reader_finish(struct swap_map_handle *handle) +{ + release_swap_reader(handle); + + return 0; +} + /** * load_image - load the image using the swap map handle * @handle and the snapshot handle @snapshot @@ -571,20 +602,20 @@ int swsusp_read(unsigned int *flags_p) struct snapshot_handle snapshot; struct swsusp_info *header; - *flags_p = swsusp_header->flags; - memset(&snapshot, 0, sizeof(struct snapshot_handle)); error = snapshot_write_next(&snapshot); if (error < PAGE_SIZE) return error < 0 ? error : -EFAULT; header = (struct swsusp_info *)data_of(snapshot); - error = get_swap_reader(&handle, swsusp_header->image); + error = get_swap_reader(&handle, flags_p); + if (error) + goto end; if (!error) error = swap_read_page(&handle, header, NULL); if (!error) error = load_image(&handle, &snapshot, header->pages - 1); - release_swap_reader(&handle); - + swap_reader_finish(&handle); +end: if (!error) pr_debug("PM: Image successfully loaded\n"); else -- cgit v1.2.3 From 0fef8b1e83c4ab08cf1304dbebcfd749caf4f187 Mon Sep 17 00:00:00 2001 From: Randy Dunlap Date: Tue, 4 May 2010 00:03:26 +0200 Subject: PM / Hibernate: Fix block_io.c printk warning Fix printk format warning in block_io.c: kernel/power/block_io.c:41: warning: format '%ld' expects type 'long int', but argument 2 has type 'sector_t' Signed-off-by: Randy Dunlap Signed-off-by: Rafael J. Wysocki --- kernel/power/block_io.c | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/kernel/power/block_io.c b/kernel/power/block_io.c index 2a2f8aed8e5..97024fd40cd 100644 --- a/kernel/power/block_io.c +++ b/kernel/power/block_io.c @@ -37,8 +37,8 @@ static int submit(int rw, struct block_device *bdev, sector_t sector, bio->bi_end_io = end_swap_bio_read; if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { - printk(KERN_ERR "PM: Adding page to bio failed at %ld\n", - sector); + printk(KERN_ERR "PM: Adding page to bio failed at %llu\n", + (unsigned long long)sector); bio_put(bio); return -EFAULT; } -- cgit v1.2.3 From ed77134bfccf5e75b6cbadab268e559dbe6a4ebb Mon Sep 17 00:00:00 2001 From: Mark Gross Date: Thu, 6 May 2010 01:59:26 +0200 Subject: PM QOS update This patch changes the string based list management to a handle base implementation to help with the hot path use of pm-qos, it also renames much of the API to use "request" as opposed to "requirement" that was used in the initial implementation. I did this because request more accurately represents what it actually does. Also, I added a string based ABI for users wanting to use a string interface. So if the user writes 0xDDDDDDDD formatted hex it will be accepted by the interface. (someone asked me for it and I don't think it hurts anything.) This patch updates some documentation input I got from Randy. Signed-off-by: markgross Signed-off-by: Rafael J. Wysocki --- Documentation/power/pm_qos_interface.txt | 48 +++---- drivers/acpi/processor_idle.c | 2 +- drivers/cpuidle/governors/ladder.c | 2 +- drivers/cpuidle/governors/menu.c | 2 +- drivers/net/e1000e/netdev.c | 22 ++-- drivers/net/igbvf/netdev.c | 6 +- drivers/net/wireless/ipw2x00/ipw2100.c | 11 +- include/linux/netdevice.h | 4 + include/linux/pm_qos_params.h | 14 +- include/sound/pcm.h | 3 +- kernel/pm_qos_params.c | 214 +++++++++++++++---------------- net/mac80211/mlme.c | 2 +- sound/core/pcm.c | 3 - sound/core/pcm_native.c | 14 +- 14 files changed, 176 insertions(+), 171 deletions(-) diff --git a/Documentation/power/pm_qos_interface.txt b/Documentation/power/pm_qos_interface.txt index c40866e8b95..bfed898a03f 100644 --- a/Documentation/power/pm_qos_interface.txt +++ b/Documentation/power/pm_qos_interface.txt @@ -18,44 +18,46 @@ and pm_qos_params.h. This is done because having the available parameters being runtime configurable or changeable from a driver was seen as too easy to abuse. -For each parameter a list of performance requirements is maintained along with +For each parameter a list of performance requests is maintained along with an aggregated target value. The aggregated target value is updated with -changes to the requirement list or elements of the list. Typically the -aggregated target value is simply the max or min of the requirement values held +changes to the request list or elements of the list. Typically the +aggregated target value is simply the max or min of the request values held in the parameter list elements. From kernel mode the use of this interface is simple: -pm_qos_add_requirement(param_id, name, target_value): -Will insert a named element in the list for that identified PM_QOS parameter -with the target value. Upon change to this list the new target is recomputed -and any registered notifiers are called only if the target value is now -different. -pm_qos_update_requirement(param_id, name, new_target_value): -Will search the list identified by the param_id for the named list element and -then update its target value, calling the notification tree if the aggregated -target is changed. with that name is already registered. +handle = pm_qos_add_request(param_class, target_value): +Will insert an element into the list for that identified PM_QOS class with the +target value. Upon change to this list the new target is recomputed and any +registered notifiers are called only if the target value is now different. +Clients of pm_qos need to save the returned handle. -pm_qos_remove_requirement(param_id, name): -Will search the identified list for the named element and remove it, after -removal it will update the aggregate target and call the notification tree if -the target was changed as a result of removing the named requirement. +void pm_qos_update_request(handle, new_target_value): +Will update the list element pointed to by the handle with the new target value +and recompute the new aggregated target, calling the notification tree if the +target is changed. + +void pm_qos_remove_request(handle): +Will remove the element. After removal it will update the aggregate target and +call the notification tree if the target was changed as a result of removing +the request. From user mode: -Only processes can register a pm_qos requirement. To provide for automatic -cleanup for process the interface requires the process to register its -parameter requirements in the following way: +Only processes can register a pm_qos request. To provide for automatic +cleanup of a process, the interface requires the process to register its +parameter requests in the following way: To register the default pm_qos target for the specific parameter, the process must open one of /dev/[cpu_dma_latency, network_latency, network_throughput] As long as the device node is held open that process has a registered -requirement on the parameter. The name of the requirement is "process_" -derived from the current->pid from within the open system call. +request on the parameter. -To change the requested target value the process needs to write a s32 value to -the open device node. This translates to a pm_qos_update_requirement call. +To change the requested target value the process needs to write an s32 value to +the open device node. Alternatively the user mode program could write a hex +string for the value using 10 char long format e.g. "0x12345678". This +translates to a pm_qos_update_request call. To remove the user mode request for a target value simply close the device node. diff --git a/drivers/acpi/processor_idle.c b/drivers/acpi/processor_idle.c index 5939e7f7d8e..c3817e1f32c 100644 --- a/drivers/acpi/processor_idle.c +++ b/drivers/acpi/processor_idle.c @@ -698,7 +698,7 @@ static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset) "max_cstate: C%d\n" "maximum allowed latency: %d usec\n", pr->power.state ? pr->power.state - pr->power.states : 0, - max_cstate, pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)); + max_cstate, pm_qos_request(PM_QOS_CPU_DMA_LATENCY)); seq_puts(seq, "states:\n"); diff --git a/drivers/cpuidle/governors/ladder.c b/drivers/cpuidle/governors/ladder.c index 1c1ceb4f218..12c98900dcf 100644 --- a/drivers/cpuidle/governors/ladder.c +++ b/drivers/cpuidle/governors/ladder.c @@ -67,7 +67,7 @@ static int ladder_select_state(struct cpuidle_device *dev) struct ladder_device *ldev = &__get_cpu_var(ladder_devices); struct ladder_device_state *last_state; int last_residency, last_idx = ldev->last_state_idx; - int latency_req = pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY); + int latency_req = pm_qos_request(PM_QOS_CPU_DMA_LATENCY); /* Special case when user has set very strict latency requirement */ if (unlikely(latency_req == 0)) { diff --git a/drivers/cpuidle/governors/menu.c b/drivers/cpuidle/governors/menu.c index f8e57c6303f..b81ad9c731a 100644 --- a/drivers/cpuidle/governors/menu.c +++ b/drivers/cpuidle/governors/menu.c @@ -182,7 +182,7 @@ static u64 div_round64(u64 dividend, u32 divisor) static int menu_select(struct cpuidle_device *dev) { struct menu_device *data = &__get_cpu_var(menu_devices); - int latency_req = pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY); + int latency_req = pm_qos_request(PM_QOS_CPU_DMA_LATENCY); int i; int multiplier; diff --git a/drivers/net/e1000e/netdev.c b/drivers/net/e1000e/netdev.c index dbf81788bb4..d5d55c6a373 100644 --- a/drivers/net/e1000e/netdev.c +++ b/drivers/net/e1000e/netdev.c @@ -2524,12 +2524,12 @@ static void e1000_configure_rx(struct e1000_adapter *adapter) * excessive C-state transition latencies result in * dropped transactions. */ - pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY, - adapter->netdev->name, 55); + pm_qos_update_request( + adapter->netdev->pm_qos_req, 55); } else { - pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY, - adapter->netdev->name, - PM_QOS_DEFAULT_VALUE); + pm_qos_update_request( + adapter->netdev->pm_qos_req, + PM_QOS_DEFAULT_VALUE); } } @@ -2824,8 +2824,8 @@ int e1000e_up(struct e1000_adapter *adapter) /* DMA latency requirement to workaround early-receive/jumbo issue */ if (adapter->flags & FLAG_HAS_ERT) - pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, - adapter->netdev->name, + adapter->netdev->pm_qos_req = + pm_qos_add_request(PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE); /* hardware has been reset, we need to reload some things */ @@ -2887,9 +2887,11 @@ void e1000e_down(struct e1000_adapter *adapter) e1000_clean_tx_ring(adapter); e1000_clean_rx_ring(adapter); - if (adapter->flags & FLAG_HAS_ERT) - pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, - adapter->netdev->name); + if (adapter->flags & FLAG_HAS_ERT) { + pm_qos_remove_request( + adapter->netdev->pm_qos_req); + adapter->netdev->pm_qos_req = NULL; + } /* * TODO: for power management, we could drop the link and diff --git a/drivers/net/igbvf/netdev.c b/drivers/net/igbvf/netdev.c index 1b1edad1eb5..f16e981812a 100644 --- a/drivers/net/igbvf/netdev.c +++ b/drivers/net/igbvf/netdev.c @@ -48,6 +48,7 @@ #define DRV_VERSION "1.0.0-k0" char igbvf_driver_name[] = "igbvf"; const char igbvf_driver_version[] = DRV_VERSION; +struct pm_qos_request_list *igbvf_driver_pm_qos_req; static const char igbvf_driver_string[] = "Intel(R) Virtual Function Network Driver"; static const char igbvf_copyright[] = "Copyright (c) 2009 Intel Corporation."; @@ -2899,7 +2900,7 @@ static int __init igbvf_init_module(void) printk(KERN_INFO "%s\n", igbvf_copyright); ret = pci_register_driver(&igbvf_driver); - pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, igbvf_driver_name, + igbvf_driver_pm_qos_req = pm_qos_add_request(PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE); return ret; @@ -2915,7 +2916,8 @@ module_init(igbvf_init_module); static void __exit igbvf_exit_module(void) { pci_unregister_driver(&igbvf_driver); - pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, igbvf_driver_name); + pm_qos_remove_request(igbvf_driver_pm_qos_req); + igbvf_driver_pm_qos_req = NULL; } module_exit(igbvf_exit_module); diff --git a/drivers/net/wireless/ipw2x00/ipw2100.c b/drivers/net/wireless/ipw2x00/ipw2100.c index 9b72c45a774..2b05fe5e994 100644 --- a/drivers/net/wireless/ipw2x00/ipw2100.c +++ b/drivers/net/wireless/ipw2x00/ipw2100.c @@ -174,6 +174,8 @@ that only one external action is invoked at a time. #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver" #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation" +struct pm_qos_request_list *ipw2100_pm_qos_req; + /* Debugging stuff */ #ifdef CONFIG_IPW2100_DEBUG #define IPW2100_RX_DEBUG /* Reception debugging */ @@ -1739,7 +1741,7 @@ static int ipw2100_up(struct ipw2100_priv *priv, int deferred) /* the ipw2100 hardware really doesn't want power management delays * longer than 175usec */ - pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100", 175); + pm_qos_update_request(ipw2100_pm_qos_req, 175); /* If the interrupt is enabled, turn it off... */ spin_lock_irqsave(&priv->low_lock, flags); @@ -1887,8 +1889,7 @@ static void ipw2100_down(struct ipw2100_priv *priv) ipw2100_disable_interrupts(priv); spin_unlock_irqrestore(&priv->low_lock, flags); - pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100", - PM_QOS_DEFAULT_VALUE); + pm_qos_update_request(ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE); /* We have to signal any supplicant if we are disassociating */ if (associated) @@ -6669,7 +6670,7 @@ static int __init ipw2100_init(void) if (ret) goto out; - pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100", + ipw2100_pm_qos_req = pm_qos_add_request(PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE); #ifdef CONFIG_IPW2100_DEBUG ipw2100_debug_level = debug; @@ -6692,7 +6693,7 @@ static void __exit ipw2100_exit(void) &driver_attr_debug_level); #endif pci_unregister_driver(&ipw2100_pci_driver); - pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100"); + pm_qos_remove_request(ipw2100_pm_qos_req); } module_init(ipw2100_init); diff --git a/include/linux/netdevice.h b/include/linux/netdevice.h index fa8b4763799..3857517f1ca 100644 --- a/include/linux/netdevice.h +++ b/include/linux/netdevice.h @@ -31,6 +31,7 @@ #include #ifdef __KERNEL__ +#include #include #include #include @@ -711,6 +712,9 @@ struct net_device { * the interface. */ char name[IFNAMSIZ]; + + struct pm_qos_request_list *pm_qos_req; + /* device name hash chain */ struct hlist_node name_hlist; /* snmp alias */ diff --git a/include/linux/pm_qos_params.h b/include/linux/pm_qos_params.h index d74f75ed1e4..8ba440e5eb7 100644 --- a/include/linux/pm_qos_params.h +++ b/include/linux/pm_qos_params.h @@ -14,12 +14,14 @@ #define PM_QOS_NUM_CLASSES 4 #define PM_QOS_DEFAULT_VALUE -1 -int pm_qos_add_requirement(int qos, char *name, s32 value); -int pm_qos_update_requirement(int qos, char *name, s32 new_value); -void pm_qos_remove_requirement(int qos, char *name); +struct pm_qos_request_list; -int pm_qos_requirement(int qos); +struct pm_qos_request_list *pm_qos_add_request(int pm_qos_class, s32 value); +void pm_qos_update_request(struct pm_qos_request_list *pm_qos_req, + s32 new_value); +void pm_qos_remove_request(struct pm_qos_request_list *pm_qos_req); -int pm_qos_add_notifier(int qos, struct notifier_block *notifier); -int pm_qos_remove_notifier(int qos, struct notifier_block *notifier); +int pm_qos_request(int pm_qos_class); +int pm_qos_add_notifier(int pm_qos_class, struct notifier_block *notifier); +int pm_qos_remove_notifier(int pm_qos_class, struct notifier_block *notifier); diff --git a/include/sound/pcm.h b/include/sound/pcm.h index 8b611a56198..dd76cdede64 100644 --- a/include/sound/pcm.h +++ b/include/sound/pcm.h @@ -29,6 +29,7 @@ #include #include #include +#include #define snd_pcm_substream_chip(substream) ((substream)->private_data) #define snd_pcm_chip(pcm) ((pcm)->private_data) @@ -365,7 +366,7 @@ struct snd_pcm_substream { int number; char name[32]; /* substream name */ int stream; /* stream (direction) */ - char latency_id[20]; /* latency identifier */ + struct pm_qos_request_list *latency_pm_qos_req; /* pm_qos request */ size_t buffer_bytes_max; /* limit ring buffer size */ struct snd_dma_buffer dma_buffer; unsigned int dma_buf_id; diff --git a/kernel/pm_qos_params.c b/kernel/pm_qos_params.c index 3db49b9ca37..a1aea040eb5 100644 --- a/kernel/pm_qos_params.c +++ b/kernel/pm_qos_params.c @@ -2,7 +2,7 @@ * This module exposes the interface to kernel space for specifying * QoS dependencies. It provides infrastructure for registration of: * - * Dependents on a QoS value : register requirements + * Dependents on a QoS value : register requests * Watchers of QoS value : get notified when target QoS value changes * * This QoS design is best effort based. Dependents register their QoS needs. @@ -14,19 +14,21 @@ * timeout: usec <-- currently not used. * throughput: kbs (kilo byte / sec) * - * There are lists of pm_qos_objects each one wrapping requirements, notifiers + * There are lists of pm_qos_objects each one wrapping requests, notifiers * - * User mode requirements on a QOS parameter register themselves to the + * User mode requests on a QOS parameter register themselves to the * subsystem by opening the device node /dev/... and writing there request to * the node. As long as the process holds a file handle open to the node the * client continues to be accounted for. Upon file release the usermode - * requirement is removed and a new qos target is computed. This way when the - * requirement that the application has is cleaned up when closes the file + * request is removed and a new qos target is computed. This way when the + * request that the application has is cleaned up when closes the file * pointer or exits the pm_qos_object will get an opportunity to clean up. * * Mark Gross */ +/*#define DEBUG*/ + #include #include #include @@ -42,25 +44,25 @@ #include /* - * locking rule: all changes to requirements or notifiers lists + * locking rule: all changes to requests or notifiers lists * or pm_qos_object list and pm_qos_objects need to happen with pm_qos_lock * held, taken with _irqsave. One lock to rule them all */ -struct requirement_list { +struct pm_qos_request_list { struct list_head list; union { s32 value; s32 usec; s32 kbps; }; - char *name; + int pm_qos_class; }; static s32 max_compare(s32 v1, s32 v2); static s32 min_compare(s32 v1, s32 v2); struct pm_qos_object { - struct requirement_list requirements; + struct pm_qos_request_list requests; struct blocking_notifier_head *notifiers; struct miscdevice pm_qos_power_miscdev; char *name; @@ -72,7 +74,7 @@ struct pm_qos_object { static struct pm_qos_object null_pm_qos; static BLOCKING_NOTIFIER_HEAD(cpu_dma_lat_notifier); static struct pm_qos_object cpu_dma_pm_qos = { - .requirements = {LIST_HEAD_INIT(cpu_dma_pm_qos.requirements.list)}, + .requests = {LIST_HEAD_INIT(cpu_dma_pm_qos.requests.list)}, .notifiers = &cpu_dma_lat_notifier, .name = "cpu_dma_latency", .default_value = 2000 * USEC_PER_SEC, @@ -82,7 +84,7 @@ static struct pm_qos_object cpu_dma_pm_qos = { static BLOCKING_NOTIFIER_HEAD(network_lat_notifier); static struct pm_qos_object network_lat_pm_qos = { - .requirements = {LIST_HEAD_INIT(network_lat_pm_qos.requirements.list)}, + .requests = {LIST_HEAD_INIT(network_lat_pm_qos.requests.list)}, .notifiers = &network_lat_notifier, .name = "network_latency", .default_value = 2000 * USEC_PER_SEC, @@ -93,8 +95,7 @@ static struct pm_qos_object network_lat_pm_qos = { static BLOCKING_NOTIFIER_HEAD(network_throughput_notifier); static struct pm_qos_object network_throughput_pm_qos = { - .requirements = - {LIST_HEAD_INIT(network_throughput_pm_qos.requirements.list)}, + .requests = {LIST_HEAD_INIT(network_throughput_pm_qos.requests.list)}, .notifiers = &network_throughput_notifier, .name = "network_throughput", .default_value = 0, @@ -135,31 +136,34 @@ static s32 min_compare(s32 v1, s32 v2) } -static void update_target(int target) +static void update_target(int pm_qos_class) { s32 extreme_value; - struct requirement_list *node; + struct pm_qos_request_list *node; unsigned long flags; int call_notifier = 0; spin_lock_irqsave(&pm_qos_lock, flags); - extreme_value = pm_qos_array[target]->default_value; + extreme_value = pm_qos_array[pm_qos_class]->default_value; list_for_each_entry(node, - &pm_qos_array[target]->requirements.list, list) { - extreme_value = pm_qos_array[target]->comparitor( + &pm_qos_array[pm_qos_class]->requests.list, list) { + extreme_value = pm_qos_array[pm_qos_class]->comparitor( extreme_value, node->value); } - if (atomic_read(&pm_qos_array[target]->target_value) != extreme_value) { + if (atomic_read(&pm_qos_array[pm_qos_class]->target_value) != + extreme_value) { call_notifier = 1; - atomic_set(&pm_qos_array[target]->target_value, extreme_value); - pr_debug(KERN_ERR "new target for qos %d is %d\n", target, - atomic_read(&pm_qos_array[target]->target_value)); + atomic_set(&pm_qos_array[pm_qos_class]->target_value, + extreme_value); + pr_debug(KERN_ERR "new target for qos %d is %d\n", pm_qos_class, + atomic_read(&pm_qos_array[pm_qos_class]->target_value)); } spin_unlock_irqrestore(&pm_qos_lock, flags); if (call_notifier) - blocking_notifier_call_chain(pm_qos_array[target]->notifiers, - (unsigned long) extreme_value, NULL); + blocking_notifier_call_chain( + pm_qos_array[pm_qos_class]->notifiers, + (unsigned long) extreme_value, NULL); } static int register_pm_qos_misc(struct pm_qos_object *qos) @@ -185,125 +189,110 @@ static int find_pm_qos_object_by_minor(int minor) } /** - * pm_qos_requirement - returns current system wide qos expectation + * pm_qos_request - returns current system wide qos expectation * @pm_qos_class: identification of which qos value is requested * * This function returns the current target value in an atomic manner. */ -int pm_qos_requirement(int pm_qos_class) +int pm_qos_request(int pm_qos_class) { return atomic_read(&pm_qos_array[pm_qos_class]->target_value); } -EXPORT_SYMBOL_GPL(pm_qos_requirement); +EXPORT_SYMBOL_GPL(pm_qos_request); /** - * pm_qos_add_requirement - inserts new qos request into the list + * pm_qos_add_request - inserts new qos request into the list * @pm_qos_class: identifies which list of qos request to us - * @name: identifies the request * @value: defines the qos request * * This function inserts a new entry in the pm_qos_class list of requested qos * performance characteristics. It recomputes the aggregate QoS expectations - * for the pm_qos_class of parameters. + * for the pm_qos_class of parameters, and returns the pm_qos_request list + * element as a handle for use in updating and removal. Call needs to save + * this handle for later use. */ -int pm_qos_add_requirement(int pm_qos_class, char *name, s32 value) +struct pm_qos_request_list *pm_qos_add_request(int pm_qos_class, s32 value) { - struct requirement_list *dep; + struct pm_qos_request_list *dep; unsigned long flags; - dep = kzalloc(sizeof(struct requirement_list), GFP_KERNEL); + dep = kzalloc(sizeof(struct pm_qos_request_list), GFP_KERNEL); if (dep) { if (value == PM_QOS_DEFAULT_VALUE) dep->value = pm_qos_array[pm_qos_class]->default_value; else dep->value = value; - dep->name = kstrdup(name, GFP_KERNEL); - if (!dep->name) - goto cleanup; + dep->pm_qos_class = pm_qos_class; spin_lock_irqsave(&pm_qos_lock, flags); list_add(&dep->list, - &pm_qos_array[pm_qos_class]->requirements.list); + &pm_qos_array[pm_qos_class]->requests.list); spin_unlock_irqrestore(&pm_qos_lock, flags); update_target(pm_qos_class); - - return 0; } -cleanup: - kfree(dep); - return -ENOMEM; + return dep; } -EXPORT_SYMBOL_GPL(pm_qos_add_requirement); +EXPORT_SYMBOL_GPL(pm_qos_add_request); /** - * pm_qos_update_requirement - modifies an existing qos request - * @pm_qos_class: identifies which list of qos request to us - * @name: identifies the request + * pm_qos_update_request - modifies an existing qos request + * @pm_qos_req : handle to list element holding a pm_qos request to use * @value: defines the qos request * - * Updates an existing qos requirement for the pm_qos_class of parameters along + * Updates an existing qos request for the pm_qos_class of parameters along * with updating the target pm_qos_class value. * - * If the named request isn't in the list then no change is made. + * Attempts are made to make this code callable on hot code paths. */ -int pm_qos_update_requirement(int pm_qos_class, char *name, s32 new_value) +void pm_qos_update_request(struct pm_qos_request_list *pm_qos_req, + s32 new_value) { unsigned long flags; - struct requirement_list *node; int pending_update = 0; + s32 temp; spin_lock_irqsave(&pm_qos_lock, flags); - list_for_each_entry(node, - &pm_qos_array[pm_qos_class]->requirements.list, list) { - if (strcmp(node->name, name) == 0) { - if (new_value == PM_QOS_DEFAULT_VALUE) - node->value = - pm_qos_array[pm_qos_class]->default_value; - else - node->value = new_value; - pending_update = 1; - break; - } + if (new_value == PM_QOS_DEFAULT_VALUE) + temp = pm_qos_array[pm_qos_req->pm_qos_class]->default_value; + else + temp = new_value; + + if (temp != pm_qos_req->value) { + pending_update = 1; + pm_qos_req->value = temp; } spin_unlock_irqrestore(&pm_qos_lock, flags); if (pending_update) - update_target(pm_qos_class); - - return 0; + update_target(pm_qos_req->pm_qos_class); } -EXPORT_SYMBOL_GPL(pm_qos_update_requirement); +EXPORT_SYMBOL_GPL(pm_qos_update_request); /** - * pm_qos_remove_requirement - modifies an existing qos request - * @pm_qos_class: identifies which list of qos request to us - * @name: identifies the request + * pm_qos_remove_request - modifies an existing qos request + * @pm_qos_req: handle to request list element * - * Will remove named qos request from pm_qos_class list of parameters and - * recompute the current target value for the pm_qos_class. + * Will remove pm qos request from the list of requests and + * recompute the current target value for the pm_qos_class. Call this + * on slow code paths. */ -void pm_qos_remove_requirement(int pm_qos_class, char *name) +void pm_qos_remove_request(struct pm_qos_request_list *pm_qos_req) { unsigned long flags; - struct requirement_list *node; - int pending_update = 0; + int qos_class; + + if (pm_qos_req == NULL) + return; + /* silent return to keep pcm code cleaner */ + qos_class = pm_qos_req->pm_qos_class; spin_lock_irqsave(&pm_qos_lock, flags); - list_for_each_entry(node, - &pm_qos_array[pm_qos_class]->requirements.list, list) { - if (strcmp(node->name, name) == 0) { - kfree(node->name); - list_del(&node->list); - kfree(node); - pending_update = 1; - break; - } - } + list_del(&pm_qos_req->list); + kfree(pm_qos_req); spin_unlock_irqrestore(&pm_qos_lock, flags); - if (pending_update) - update_target(pm_qos_class); + update_target(qos_class); } -EXPORT_SYMBOL_GPL(pm_qos_remove_requirement); +EXPORT_SYMBOL_GPL(pm_qos_remove_request); /** * pm_qos_add_notifier - sets notification entry for changes to target value @@ -313,7 +302,7 @@ EXPORT_SYMBOL_GPL(pm_qos_remove_requirement); * will register the notifier into a notification chain that gets called * upon changes to the pm_qos_class target value. */ - int pm_qos_add_notifier(int pm_qos_class, struct notifier_block *notifier) +int pm_qos_add_notifier(int pm_qos_class, struct notifier_block *notifier) { int retval; @@ -343,21 +332,16 @@ int pm_qos_remove_notifier(int pm_qos_class, struct notifier_block *notifier) } EXPORT_SYMBOL_GPL(pm_qos_remove_notifier); -#define PID_NAME_LEN 32 - static int pm_qos_power_open(struct inode *inode, struct file *filp) { - int ret; long pm_qos_class; - char name[PID_NAME_LEN]; pm_qos_class = find_pm_qos_object_by_minor(iminor(inode)); if (pm_qos_class >= 0) { - filp->private_data = (void *)pm_qos_class; - snprintf(name, PID_NAME_LEN, "process_%d", current->pid); - ret = pm_qos_add_requirement(pm_qos_class, name, - PM_QOS_DEFAULT_VALUE); - if (ret >= 0) + filp->private_data = (void *) pm_qos_add_request(pm_qos_class, + PM_QOS_DEFAULT_VALUE); + + if (filp->private_data) return 0; } return -EPERM; @@ -365,32 +349,40 @@ static int pm_qos_power_open(struct inode *inode, struct file *filp) static int pm_qos_power_release(struct inode *inode, struct file *filp) { - int pm_qos_class; - char name[PID_NAME_LEN]; + struct pm_qos_request_list *req; - pm_qos_class = (long)filp->private_data; - snprintf(name, PID_NAME_LEN, "process_%d", current->pid); - pm_qos_remove_requirement(pm_qos_class, name); + req = (struct pm_qos_request_list *)filp->private_data; + pm_qos_remove_request(req); return 0; } + static ssize_t pm_qos_power_write(struct file *filp, const char __user *buf, size_t count, loff_t *f_pos) { s32 value; - int pm_qos_class; - char name[PID_NAME_LEN]; - - pm_qos_class = (long)filp->private_data; - if (count != sizeof(s32)) + int x; + char ascii_value[11]; + struct pm_qos_request_list *pm_qos_req; + + if (count == sizeof(s32)) { + if (copy_from_user(&value, buf, sizeof(s32))) + return -EFAULT; + } else if (count == 11) { /* len('0x12345678/0') */ + if (copy_from_user(ascii_value, buf, 11)) + return -EFAULT; + x = sscanf(ascii_value, "%x", &value); + if (x != 1) + return -EINVAL; + pr_debug(KERN_ERR "%s, %d, 0x%x\n", ascii_value, x, value); + } else return -EINVAL; - if (copy_from_user(&value, buf, sizeof(s32))) - return -EFAULT; - snprintf(name, PID_NAME_LEN, "process_%d", current->pid); - pm_qos_update_requirement(pm_qos_class, name, value); - return sizeof(s32); + pm_qos_req = (struct pm_qos_request_list *)filp->private_data; + pm_qos_update_request(pm_qos_req, value); + + return count; } diff --git a/net/mac80211/mlme.c b/net/mac80211/mlme.c index 4aefa6dc309..29de1965ff7 100644 --- a/net/mac80211/mlme.c +++ b/net/mac80211/mlme.c @@ -495,7 +495,7 @@ void ieee80211_recalc_ps(struct ieee80211_local *local, s32 latency) s32 beaconint_us; if (latency < 0) - latency = pm_qos_requirement(PM_QOS_NETWORK_LATENCY); + latency = pm_qos_request(PM_QOS_NETWORK_LATENCY); beaconint_us = ieee80211_tu_to_usec( found->vif.bss_conf.beacon_int); diff --git a/sound/core/pcm.c b/sound/core/pcm.c index 0d428d0896d..cbe815dfbdc 100644 --- a/sound/core/pcm.c +++ b/sound/core/pcm.c @@ -648,9 +648,6 @@ int snd_pcm_new_stream(struct snd_pcm *pcm, int stream, int substream_count) substream->number = idx; substream->stream = stream; sprintf(substream->name, "subdevice #%i", idx); - snprintf(substream->latency_id, sizeof(substream->latency_id), - "ALSA-PCM%d-%d%c%d", pcm->card->number, pcm->device, - (stream ? 'c' : 'p'), idx); substream->buffer_bytes_max = UINT_MAX; if (prev == NULL) pstr->substream = substream; diff --git a/sound/core/pcm_native.c b/sound/core/pcm_native.c index 87288762403..605c86df71c 100644 --- a/sound/core/pcm_native.c +++ b/sound/core/pcm_native.c @@ -481,11 +481,13 @@ static int snd_pcm_hw_params(struct snd_pcm_substream *substream, snd_pcm_timer_resolution_change(substream); runtime->status->state = SNDRV_PCM_STATE_SETUP; - pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, - substream->latency_id); + if (substream->latency_pm_qos_req) { + pm_qos_remove_request(substream->latency_pm_qos_req); + substream->latency_pm_qos_req = NULL; + } if ((usecs = period_to_usecs(runtime)) >= 0) - pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, - substream->latency_id, usecs); + substream->latency_pm_qos_req = pm_qos_add_request( + PM_QOS_CPU_DMA_LATENCY, usecs); return 0; _error: /* hardware might be unuseable from this time, @@ -540,8 +542,8 @@ static int snd_pcm_hw_free(struct snd_pcm_substream *substream) if (substream->ops->hw_free) result = substream->ops->hw_free(substream); runtime->status->state = SNDRV_PCM_STATE_OPEN; - pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, - substream->latency_id); + pm_qos_remove_request(substream->latency_pm_qos_req); + substream->latency_pm_qos_req = NULL; return result; } -- cgit v1.2.3 From 2f60ba706bd9af84c4eab704243b262e69556f2e Mon Sep 17 00:00:00 2001 From: "Rafael J. Wysocki" Date: Mon, 10 May 2010 23:09:30 +0200 Subject: i2c: Fix bus-level power management callbacks There are three issues with the i2c bus type's power management callbacks at the moment. First, they don't include any hibernate callbacks, although they should at least include the .restore() callback (there's no guarantee that the driver will be present in memory before loading the image kernel and we must restore the pre-hibernation state of the device). Second, the "legacy" callbacks are not going to be invoked by the PM core since the bus type's pm object is not NULL. Finally, the system sleep PM (ie. suspend/resume) callbacks don't check if the device has been already suspended at run time, in which case they should skip suspending it. Also, it looks like the i2c bus type can use the generic subsystem-level runtime PM callbacks. For these reasons, rework the system sleep PM callbacks provided by the i2c bus type to handle hibernation correctly and to invoke the "legacy" callbacks for drivers that provide them. In addition to that make the i2c bus type use the generic subsystem-level runtime PM callbacks. Signed-off-by: Rafael J. Wysocki Acked-by: Mark Brown Acked-by: Jean Delvare --- drivers/i2c/i2c-core.c | 166 ++++++++++++++++++++++++++------------------- include/linux/pm_runtime.h | 7 ++ 2 files changed, 104 insertions(+), 69 deletions(-) diff --git a/drivers/i2c/i2c-core.c b/drivers/i2c/i2c-core.c index c2258a51fe0..7c469a62c3c 100644 --- a/drivers/i2c/i2c-core.c +++ b/drivers/i2c/i2c-core.c @@ -159,107 +159,131 @@ static void i2c_device_shutdown(struct device *dev) driver->shutdown(client); } -#ifdef CONFIG_SUSPEND -static int i2c_device_pm_suspend(struct device *dev) +#ifdef CONFIG_PM_SLEEP +static int i2c_legacy_suspend(struct device *dev, pm_message_t mesg) { - const struct dev_pm_ops *pm; + struct i2c_client *client = i2c_verify_client(dev); + struct i2c_driver *driver; - if (!dev->driver) + if (!client || !dev->driver) return 0; - pm = dev->driver->pm; - if (!pm || !pm->suspend) + driver = to_i2c_driver(dev->driver); + if (!driver->suspend) return 0; - return pm->suspend(dev); + return driver->suspend(client, mesg); } -static int i2c_device_pm_resume(struct device *dev) +static int i2c_legacy_resume(struct device *dev) { - const struct dev_pm_ops *pm; + struct i2c_client *client = i2c_verify_client(dev); + struct i2c_driver *driver; - if (!dev->driver) + if (!client || !dev->driver) return 0; - pm = dev->driver->pm; - if (!pm || !pm->resume) + driver = to_i2c_driver(dev->driver); + if (!driver->resume) return 0; - return pm->resume(dev); + return driver->resume(client); } -#else -#define i2c_device_pm_suspend NULL -#define i2c_device_pm_resume NULL -#endif -#ifdef CONFIG_PM_RUNTIME -static int i2c_device_runtime_suspend(struct device *dev) +static int i2c_device_pm_suspend(struct device *dev) { - const struct dev_pm_ops *pm; + const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; - if (!dev->driver) - return 0; - pm = dev->driver->pm; - if (!pm || !pm->runtime_suspend) + if (pm_runtime_suspended(dev)) return 0; - return pm->runtime_suspend(dev); -} -static int i2c_device_runtime_resume(struct device *dev) -{ - const struct dev_pm_ops *pm; + if (pm) + return pm->suspend ? pm->suspend(dev) : 0; - if (!dev->driver) - return 0; - pm = dev->driver->pm; - if (!pm || !pm->runtime_resume) - return 0; - return pm->runtime_resume(dev); + return i2c_legacy_suspend(dev, PMSG_SUSPEND); } -static int i2c_device_runtime_idle(struct device *dev) +static int i2c_device_pm_resume(struct device *dev) { - const struct dev_pm_ops *pm = NULL; + const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; int ret; - if (dev->driver) - pm = dev->driver->pm; - if (pm && pm->runtime_idle) { - ret = pm->runtime_idle(dev); - if (ret) - return ret; + if (pm) + ret = pm->resume ? pm->resume(dev) : 0; + else + ret = i2c_legacy_resume(dev); + + if (!ret) { + pm_runtime_disable(dev); + pm_runtime_set_active(dev); + pm_runtime_enable(dev); } - return pm_runtime_suspend(dev); + return ret; } -#else -#define i2c_device_runtime_suspend NULL -#define i2c_device_runtime_resume NULL -#define i2c_device_runtime_idle NULL -#endif -static int i2c_device_suspend(struct device *dev, pm_message_t mesg) +static int i2c_device_pm_freeze(struct device *dev) { - struct i2c_client *client = i2c_verify_client(dev); - struct i2c_driver *driver; + const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; - if (!client || !dev->driver) + if (pm_runtime_suspended(dev)) return 0; - driver = to_i2c_driver(dev->driver); - if (!driver->suspend) - return 0; - return driver->suspend(client, mesg); + + if (pm) + return pm->freeze ? pm->freeze(dev) : 0; + + return i2c_legacy_suspend(dev, PMSG_FREEZE); } -static int i2c_device_resume(struct device *dev) +static int i2c_device_pm_thaw(struct device *dev) { - struct i2c_client *client = i2c_verify_client(dev); - struct i2c_driver *driver; + const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; - if (!client || !dev->driver) + if (pm_runtime_suspended(dev)) return 0; - driver = to_i2c_driver(dev->driver); - if (!driver->resume) + + if (pm) + return pm->thaw ? pm->thaw(dev) : 0; + + return i2c_legacy_resume(dev); +} + +static int i2c_device_pm_poweroff(struct device *dev) +{ + const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; + + if (pm_runtime_suspended(dev)) return 0; - return driver->resume(client); + + if (pm) + return pm->poweroff ? pm->poweroff(dev) : 0; + + return i2c_legacy_suspend(dev, PMSG_HIBERNATE); } +static int i2c_device_pm_restore(struct device *dev) +{ + const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; + int ret; + + if (pm) + ret = pm->restore ? pm->restore(dev) : 0; + else + ret = i2c_legacy_resume(dev); + + if (!ret) { + pm_runtime_disable(dev); + pm_runtime_set_active(dev); + pm_runtime_enable(dev); + } + + return ret; +} +#else /* !CONFIG_PM_SLEEP */ +#define i2c_device_pm_suspend NULL +#define i2c_device_pm_resume NULL +#define i2c_device_pm_freeze NULL +#define i2c_device_pm_thaw NULL +#define i2c_device_pm_poweroff NULL +#define i2c_device_pm_restore NULL +#endif /* !CONFIG_PM_SLEEP */ + static void i2c_client_dev_release(struct device *dev) { kfree(to_i2c_client(dev)); @@ -301,9 +325,15 @@ static const struct attribute_group *i2c_dev_attr_groups[] = { static const struct dev_pm_ops i2c_device_pm_ops = { .suspend = i2c_device_pm_suspend, .resume = i2c_device_pm_resume, - .runtime_suspend = i2c_device_runtime_suspend, - .runtime_resume = i2c_device_runtime_resume, - .runtime_idle = i2c_device_runtime_idle, + .freeze = i2c_device_pm_freeze, + .thaw = i2c_device_pm_thaw, + .poweroff = i2c_device_pm_poweroff, + .restore = i2c_device_pm_restore, + SET_RUNTIME_PM_OPS( + pm_generic_runtime_suspend, + pm_generic_runtime_resume, + pm_generic_runtime_idle + ) }; struct bus_type i2c_bus_type = { @@ -312,8 +342,6 @@ struct bus_type i2c_bus_type = { .probe = i2c_device_probe, .remove = i2c_device_remove, .shutdown = i2c_device_shutdown, - .suspend = i2c_device_suspend, - .resume = i2c_device_resume, .pm = &i2c_device_pm_ops, }; EXPORT_SYMBOL_GPL(i2c_bus_type); diff --git a/include/linux/pm_runtime.h b/include/linux/pm_runtime.h index b776db73724..6e81888c622 100644 --- a/include/linux/pm_runtime.h +++ b/include/linux/pm_runtime.h @@ -30,6 +30,9 @@ extern void pm_runtime_enable(struct device *dev); extern void __pm_runtime_disable(struct device *dev, bool check_resume); extern void pm_runtime_allow(struct device *dev); extern void pm_runtime_forbid(struct device *dev); +extern int pm_generic_runtime_idle(struct device *dev); +extern int pm_generic_runtime_suspend(struct device *dev); +extern int pm_generic_runtime_resume(struct device *dev); static inline bool pm_children_suspended(struct device *dev) { @@ -96,6 +99,10 @@ static inline bool device_run_wake(struct device *dev) { return false; } static inline void device_set_run_wake(struct device *dev, bool enable) {} static inline bool pm_runtime_suspended(struct device *dev) { return false; } +static inline int pm_generic_runtime_idle(struct device *dev) { return 0; } +static inline int pm_generic_runtime_suspend(struct device *dev) { return 0; } +static inline int pm_generic_runtime_resume(struct device *dev) { return 0; } + #endif /* !CONFIG_PM_RUNTIME */ static inline int pm_runtime_get(struct device *dev) -- cgit v1.2.3 From 543f2503a956601dd490c6cde0ebf6adb4653e50 Mon Sep 17 00:00:00 2001 From: Mark Brown Date: Mon, 10 May 2010 23:10:13 +0200 Subject: PM / platform_bus: Allow runtime PM by default Currently the default runtime PM callbacks for platform devices return -ENOSYS, preventing the use of runtime PM platforms until they have provided at least a default implementation. This hinders the use of runtime PM by devices which work with many platforms such as memory mapped devices, MFDs and on chip IPs shared by multiple architectures. Change the default implementation to the standard pm_generic_runtime one, allowing drivers to use runtime PM without per-architecture changes. Signed-off-by: Mark Brown Acked-by: Greg Kroah-Hartman Signed-off-by: Rafael J. Wysocki --- drivers/base/platform.c | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/drivers/base/platform.c b/drivers/base/platform.c index 4b4b565c835..a6c07797c88 100644 --- a/drivers/base/platform.c +++ b/drivers/base/platform.c @@ -967,17 +967,17 @@ static int platform_pm_restore_noirq(struct device *dev) int __weak platform_pm_runtime_suspend(struct device *dev) { - return -ENOSYS; + return pm_generic_runtime_suspend(dev); }; int __weak platform_pm_runtime_resume(struct device *dev) { - return -ENOSYS; + return pm_generic_runtime_resume(dev); }; int __weak platform_pm_runtime_idle(struct device *dev) { - return -ENOSYS; + return pm_generic_runtime_idle(dev); }; #else /* !CONFIG_PM_RUNTIME */ -- cgit v1.2.3 From 8f77578cc2debaeb30a4ef6206f4ba10944bdcd8 Mon Sep 17 00:00:00 2001 From: Matt Helsley Date: Mon, 10 May 2010 23:18:47 +0200 Subject: Freezer / cgroup freezer: Update stale locking comments Update stale comments regarding locking order and add a little more detail so it's easier to follow the locking between the cgroup freezer and the power management freezer code. Signed-off-by: Matt Helsley Signed-off-by: Rafael J. Wysocki --- kernel/cgroup_freezer.c | 21 +++++++++++++-------- 1 file changed, 13 insertions(+), 8 deletions(-) diff --git a/kernel/cgroup_freezer.c b/kernel/cgroup_freezer.c index e5c0244962b..ce71ed53e88 100644 --- a/kernel/cgroup_freezer.c +++ b/kernel/cgroup_freezer.c @@ -89,10 +89,10 @@ struct cgroup_subsys freezer_subsys; /* Locks taken and their ordering * ------------------------------ - * css_set_lock * cgroup_mutex (AKA cgroup_lock) - * task->alloc_lock (AKA task_lock) * freezer->lock + * css_set_lock + * task->alloc_lock (AKA task_lock) * task->sighand->siglock * * cgroup code forces css_set_lock to be taken before task->alloc_lock @@ -100,33 +100,38 @@ struct cgroup_subsys freezer_subsys; * freezer_create(), freezer_destroy(): * cgroup_mutex [ by cgroup core ] * - * can_attach(): - * cgroup_mutex + * freezer_can_attach(): + * cgroup_mutex (held by caller of can_attach) * - * cgroup_frozen(): + * cgroup_freezing_or_frozen(): * task->alloc_lock (to get task's cgroup) * * freezer_fork() (preserving fork() performance means can't take cgroup_mutex): - * task->alloc_lock (to get task's cgroup) * freezer->lock * sighand->siglock (if the cgroup is freezing) * * freezer_read(): * cgroup_mutex * freezer->lock + * write_lock css_set_lock (cgroup iterator start) + * task->alloc_lock * read_lock css_set_lock (cgroup iterator start) * * freezer_write() (freeze): * cgroup_mutex * freezer->lock + * write_lock css_set_lock (cgroup iterator start) + * task->alloc_lock * read_lock css_set_lock (cgroup iterator start) - * sighand->siglock + * sighand->siglock (fake signal delivery inside freeze_task()) * * freezer_write() (unfreeze): * cgroup_mutex * freezer->lock + * write_lock css_set_lock (cgroup iterator start) + * task->alloc_lock * read_lock css_set_lock (cgroup iterator start) - * task->alloc_lock (to prevent races with freeze_task()) + * task->alloc_lock (inside thaw_process(), prevents race with refrigerator()) * sighand->siglock */ static struct cgroup_subsys_state *freezer_create(struct cgroup_subsys *ss, -- cgit v1.2.3 From 25f3a5a2854dce8b8413fd24cc9d5b9e3632be54 Mon Sep 17 00:00:00 2001 From: Mark Gross Date: Mon, 17 May 2010 00:21:03 +0200 Subject: PM: PM QOS update fix This update handles a use case where pm_qos update requests need to silently fail if the update is being sent to a handle that is NULL. The problem was that the original pm_qos silently fails when a request update is passed to a parameter that has not been added to the list yet. This update restores that behavior. Signed-off-by: markgross Signed-off-by: Rafael J. Wysocki --- kernel/pm_qos_params.c | 26 ++++++++++++++------------ 1 file changed, 14 insertions(+), 12 deletions(-) diff --git a/kernel/pm_qos_params.c b/kernel/pm_qos_params.c index a1aea040eb5..f42d3f737a3 100644 --- a/kernel/pm_qos_params.c +++ b/kernel/pm_qos_params.c @@ -252,19 +252,21 @@ void pm_qos_update_request(struct pm_qos_request_list *pm_qos_req, int pending_update = 0; s32 temp; - spin_lock_irqsave(&pm_qos_lock, flags); - if (new_value == PM_QOS_DEFAULT_VALUE) - temp = pm_qos_array[pm_qos_req->pm_qos_class]->default_value; - else - temp = new_value; - - if (temp != pm_qos_req->value) { - pending_update = 1; - pm_qos_req->value = temp; + if (pm_qos_req) { /*guard against callers passing in null */ + spin_lock_irqsave(&pm_qos_lock, flags); + if (new_value == PM_QOS_DEFAULT_VALUE) + temp = pm_qos_array[pm_qos_req->pm_qos_class]->default_value; + else + temp = new_value; + + if (temp != pm_qos_req->value) { + pending_update = 1; + pm_qos_req->value = temp; + } + spin_unlock_irqrestore(&pm_qos_lock, flags); + if (pending_update) + update_target(pm_qos_req->pm_qos_class); } - spin_unlock_irqrestore(&pm_qos_lock, flags); - if (pending_update) - update_target(pm_qos_req->pm_qos_class); } EXPORT_SYMBOL_GPL(pm_qos_update_request); -- cgit v1.2.3