diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2010-10-25 08:32:05 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2010-10-25 08:32:05 -0700 |
commit | 33081adf8b89d5a716d7e1c60171768d39795b39 (patch) | |
tree | 275de58bbbb5f7ddffcdc087844cfc7fbe4315be /sound/soc/fsl/fsl_dma.c | |
parent | c55960499f810357a29659b32d6ea594abee9237 (diff) | |
parent | 506ecbca71d07fa327dd986be1682e90885678ee (diff) | |
download | kernel_samsung_smdk4412-33081adf8b89d5a716d7e1c60171768d39795b39.tar.gz kernel_samsung_smdk4412-33081adf8b89d5a716d7e1c60171768d39795b39.tar.bz2 kernel_samsung_smdk4412-33081adf8b89d5a716d7e1c60171768d39795b39.zip |
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6: (365 commits)
ALSA: hda - Disable sticky PCM stream assignment for AD codecs
ALSA: usb - Creative USB X-Fi volume knob support
ALSA: ca0106: Use card specific dac id for mute controls.
ALSA: ca0106: Allow different sound cards to use different SPI channel mappings.
ALSA: ca0106: Create a nice spot for mapping channels to dacs.
ALSA: ca0106: Move enabling of front dac out of hardcoded setup sequence.
ALSA: ca0106: Pull out dac powering routine into separate function.
ALSA: ca0106 - add Sound Blaster 5.1vx info.
ASoC: tlv320dac33: Use usleep_range for delays
ALSA: usb-audio: add Novation Launchpad support
ALSA: hda - Add workarounds for CT-IBG controllers
ALSA: hda - Fix wrong TLV mute bit for STAC/IDT codecs
ASoC: tpa6130a2: Error handling for broken chip
ASoC: max98088: Staticise m98088_eq_band
ASoC: soc-core: Fix codec->name memory leak
ALSA: hda - Apply ideapad quirk to Acer laptops with Cxt5066
ALSA: hda - Add some workarounds for Creative IBG
ALSA: hda - Fix wrong SPDIF NID assignment for CA0110
ALSA: hda - Fix codec rename rules for ALC662-compatible codecs
ALSA: hda - Add alc_init_jacks() call to other codecs
...
Diffstat (limited to 'sound/soc/fsl/fsl_dma.c')
-rw-r--r-- | sound/soc/fsl/fsl_dma.c | 458 |
1 files changed, 293 insertions, 165 deletions
diff --git a/sound/soc/fsl/fsl_dma.c b/sound/soc/fsl/fsl_dma.c index 410c7496a18..4cf98c03af2 100644 --- a/sound/soc/fsl/fsl_dma.c +++ b/sound/soc/fsl/fsl_dma.c @@ -3,10 +3,11 @@ * * Author: Timur Tabi <timur@freescale.com> * - * Copyright 2007-2008 Freescale Semiconductor, Inc. This file is licensed - * under the terms of the GNU General Public License version 2. This - * program is licensed "as is" without any warranty of any kind, whether - * express or implied. + * Copyright 2007-2010 Freescale Semiconductor, Inc. + * + * This file is licensed under the terms of the GNU General Public License + * version 2. This program is licensed "as is" without any warranty of any + * kind, whether express or implied. * * This driver implements ASoC support for the Elo DMA controller, which is * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms, @@ -20,6 +21,9 @@ #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/gfp.h> +#include <linux/of_platform.h> +#include <linux/list.h> +#include <linux/slab.h> #include <sound/core.h> #include <sound/pcm.h> @@ -29,6 +33,7 @@ #include <asm/io.h> #include "fsl_dma.h" +#include "fsl_ssi.h" /* For the offset of stx0 and srx0 */ /* * The formats that the DMA controller supports, which is anything @@ -52,26 +57,16 @@ #define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \ SNDRV_PCM_RATE_CONTINUOUS) -/* DMA global data. This structure is used by fsl_dma_open() to determine - * which DMA channels to assign to a substream. Unfortunately, ASoC V1 does - * not allow the machine driver to provide this information to the PCM - * driver in advance, and there's no way to differentiate between the two - * DMA controllers. So for now, this driver only supports one SSI device - * using two DMA channels. We cannot support multiple DMA devices. - * - * ssi_stx_phys: bus address of SSI STX register - * ssi_srx_phys: bus address of SSI SRX register - * dma_channel: pointer to the DMA channel's registers - * irq: IRQ for this DMA channel - * assigned: set to 1 if that DMA channel is assigned to a substream - */ -static struct { +struct dma_object { + struct snd_soc_platform_driver dai; dma_addr_t ssi_stx_phys; dma_addr_t ssi_srx_phys; - struct ccsr_dma_channel __iomem *dma_channel[2]; - unsigned int irq[2]; - unsigned int assigned[2]; -} dma_global_data; + unsigned int ssi_fifo_depth; + struct ccsr_dma_channel __iomem *channel; + unsigned int irq; + bool assigned; + char path[1]; +}; /* * The number of DMA links to use. Two is the bare minimum, but if you @@ -88,8 +83,6 @@ static struct { * structure. * * @link[]: array of link descriptors - * @controller_id: which DMA controller (0, 1, ...) - * @channel_id: which DMA channel on the controller (0, 1, 2, ...) * @dma_channel: pointer to the DMA channel's registers * @irq: IRQ for this DMA channel * @substream: pointer to the substream object, needed by the ISR @@ -104,12 +97,11 @@ static struct { */ struct fsl_dma_private { struct fsl_dma_link_descriptor link[NUM_DMA_LINKS]; - unsigned int controller_id; - unsigned int channel_id; struct ccsr_dma_channel __iomem *dma_channel; unsigned int irq; struct snd_pcm_substream *substream; dma_addr_t ssi_sxx_phys; + unsigned int ssi_fifo_depth; dma_addr_t ld_buf_phys; unsigned int current_link; dma_addr_t dma_buf_phys; @@ -185,13 +177,23 @@ static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private) struct fsl_dma_link_descriptor *link = &dma_private->link[dma_private->current_link]; - /* Update our link descriptors to point to the next period */ - if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) - link->source_addr = - cpu_to_be32(dma_private->dma_buf_next); - else - link->dest_addr = - cpu_to_be32(dma_private->dma_buf_next); + /* Update our link descriptors to point to the next period. On a 36-bit + * system, we also need to update the ESAD bits. We also set (keep) the + * snoop bits. See the comments in fsl_dma_hw_params() about snooping. + */ + if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { + link->source_addr = cpu_to_be32(dma_private->dma_buf_next); +#ifdef CONFIG_PHYS_64BIT + link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP | + upper_32_bits(dma_private->dma_buf_next)); +#endif + } else { + link->dest_addr = cpu_to_be32(dma_private->dma_buf_next); +#ifdef CONFIG_PHYS_64BIT + link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP | + upper_32_bits(dma_private->dma_buf_next)); +#endif + } /* Update our variables for next time */ dma_private->dma_buf_next += dma_private->period_size; @@ -212,6 +214,9 @@ static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private) static irqreturn_t fsl_dma_isr(int irq, void *dev_id) { struct fsl_dma_private *dma_private = dev_id; + struct snd_pcm_substream *substream = dma_private->substream; + struct snd_soc_pcm_runtime *rtd = substream->private_data; + struct device *dev = rtd->platform->dev; struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel; irqreturn_t ret = IRQ_NONE; u32 sr, sr2 = 0; @@ -222,11 +227,8 @@ static irqreturn_t fsl_dma_isr(int irq, void *dev_id) sr = in_be32(&dma_channel->sr); if (sr & CCSR_DMA_SR_TE) { - dev_err(dma_private->substream->pcm->card->dev, - "DMA transmit error (controller=%u channel=%u irq=%u\n", - dma_private->controller_id, - dma_private->channel_id, irq); - fsl_dma_abort_stream(dma_private->substream); + dev_err(dev, "dma transmit error\n"); + fsl_dma_abort_stream(substream); sr2 |= CCSR_DMA_SR_TE; ret = IRQ_HANDLED; } @@ -235,11 +237,8 @@ static irqreturn_t fsl_dma_isr(int irq, void *dev_id) ret = IRQ_HANDLED; if (sr & CCSR_DMA_SR_PE) { - dev_err(dma_private->substream->pcm->card->dev, - "DMA%u programming error (channel=%u irq=%u)\n", - dma_private->controller_id, - dma_private->channel_id, irq); - fsl_dma_abort_stream(dma_private->substream); + dev_err(dev, "dma programming error\n"); + fsl_dma_abort_stream(substream); sr2 |= CCSR_DMA_SR_PE; ret = IRQ_HANDLED; } @@ -253,8 +252,6 @@ static irqreturn_t fsl_dma_isr(int irq, void *dev_id) ret = IRQ_HANDLED; if (sr & CCSR_DMA_SR_EOSI) { - struct snd_pcm_substream *substream = dma_private->substream; - /* Tell ALSA we completed a period. */ snd_pcm_period_elapsed(substream); @@ -288,11 +285,19 @@ static irqreturn_t fsl_dma_isr(int irq, void *dev_id) * This function is called when the codec driver calls snd_soc_new_pcms(), * once for each .dai_link in the machine driver's snd_soc_card * structure. + * + * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which + * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM + * is specified. Therefore, any DMA buffers we allocate will always be in low + * memory, but we support for 36-bit physical addresses anyway. + * + * Regardless of where the memory is actually allocated, since the device can + * technically DMA to any 36-bit address, we do need to set the DMA mask to 36. */ static int fsl_dma_new(struct snd_card *card, struct snd_soc_dai *dai, struct snd_pcm *pcm) { - static u64 fsl_dma_dmamask = DMA_BIT_MASK(32); + static u64 fsl_dma_dmamask = DMA_BIT_MASK(36); int ret; if (!card->dev->dma_mask) @@ -301,25 +306,29 @@ static int fsl_dma_new(struct snd_card *card, struct snd_soc_dai *dai, if (!card->dev->coherent_dma_mask) card->dev->coherent_dma_mask = fsl_dma_dmamask; - ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev, - fsl_dma_hardware.buffer_bytes_max, - &pcm->streams[0].substream->dma_buffer); - if (ret) { - dev_err(card->dev, - "Can't allocate playback DMA buffer (size=%u)\n", - fsl_dma_hardware.buffer_bytes_max); - return -ENOMEM; + /* Some codecs have separate DAIs for playback and capture, so we + * should allocate a DMA buffer only for the streams that are valid. + */ + + if (dai->driver->playback.channels_min) { + ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev, + fsl_dma_hardware.buffer_bytes_max, + &pcm->streams[0].substream->dma_buffer); + if (ret) { + dev_err(card->dev, "can't alloc playback dma buffer\n"); + return ret; + } } - ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev, - fsl_dma_hardware.buffer_bytes_max, - &pcm->streams[1].substream->dma_buffer); - if (ret) { - snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer); - dev_err(card->dev, - "Can't allocate capture DMA buffer (size=%u)\n", - fsl_dma_hardware.buffer_bytes_max); - return -ENOMEM; + if (dai->driver->capture.channels_min) { + ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev, + fsl_dma_hardware.buffer_bytes_max, + &pcm->streams[1].substream->dma_buffer); + if (ret) { + snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer); + dev_err(card->dev, "can't alloc capture dma buffer\n"); + return ret; + } } return 0; @@ -390,6 +399,10 @@ static int fsl_dma_new(struct snd_card *card, struct snd_soc_dai *dai, static int fsl_dma_open(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; + struct snd_soc_pcm_runtime *rtd = substream->private_data; + struct device *dev = rtd->platform->dev; + struct dma_object *dma = + container_of(rtd->platform->driver, struct dma_object, dai); struct fsl_dma_private *dma_private; struct ccsr_dma_channel __iomem *dma_channel; dma_addr_t ld_buf_phys; @@ -407,52 +420,45 @@ static int fsl_dma_open(struct snd_pcm_substream *substream) ret = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); if (ret < 0) { - dev_err(substream->pcm->card->dev, "invalid buffer size\n"); + dev_err(dev, "invalid buffer size\n"); return ret; } channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1; - if (dma_global_data.assigned[channel]) { - dev_err(substream->pcm->card->dev, - "DMA channel already assigned\n"); + if (dma->assigned) { + dev_err(dev, "dma channel already assigned\n"); return -EBUSY; } - dma_private = dma_alloc_coherent(substream->pcm->card->dev, - sizeof(struct fsl_dma_private), &ld_buf_phys, GFP_KERNEL); + dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private), + &ld_buf_phys, GFP_KERNEL); if (!dma_private) { - dev_err(substream->pcm->card->dev, - "can't allocate DMA private data\n"); + dev_err(dev, "can't allocate dma private data\n"); return -ENOMEM; } if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) - dma_private->ssi_sxx_phys = dma_global_data.ssi_stx_phys; + dma_private->ssi_sxx_phys = dma->ssi_stx_phys; else - dma_private->ssi_sxx_phys = dma_global_data.ssi_srx_phys; + dma_private->ssi_sxx_phys = dma->ssi_srx_phys; - dma_private->dma_channel = dma_global_data.dma_channel[channel]; - dma_private->irq = dma_global_data.irq[channel]; + dma_private->ssi_fifo_depth = dma->ssi_fifo_depth; + dma_private->dma_channel = dma->channel; + dma_private->irq = dma->irq; dma_private->substream = substream; dma_private->ld_buf_phys = ld_buf_phys; dma_private->dma_buf_phys = substream->dma_buffer.addr; - /* We only support one DMA controller for now */ - dma_private->controller_id = 0; - dma_private->channel_id = channel; - ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "DMA", dma_private); if (ret) { - dev_err(substream->pcm->card->dev, - "can't register ISR for IRQ %u (ret=%i)\n", + dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n", dma_private->irq, ret); - dma_free_coherent(substream->pcm->card->dev, - sizeof(struct fsl_dma_private), + dma_free_coherent(dev, sizeof(struct fsl_dma_private), dma_private, dma_private->ld_buf_phys); return ret; } - dma_global_data.assigned[channel] = 1; + dma->assigned = 1; snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer); snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware); @@ -546,13 +552,15 @@ static int fsl_dma_hw_params(struct snd_pcm_substream *substream, { struct snd_pcm_runtime *runtime = substream->runtime; struct fsl_dma_private *dma_private = runtime->private_data; + struct snd_soc_pcm_runtime *rtd = substream->private_data; + struct device *dev = rtd->platform->dev; /* Number of bits per sample */ - unsigned int sample_size = + unsigned int sample_bits = snd_pcm_format_physical_width(params_format(hw_params)); /* Number of bytes per frame */ - unsigned int frame_size = 2 * (sample_size / 8); + unsigned int sample_bytes = sample_bits / 8; /* Bus address of SSI STX register */ dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys; @@ -592,7 +600,7 @@ static int fsl_dma_hw_params(struct snd_pcm_substream *substream, * that offset here. While we're at it, also tell the DMA controller * how much data to transfer per sample. */ - switch (sample_size) { + switch (sample_bits) { case 8: mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1; ssi_sxx_phys += 3; @@ -606,23 +614,42 @@ static int fsl_dma_hw_params(struct snd_pcm_substream *substream, break; default: /* We should never get here */ - dev_err(substream->pcm->card->dev, - "unsupported sample size %u\n", sample_size); + dev_err(dev, "unsupported sample size %u\n", sample_bits); return -EINVAL; } /* - * BWC should always be a multiple of the frame size. BWC determines - * how many bytes are sent/received before the DMA controller checks the - * SSI to see if it needs to stop. For playback, the transmit FIFO can - * hold three frames, so we want to send two frames at a time. For - * capture, the receive FIFO is triggered when it contains one frame, so - * we want to receive one frame at a time. + * BWC determines how many bytes are sent/received before the DMA + * controller checks the SSI to see if it needs to stop. BWC should + * always be a multiple of the frame size, so that we always transmit + * whole frames. Each frame occupies two slots in the FIFO. The + * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two + * (MR[BWC] can only represent even powers of two). + * + * To simplify the process, we set BWC to the largest value that is + * less than or equal to the FIFO watermark. For playback, this ensures + * that we transfer the maximum amount without overrunning the FIFO. + * For capture, this ensures that we transfer the maximum amount without + * underrunning the FIFO. + * + * f = SSI FIFO depth + * w = SSI watermark value (which equals f - 2) + * b = DMA bandwidth count (in bytes) + * s = sample size (in bytes, which equals frame_size * 2) + * + * For playback, we never transmit more than the transmit FIFO + * watermark, otherwise we might write more data than the FIFO can hold. + * The watermark is equal to the FIFO depth minus two. + * + * For capture, two equations must hold: + * w > f - (b / s) + * w >= b / s + * + * So, b > 2 * s, but b must also be <= s * w. To simplify, we set + * b = s * w, which is equal to + * (dma_private->ssi_fifo_depth - 2) * sample_bytes. */ - if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) - mr |= CCSR_DMA_MR_BWC(2 * frame_size); - else - mr |= CCSR_DMA_MR_BWC(frame_size); + mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes); out_be32(&dma_channel->mr, mr); @@ -631,12 +658,7 @@ static int fsl_dma_hw_params(struct snd_pcm_substream *substream, link->count = cpu_to_be32(period_size); - /* Even though the DMA controller supports 36-bit addressing, - * for simplicity we allow only 32-bit addresses for the audio - * buffer itself. This was enforced in fsl_dma_new() with the - * DMA mask. - * - * The snoop bit tells the DMA controller whether it should tell + /* The snoop bit tells the DMA controller whether it should tell * the ECM to snoop during a read or write to an address. For * audio, we use DMA to transfer data between memory and an I/O * device (the SSI's STX0 or SRX0 register). Snooping is only @@ -651,20 +673,24 @@ static int fsl_dma_hw_params(struct snd_pcm_substream *substream, * flush out the data for the previous period. So if you * increased period_bytes_min to a large enough size, you might * get more performance by not snooping, and you'll still be - * okay. + * okay. You'll need to update fsl_dma_update_pointers() also. */ if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { link->source_addr = cpu_to_be32(temp_addr); - link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP); + link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP | + upper_32_bits(temp_addr)); link->dest_addr = cpu_to_be32(ssi_sxx_phys); - link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP); + link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP | + upper_32_bits(ssi_sxx_phys)); } else { link->source_addr = cpu_to_be32(ssi_sxx_phys); - link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP); + link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP | + upper_32_bits(ssi_sxx_phys)); link->dest_addr = cpu_to_be32(temp_addr); - link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP); + link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP | + upper_32_bits(temp_addr)); } temp_addr += period_size; @@ -689,14 +715,29 @@ static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct fsl_dma_private *dma_private = runtime->private_data; + struct snd_soc_pcm_runtime *rtd = substream->private_data; + struct device *dev = rtd->platform->dev; struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel; dma_addr_t position; snd_pcm_uframes_t frames; - if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) + /* Obtain the current DMA pointer, but don't read the ESAD bits if we + * only have 32-bit DMA addresses. This function is typically called + * in interrupt context, so we need to optimize it. + */ + if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { position = in_be32(&dma_channel->sar); - else +#ifdef CONFIG_PHYS_64BIT + position |= (u64)(in_be32(&dma_channel->satr) & + CCSR_DMA_ATR_ESAD_MASK) << 32; +#endif + } else { position = in_be32(&dma_channel->dar); +#ifdef CONFIG_PHYS_64BIT + position |= (u64)(in_be32(&dma_channel->datr) & + CCSR_DMA_ATR_ESAD_MASK) << 32; +#endif + } /* * When capture is started, the SSI immediately starts to fill its FIFO. @@ -710,8 +751,7 @@ static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream) if ((position < dma_private->dma_buf_phys) || (position > dma_private->dma_buf_end)) { - dev_err(substream->pcm->card->dev, - "dma pointer is out of range, halting stream\n"); + dev_err(dev, "dma pointer is out of range, halting stream\n"); return SNDRV_PCM_POS_XRUN; } @@ -772,26 +812,28 @@ static int fsl_dma_close(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct fsl_dma_private *dma_private = runtime->private_data; - int dir = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1; + struct snd_soc_pcm_runtime *rtd = substream->private_data; + struct device *dev = rtd->platform->dev; + struct dma_object *dma = + container_of(rtd->platform->driver, struct dma_object, dai); if (dma_private) { if (dma_private->irq) free_irq(dma_private->irq, dma_private); if (dma_private->ld_buf_phys) { - dma_unmap_single(substream->pcm->card->dev, - dma_private->ld_buf_phys, - sizeof(dma_private->link), DMA_TO_DEVICE); + dma_unmap_single(dev, dma_private->ld_buf_phys, + sizeof(dma_private->link), + DMA_TO_DEVICE); } /* Deallocate the fsl_dma_private structure */ - dma_free_coherent(substream->pcm->card->dev, - sizeof(struct fsl_dma_private), - dma_private, dma_private->ld_buf_phys); + dma_free_coherent(dev, sizeof(struct fsl_dma_private), + dma_private, dma_private->ld_buf_phys); substream->runtime->private_data = NULL; } - dma_global_data.assigned[dir] = 0; + dma->assigned = 0; return 0; } @@ -814,6 +856,37 @@ static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm) } } +/** + * find_ssi_node -- returns the SSI node that points to his DMA channel node + * + * Although this DMA driver attempts to operate independently of the other + * devices, it still needs to determine some information about the SSI device + * that it's working with. Unfortunately, the device tree does not contain + * a pointer from the DMA channel node to the SSI node -- the pointer goes the + * other way. So we need to scan the device tree for SSI nodes until we find + * the one that points to the given DMA channel node. It's ugly, but at least + * it's contained in this one function. + */ +static struct device_node *find_ssi_node(struct device_node *dma_channel_np) +{ + struct device_node *ssi_np, *np; + + for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") { + /* Check each DMA phandle to see if it points to us. We + * assume that device_node pointers are a valid comparison. + */ + np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0); + if (np == dma_channel_np) + return ssi_np; + + np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0); + if (np == dma_channel_np) + return ssi_np; + } + + return NULL; +} + static struct snd_pcm_ops fsl_dma_ops = { .open = fsl_dma_open, .close = fsl_dma_close, @@ -823,59 +896,114 @@ static struct snd_pcm_ops fsl_dma_ops = { .pointer = fsl_dma_pointer, }; -struct snd_soc_platform fsl_soc_platform = { - .name = "fsl-dma", - .pcm_ops = &fsl_dma_ops, - .pcm_new = fsl_dma_new, - .pcm_free = fsl_dma_free_dma_buffers, -}; -EXPORT_SYMBOL_GPL(fsl_soc_platform); +static int __devinit fsl_soc_dma_probe(struct platform_device *pdev, + const struct of_device_id *match) + { + struct dma_object *dma; + struct device_node *np = pdev->dev.of_node; + struct device_node *ssi_np; + struct resource res; + const uint32_t *iprop; + int ret; -/** - * fsl_dma_configure: store the DMA parameters from the fabric driver. - * - * This function is called by the ASoC fabric driver to give us the DMA and - * SSI channel information. - * - * Unfortunately, ASoC V1 does make it possible to determine the DMA/SSI - * data when a substream is created, so for now we need to store this data - * into a global variable. This means that we can only support one DMA - * controller, and hence only one SSI. - */ -int fsl_dma_configure(struct fsl_dma_info *dma_info) + /* Find the SSI node that points to us. */ + ssi_np = find_ssi_node(np); + if (!ssi_np) { + dev_err(&pdev->dev, "cannot find parent SSI node\n"); + return -ENODEV; + } + + ret = of_address_to_resource(ssi_np, 0, &res); + if (ret) { + dev_err(&pdev->dev, "could not determine resources for %s\n", + ssi_np->full_name); + of_node_put(ssi_np); + return ret; + } + + dma = kzalloc(sizeof(*dma) + strlen(np->full_name), GFP_KERNEL); + if (!dma) { + dev_err(&pdev->dev, "could not allocate dma object\n"); + of_node_put(ssi_np); + return -ENOMEM; + } + + strcpy(dma->path, np->full_name); + dma->dai.ops = &fsl_dma_ops; + dma->dai.pcm_new = fsl_dma_new; + dma->dai.pcm_free = fsl_dma_free_dma_buffers; + + /* Store the SSI-specific information that we need */ + dma->ssi_stx_phys = res.start + offsetof(struct ccsr_ssi, stx0); + dma->ssi_srx_phys = res.start + offsetof(struct ccsr_ssi, srx0); + + iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL); + if (iprop) + dma->ssi_fifo_depth = *iprop; + else + /* Older 8610 DTs didn't have the fifo-depth property */ + dma->ssi_fifo_depth = 8; + + of_node_put(ssi_np); + + ret = snd_soc_register_platform(&pdev->dev, &dma->dai); + if (ret) { + dev_err(&pdev->dev, "could not register platform\n"); + kfree(dma); + return ret; + } + + dma->channel = of_iomap(np, 0); + dma->irq = irq_of_parse_and_map(np, 0); + + dev_set_drvdata(&pdev->dev, dma); + + return 0; +} + +static int __devexit fsl_soc_dma_remove(struct platform_device *pdev) { - static int initialized; + struct dma_object *dma = dev_get_drvdata(&pdev->dev); - /* We only support one DMA controller for now */ - if (initialized) - return 0; + snd_soc_unregister_platform(&pdev->dev); + iounmap(dma->channel); + irq_dispose_mapping(dma->irq); + kfree(dma); - dma_global_data.ssi_stx_phys = dma_info->ssi_stx_phys; - dma_global_data.ssi_srx_phys = dma_info->ssi_srx_phys; - dma_global_data.dma_channel[0] = dma_info->dma_channel[0]; - dma_global_data.dma_channel[1] = dma_info->dma_channel[1]; - dma_global_data.irq[0] = dma_info->dma_irq[0]; - dma_global_data.irq[1] = dma_info->dma_irq[1]; - dma_global_data.assigned[0] = 0; - dma_global_data.assigned[1] = 0; - - initialized = 1; - return 1; + return 0; } -EXPORT_SYMBOL_GPL(fsl_dma_configure); -static int __init fsl_soc_platform_init(void) +static const struct of_device_id fsl_soc_dma_ids[] = { + { .compatible = "fsl,ssi-dma-channel", }, + {} +}; +MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids); + +static struct of_platform_driver fsl_soc_dma_driver = { + .driver = { + .name = "fsl-pcm-audio", + .owner = THIS_MODULE, + .of_match_table = fsl_soc_dma_ids, + }, + .probe = fsl_soc_dma_probe, + .remove = __devexit_p(fsl_soc_dma_remove), +}; + +static int __init fsl_soc_dma_init(void) { - return snd_soc_register_platform(&fsl_soc_platform); + pr_info("Freescale Elo DMA ASoC PCM Driver\n"); + + return of_register_platform_driver(&fsl_soc_dma_driver); } -module_init(fsl_soc_platform_init); -static void __exit fsl_soc_platform_exit(void) +static void __exit fsl_soc_dma_exit(void) { - snd_soc_unregister_platform(&fsl_soc_platform); + of_unregister_platform_driver(&fsl_soc_dma_driver); } -module_exit(fsl_soc_platform_exit); + +module_init(fsl_soc_dma_init); +module_exit(fsl_soc_dma_exit); MODULE_AUTHOR("Timur Tabi <timur@freescale.com>"); -MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM module"); -MODULE_LICENSE("GPL"); +MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver"); +MODULE_LICENSE("GPL v2"); |