diff options
author | Herbert Xu <herbert@gondor.apana.org.au> | 2005-10-30 21:25:15 +1100 |
---|---|---|
committer | David S. Miller <davem@sunset.davemloft.net> | 2006-01-09 14:15:34 -0800 |
commit | 06ace7a9bafeb9047352707eb79e8eaa0dfdf5f2 (patch) | |
tree | fa22bbc2e8ea5bee00b6aec353783144b6f8735a /crypto/aes.c | |
parent | 2df15fffc612b53b2c8e4ff3c981a82441bc00ae (diff) | |
download | kernel_samsung_smdk4412-06ace7a9bafeb9047352707eb79e8eaa0dfdf5f2.tar.gz kernel_samsung_smdk4412-06ace7a9bafeb9047352707eb79e8eaa0dfdf5f2.tar.bz2 kernel_samsung_smdk4412-06ace7a9bafeb9047352707eb79e8eaa0dfdf5f2.zip |
[CRYPTO] Use standard byte order macros wherever possible
A lot of crypto code needs to read/write a 32-bit/64-bit words in a
specific gender. Many of them open code them by reading/writing one
byte at a time. This patch converts all the applicable usages over
to use the standard byte order macros.
This is based on a previous patch by Denis Vlasenko.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Diffstat (limited to 'crypto/aes.c')
-rw-r--r-- | crypto/aes.c | 60 |
1 files changed, 31 insertions, 29 deletions
diff --git a/crypto/aes.c b/crypto/aes.c index 5df92888ef5..35a11deef29 100644 --- a/crypto/aes.c +++ b/crypto/aes.c @@ -73,9 +73,6 @@ byte(const u32 x, const unsigned n) return x >> (n << 3); } -#define u32_in(x) le32_to_cpu(*(const u32 *)(x)) -#define u32_out(to, from) (*(u32 *)(to) = cpu_to_le32(from)) - struct aes_ctx { int key_length; u32 E[60]; @@ -256,6 +253,7 @@ static int aes_set_key(void *ctx_arg, const u8 *in_key, unsigned int key_len, u32 *flags) { struct aes_ctx *ctx = ctx_arg; + const __le32 *key = (const __le32 *)in_key; u32 i, t, u, v, w; if (key_len != 16 && key_len != 24 && key_len != 32) { @@ -265,10 +263,10 @@ aes_set_key(void *ctx_arg, const u8 *in_key, unsigned int key_len, u32 *flags) ctx->key_length = key_len; - E_KEY[0] = u32_in (in_key); - E_KEY[1] = u32_in (in_key + 4); - E_KEY[2] = u32_in (in_key + 8); - E_KEY[3] = u32_in (in_key + 12); + E_KEY[0] = le32_to_cpu(key[0]); + E_KEY[1] = le32_to_cpu(key[1]); + E_KEY[2] = le32_to_cpu(key[2]); + E_KEY[3] = le32_to_cpu(key[3]); switch (key_len) { case 16: @@ -278,17 +276,17 @@ aes_set_key(void *ctx_arg, const u8 *in_key, unsigned int key_len, u32 *flags) break; case 24: - E_KEY[4] = u32_in (in_key + 16); - t = E_KEY[5] = u32_in (in_key + 20); + E_KEY[4] = le32_to_cpu(key[4]); + t = E_KEY[5] = le32_to_cpu(key[5]); for (i = 0; i < 8; ++i) loop6 (i); break; case 32: - E_KEY[4] = u32_in (in_key + 16); - E_KEY[5] = u32_in (in_key + 20); - E_KEY[6] = u32_in (in_key + 24); - t = E_KEY[7] = u32_in (in_key + 28); + E_KEY[4] = le32_to_cpu(key[4]); + E_KEY[5] = le32_to_cpu(key[5]); + E_KEY[6] = le32_to_cpu(key[6]); + t = E_KEY[7] = le32_to_cpu(key[7]); for (i = 0; i < 7; ++i) loop8 (i); break; @@ -324,13 +322,15 @@ aes_set_key(void *ctx_arg, const u8 *in_key, unsigned int key_len, u32 *flags) static void aes_encrypt(void *ctx_arg, u8 *out, const u8 *in) { const struct aes_ctx *ctx = ctx_arg; + const __le32 *src = (const __le32 *)in; + __le32 *dst = (__le32 *)out; u32 b0[4], b1[4]; const u32 *kp = E_KEY + 4; - b0[0] = u32_in (in) ^ E_KEY[0]; - b0[1] = u32_in (in + 4) ^ E_KEY[1]; - b0[2] = u32_in (in + 8) ^ E_KEY[2]; - b0[3] = u32_in (in + 12) ^ E_KEY[3]; + b0[0] = le32_to_cpu(src[0]) ^ E_KEY[0]; + b0[1] = le32_to_cpu(src[1]) ^ E_KEY[1]; + b0[2] = le32_to_cpu(src[2]) ^ E_KEY[2]; + b0[3] = le32_to_cpu(src[3]) ^ E_KEY[3]; if (ctx->key_length > 24) { f_nround (b1, b0, kp); @@ -353,10 +353,10 @@ static void aes_encrypt(void *ctx_arg, u8 *out, const u8 *in) f_nround (b1, b0, kp); f_lround (b0, b1, kp); - u32_out (out, b0[0]); - u32_out (out + 4, b0[1]); - u32_out (out + 8, b0[2]); - u32_out (out + 12, b0[3]); + dst[0] = cpu_to_le32(b0[0]); + dst[1] = cpu_to_le32(b0[1]); + dst[2] = cpu_to_le32(b0[2]); + dst[3] = cpu_to_le32(b0[3]); } /* decrypt a block of text */ @@ -377,14 +377,16 @@ static void aes_encrypt(void *ctx_arg, u8 *out, const u8 *in) static void aes_decrypt(void *ctx_arg, u8 *out, const u8 *in) { const struct aes_ctx *ctx = ctx_arg; + const __le32 *src = (const __le32 *)in; + __le32 *dst = (__le32 *)out; u32 b0[4], b1[4]; const int key_len = ctx->key_length; const u32 *kp = D_KEY + key_len + 20; - b0[0] = u32_in (in) ^ E_KEY[key_len + 24]; - b0[1] = u32_in (in + 4) ^ E_KEY[key_len + 25]; - b0[2] = u32_in (in + 8) ^ E_KEY[key_len + 26]; - b0[3] = u32_in (in + 12) ^ E_KEY[key_len + 27]; + b0[0] = le32_to_cpu(src[0]) ^ E_KEY[key_len + 24]; + b0[1] = le32_to_cpu(src[1]) ^ E_KEY[key_len + 25]; + b0[2] = le32_to_cpu(src[2]) ^ E_KEY[key_len + 26]; + b0[3] = le32_to_cpu(src[3]) ^ E_KEY[key_len + 27]; if (key_len > 24) { i_nround (b1, b0, kp); @@ -407,10 +409,10 @@ static void aes_decrypt(void *ctx_arg, u8 *out, const u8 *in) i_nround (b1, b0, kp); i_lround (b0, b1, kp); - u32_out (out, b0[0]); - u32_out (out + 4, b0[1]); - u32_out (out + 8, b0[2]); - u32_out (out + 12, b0[3]); + dst[0] = cpu_to_le32(b0[0]); + dst[1] = cpu_to_le32(b0[1]); + dst[2] = cpu_to_le32(b0[2]); + dst[3] = cpu_to_le32(b0[3]); } |