#include #include #include #include #include #include "voltage.h" #include "vc.h" #include "prm-regbits-34xx.h" #include "prm-regbits-44xx.h" #include "prm44xx.h" #define OMAP_VC_I2C_ACK_DELAY 3 /** * struct omap_vc_channel_cfg - describe the cfg_channel bitfield * @sa: bit for slave address * @rav: bit for voltage configuration register * @rac: bit for command configuration register * @racen: enable bit for RAC * @cmd: bit for command value set selection * * Channel configuration bits, common for OMAP3+ * OMAP3 register: PRM_VC_CH_CONF * OMAP4 register: PRM_VC_CFG_CHANNEL * OMAP5 register: PRM_VC_SMPS__CONFIG */ struct omap_vc_channel_cfg { u8 sa; u8 rav; u8 rac; u8 racen; u8 cmd; }; static struct omap_vc_channel_cfg vc_default_channel_cfg = { .sa = BIT(0), .rav = BIT(1), .rac = BIT(2), .racen = BIT(3), .cmd = BIT(4), }; /* * On OMAP3+, all VC channels have the above default bitfield * configuration, except the OMAP4 MPU channel. This appears * to be a freak accident as every other VC channel has the * default configuration, thus creating a mutant channel config. */ static struct omap_vc_channel_cfg vc_mutant_channel_cfg = { .sa = BIT(0), .rav = BIT(2), .rac = BIT(3), .racen = BIT(4), .cmd = BIT(1), }; static struct omap_vc_channel_cfg *vc_cfg_bits; #define CFG_CHANNEL_MASK 0x1f /** * omap_vc_config_channel - configure VC channel to PMIC mappings * @voltdm: pointer to voltagdomain defining the desired VC channel * * Configures the VC channel to PMIC mappings for the following * PMIC settings * - i2c slave address (SA) * - voltage configuration address (RAV) * - command configuration address (RAC) and enable bit (RACEN) * - command values for ON, ONLP, RET and OFF (CMD) * * This function currently only allows flexible configuration of the * non-default channel. Starting with OMAP4, there are more than 2 * channels, with one defined as the default (on OMAP4, it's MPU.) * Only the non-default channel can be configured. */ static int omap_vc_config_channel(struct voltagedomain *voltdm) { struct omap_vc_channel *vc = voltdm->vc; /* * For default channel, the only configurable bit is RACEN. * All others must stay at zero (see function comment above.) */ if (vc->flags & OMAP_VC_CHANNEL_DEFAULT) vc->cfg_channel &= vc_cfg_bits->racen; voltdm->rmw(CFG_CHANNEL_MASK << vc->cfg_channel_sa_shift, vc->cfg_channel << vc->cfg_channel_sa_shift, vc->common->cfg_channel_reg); return 0; } /* Voltage scale and accessory APIs */ int omap_vc_pre_scale(struct voltagedomain *voltdm, unsigned long target_volt, struct omap_volt_data *target_v, u8 *target_vsel, u8 *current_vsel) { struct omap_vc_channel *vc = voltdm->vc; u32 vc_cmdval; /* Check if sufficient pmic info is available for this vdd */ if (!voltdm->pmic) { pr_err("%s: Insufficient pmic info to scale the vdd_%s\n", __func__, voltdm->name); return -EINVAL; } if (!voltdm->pmic->uv_to_vsel) { pr_err("%s: PMIC function to convert voltage in uV to" "vsel not registered. Hence unable to scale voltage" "for vdd_%s\n", __func__, voltdm->name); return -ENODATA; } if (!voltdm->read || !voltdm->write) { pr_err("%s: No read/write API for accessing vdd_%s regs\n", __func__, voltdm->name); return -EINVAL; } *target_vsel = voltdm->pmic->uv_to_vsel(target_volt); *current_vsel = voltdm->read(voltdm->vp->voltage); /* Setting the ON voltage to the new target voltage */ vc_cmdval = voltdm->read(vc->cmdval_reg); vc_cmdval &= ~vc->common->cmd_on_mask; vc_cmdval |= (*target_vsel << vc->common->cmd_on_shift); voltdm->write(vc_cmdval, vc->cmdval_reg); omap_vp_update_errorgain(voltdm, target_v); return 0; } /** * omap_vc_set_auto_trans() - set auto transition parameters for a domain * @voltdm: voltage domain we are interested in * @flag: which state should we program this to */ int omap_vc_set_auto_trans(struct voltagedomain *voltdm, u8 flag) { struct omap_vc_channel *vc; const struct omap_vc_auto_trans *auto_trans; u8 val = OMAP_VC_CHANNEL_AUTO_TRANSITION_UNSUPPORTED; if (!voltdm) { pr_err("%s: NULL Voltage domain!\n", __func__); return -ENOENT; } vc = voltdm->vc; if (!vc) { pr_err("%s: NULL VC Voltage domain %s!\n", __func__, voltdm->name); return -ENOENT; } auto_trans = vc->auto_trans; if (!auto_trans) { pr_debug("%s: No auto trans %s!\n", __func__, voltdm->name); return 0; } /* Handle value and masks per silicon data */ switch (flag) { case OMAP_VC_CHANNEL_AUTO_TRANSITION_DISABLE: val = 0x0; break; case OMAP_VC_CHANNEL_AUTO_TRANSITION_SLEEP: val = auto_trans->sleep_val; break; case OMAP_VC_CHANNEL_AUTO_TRANSITION_RETENTION: val = auto_trans->retention_val; break; case OMAP_VC_CHANNEL_AUTO_TRANSITION_OFF: val = auto_trans->off_val; break; default: pr_err("%s: Voltdm %s invalid flag %d\n", __func__, voltdm->name, flag); return -EINVAL; } if (val == OMAP_VC_CHANNEL_AUTO_TRANSITION_UNSUPPORTED) { pr_err("%s: transition to %d on %s is NOT supported\n", __func__, flag, voltdm->name); return -EINVAL; } /* All ready - set it and move on.. */ voltdm->rmw(vc->auto_trans_mask, val << __ffs(vc->auto_trans_mask), auto_trans->reg); return 0; } void omap_vc_post_scale(struct voltagedomain *voltdm, unsigned long target_volt, struct omap_volt_data *target_vdata, u8 target_vsel, u8 current_vsel) { struct omap_vc_channel *vc; u32 smps_steps = 0, smps_delay = 0; u8 on_vsel, onlp_vsel; u32 val; if (IS_ERR_OR_NULL(voltdm)) { pr_err("%s bad voldm\n", __func__); return; } vc = voltdm->vc; if (IS_ERR_OR_NULL(vc)) { pr_err("%s voldm=%s bad vc\n", __func__, voltdm->name); return; } smps_steps = abs(target_vsel - current_vsel); /* SMPS slew rate / step size. 2us added as buffer. */ smps_delay = ((smps_steps * voltdm->pmic->step_size) / voltdm->pmic->slew_rate) + 2; udelay(smps_delay); voltdm->curr_volt = target_vdata; /* Set up the on voltage for wakeup from lp and OFF */ on_vsel = voltdm->pmic->uv_to_vsel(target_volt); onlp_vsel = voltdm->pmic->uv_to_vsel(target_volt); val = (on_vsel << vc->common->cmd_on_shift) | (onlp_vsel << vc->common->cmd_onlp_shift) | vc->setup_voltage_common; voltdm->write(val, vc->cmdval_reg); } static int omap_vc_bypass_send_value(struct voltagedomain *voltdm, struct omap_vc_channel *vc, u8 sa, u8 reg, u32 data) { u32 loop_cnt = 0, retries_cnt = 0; u32 vc_valid, vc_bypass_val_reg, vc_bypass_value; if (IS_ERR_OR_NULL(vc->common)) { pr_err("%s voldm=%s bad value for vc->common\n", __func__, voltdm->name); return -EINVAL; } vc_valid = vc->common->valid; vc_bypass_val_reg = vc->common->bypass_val_reg; vc_bypass_value = (data << vc->common->data_shift) | (reg << vc->common->regaddr_shift) | (sa << vc->common->slaveaddr_shift); voltdm->write(vc_bypass_value, vc_bypass_val_reg); voltdm->write(vc_bypass_value | vc_valid, vc_bypass_val_reg); vc_bypass_value = voltdm->read(vc_bypass_val_reg); /* * Loop till the bypass command is acknowledged from the SMPS. * NOTE: This is legacy code. The loop count and retry count needs * to be revisited. */ while (vc_bypass_value & vc_valid) { loop_cnt++; if (retries_cnt > 10) { pr_warning("%s: Retry count exceeded\n", __func__); return -ETIMEDOUT; } if (loop_cnt > 50) { retries_cnt++; loop_cnt = 0; udelay(10); } vc_bypass_value = voltdm->read(vc_bypass_val_reg); } return 0; } /* vc_bypass_scale_voltage - VC bypass method of voltage scaling */ int omap_vc_bypass_scale_voltage(struct voltagedomain *voltdm, struct omap_volt_data *target_v) { struct omap_vc_channel *vc; u8 target_vsel, current_vsel; int ret; unsigned long target_volt = omap_get_operation_voltage(target_v); if (IS_ERR_OR_NULL(voltdm)) { pr_err("%s bad voldm\n", __func__); return -EINVAL; } vc = voltdm->vc; if (IS_ERR_OR_NULL(vc)) { pr_err("%s voldm=%s bad vc\n", __func__, voltdm->name); return -EINVAL; } ret = omap_vc_pre_scale(voltdm, target_volt, target_v, &target_vsel, ¤t_vsel); if (ret) return ret; ret = omap_vc_bypass_send_value(voltdm, vc, vc->i2c_slave_addr, vc->volt_reg_addr, target_vsel); if (ret) return ret; omap_vc_post_scale(voltdm, target_volt, target_v, target_vsel, current_vsel); return 0; } /** * omap_vc_bypass_send_i2c_msg() - Function to control PMIC registers over SRI2C * @voltdm: voltage domain * @slave_addr: slave address of the device. * @reg_addr: register address to access * @data: what do we want to write there * * Many simpler PMICs with a single I2C interface still have configuration * registers that may need population. Typical being slew rate configurations * thermal shutdown configuration etc. When these PMICs are hooked on I2C_SR, * this function allows these configuration registers to be accessed. * * WARNING: Though this could be used for voltage register configurations over * I2C_SR, DONOT use it for that purpose, all the Voltage controller's internal * information is bypassed using this function and must be used judiciously. */ int omap_vc_bypass_send_i2c_msg(struct voltagedomain *voltdm, u8 slave_addr, u8 reg_addr, u8 data) { struct omap_vc_channel *vc; if (IS_ERR_OR_NULL(voltdm)) { pr_err("%s bad voldm\n", __func__); return -EINVAL; } vc = voltdm->vc; if (IS_ERR_OR_NULL(vc)) { pr_err("%s voldm=%s bad vc\n", __func__, voltdm->name); return -EINVAL; } return omap_vc_bypass_send_value(voltdm, vc, slave_addr, reg_addr, data); } static void __init omap3_vfsm_init(struct voltagedomain *voltdm) { /* * Voltage Manager FSM parameters init * XXX This data should be passed in from the board file */ voltdm->write(OMAP3_CLKSETUP, OMAP3_PRM_CLKSETUP_OFFSET); voltdm->write(OMAP3_VOLTOFFSET, OMAP3_PRM_VOLTOFFSET_OFFSET); voltdm->write(OMAP3_VOLTSETUP2, OMAP3_PRM_VOLTSETUP2_OFFSET); } static void __init omap3_vc_init_channel(struct voltagedomain *voltdm) { static bool is_initialized; if (is_initialized) return; omap3_vfsm_init(voltdm); is_initialized = true; } /* OMAP4 specific voltage init functions */ static void __init omap4_vc_init_channel(struct voltagedomain *voltdm) { static bool is_initialized; struct omap_voltdm_pmic *pmic = voltdm->pmic; u32 vc_val = 0; if (is_initialized) return; if (pmic->i2c_high_speed) { vc_val |= pmic->i2c_hscll_low << OMAP4430_HSCLL_SHIFT; vc_val |= pmic->i2c_hscll_high << OMAP4430_HSCLH_SHIFT; } vc_val |= pmic->i2c_scll_low << OMAP4430_SCLL_SHIFT; vc_val |= pmic->i2c_scll_high << OMAP4430_SCLH_SHIFT; if (vc_val) voltdm->write(vc_val, OMAP4_PRM_VC_CFG_I2C_CLK_OFFSET); is_initialized = true; } /** * omap_vc_i2c_init - initialize I2C interface to PMIC * @voltdm: voltage domain containing VC data * * Use PMIC supplied seetings for I2C high-speed mode and * master code (if set) and program the VC I2C configuration * register. * * The VC I2C configuration is common to all VC channels, * so this function only configures I2C for the first VC * channel registers. All other VC channels will use the * same configuration. */ static void __init omap_vc_i2c_init(struct voltagedomain *voltdm) { struct omap_vc_channel *vc = voltdm->vc; static bool initialized; static bool i2c_high_speed; u8 mcode; if (initialized) { if (voltdm->pmic->i2c_high_speed != i2c_high_speed) pr_warn("%s: I2C config for all channels must match.", __func__); return; } i2c_high_speed = voltdm->pmic->i2c_high_speed; if (i2c_high_speed) voltdm->rmw(vc->common->i2c_cfg_hsen_mask, vc->common->i2c_cfg_hsen_mask, vc->common->i2c_cfg_reg); mcode = voltdm->pmic->i2c_mcode; if (mcode) voltdm->rmw(vc->common->i2c_mcode_mask, mcode << __ffs(vc->common->i2c_mcode_mask), vc->common->i2c_cfg_reg); initialized = true; } /** * omap_vc_setup_lp_time() - configure the voltage ramp time for low states. * @voltdm: voltagedomain we are interested in. * @is_retention: Are we interested in retention or OFF? * * The ramp times are calculated based on the worst case voltage drop, * which is the difference of on_volt and the ret_volt. This time is used * for computing the duration necessary for low power states such as retention. */ static int __init omap_vc_setup_lp_time(struct voltagedomain *voltdm, bool is_retention) { u32 volt_drop = 0, volt_ramptime = 0, volt_rampcount; u32 sys_clk_mhz = 0, sysclk_cycles = 0, max_latency_for_prescaler = 0; struct clk *sys_ck; u8 pre_scaler = 0; struct omap_voltdm_pmic *pmic = voltdm->pmic; struct omap_vc_channel *vc = voltdm->vc; const struct setup_time_ramp_params *params; params = vc->common->setup_time_params; /* If the VC data does not have params for us, return PMIC's value */ if (!params) return pmic->volt_setup_time; if (!params->pre_scaler_to_sysclk_cycles_count) return pmic->volt_setup_time; /* No of sys_clk cycles for pre_scaler 0 */ sysclk_cycles = params->pre_scaler_to_sysclk_cycles[0]; sys_ck = clk_get(NULL, "sys_clkin_ck"); if (IS_ERR_OR_NULL(sys_ck)) { WARN_ONCE(1, "%s: unable to get sys_clkin_ck (voldm %s)\n", __func__, voltdm->name); return pmic->volt_setup_time; } sys_clk_mhz = clk_get_rate(sys_ck) / 1000000; clk_put(sys_ck); /* * If we chose prescaler 0x0, then we have a limit on the maximum * latency for which we can chose a correct count. This is because, * the count field is limited to 6 bits and max value can be 63 and * for prescaler 0, ramp up/down counter is incremented every * 64 system clock cycles. * for eg, max latency for prescaler for 38.4Mhz sys clk would be * 105 = (63 * 64) / 38.4 */ max_latency_for_prescaler = (63 * sysclk_cycles) / sys_clk_mhz; if (is_retention) volt_drop = pmic->on_volt - pmic->ret_volt; else volt_drop = pmic->on_volt; volt_ramptime = DIV_ROUND_UP(volt_drop, pmic->slew_rate); volt_ramptime += OMAP_VC_I2C_ACK_DELAY; /* many PMICs need additional time to switch back on */ if (!is_retention) volt_ramptime += pmic->switch_on_time; if (volt_ramptime < max_latency_for_prescaler) pre_scaler = 0x0; else pre_scaler = 0x1; /* * IF we mess up values, then try to have some form of recovery using * PMIC's value. */ if (pre_scaler > params->pre_scaler_to_sysclk_cycles_count) { pr_err("%s: prescaler idx %d > available %d on domain %s\n", __func__, pre_scaler, params->pre_scaler_to_sysclk_cycles_count, voltdm->name); return pmic->volt_setup_time; } sysclk_cycles = params->pre_scaler_to_sysclk_cycles[pre_scaler]; volt_rampcount = ((volt_ramptime * sys_clk_mhz) / sysclk_cycles) + 1; return (pre_scaler << OMAP4430_RAMP_DOWN_PRESCAL_SHIFT) | (pre_scaler << OMAP4430_RAMP_UP_PRESCAL_SHIFT) | (volt_rampcount << OMAP4430_RAMP_DOWN_COUNT_SHIFT) | (volt_rampcount << OMAP4430_RAMP_UP_COUNT_SHIFT); } void __init omap_vc_init_channel(struct voltagedomain *voltdm) { struct omap_vc_channel *vc = voltdm->vc; u8 on_vsel, onlp_vsel, ret_vsel, off_vsel; u32 val; if (!voltdm->pmic || !voltdm->pmic->uv_to_vsel) { pr_err("%s: PMIC info requried to configure vc for" "vdd_%s not populated.Hence cannot initialize vc\n", __func__, voltdm->name); return; } if (!voltdm->read || !voltdm->write) { pr_err("%s: No read/write API for accessing vdd_%s regs\n", __func__, voltdm->name); return; } vc->cfg_channel = 0; if (vc->flags & OMAP_VC_CHANNEL_CFG_MUTANT) vc_cfg_bits = &vc_mutant_channel_cfg; else vc_cfg_bits = &vc_default_channel_cfg; /* get PMIC/board specific settings */ vc->i2c_slave_addr = voltdm->pmic->i2c_slave_addr; vc->volt_reg_addr = voltdm->pmic->volt_reg_addr; vc->cmd_reg_addr = voltdm->pmic->cmd_reg_addr; /* Calculate the RET voltage setup time and update volt_setup_time */ vc->setup_time = omap_vc_setup_lp_time(voltdm, true); if ((vc->flags & OMAP_VC_CHANNEL_DEFAULT) && ((vc->i2c_slave_addr == USE_DEFAULT_CHANNEL_I2C_PARAM) || (vc->cmd_reg_addr == USE_DEFAULT_CHANNEL_I2C_PARAM) || (vc->volt_reg_addr == USE_DEFAULT_CHANNEL_I2C_PARAM))) { pr_err("%s: voltdm %s: default channel " "bad config-sa=%2x vol=%2x, cmd=%2x?\n", __func__, voltdm->name, vc->i2c_slave_addr, vc->volt_reg_addr, vc->cmd_reg_addr); return; } /* Configure the i2c slave address for this VC */ if (vc->i2c_slave_addr != USE_DEFAULT_CHANNEL_I2C_PARAM) { voltdm->rmw(vc->smps_sa_mask, vc->i2c_slave_addr << __ffs(vc->smps_sa_mask), vc->common->smps_sa_reg); vc->cfg_channel |= vc_cfg_bits->sa; } /* * Configure the PMIC register addresses. */ if (vc->volt_reg_addr != USE_DEFAULT_CHANNEL_I2C_PARAM) { voltdm->rmw(vc->smps_volra_mask, vc->volt_reg_addr << __ffs(vc->smps_volra_mask), vc->common->smps_volra_reg); vc->cfg_channel |= vc_cfg_bits->rav; } if (vc->cmd_reg_addr != USE_DEFAULT_CHANNEL_I2C_PARAM) { voltdm->rmw(vc->smps_cmdra_mask, vc->cmd_reg_addr << __ffs(vc->smps_cmdra_mask), vc->common->smps_cmdra_reg); vc->cfg_channel |= vc_cfg_bits->rac; } /* If voltage and cmd regs are same, we can use cmdra register */ if (vc->volt_reg_addr == vc->cmd_reg_addr) vc->cfg_channel |= vc_cfg_bits->racen; /* Set up the on, inactive, retention and off voltage */ on_vsel = voltdm->pmic->uv_to_vsel(voltdm->pmic->on_volt); onlp_vsel = voltdm->pmic->uv_to_vsel(voltdm->pmic->onlp_volt); ret_vsel = voltdm->pmic->uv_to_vsel(voltdm->pmic->ret_volt); off_vsel = voltdm->pmic->uv_to_vsel(voltdm->pmic->off_volt); vc->setup_voltage_common = (ret_vsel << vc->common->cmd_ret_shift) | (off_vsel << vc->common->cmd_off_shift); val = (on_vsel << vc->common->cmd_on_shift) | (onlp_vsel << vc->common->cmd_onlp_shift) | vc->setup_voltage_common; voltdm->write(val, vc->cmdval_reg); vc->cfg_channel |= vc_cfg_bits->cmd; /* Channel configuration */ omap_vc_config_channel(voltdm); /* Configure the setup times */ voltdm->rmw(voltdm->vfsm->voltsetup_mask, vc->setup_time << __ffs(voltdm->vfsm->voltsetup_mask), voltdm->vfsm->voltsetup_reg); voltdm->rmw(voltdm->vfsm->voltsetup_mask, omap_vc_setup_lp_time(voltdm, false) << ffs(voltdm->vfsm->voltsetup_mask), voltdm->vfsm->voltsetupoff_reg); omap_vc_i2c_init(voltdm); if (cpu_is_omap34xx()) omap3_vc_init_channel(voltdm); else if (cpu_is_omap44xx()) omap4_vc_init_channel(voltdm); }