summaryrefslogtreecommitdiffstats
path: root/opengl/libagl/primitives.cpp
blob: 57a798deb3c953759f2fea96d27885e182b64c48 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
/* libs/opengles/primitives.cpp
**
** Copyright 2006, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License"); 
** you may not use this file except in compliance with the License. 
** You may obtain a copy of the License at 
**
**     http://www.apache.org/licenses/LICENSE-2.0 
**
** Unless required by applicable law or agreed to in writing, software 
** distributed under the License is distributed on an "AS IS" BASIS, 
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 
** See the License for the specific language governing permissions and 
** limitations under the License.
*/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include "context.h"
#include "primitives.h"
#include "light.h"
#include "matrix.h"
#include "vertex.h"
#include "fp.h"
#include "TextureObjectManager.h"

extern "C" void iterators0032(const void* that,
        int32_t* it, int32_t c0, int32_t c1, int32_t c2);

namespace android {

// ----------------------------------------------------------------------------

static void primitive_point(ogles_context_t* c, vertex_t* v);
static void primitive_line(ogles_context_t* c, vertex_t* v0, vertex_t* v1);
static void primitive_clip_triangle(ogles_context_t* c,
        vertex_t* v0, vertex_t* v1, vertex_t* v2);

static void primitive_nop_point(ogles_context_t* c, vertex_t* v);
static void primitive_nop_line(ogles_context_t* c, vertex_t* v0, vertex_t* v1);
static void primitive_nop_triangle(ogles_context_t* c,
        vertex_t* v0, vertex_t* v1, vertex_t* v2);

static inline bool cull_triangle(ogles_context_t* c,
        vertex_t* v0, vertex_t* v1, vertex_t* v2);

static void lerp_triangle(ogles_context_t* c,
        vertex_t* v0, vertex_t* v1, vertex_t* v2);

static void lerp_texcoords(ogles_context_t* c,
        vertex_t* v0, vertex_t* v1, vertex_t* v2);

static void lerp_texcoords_w(ogles_context_t* c,
        vertex_t* v0, vertex_t* v1, vertex_t* v2);

static void triangle(ogles_context_t* c,
        vertex_t* v0, vertex_t* v1, vertex_t* v2);

static void clip_triangle(ogles_context_t* c,
        vertex_t* v0, vertex_t* v1, vertex_t* v2);

static unsigned int clip_line(ogles_context_t* c,
        vertex_t* s, vertex_t* p);

// ----------------------------------------------------------------------------
#if 0
#pragma mark -
#endif

static void lightTriangleDarkSmooth(ogles_context_t* c,
        vertex_t* v0, vertex_t* v1, vertex_t* v2)
{
    if (!(v0->flags & vertex_t::LIT)) {
        v0->flags |= vertex_t::LIT;
        const GLvoid* cp = c->arrays.color.element(
                v0->index & vertex_cache_t::INDEX_MASK);
        c->arrays.color.fetch(c, v0->color.v, cp);
    }
    if (!(v1->flags & vertex_t::LIT)) {
        v1->flags |= vertex_t::LIT;
        const GLvoid* cp = c->arrays.color.element(
                v1->index & vertex_cache_t::INDEX_MASK);
        c->arrays.color.fetch(c, v1->color.v, cp);
    }
    if(!(v2->flags & vertex_t::LIT)) {
        v2->flags |= vertex_t::LIT;
        const GLvoid* cp = c->arrays.color.element(
                v2->index & vertex_cache_t::INDEX_MASK);
        c->arrays.color.fetch(c, v2->color.v, cp);
    }
}

static void lightTriangleDarkFlat(ogles_context_t* c,
        vertex_t* /*v0*/, vertex_t* /*v1*/, vertex_t* v2)
{
    if (!(v2->flags & vertex_t::LIT)) {
        v2->flags |= vertex_t::LIT;
        const GLvoid* cp = c->arrays.color.element(
                v2->index & vertex_cache_t::INDEX_MASK);
        c->arrays.color.fetch(c, v2->color.v, cp);
    }
    // configure the rasterizer here, before we clip
    c->rasterizer.procs.color4xv(c, v2->color.v);
}

static void lightTriangleSmooth(ogles_context_t* c,
        vertex_t* v0, vertex_t* v1, vertex_t* v2)
{
    if (!(v0->flags & vertex_t::LIT))
        c->lighting.lightVertex(c, v0);
    if (!(v1->flags & vertex_t::LIT))
        c->lighting.lightVertex(c, v1);
    if(!(v2->flags & vertex_t::LIT))
        c->lighting.lightVertex(c, v2);
}

static void lightTriangleFlat(ogles_context_t* c,
        vertex_t* /*v0*/, vertex_t* /*v1*/, vertex_t* v2)
{
    if (!(v2->flags & vertex_t::LIT))
        c->lighting.lightVertex(c, v2);
    // configure the rasterizer here, before we clip
    c->rasterizer.procs.color4xv(c, v2->color.v);
}

// The fog versions...

static inline
void lightVertexDarkSmoothFog(ogles_context_t* c, vertex_t* v)
{
    if (!(v->flags & vertex_t::LIT)) {
        v->flags |= vertex_t::LIT;
        v->fog = c->fog.fog(c, v->eye.z);
        const GLvoid* cp = c->arrays.color.element(
                v->index & vertex_cache_t::INDEX_MASK);
        c->arrays.color.fetch(c, v->color.v, cp);
    }
}
static inline
void lightVertexDarkFlatFog(ogles_context_t* c, vertex_t* v)
{
    if (!(v->flags & vertex_t::LIT)) {
        v->flags |= vertex_t::LIT;
        v->fog = c->fog.fog(c, v->eye.z);
    }
}
static inline
void lightVertexSmoothFog(ogles_context_t* c, vertex_t* v)
{
    if (!(v->flags & vertex_t::LIT)) {
        v->fog = c->fog.fog(c, v->eye.z);
        c->lighting.lightVertex(c, v);
    }
}

static void lightTriangleDarkSmoothFog(ogles_context_t* c,
        vertex_t* v0, vertex_t* v1, vertex_t* v2)
{
    lightVertexDarkSmoothFog(c, v0);
    lightVertexDarkSmoothFog(c, v1);
    lightVertexDarkSmoothFog(c, v2);
}

static void lightTriangleDarkFlatFog(ogles_context_t* c,
        vertex_t* v0, vertex_t* v1, vertex_t* v2)
{
    lightVertexDarkFlatFog(c, v0);
    lightVertexDarkFlatFog(c, v1);
    lightVertexDarkSmoothFog(c, v2);
    // configure the rasterizer here, before we clip
    c->rasterizer.procs.color4xv(c, v2->color.v);
}

static void lightTriangleSmoothFog(ogles_context_t* c,
        vertex_t* v0, vertex_t* v1, vertex_t* v2)
{
    lightVertexSmoothFog(c, v0);
    lightVertexSmoothFog(c, v1);
    lightVertexSmoothFog(c, v2);
}

static void lightTriangleFlatFog(ogles_context_t* c,
        vertex_t* v0, vertex_t* v1, vertex_t* v2)
{
    lightVertexDarkFlatFog(c, v0);
    lightVertexDarkFlatFog(c, v1);
    lightVertexSmoothFog(c, v2);
    // configure the rasterizer here, before we clip
    c->rasterizer.procs.color4xv(c, v2->color.v);
}



typedef void (*light_primitive_t)(ogles_context_t*,
        vertex_t*, vertex_t*, vertex_t*);

// fog 0x4, light 0x2, smooth 0x1
static const light_primitive_t lightPrimitive[8] = {
    lightTriangleDarkFlat,          // no fog | dark  | flat
    lightTriangleDarkSmooth,        // no fog | dark  | smooth
    lightTriangleFlat,              // no fog | light | flat
    lightTriangleSmooth,            // no fog | light | smooth
    lightTriangleDarkFlatFog,       // fog    | dark  | flat
    lightTriangleDarkSmoothFog,     // fog    | dark  | smooth
    lightTriangleFlatFog,           // fog    | light | flat
    lightTriangleSmoothFog          // fog    | light | smooth
};

void ogles_validate_primitives(ogles_context_t* c)
{
    const uint32_t enables = c->rasterizer.state.enables;

    // set up the lighting/shading/smoothing/fogging function
    int index = enables & GGL_ENABLE_SMOOTH ? 0x1 : 0;
    index |= c->lighting.enable ? 0x2 : 0;
    index |= enables & GGL_ENABLE_FOG ? 0x4 : 0;
    c->lighting.lightTriangle = lightPrimitive[index];
    
    // set up the primitive renderers
    if (ggl_likely(c->arrays.vertex.enable)) {
        c->prims.renderPoint    = primitive_point;
        c->prims.renderLine     = primitive_line;
        c->prims.renderTriangle = primitive_clip_triangle;
    } else {
        c->prims.renderPoint    = primitive_nop_point;
        c->prims.renderLine     = primitive_nop_line;
        c->prims.renderTriangle = primitive_nop_triangle;
    }
}

// ----------------------------------------------------------------------------

void compute_iterators_t::initTriangle(
        vertex_t const* v0, vertex_t const* v1, vertex_t const* v2)
{
    m_dx01 = v1->window.x - v0->window.x;
    m_dy10 = v0->window.y - v1->window.y;
    m_dx20 = v0->window.x - v2->window.x;
    m_dy02 = v2->window.y - v0->window.y;
    m_area = m_dx01*m_dy02 + (-m_dy10)*m_dx20;
}

void compute_iterators_t::initLine(
        vertex_t const* v0, vertex_t const* v1)
{
    m_dx01 = m_dy02 = v1->window.x - v0->window.x;
    m_dy10 = m_dx20 = v0->window.y - v1->window.y;
    m_area = m_dx01*m_dy02 + (-m_dy10)*m_dx20;
}

void compute_iterators_t::initLerp(vertex_t const* v0, uint32_t enables)
{
    m_x0 = v0->window.x;
    m_y0 = v0->window.y;
    const GGLcoord area = (m_area + TRI_HALF) >> TRI_FRACTION_BITS;
    const GGLcoord minArea = 2; // cannot be inverted
    // triangles with an area smaller than 1.0 are not smooth-shaded

    int q=0, s=0, d=0;
    if (abs(area) >= minArea) {
        // Here we do some voodoo magic, to compute a suitable scale
        // factor for deltas/area:

        // First compute the 1/area with full 32-bits precision,
        // gglRecipQNormalized returns a number [-0.5, 0.5[ and an exponent.
        d = gglRecipQNormalized(area, &q);

        // Then compute the minimum left-shift to not overflow the muls
        // below. 
        s = 32 - gglClz(abs(m_dy02)|abs(m_dy10)|abs(m_dx01)|abs(m_dx20));

        // We'll keep 16-bits of precision for deltas/area. So we need
        // to shift everything left an extra 15 bits.
        s += 15;
        
        // make sure all final shifts are not > 32, because gglMulx
        // can't handle it.
        if (s < q) s = q;
        if (s > 32) {
            d >>= 32-s;
            s = 32;
        }
    }

    m_dx01 = gglMulx(m_dx01, d, s);
    m_dy10 = gglMulx(m_dy10, d, s);
    m_dx20 = gglMulx(m_dx20, d, s);
    m_dy02 = gglMulx(m_dy02, d, s);
    m_area_scale = 32 + q - s;
    m_scale = 0;

    if (enables & GGL_ENABLE_TMUS) {
        const int A = gglClz(abs(m_dy02)|abs(m_dy10)|abs(m_dx01)|abs(m_dx20));
        const int B = gglClz(abs(m_x0)|abs(m_y0));
        m_scale = max(0, 32 - (A + 16)) +
                  max(0, 32 - (B + TRI_FRACTION_BITS)) + 1;
    }
}

int compute_iterators_t::iteratorsScale(GGLfixed* it,
        int32_t c0, int32_t c1, int32_t c2) const
{
    int32_t dc01 = c1 - c0;
    int32_t dc02 = c2 - c0;
    const int A = gglClz(abs(c0));
    const int B = gglClz(abs(dc01)|abs(dc02));
    const int scale = min(A, B - m_scale) - 2;
    if (scale >= 0) {
        c0   <<= scale;
        dc01 <<= scale;
        dc02 <<= scale;
    } else {
        c0   >>= -scale;
        dc01 >>= -scale;
        dc02 >>= -scale;
    }
    const int s = m_area_scale;
    int32_t dcdx = gglMulAddx(dc01, m_dy02, gglMulx(dc02, m_dy10, s), s);
    int32_t dcdy = gglMulAddx(dc02, m_dx01, gglMulx(dc01, m_dx20, s), s);
    int32_t c = c0 - (gglMulAddx(dcdx, m_x0, 
            gglMulx(dcdy, m_y0, TRI_FRACTION_BITS), TRI_FRACTION_BITS));
    it[0] = c;
    it[1] = dcdx;
    it[2] = dcdy;
    return scale;
}

void compute_iterators_t::iterators1616(GGLfixed* it,
        GGLfixed c0, GGLfixed c1, GGLfixed c2) const
{
    const GGLfixed dc01 = c1 - c0;
    const GGLfixed dc02 = c2 - c0;
    // 16.16 x 16.16 == 32.32 --> 16.16
    const int s = m_area_scale;
    int32_t dcdx = gglMulAddx(dc01, m_dy02, gglMulx(dc02, m_dy10, s), s);
    int32_t dcdy = gglMulAddx(dc02, m_dx01, gglMulx(dc01, m_dx20, s), s);
    int32_t c = c0 - (gglMulAddx(dcdx, m_x0,
            gglMulx(dcdy, m_y0, TRI_FRACTION_BITS), TRI_FRACTION_BITS));
    it[0] = c;
    it[1] = dcdx;
    it[2] = dcdy;
}

void compute_iterators_t::iterators0032(int64_t* it,
        int32_t c0, int32_t c1, int32_t c2) const
{
    const int s = m_area_scale - 16;
    int32_t dc01 = (c1 - c0)>>s;
    int32_t dc02 = (c2 - c0)>>s;
    // 16.16 x 16.16 == 32.32
    int64_t dcdx = gglMulii(dc01, m_dy02) + gglMulii(dc02, m_dy10);
    int64_t dcdy = gglMulii(dc02, m_dx01) + gglMulii(dc01, m_dx20);
    it[ 0] = (c0<<16) - ((dcdx*m_x0 + dcdy*m_y0)>>4);
    it[ 1] = dcdx;
    it[ 2] = dcdy;
}

#if defined(__arm__) && !defined(__thumb__)
inline void compute_iterators_t::iterators0032(int32_t* it,
        int32_t c0, int32_t c1, int32_t c2) const
{
    ::iterators0032(this, it, c0, c1, c2);
}
#else
void compute_iterators_t::iterators0032(int32_t* it,
        int32_t c0, int32_t c1, int32_t c2) const
{
    int64_t it64[3];
    iterators0032(it64, c0, c1, c2);
    it[0] = it64[0];
    it[1] = it64[1];
    it[2] = it64[2];
}
#endif

// ----------------------------------------------------------------------------

static inline int32_t clampZ(GLfixed z) CONST;
int32_t clampZ(GLfixed z) {
    z = (z & ~(z>>31));
    if (z >= 0x10000)
        z = 0xFFFF;
    return z;
}

static __attribute__((noinline))
void fetch_texcoord_impl(ogles_context_t* c,
        vertex_t* v0, vertex_t* v1, vertex_t* v2)
{
    vertex_t* const vtx[3] = { v0, v1, v2 };
    array_t const * const texcoordArray = c->arrays.texture;
    
    for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; i++) {
        if (!(c->rasterizer.state.texture[i].enable))
            continue;
        
        for (int j=0 ; j<3 ; j++) {
            vertex_t* const v = vtx[j];
            if (v->flags & vertex_t::TT)
                continue;

            // NOTE: here we could compute automatic texgen
            // such as sphere/cube maps, instead of fetching them
            // from the textcoord array.

            vec4_t& coords = v->texture[i];
            const GLubyte* tp = texcoordArray[i].element(
                    v->index & vertex_cache_t::INDEX_MASK);
            texcoordArray[i].fetch(c, coords.v, tp);

            // transform texture coordinates...
            coords.Q = 0x10000;
            const transform_t& tr = c->transforms.texture[i].transform; 
            if (ggl_unlikely(tr.ops)) {
                c->arrays.tex_transform[i](&tr, &coords, &coords);
            }

            // divide by Q
            const GGLfixed q = coords.Q;
            if (ggl_unlikely(q != 0x10000)) {
                const int32_t qinv = gglRecip28(q);
                coords.S = gglMulx(coords.S, qinv, 28);
                coords.T = gglMulx(coords.T, qinv, 28);
            }
        }
    }
    v0->flags |= vertex_t::TT;
    v1->flags |= vertex_t::TT;
    v2->flags |= vertex_t::TT;
}

inline void fetch_texcoord(ogles_context_t* c,
        vertex_t* v0, vertex_t* v1, vertex_t* v2)
{
    const uint32_t enables = c->rasterizer.state.enables;
    if (!(enables & GGL_ENABLE_TMUS))
        return;

    // Fetch & transform texture coordinates...
    if (ggl_likely(v0->flags & v1->flags & v2->flags & vertex_t::TT)) {
        // already done for all three vertices, bail...
        return;
    }
    fetch_texcoord_impl(c, v0, v1, v2);
}

// ----------------------------------------------------------------------------
#if 0
#pragma mark -
#pragma mark Point
#endif

void primitive_nop_point(ogles_context_t*, vertex_t*) {
}

void primitive_point(ogles_context_t* c, vertex_t* v)
{
    // lighting & clamping...
    const uint32_t enables = c->rasterizer.state.enables;

    if (ggl_unlikely(!(v->flags & vertex_t::LIT))) {
        if (c->lighting.enable) {
            c->lighting.lightVertex(c, v);
        } else {
            v->flags |= vertex_t::LIT;
            const GLvoid* cp = c->arrays.color.element(
                    v->index & vertex_cache_t::INDEX_MASK);
            c->arrays.color.fetch(c, v->color.v, cp);
        }
        if (enables & GGL_ENABLE_FOG) {
            v->fog = c->fog.fog(c, v->eye.z);
        }
    }

    // XXX: we don't need to do that each-time
    // if color array and lighting not enabled 
    c->rasterizer.procs.color4xv(c, v->color.v);

    // XXX: look into ES point-sprite extension
    if (enables & GGL_ENABLE_TMUS) {
        fetch_texcoord(c, v,v,v);
        for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; i++) {
            if (!c->rasterizer.state.texture[i].enable) 
                continue;
            int32_t itt[8];
            itt[1] = itt[2] = itt[4] = itt[5] = 0;
            itt[6] = itt[7] = 16; // XXX: check that
            if (c->rasterizer.state.texture[i].s_wrap == GGL_CLAMP) {
                int width = c->textures.tmu[i].texture->surface.width;
                itt[0] = v->texture[i].S * width;
                itt[6] = 0;
            }
            if (c->rasterizer.state.texture[i].t_wrap == GGL_CLAMP) {
                int height = c->textures.tmu[i].texture->surface.height;
                itt[3] = v->texture[i].T * height;
                itt[7] = 0;
            }
            c->rasterizer.procs.texCoordGradScale8xv(c, i, itt);
        }
    }
    
    if (enables & GGL_ENABLE_DEPTH_TEST) {
        int32_t itz[3];
        itz[0] = clampZ(v->window.z) * 0x00010001;
        itz[1] = itz[2] = 0;
        c->rasterizer.procs.zGrad3xv(c, itz);
    }

    if (enables & GGL_ENABLE_FOG) {
        GLfixed itf[3];
        itf[0] = v->fog;
        itf[1] = itf[2] = 0;
        c->rasterizer.procs.fogGrad3xv(c, itf);
    }

    // Render our point...
    c->rasterizer.procs.pointx(c, v->window.v, c->point.size);
}

// ----------------------------------------------------------------------------
#if 0
#pragma mark -
#pragma mark Line
#endif

void primitive_nop_line(ogles_context_t*, vertex_t*, vertex_t*) {
}

void primitive_line(ogles_context_t* c, vertex_t* v0, vertex_t* v1)
{
    // get texture coordinates
    fetch_texcoord(c, v0, v1, v1);

    // light/shade the vertices first (they're copied below)
    c->lighting.lightTriangle(c, v0, v1, v1);

    // clip the line if needed
    if (ggl_unlikely((v0->flags | v1->flags) & vertex_t::CLIP_ALL)) {
        unsigned int count = clip_line(c, v0, v1);
        if (ggl_unlikely(count == 0))
            return;
    }

    // compute iterators...
    const uint32_t enables = c->rasterizer.state.enables;
    const uint32_t mask =   GGL_ENABLE_TMUS |
                            GGL_ENABLE_SMOOTH |
                            GGL_ENABLE_W | 
                            GGL_ENABLE_FOG |
                            GGL_ENABLE_DEPTH_TEST;

    if (ggl_unlikely(enables & mask)) {
        c->lerp.initLine(v0, v1);
        lerp_triangle(c, v0, v1, v0);
    }

    // render our line
    c->rasterizer.procs.linex(c, v0->window.v, v1->window.v, c->line.width);
}

// ----------------------------------------------------------------------------
#if 0
#pragma mark -
#pragma mark Triangle
#endif

void primitive_nop_triangle(ogles_context_t* /*c*/,
        vertex_t* /*v0*/, vertex_t* /*v1*/, vertex_t* /*v2*/) {
}

void primitive_clip_triangle(ogles_context_t* c,
        vertex_t* v0, vertex_t* v1, vertex_t* v2)
{
    uint32_t cc = (v0->flags | v1->flags | v2->flags) & vertex_t::CLIP_ALL;
    if (ggl_likely(!cc)) {
        // code below must be as optimized as possible, this is the
        // common code path.

        // This triangle is not clipped, test if it's culled
        // unclipped triangle...
        c->lerp.initTriangle(v0, v1, v2);
        if (cull_triangle(c, v0, v1, v2))
            return; // culled!

        // Fetch all texture coordinates if needed
        fetch_texcoord(c, v0, v1, v2);

        // light (or shade) our triangle!
        c->lighting.lightTriangle(c, v0, v1, v2);

        triangle(c, v0, v1, v2);
        return;
    }

    // The assumption here is that we're not going to clip very often,
    // and even more rarely will we clip a triangle that ends up
    // being culled out. So it's okay to light the vertices here, even though
    // in a few cases we won't render the triangle (if culled).

    // Fetch texture coordinates...
    fetch_texcoord(c, v0, v1, v2);

    // light (or shade) our triangle!
    c->lighting.lightTriangle(c, v0, v1, v2);

    clip_triangle(c, v0, v1, v2);
}

// -----------------------------------------------------------------------

void triangle(ogles_context_t* c,
        vertex_t* v0, vertex_t* v1, vertex_t* v2)
{
    // compute iterators...
    const uint32_t enables = c->rasterizer.state.enables;
    const uint32_t mask =   GGL_ENABLE_TMUS |
                            GGL_ENABLE_SMOOTH |
                            GGL_ENABLE_W | 
                            GGL_ENABLE_FOG |
                            GGL_ENABLE_DEPTH_TEST;

    if (ggl_likely(enables & mask))
        lerp_triangle(c, v0, v1, v2);

    c->rasterizer.procs.trianglex(c, v0->window.v, v1->window.v, v2->window.v);
}

void lerp_triangle(ogles_context_t* c,
        vertex_t* v0, vertex_t* v1, vertex_t* v2)
{
    const uint32_t enables = c->rasterizer.state.enables;
    c->lerp.initLerp(v0, enables);

    // set up texture iterators
    if (enables & GGL_ENABLE_TMUS) {
        if (enables & GGL_ENABLE_W) {
            lerp_texcoords_w(c, v0, v1, v2);
        } else {
            lerp_texcoords(c, v0, v1, v2);
        }
    }

    // set up the color iterators
    const compute_iterators_t& lerp = c->lerp;
    if (enables & GGL_ENABLE_SMOOTH) {
        GLfixed itc[12];
        for (int i=0 ; i<4 ; i++) {
            const GGLcolor c0 = v0->color.v[i] * 255;
            const GGLcolor c1 = v1->color.v[i] * 255;
            const GGLcolor c2 = v2->color.v[i] * 255;
            lerp.iterators1616(&itc[i*3], c0, c1, c2);
        }
        c->rasterizer.procs.colorGrad12xv(c, itc);
    }

    if (enables & GGL_ENABLE_DEPTH_TEST) {
        int32_t itz[3];
        const int32_t v0z = clampZ(v0->window.z);
        const int32_t v1z = clampZ(v1->window.z);
        const int32_t v2z = clampZ(v2->window.z);
        if (ggl_unlikely(c->polygonOffset.enable)) {
            const int32_t units = (c->polygonOffset.units << 16);
            const GLfixed factor = c->polygonOffset.factor;
            if (factor) {
                int64_t itz64[3];
                lerp.iterators0032(itz64, v0z, v1z, v2z);
                int64_t maxDepthSlope = max(itz64[1], itz64[2]);
                itz[0] = uint32_t(itz64[0]) 
                        + uint32_t((maxDepthSlope*factor)>>16) + units;
                itz[1] = uint32_t(itz64[1]);
                itz[2] = uint32_t(itz64[2]);
            } else {
                lerp.iterators0032(itz, v0z, v1z, v2z);
                itz[0] += units; 
            }
        } else {
            lerp.iterators0032(itz, v0z, v1z, v2z);
        }
        c->rasterizer.procs.zGrad3xv(c, itz);
    }    

    if (ggl_unlikely(enables & GGL_ENABLE_FOG)) {
        GLfixed itf[3];
        lerp.iterators1616(itf, v0->fog, v1->fog, v2->fog);
        c->rasterizer.procs.fogGrad3xv(c, itf);
    }
}


static inline
int compute_lod(ogles_context_t* c, int i,
        int32_t s0, int32_t t0, int32_t s1, int32_t t1, int32_t s2, int32_t t2)
{
    // Compute mipmap level / primitive
    // rho = sqrt( texelArea / area )
    // lod = log2( rho )
    // lod = log2( texelArea / area ) / 2
    // lod = (log2( texelArea ) - log2( area )) / 2
    const compute_iterators_t& lerp = c->lerp;
    const GGLcoord area = abs(lerp.area());
    const int w = c->textures.tmu[i].texture->surface.width;
    const int h = c->textures.tmu[i].texture->surface.height;
    const int shift = 16 + (16 - TRI_FRACTION_BITS);
    int32_t texelArea = abs( gglMulx(s1-s0, t2-t0, shift) -
            gglMulx(s2-s0, t1-t0, shift) )*w*h;
    int log2TArea = (32-TRI_FRACTION_BITS  -1) - gglClz(texelArea);
    int log2Area  = (32-TRI_FRACTION_BITS*2-1) - gglClz(area);
    int lod = (log2TArea - log2Area + 1) >> 1;
    return lod;
}

void lerp_texcoords(ogles_context_t* c,
        vertex_t* v0, vertex_t* v1, vertex_t* v2)
{
    const compute_iterators_t& lerp = c->lerp;
    int32_t itt[8] __attribute__((aligned(16)));
    for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; i++) {
        const texture_t& tmu = c->rasterizer.state.texture[i];
        if (!tmu.enable) 
            continue;

        // compute the jacobians using block floating-point
        int32_t s0 = v0->texture[i].S;
        int32_t t0 = v0->texture[i].T;
        int32_t s1 = v1->texture[i].S;
        int32_t t1 = v1->texture[i].T;
        int32_t s2 = v2->texture[i].S;
        int32_t t2 = v2->texture[i].T;

        const GLenum min_filter = c->textures.tmu[i].texture->min_filter;
        if (ggl_unlikely(min_filter >= GL_NEAREST_MIPMAP_NEAREST)) {
            int lod = compute_lod(c, i, s0, t0, s1, t1, s2, t2);
            c->rasterizer.procs.bindTextureLod(c, i,
                    &c->textures.tmu[i].texture->mip(lod));
        }

        // premultiply (s,t) when clampling
        if (tmu.s_wrap == GGL_CLAMP) {
            const int width = tmu.surface.width;
            s0 *= width;
            s1 *= width;
            s2 *= width;
        }
        if (tmu.t_wrap == GGL_CLAMP) {
            const int height = tmu.surface.height;
            t0 *= height;
            t1 *= height;
            t2 *= height;
        }
        itt[6] = -lerp.iteratorsScale(itt+0, s0, s1, s2);
        itt[7] = -lerp.iteratorsScale(itt+3, t0, t1, t2);
        c->rasterizer.procs.texCoordGradScale8xv(c, i, itt);
    }
}

void lerp_texcoords_w(ogles_context_t* c,
        vertex_t* v0, vertex_t* v1, vertex_t* v2)
{
    const compute_iterators_t& lerp = c->lerp;
    int32_t itt[8] __attribute__((aligned(16)));
    int32_t itw[3];

    // compute W's scale to 2.30
    int32_t w0 = v0->window.w;
    int32_t w1 = v1->window.w;
    int32_t w2 = v2->window.w;
    int wscale = 32 - gglClz(w0|w1|w2);

    // compute the jacobian using block floating-point    
    int sc = lerp.iteratorsScale(itw, w0, w1, w2);
    sc +=  wscale - 16;
    c->rasterizer.procs.wGrad3xv(c, itw);

    for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; i++) {
        const texture_t& tmu = c->rasterizer.state.texture[i];
        if (!tmu.enable) 
            continue;

        // compute the jacobians using block floating-point
        int32_t s0 = v0->texture[i].S;
        int32_t t0 = v0->texture[i].T;
        int32_t s1 = v1->texture[i].S;
        int32_t t1 = v1->texture[i].T;
        int32_t s2 = v2->texture[i].S;
        int32_t t2 = v2->texture[i].T;

        const GLenum min_filter = c->textures.tmu[i].texture->min_filter;
        if (ggl_unlikely(min_filter >= GL_NEAREST_MIPMAP_NEAREST)) {
            int lod = compute_lod(c, i, s0, t0, s1, t1, s2, t2);
            c->rasterizer.procs.bindTextureLod(c, i,
                    &c->textures.tmu[i].texture->mip(lod));
        }

        // premultiply (s,t) when clampling
        if (tmu.s_wrap == GGL_CLAMP) {
            const int width = tmu.surface.width;
            s0 *= width;
            s1 *= width;
            s2 *= width;
        }
        if (tmu.t_wrap == GGL_CLAMP) {
            const int height = tmu.surface.height;
            t0 *= height;
            t1 *= height;
            t2 *= height;
        }

        s0 = gglMulx(s0, w0, wscale);
        t0 = gglMulx(t0, w0, wscale);
        s1 = gglMulx(s1, w1, wscale);
        t1 = gglMulx(t1, w1, wscale);
        s2 = gglMulx(s2, w2, wscale);
        t2 = gglMulx(t2, w2, wscale);

        itt[6] = sc - lerp.iteratorsScale(itt+0, s0, s1, s2);
        itt[7] = sc - lerp.iteratorsScale(itt+3, t0, t1, t2);
        c->rasterizer.procs.texCoordGradScale8xv(c, i, itt);
    }
}


static inline
bool cull_triangle(ogles_context_t* c, vertex_t* /*v0*/, vertex_t* /*v1*/, vertex_t* /*v2*/)
{
    if (ggl_likely(c->cull.enable)) {
        const GLenum winding = (c->lerp.area() > 0) ? GL_CW : GL_CCW;
        const GLenum face = (winding == c->cull.frontFace) ? GL_FRONT : GL_BACK;
        if (face == c->cull.cullFace)
            return true; // culled!
    }
    return false;
}

static inline
GLfixed frustumPlaneDist(int plane, const vec4_t& s)
{
    const GLfixed d = s.v[ plane >> 1 ];
    return  ((plane & 1) ? (s.w - d) : (s.w + d)); 
}

static inline
int32_t clipDivide(GLfixed a, GLfixed b) {
    // returns a 4.28 fixed-point
    return gglMulDivi(1LU<<28, a, b);
} 

void clip_triangle(ogles_context_t* c,
        vertex_t* v0, vertex_t* v1, vertex_t* v2)
{
    uint32_t all_cc = (v0->flags | v1->flags | v2->flags) & vertex_t::CLIP_ALL;

    vertex_t *p0, *p1, *p2;
    const int MAX_CLIPPING_PLANES = 6 + OGLES_MAX_CLIP_PLANES;
    const int MAX_VERTICES = 3;

    // Temporary buffer to hold the new vertices. Each plane can add up to 
    // two new vertices (because the polygon is convex).
    // We need one extra element, to handle an overflow case when
    // the polygon degenerates into something non convex.
    vertex_t buffer[MAX_CLIPPING_PLANES * 2 + 1];   // ~3KB
    vertex_t* buf = buffer;

    // original list of vertices (polygon to clip, in fact this
    // function works with an arbitrary polygon).
    vertex_t* in[3] = { v0, v1, v2 };
    
    // output lists (we need 2, which we use back and forth)
    // (maximum outpout list's size is MAX_CLIPPING_PLANES + MAX_VERTICES)
    // 2 more elements for overflow when non convex polygons.
    vertex_t* out[2][MAX_CLIPPING_PLANES + MAX_VERTICES + 2];
    unsigned int outi = 0;
    
    // current input list
    vertex_t** ivl = in;

    // 3 input vertices, 0 in the output list, first plane
    unsigned int ic = 3;

    // User clip-planes first, the clipping is always done in eye-coordinate
    // this is basically the same algorithm than for the view-volume
    // clipping, except for the computation of the distance (vertex, plane)
    // and the fact that we need to compute the eye-coordinates of each
    // new vertex we create.
    
    if (ggl_unlikely(all_cc & vertex_t::USER_CLIP_ALL))
    {
        unsigned int plane = 0;
        uint32_t cc = (all_cc & vertex_t::USER_CLIP_ALL) >> 8;
        do {
            if (cc & 1) {        
                // pointers to our output list (head and current)
                vertex_t** const ovl = &out[outi][0];
                vertex_t** output = ovl;
                unsigned int oc = 0;
                unsigned int sentinel = 0;
                // previous vertex, compute distance to the plane
                vertex_t* s = ivl[ic-1];
                const vec4_t& equation = c->clipPlanes.plane[plane].equation;
                GLfixed sd = dot4(equation.v, s->eye.v);
                // clip each vertex against this plane...
                for (unsigned int i=0 ; i<ic ; i++) {            
                    vertex_t* p = ivl[i];
                    const GLfixed pd = dot4(equation.v, p->eye.v);
                    if (sd >= 0) {
                        if (pd >= 0) {
                            // both inside
                            *output++ = p;
                            oc++;
                        } else {
                            // s inside, p outside (exiting)
                            const GLfixed t = clipDivide(sd, sd-pd);
                            c->arrays.clipEye(c, buf, t, p, s);
                            *output++ = buf++;
                            oc++;
                            if (++sentinel >= 3)
                                return; // non-convex polygon!
                        }
                    } else {
                        if (pd >= 0) {
                            // s outside (entering)
                            if (pd) {
                                const GLfixed t = clipDivide(pd, pd-sd);
                                c->arrays.clipEye(c, buf, t, s, p);
                                *output++ = buf++;
                                oc++;
                                if (++sentinel >= 3)
                                    return; // non-convex polygon!
                            }
                            *output++ = p;
                            oc++;
                        } else {
                           // both outside
                        }
                    }
                    s = p;
                    sd = pd;
                }
                // output list become the new input list
                if (oc<3)
                    return; // less than 3 vertices left? we're done!
                ivl = ovl;
                ic = oc;
                outi = 1-outi;
            }
            cc >>= 1;
            plane++;
        } while (cc);
    }

    // frustum clip-planes
    if (all_cc & vertex_t::FRUSTUM_CLIP_ALL)
    {
        unsigned int plane = 0;
        uint32_t cc = all_cc & vertex_t::FRUSTUM_CLIP_ALL;
        do {
            if (cc & 1) {        
                // pointers to our output list (head and current)
                vertex_t** const ovl = &out[outi][0];
                vertex_t** output = ovl;
                unsigned int oc = 0;
                unsigned int sentinel = 0;
                // previous vertex, compute distance to the plane
                vertex_t* s = ivl[ic-1];
                GLfixed sd = frustumPlaneDist(plane, s->clip);
                // clip each vertex against this plane...
                for (unsigned int i=0 ; i<ic ; i++) {            
                    vertex_t* p = ivl[i];
                    const GLfixed pd = frustumPlaneDist(plane, p->clip);
                    if (sd >= 0) {
                        if (pd >= 0) {
                            // both inside
                            *output++ = p;
                            oc++;
                        } else {
                            // s inside, p outside (exiting)
                            const GLfixed t = clipDivide(sd, sd-pd);
                            c->arrays.clipVertex(c, buf, t, p, s);
                            *output++ = buf++;
                            oc++;
                            if (++sentinel >= 3)
                                return; // non-convex polygon!
                        }
                    } else {
                        if (pd >= 0) {
                            // s outside (entering)
                            if (pd) {
                                const GLfixed t = clipDivide(pd, pd-sd);
                                c->arrays.clipVertex(c, buf, t, s, p);
                                *output++ = buf++;
                                oc++;
                                if (++sentinel >= 3)
                                    return; // non-convex polygon!
                            }
                            *output++ = p;
                            oc++;
                        } else {
                           // both outside
                        }
                    }
                    s = p;
                    sd = pd;
                }
                // output list become the new input list
                if (oc<3)
                    return; // less than 3 vertices left? we're done!
                ivl = ovl;
                ic = oc;
                outi = 1-outi;
            }
            cc >>= 1;
            plane++;
        } while (cc);
    }
    
    // finally we can render our triangles...
    p0 = ivl[0];
    p1 = ivl[1];
    for (unsigned int i=2 ; i<ic ; i++) {
        p2 = ivl[i];
        c->lerp.initTriangle(p0, p1, p2);
        if (cull_triangle(c, p0, p1, p2)) {
            p1 = p2;
            continue; // culled!
        }
        triangle(c, p0, p1, p2);
        p1 = p2;
    }
}

unsigned int clip_line(ogles_context_t* c, vertex_t* s, vertex_t* p)
{
    const uint32_t all_cc = (s->flags | p->flags) & vertex_t::CLIP_ALL;

    if (ggl_unlikely(all_cc & vertex_t::USER_CLIP_ALL))
    {
        unsigned int plane = 0;
        uint32_t cc = (all_cc & vertex_t::USER_CLIP_ALL) >> 8;
        do {
            if (cc & 1) {
                const vec4_t& equation = c->clipPlanes.plane[plane].equation;
                const GLfixed sd = dot4(equation.v, s->eye.v);
                const GLfixed pd = dot4(equation.v, p->eye.v);
                if (sd >= 0) {
                    if (pd >= 0) {
                        // both inside
                    } else {
                        // s inside, p outside (exiting)
                        const GLfixed t = clipDivide(sd, sd-pd);
                        c->arrays.clipEye(c, p, t, p, s);
                    }
                } else {
                    if (pd >= 0) {
                        // s outside (entering)
                        if (pd) {
                            const GLfixed t = clipDivide(pd, pd-sd);
                            c->arrays.clipEye(c, s, t, s, p);
                        }
                    } else {
                       // both outside
                       return 0;
                    }
                }
            }
            cc >>= 1;
            plane++;
        } while (cc);
    }

    // frustum clip-planes
    if (all_cc & vertex_t::FRUSTUM_CLIP_ALL)
    {
        unsigned int plane = 0;
        uint32_t cc = all_cc & vertex_t::FRUSTUM_CLIP_ALL;
        do {
            if (cc & 1) {
                const GLfixed sd = frustumPlaneDist(plane, s->clip);
                const GLfixed pd = frustumPlaneDist(plane, p->clip);
                if (sd >= 0) {
                    if (pd >= 0) {
                        // both inside
                    } else {
                        // s inside, p outside (exiting)
                        const GLfixed t = clipDivide(sd, sd-pd);
                        c->arrays.clipVertex(c, p, t, p, s);
                    }
                } else {
                    if (pd >= 0) {
                        // s outside (entering)
                        if (pd) {
                            const GLfixed t = clipDivide(pd, pd-sd);
                            c->arrays.clipVertex(c, s, t, s, p);
                        }
                    } else {
                       // both outside
                       return 0;
                    }
                }
            }
            cc >>= 1;
            plane++;
        } while (cc);
    }

    return 2;
}


}; // namespace android