//===-- RegisterCoalescer.h - Register Coalescing Interface ------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the abstract interface for register coalescers, // allowing them to interact with and query register allocators. // //===----------------------------------------------------------------------===// #include "RegisterClassInfo.h" #include "llvm/Support/IncludeFile.h" #include "llvm/CodeGen/LiveInterval.h" #include "llvm/ADT/SmallPtrSet.h" #ifndef LLVM_CODEGEN_REGISTER_COALESCER_H #define LLVM_CODEGEN_REGISTER_COALESCER_H namespace llvm { class MachineFunction; class RegallocQuery; class AnalysisUsage; class MachineInstr; class TargetRegisterInfo; class TargetRegisterClass; class TargetInstrInfo; class LiveDebugVariables; class VirtRegMap; class MachineLoopInfo; class CoalescerPair; /// An abstract interface for register coalescers. Coalescers must /// implement this interface to be part of the coalescer analysis /// group. class RegisterCoalescer : public MachineFunctionPass { MachineFunction* mf_; MachineRegisterInfo* mri_; const TargetMachine* tm_; const TargetRegisterInfo* tri_; const TargetInstrInfo* tii_; LiveIntervals *li_; LiveDebugVariables *ldv_; const MachineLoopInfo* loopInfo; AliasAnalysis *AA; RegisterClassInfo RegClassInfo; /// JoinedCopies - Keep track of copies eliminated due to coalescing. /// SmallPtrSet JoinedCopies; /// ReMatCopies - Keep track of copies eliminated due to remat. /// SmallPtrSet ReMatCopies; /// ReMatDefs - Keep track of definition instructions which have /// been remat'ed. SmallPtrSet ReMatDefs; /// joinIntervals - join compatible live intervals void joinIntervals(); /// CopyCoalesceInMBB - Coalesce copies in the specified MBB, putting /// copies that cannot yet be coalesced into the "TryAgain" list. void CopyCoalesceInMBB(MachineBasicBlock *MBB, std::vector &TryAgain); /// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg, /// which are the src/dst of the copy instruction CopyMI. This returns true /// if the copy was successfully coalesced away. If it is not currently /// possible to coalesce this interval, but it may be possible if other /// things get coalesced, then it returns true by reference in 'Again'. bool JoinCopy(MachineInstr *TheCopy, bool &Again); /// JoinIntervals - Attempt to join these two intervals. On failure, this /// returns false. The output "SrcInt" will not have been modified, so we can /// use this information below to update aliases. bool JoinIntervals(CoalescerPair &CP); /// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy. If /// the source value number is defined by a copy from the destination reg /// see if we can merge these two destination reg valno# into a single /// value number, eliminating a copy. bool AdjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI); /// HasOtherReachingDefs - Return true if there are definitions of IntB /// other than BValNo val# that can reach uses of AValno val# of IntA. bool HasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB, VNInfo *AValNo, VNInfo *BValNo); /// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy. /// If the source value number is defined by a commutable instruction and /// its other operand is coalesced to the copy dest register, see if we /// can transform the copy into a noop by commuting the definition. bool RemoveCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI); /// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial /// computation, replace the copy by rematerialize the definition. /// If PreserveSrcInt is true, make sure SrcInt is valid after the call. bool ReMaterializeTrivialDef(LiveInterval &SrcInt, bool PreserveSrcInt, unsigned DstReg, unsigned DstSubIdx, MachineInstr *CopyMI); /// shouldJoinPhys - Return true if a physreg copy should be joined. bool shouldJoinPhys(CoalescerPair &CP); /// isWinToJoinCrossClass - Return true if it's profitable to coalesce /// two virtual registers from different register classes. bool isWinToJoinCrossClass(unsigned SrcReg, unsigned DstReg, const TargetRegisterClass *SrcRC, const TargetRegisterClass *DstRC, const TargetRegisterClass *NewRC); /// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and /// update the subregister number if it is not zero. If DstReg is a /// physical register and the existing subregister number of the def / use /// being updated is not zero, make sure to set it to the correct physical /// subregister. void UpdateRegDefsUses(const CoalescerPair &CP); /// RemoveDeadDef - If a def of a live interval is now determined dead, /// remove the val# it defines. If the live interval becomes empty, remove /// it as well. bool RemoveDeadDef(LiveInterval &li, MachineInstr *DefMI); /// RemoveCopyFlag - If DstReg is no longer defined by CopyMI, clear the /// VNInfo copy flag for DstReg and all aliases. void RemoveCopyFlag(unsigned DstReg, const MachineInstr *CopyMI); /// markAsJoined - Remember that CopyMI has already been joined. void markAsJoined(MachineInstr *CopyMI); public: static char ID; // Class identification, replacement for typeinfo RegisterCoalescer() : MachineFunctionPass(ID) { initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); } /// Register allocators must call this from their own /// getAnalysisUsage to cover the case where the coalescer is not /// a Pass in the proper sense and isn't managed by PassManager. /// PassManager needs to know which analyses to make available and /// which to invalidate when running the register allocator or any /// pass that might call coalescing. The long-term solution is to /// allow hierarchies of PassManagers. virtual void getAnalysisUsage(AnalysisUsage &AU) const; virtual void releaseMemory(); /// runOnMachineFunction - pass entry point virtual bool runOnMachineFunction(MachineFunction&); /// print - Implement the dump method. virtual void print(raw_ostream &O, const Module* = 0) const; }; /// An abstract interface for register allocators to interact with /// coalescers /// /// Example: /// /// This is simply an example of how to use the RegallocQuery /// interface. It is not meant to be used in production. /// /// class LinearScanRegallocQuery : public RegallocQuery { /// private: /// const LiveIntervals \&li; /// /// public: /// LinearScanRegallocQuery(LiveIntervals &intervals) /// : li(intervals) {} /// /// /// This is pretty slow and conservative, but since linear scan /// /// allocation doesn't pre-compute interference information it's /// /// the best we can do. Coalescers are always free to ignore this /// /// and implement their own discovery strategy. See /// /// RegisterCoalescer for an example. /// void getInterferences(IntervalSet &interferences, /// const LiveInterval &a) const { /// for(LiveIntervals::const_iterator iv = li.begin(), /// ivend = li.end(); /// iv != ivend; /// ++iv) { /// if (interfere(a, iv->second)) { /// interferences.insert(&iv->second); /// } /// } /// } /// /// /// This is *really* slow and stupid. See above. /// int getNumberOfInterferences(const LiveInterval &a) const { /// IntervalSet intervals; /// getInterferences(intervals, a); /// return intervals.size(); /// } /// }; /// /// In the allocator: /// /// RegisterCoalescer &coalescer = getAnalysis(); /// /// // We don't reset the coalescer so if it's already been run this /// // takes almost no time. /// LinearScanRegallocQuery ifd(*li_); /// class RegallocQuery { public: typedef SmallPtrSet IntervalSet; virtual ~RegallocQuery() {} /// Return whether two live ranges interfere. virtual bool interfere(const LiveInterval &a, const LiveInterval &b) const { // A naive test return a.overlaps(b); } /// Return the set of intervals that interfere with this one. virtual void getInterferences(IntervalSet &interferences, const LiveInterval &a) const = 0; /// This can often be cheaper than actually returning the /// interferences. virtual int getNumberOfInterferences(const LiveInterval &a) const = 0; /// Make any data structure updates necessary to reflect /// coalescing or other modifications. virtual void updateDataForMerge(const LiveInterval &a, const LiveInterval &b, const MachineInstr ©) {} /// Allow the register allocator to communicate when it doesn't /// want a copy coalesced. This may be due to assumptions made by /// the allocator about various invariants and so this question is /// a matter of legality, not performance. Performance decisions /// about which copies to coalesce should be made by the /// coalescer. virtual bool isLegalToCoalesce(const MachineInstr &inst) const { return true; } }; /// CoalescerPair - A helper class for register coalescers. When deciding if /// two registers can be coalesced, CoalescerPair can determine if a copy /// instruction would become an identity copy after coalescing. class CoalescerPair { const TargetInstrInfo &tii_; const TargetRegisterInfo &tri_; /// dstReg_ - The register that will be left after coalescing. It can be a /// virtual or physical register. unsigned dstReg_; /// srcReg_ - the virtual register that will be coalesced into dstReg. unsigned srcReg_; /// subReg_ - The subregister index of srcReg in dstReg_. It is possible the /// coalesce srcReg_ into a subreg of the larger dstReg_ when dstReg_ is a /// virtual register. unsigned subIdx_; /// partial_ - True when the original copy was a partial subregister copy. bool partial_; /// crossClass_ - True when both regs are virtual, and newRC is constrained. bool crossClass_; /// flipped_ - True when DstReg and SrcReg are reversed from the oriignal copy /// instruction. bool flipped_; /// newRC_ - The register class of the coalesced register, or NULL if dstReg_ /// is a physreg. const TargetRegisterClass *newRC_; /// compose - Compose subreg indices a and b, either may be 0. unsigned compose(unsigned, unsigned) const; /// isMoveInstr - Return true if MI is a move or subreg instruction. bool isMoveInstr(const MachineInstr *MI, unsigned &Src, unsigned &Dst, unsigned &SrcSub, unsigned &DstSub) const; public: CoalescerPair(const TargetInstrInfo &tii, const TargetRegisterInfo &tri) : tii_(tii), tri_(tri), dstReg_(0), srcReg_(0), subIdx_(0), partial_(false), crossClass_(false), flipped_(false), newRC_(0) {} /// setRegisters - set registers to match the copy instruction MI. Return /// false if MI is not a coalescable copy instruction. bool setRegisters(const MachineInstr*); /// flip - Swap srcReg_ and dstReg_. Return false if swapping is impossible /// because dstReg_ is a physical register, or subIdx_ is set. bool flip(); /// isCoalescable - Return true if MI is a copy instruction that will become /// an identity copy after coalescing. bool isCoalescable(const MachineInstr*) const; /// isPhys - Return true if DstReg is a physical register. bool isPhys() const { return !newRC_; } /// isPartial - Return true if the original copy instruction did not copy the /// full register, but was a subreg operation. bool isPartial() const { return partial_; } /// isCrossClass - Return true if DstReg is virtual and NewRC is a smaller register class than DstReg's. bool isCrossClass() const { return crossClass_; } /// isFlipped - Return true when getSrcReg is the register being defined by /// the original copy instruction. bool isFlipped() const { return flipped_; } /// getDstReg - Return the register (virtual or physical) that will remain /// after coalescing. unsigned getDstReg() const { return dstReg_; } /// getSrcReg - Return the virtual register that will be coalesced away. unsigned getSrcReg() const { return srcReg_; } /// getSubIdx - Return the subregister index in DstReg that SrcReg will be /// coalesced into, or 0. unsigned getSubIdx() const { return subIdx_; } /// getNewRC - Return the register class of the coalesced register. const TargetRegisterClass *getNewRC() const { return newRC_; } }; } // End llvm namespace #endif