diff options
Diffstat (limited to 'lib/Transforms/InstCombine/InstCombineMulDivRem.cpp')
-rw-r--r-- | lib/Transforms/InstCombine/InstCombineMulDivRem.cpp | 231 |
1 files changed, 134 insertions, 97 deletions
diff --git a/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp b/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp index a7595482ee..71fbb6cda6 100644 --- a/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp +++ b/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp @@ -15,7 +15,7 @@ #include "InstCombine.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/IR/IntrinsicInst.h" -#include "llvm/Support/PatternMatch.h" +#include "llvm/IR/PatternMatch.h" using namespace llvm; using namespace PatternMatch; @@ -118,7 +118,7 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) { bool Changed = SimplifyAssociativeOrCommutative(I); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); - if (Value *V = SimplifyMulInst(Op0, Op1, TD)) + if (Value *V = SimplifyMulInst(Op0, Op1, DL)) return ReplaceInstUsesWith(I, V); if (Value *V = SimplifyUsingDistributiveLaws(I)) @@ -158,15 +158,6 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) { } if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { - // Canonicalize (X+C1)*CI -> X*CI+C1*CI. - { Value *X; ConstantInt *C1; - if (Op0->hasOneUse() && - match(Op0, m_Add(m_Value(X), m_ConstantInt(C1)))) { - Value *Add = Builder->CreateMul(X, CI); - return BinaryOperator::CreateAdd(Add, Builder->CreateMul(C1, CI)); - } - } - // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n // The "* (2**n)" thus becomes a potential shifting opportunity. @@ -201,6 +192,16 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) { if (isa<PHINode>(Op0)) if (Instruction *NV = FoldOpIntoPhi(I)) return NV; + + // Canonicalize (X+C1)*CI -> X*CI+C1*CI. + { + Value *X; + Constant *C1; + if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) { + Value *Add = Builder->CreateMul(X, Op1); + return BinaryOperator::CreateAdd(Add, Builder->CreateMul(C1, Op1)); + } + } } if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y @@ -247,7 +248,7 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) { } /// i1 mul -> i1 and. - if (I.getType()->isIntegerTy(1)) + if (I.getType()->getScalarType()->isIntegerTy(1)) return BinaryOperator::CreateAnd(Op0, Op1); // X*(1 << Y) --> X << Y @@ -313,16 +314,41 @@ static void detectLog2OfHalf(Value *&Op, Value *&Y, IntrinsicInst *&Log2) { if (I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra()) return; - ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(0)); - if (CFP && CFP->isExactlyValue(0.5)) { + if (match(I->getOperand(0), m_SpecificFP(0.5))) Y = I->getOperand(1); - return; - } - CFP = dyn_cast<ConstantFP>(I->getOperand(1)); - if (CFP && CFP->isExactlyValue(0.5)) + else if (match(I->getOperand(1), m_SpecificFP(0.5))) Y = I->getOperand(0); } +static bool isFiniteNonZeroFp(Constant *C) { + if (C->getType()->isVectorTy()) { + for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; + ++I) { + ConstantFP *CFP = dyn_cast<ConstantFP>(C->getAggregateElement(I)); + if (!CFP || !CFP->getValueAPF().isFiniteNonZero()) + return false; + } + return true; + } + + return isa<ConstantFP>(C) && + cast<ConstantFP>(C)->getValueAPF().isFiniteNonZero(); +} + +static bool isNormalFp(Constant *C) { + if (C->getType()->isVectorTy()) { + for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; + ++I) { + ConstantFP *CFP = dyn_cast<ConstantFP>(C->getAggregateElement(I)); + if (!CFP || !CFP->getValueAPF().isNormal()) + return false; + } + return true; + } + + return isa<ConstantFP>(C) && cast<ConstantFP>(C)->getValueAPF().isNormal(); +} + /// Helper function of InstCombiner::visitFMul(BinaryOperator(). It returns /// true iff the given value is FMul or FDiv with one and only one operand /// being a normal constant (i.e. not Zero/NaN/Infinity). @@ -332,19 +358,13 @@ static bool isFMulOrFDivWithConstant(Value *V) { I->getOpcode() != Instruction::FDiv)) return false; - ConstantFP *C0 = dyn_cast<ConstantFP>(I->getOperand(0)); - ConstantFP *C1 = dyn_cast<ConstantFP>(I->getOperand(1)); + Constant *C0 = dyn_cast<Constant>(I->getOperand(0)); + Constant *C1 = dyn_cast<Constant>(I->getOperand(1)); if (C0 && C1) return false; - return (C0 && C0->getValueAPF().isFiniteNonZero()) || - (C1 && C1->getValueAPF().isFiniteNonZero()); -} - -static bool isNormalFp(const ConstantFP *C) { - const APFloat &Flt = C->getValueAPF(); - return Flt.isNormal(); + return (C0 && isFiniteNonZeroFp(C0)) || (C1 && isFiniteNonZeroFp(C1)); } /// foldFMulConst() is a helper routine of InstCombiner::visitFMul(). @@ -354,41 +374,41 @@ static bool isNormalFp(const ConstantFP *C) { /// resulting expression. Note that this function could return NULL in /// case the constants cannot be folded into a normal floating-point. /// -Value *InstCombiner::foldFMulConst(Instruction *FMulOrDiv, ConstantFP *C, +Value *InstCombiner::foldFMulConst(Instruction *FMulOrDiv, Constant *C, Instruction *InsertBefore) { assert(isFMulOrFDivWithConstant(FMulOrDiv) && "V is invalid"); Value *Opnd0 = FMulOrDiv->getOperand(0); Value *Opnd1 = FMulOrDiv->getOperand(1); - ConstantFP *C0 = dyn_cast<ConstantFP>(Opnd0); - ConstantFP *C1 = dyn_cast<ConstantFP>(Opnd1); + Constant *C0 = dyn_cast<Constant>(Opnd0); + Constant *C1 = dyn_cast<Constant>(Opnd1); BinaryOperator *R = 0; // (X * C0) * C => X * (C0*C) if (FMulOrDiv->getOpcode() == Instruction::FMul) { Constant *F = ConstantExpr::getFMul(C1 ? C1 : C0, C); - if (isNormalFp(cast<ConstantFP>(F))) + if (isNormalFp(F)) R = BinaryOperator::CreateFMul(C1 ? Opnd0 : Opnd1, F); } else { if (C0) { // (C0 / X) * C => (C0 * C) / X if (FMulOrDiv->hasOneUse()) { // It would otherwise introduce another div. - ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFMul(C0, C)); + Constant *F = ConstantExpr::getFMul(C0, C); if (isNormalFp(F)) R = BinaryOperator::CreateFDiv(F, Opnd1); } } else { // (X / C1) * C => X * (C/C1) if C/C1 is not a denormal - ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFDiv(C, C1)); + Constant *F = ConstantExpr::getFDiv(C, C1); if (isNormalFp(F)) { R = BinaryOperator::CreateFMul(Opnd0, F); } else { // (X / C1) * C => X / (C1/C) Constant *F = ConstantExpr::getFDiv(C1, C); - if (isNormalFp(cast<ConstantFP>(F))) + if (isNormalFp(F)) R = BinaryOperator::CreateFDiv(Opnd0, F); } } @@ -409,7 +429,7 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) { if (isa<Constant>(Op0)) std::swap(Op0, Op1); - if (Value *V = SimplifyFMulInst(Op0, Op1, I.getFastMathFlags(), TD)) + if (Value *V = SimplifyFMulInst(Op0, Op1, I.getFastMathFlags(), DL)) return ReplaceInstUsesWith(I, V); bool AllowReassociate = I.hasUnsafeAlgebra(); @@ -425,17 +445,23 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) { if (Instruction *NV = FoldOpIntoPhi(I)) return NV; - ConstantFP *C = dyn_cast<ConstantFP>(Op1); - if (C && AllowReassociate && C->getValueAPF().isFiniteNonZero()) { + // (fmul X, -1.0) --> (fsub -0.0, X) + if (match(Op1, m_SpecificFP(-1.0))) { + Constant *NegZero = ConstantFP::getNegativeZero(Op1->getType()); + Instruction *RI = BinaryOperator::CreateFSub(NegZero, Op0); + RI->copyFastMathFlags(&I); + return RI; + } + + Constant *C = cast<Constant>(Op1); + if (AllowReassociate && isFiniteNonZeroFp(C)) { // Let MDC denote an expression in one of these forms: // X * C, C/X, X/C, where C is a constant. // // Try to simplify "MDC * Constant" - if (isFMulOrFDivWithConstant(Op0)) { - Value *V = foldFMulConst(cast<Instruction>(Op0), C, &I); - if (V) + if (isFMulOrFDivWithConstant(Op0)) + if (Value *V = foldFMulConst(cast<Instruction>(Op0), C, &I)) return ReplaceInstUsesWith(I, V); - } // (MDC +/- C1) * C => (MDC * C) +/- (C1 * C) Instruction *FAddSub = dyn_cast<Instruction>(Op0); @@ -444,8 +470,8 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) { FAddSub->getOpcode() == Instruction::FSub)) { Value *Opnd0 = FAddSub->getOperand(0); Value *Opnd1 = FAddSub->getOperand(1); - ConstantFP *C0 = dyn_cast<ConstantFP>(Opnd0); - ConstantFP *C1 = dyn_cast<ConstantFP>(Opnd1); + Constant *C0 = dyn_cast<Constant>(Opnd0); + Constant *C1 = dyn_cast<Constant>(Opnd1); bool Swap = false; if (C0) { std::swap(C0, C1); @@ -453,10 +479,9 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) { Swap = true; } - if (C1 && C1->getValueAPF().isFiniteNonZero() && - isFMulOrFDivWithConstant(Opnd0)) { + if (C1 && isFiniteNonZeroFp(C1) && isFMulOrFDivWithConstant(Opnd0)) { Value *M1 = ConstantExpr::getFMul(C1, C); - Value *M0 = isNormalFp(cast<ConstantFP>(M1)) ? + Value *M0 = isNormalFp(cast<Constant>(M1)) ? foldFMulConst(cast<Instruction>(Opnd0), C, &I) : 0; if (M0 && M1) { @@ -515,8 +540,11 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) { Value *N1 = dyn_castFNegVal(Opnd1, IgnoreZeroSign); // -X * -Y => X*Y - if (N1) - return BinaryOperator::CreateFMul(N0, N1); + if (N1) { + Value *FMul = Builder->CreateFMul(N0, N1); + FMul->takeName(&I); + return ReplaceInstUsesWith(I, FMul); + } if (Opnd0->hasOneUse()) { // -X * Y => -(X*Y) (Promote negation as high as possible) @@ -564,7 +592,8 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) { if (!match(RHS, m_UIToFP(m_Value(C)))) std::swap(LHS, RHS); - if (match(RHS, m_UIToFP(m_Value(C))) && C->getType()->isIntegerTy(1)) { + if (match(RHS, m_UIToFP(m_Value(C))) && + C->getType()->getScalarType()->isIntegerTy(1)) { B = LHS; Value *Zero = ConstantFP::getNegativeZero(B->getType()); return SelectInst::Create(C, B, Zero); @@ -579,7 +608,7 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) { std::swap(LHS, RHS); if (match(RHS, m_FSub(m_FPOne(), m_UIToFP(m_Value(C)))) && - C->getType()->isIntegerTy(1)) { + C->getType()->getScalarType()->isIntegerTy(1)) { A = LHS; Value *Zero = ConstantFP::getNegativeZero(A->getType()); return SelectInst::Create(C, Zero, A); @@ -846,7 +875,7 @@ static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I, Instruction *InstCombiner::visitUDiv(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); - if (Value *V = SimplifyUDivInst(Op0, Op1, TD)) + if (Value *V = SimplifyUDivInst(Op0, Op1, DL)) return ReplaceInstUsesWith(I, V); // Handle the integer div common cases @@ -854,13 +883,11 @@ Instruction *InstCombiner::visitUDiv(BinaryOperator &I) { return Common; // (x lshr C1) udiv C2 --> x udiv (C2 << C1) - if (ConstantInt *C2 = dyn_cast<ConstantInt>(Op1)) { + if (Constant *C2 = dyn_cast<Constant>(Op1)) { Value *X; - ConstantInt *C1; - if (match(Op0, m_LShr(m_Value(X), m_ConstantInt(C1)))) { - APInt NC = C2->getValue().shl(C1->getLimitedValue(C1->getBitWidth()-1)); - return BinaryOperator::CreateUDiv(X, Builder->getInt(NC)); - } + Constant *C1; + if (match(Op0, m_LShr(m_Value(X), m_Constant(C1)))) + return BinaryOperator::CreateUDiv(X, ConstantExpr::getShl(C2, C1)); } // (zext A) udiv (zext B) --> zext (A udiv B) @@ -907,18 +934,18 @@ Instruction *InstCombiner::visitUDiv(BinaryOperator &I) { Instruction *InstCombiner::visitSDiv(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); - if (Value *V = SimplifySDivInst(Op0, Op1, TD)) + if (Value *V = SimplifySDivInst(Op0, Op1, DL)) return ReplaceInstUsesWith(I, V); // Handle the integer div common cases if (Instruction *Common = commonIDivTransforms(I)) return Common; - if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { - // sdiv X, -1 == -X - if (RHS->isAllOnesValue()) - return BinaryOperator::CreateNeg(Op0); + // sdiv X, -1 == -X + if (match(Op1, m_AllOnes())) + return BinaryOperator::CreateNeg(Op0); + if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { // sdiv X, C --> ashr exact X, log2(C) if (I.isExact() && RHS->getValue().isNonNegative() && RHS->getValue().isPowerOf2()) { @@ -926,7 +953,9 @@ Instruction *InstCombiner::visitSDiv(BinaryOperator &I) { RHS->getValue().exactLogBase2()); return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName()); } + } + if (Constant *RHS = dyn_cast<Constant>(Op1)) { // -X/C --> X/-C provided the negation doesn't overflow. if (SubOperator *Sub = dyn_cast<SubOperator>(Op0)) if (match(Sub->getOperand(0), m_Zero()) && Sub->hasNoSignedWrap()) @@ -965,9 +994,12 @@ Instruction *InstCombiner::visitSDiv(BinaryOperator &I) { /// returned; otherwise, NULL is returned. /// static Instruction *CvtFDivConstToReciprocal(Value *Dividend, - ConstantFP *Divisor, + Constant *Divisor, bool AllowReciprocal) { - const APFloat &FpVal = Divisor->getValueAPF(); + if (!isa<ConstantFP>(Divisor)) // TODO: handle vectors. + return 0; + + const APFloat &FpVal = cast<ConstantFP>(Divisor)->getValueAPF(); APFloat Reciprocal(FpVal.getSemantics()); bool Cvt = FpVal.getExactInverse(&Reciprocal); @@ -988,7 +1020,7 @@ static Instruction *CvtFDivConstToReciprocal(Value *Dividend, Instruction *InstCombiner::visitFDiv(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); - if (Value *V = SimplifyFDivInst(Op0, Op1, TD)) + if (Value *V = SimplifyFDivInst(Op0, Op1, DL)) return ReplaceInstUsesWith(I, V); if (isa<Constant>(Op0)) @@ -999,32 +1031,29 @@ Instruction *InstCombiner::visitFDiv(BinaryOperator &I) { bool AllowReassociate = I.hasUnsafeAlgebra(); bool AllowReciprocal = I.hasAllowReciprocal(); - if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) { + if (Constant *Op1C = dyn_cast<Constant>(Op1)) { if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) if (Instruction *R = FoldOpIntoSelect(I, SI)) return R; if (AllowReassociate) { - ConstantFP *C1 = 0; - ConstantFP *C2 = Op1C; + Constant *C1 = 0; + Constant *C2 = Op1C; Value *X; Instruction *Res = 0; - if (match(Op0, m_FMul(m_Value(X), m_ConstantFP(C1)))) { + if (match(Op0, m_FMul(m_Value(X), m_Constant(C1)))) { // (X*C1)/C2 => X * (C1/C2) // Constant *C = ConstantExpr::getFDiv(C1, C2); - const APFloat &F = cast<ConstantFP>(C)->getValueAPF(); - if (F.isNormal()) + if (isNormalFp(C)) Res = BinaryOperator::CreateFMul(X, C); - } else if (match(Op0, m_FDiv(m_Value(X), m_ConstantFP(C1)))) { + } else if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) { // (X/C1)/C2 => X /(C2*C1) [=> X * 1/(C2*C1) if reciprocal is allowed] // Constant *C = ConstantExpr::getFMul(C1, C2); - const APFloat &F = cast<ConstantFP>(C)->getValueAPF(); - if (F.isNormal()) { - Res = CvtFDivConstToReciprocal(X, cast<ConstantFP>(C), - AllowReciprocal); + if (isNormalFp(C)) { + Res = CvtFDivConstToReciprocal(X, C, AllowReciprocal); if (!Res) Res = BinaryOperator::CreateFDiv(X, C); } @@ -1037,39 +1066,37 @@ Instruction *InstCombiner::visitFDiv(BinaryOperator &I) { } // X / C => X * 1/C - if (Instruction *T = CvtFDivConstToReciprocal(Op0, Op1C, AllowReciprocal)) + if (Instruction *T = CvtFDivConstToReciprocal(Op0, Op1C, AllowReciprocal)) { + T->copyFastMathFlags(&I); return T; + } return 0; } - if (AllowReassociate && isa<ConstantFP>(Op0)) { - ConstantFP *C1 = cast<ConstantFP>(Op0), *C2; + if (AllowReassociate && isa<Constant>(Op0)) { + Constant *C1 = cast<Constant>(Op0), *C2; Constant *Fold = 0; Value *X; bool CreateDiv = true; // C1 / (X*C2) => (C1/C2) / X - if (match(Op1, m_FMul(m_Value(X), m_ConstantFP(C2)))) + if (match(Op1, m_FMul(m_Value(X), m_Constant(C2)))) Fold = ConstantExpr::getFDiv(C1, C2); - else if (match(Op1, m_FDiv(m_Value(X), m_ConstantFP(C2)))) { + else if (match(Op1, m_FDiv(m_Value(X), m_Constant(C2)))) { // C1 / (X/C2) => (C1*C2) / X Fold = ConstantExpr::getFMul(C1, C2); - } else if (match(Op1, m_FDiv(m_ConstantFP(C2), m_Value(X)))) { + } else if (match(Op1, m_FDiv(m_Constant(C2), m_Value(X)))) { // C1 / (C2/X) => (C1/C2) * X Fold = ConstantExpr::getFDiv(C1, C2); CreateDiv = false; } - if (Fold) { - const APFloat &FoldC = cast<ConstantFP>(Fold)->getValueAPF(); - if (FoldC.isNormal()) { - Instruction *R = CreateDiv ? - BinaryOperator::CreateFDiv(Fold, X) : - BinaryOperator::CreateFMul(X, Fold); - R->setFastMathFlags(I.getFastMathFlags()); - return R; - } + if (Fold && isNormalFp(Fold)) { + Instruction *R = CreateDiv ? BinaryOperator::CreateFDiv(Fold, X) + : BinaryOperator::CreateFMul(X, Fold); + R->setFastMathFlags(I.getFastMathFlags()); + return R; } return 0; } @@ -1082,15 +1109,25 @@ Instruction *InstCombiner::visitFDiv(BinaryOperator &I) { if (Op0->hasOneUse() && match(Op0, m_FDiv(m_Value(X), m_Value(Y)))) { // (X/Y) / Z => X / (Y*Z) // - if (!isa<ConstantFP>(Y) || !isa<ConstantFP>(Op1)) { + if (!isa<Constant>(Y) || !isa<Constant>(Op1)) { NewInst = Builder->CreateFMul(Y, Op1); + if (Instruction *RI = dyn_cast<Instruction>(NewInst)) { + FastMathFlags Flags = I.getFastMathFlags(); + Flags &= cast<Instruction>(Op0)->getFastMathFlags(); + RI->setFastMathFlags(Flags); + } SimpR = BinaryOperator::CreateFDiv(X, NewInst); } } else if (Op1->hasOneUse() && match(Op1, m_FDiv(m_Value(X), m_Value(Y)))) { // Z / (X/Y) => Z*Y / X // - if (!isa<ConstantFP>(Y) || !isa<ConstantFP>(Op0)) { + if (!isa<Constant>(Y) || !isa<Constant>(Op0)) { NewInst = Builder->CreateFMul(Op0, Y); + if (Instruction *RI = dyn_cast<Instruction>(NewInst)) { + FastMathFlags Flags = I.getFastMathFlags(); + Flags &= cast<Instruction>(Op1)->getFastMathFlags(); + RI->setFastMathFlags(Flags); + } SimpR = BinaryOperator::CreateFDiv(NewInst, X); } } @@ -1123,7 +1160,7 @@ Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) { if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I)) return &I; - if (isa<ConstantInt>(Op1)) { + if (isa<Constant>(Op1)) { if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) { if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) { if (Instruction *R = FoldOpIntoSelect(I, SI)) @@ -1145,7 +1182,7 @@ Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) { Instruction *InstCombiner::visitURem(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); - if (Value *V = SimplifyURemInst(Op0, Op1, TD)) + if (Value *V = SimplifyURemInst(Op0, Op1, DL)) return ReplaceInstUsesWith(I, V); if (Instruction *common = commonIRemTransforms(I)) @@ -1177,7 +1214,7 @@ Instruction *InstCombiner::visitURem(BinaryOperator &I) { Instruction *InstCombiner::visitSRem(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); - if (Value *V = SimplifySRemInst(Op0, Op1, TD)) + if (Value *V = SimplifySRemInst(Op0, Op1, DL)) return ReplaceInstUsesWith(I, V); // Handle the integer rem common cases @@ -1248,7 +1285,7 @@ Instruction *InstCombiner::visitSRem(BinaryOperator &I) { Instruction *InstCombiner::visitFRem(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); - if (Value *V = SimplifyFRemInst(Op0, Op1, TD)) + if (Value *V = SimplifyFRemInst(Op0, Op1, DL)) return ReplaceInstUsesWith(I, V); // Handle cases involving: rem X, (select Cond, Y, Z) |