/* * Copyright (C) 2014 Paul Kocialkowski * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #define LOG_TAG "smdk4x12_sensors" #include #include "smdk4x12_sensors.h" #include "ssp.h" #define AKM8963_CONFIG_PATH "/data/misc/akmd_set.txt" struct akm8963_data { sensors_vec_t magnetic; short magnetic_data[4][3]; int magnetic_data_count; int magnetic_data_index; short magnetic_extrema[2][3]; unsigned char asa[3]; int ho[3]; int64_t delay; int device_fd; int uinput_fd; pthread_t thread; pthread_mutex_t mutex; int thread_continue; }; // This AKM8963 implementation is based on intuitive understanding of how the // AKM8963 data is translated to SI units. // // The raw data is a two-byte short value that is the 16 bit ADC read value. // This value has to be corrected using the ASA Sensivity Adujstment value // as such: v_adj = v * (((ASA - 128) * 0.5) / 128 + 1) // LSB values can then be converted to uT units, with 0.15uT/LSB: // m = 0.15 * v * (((ASA - 128) * 0.5) / 128 + 1) // // Moreover, we calculate and apply a software offset (HO) in order to have the // maximum final values for each axis at ~45uT and minimum at ~-45uT. // In order to store HO as an integer, the applied offset is 0.06 * HO: // m = 0.15 * v * (((ASA - 128) * 0.5) / 128 + 1) - 0.06 * HO int akm8963_magnetic_extrema(struct akm8963_data *data, int index) { if (data == NULL || index < 0 || index >= 3) return -EINVAL; // Calculate the extrema from HO (software offset) data->magnetic_extrema[0][index] = (short) ((-45.0f + 0.06 * data->ho[index]) / (0.15f * (((data->asa[index] - 128) * 0.5f) / 128 + 1))); data->magnetic_extrema[1][index] = (short) ((45.0f + 0.06 * data->ho[index]) / (0.15f * (((data->asa[index] - 128) * 0.5f) / 128 + 1))); return 0; } int akm8963_config_read(struct akm8963_data *data) { char buffer[256] = { 0 }; int config_fd = -1; int offset = 0; int length; int count; int value; char *p; int rc; if (data == NULL) return -EINVAL; config_fd = open(AKM8963_CONFIG_PATH, O_RDONLY); if (config_fd < 0) { ALOGE("%s: Unable to open akm8963 config %d %s", __func__, errno, strerror(errno)); goto error; } rc = 0; do { lseek(config_fd, offset, SEEK_SET); length = read(config_fd, buffer, sizeof(buffer)); if (length <= 0) break; p = strchr((const char *) &buffer, '\n'); if (p != NULL) { offset += (int) p - (int) buffer + 1; *p = '\0'; } else if ((size_t) length < sizeof(buffer)) { buffer[length] = '\0'; } count = sscanf((char const *) &buffer, "HSUC_HO_FORM0.x = %d", &value); if (count == 1) { data->ho[0] = value; rc |= akm8963_magnetic_extrema(data, 0); } count = sscanf((char const *) &buffer, "HSUC_HO_FORM0.y = %d", &value); if (count == 1) { data->ho[1] = value; rc |= akm8963_magnetic_extrema(data, 1); } count = sscanf((char const *) &buffer, "HSUC_HO_FORM0.z = %d", &value); if (count == 1) { data->ho[2] = value; rc |= akm8963_magnetic_extrema(data, 2); } } while (p != NULL && length > 0); goto complete; error: rc = -1; complete: if (config_fd >= 0) close(config_fd); return rc; } int akm8963_config_write(struct akm8963_data *data) { char buffer[256] = { 0 }; int config_fd = -1; int length; int value; int rc; if (data == NULL) return -EINVAL; config_fd = open(AKM8963_CONFIG_PATH, O_WRONLY | O_TRUNC | O_CREAT, 0664); if (config_fd < 0) { ALOGE("%s: Unable to open akm8963 config", __func__); goto error; } value = (int) data->ho[0]; length = snprintf((char *) &buffer, sizeof(buffer), "HSUC_HO_FORM0.x = %d\n", value); rc = write(config_fd, buffer, length); if (rc < length) { ALOGE("%s: Unable to write akm8963 config", __func__); goto error; } value = (int) data->ho[1]; length = snprintf((char *) &buffer, sizeof(buffer), "HSUC_HO_FORM0.y = %d\n", value); rc = write(config_fd, buffer, length); if (rc < length) { ALOGE("%s: Unable to write akm8963 config", __func__); goto error; } value = (int) data->ho[2]; length = snprintf((char *) &buffer, sizeof(buffer), "HSUC_HO_FORM0.z = %d\n", value); rc = write(config_fd, buffer, length); if (rc < length) { ALOGE("%s: Unable to write akm8963 config", __func__); goto error; } rc = 0; goto complete; error: rc = -1; complete: if (config_fd >= 0) close(config_fd); return rc; } int akm8963_ho_calibration(struct akm8963_data *data, short *magnetic_data, size_t magnetic_data_size) { float ho[2]; int gain_index; int i; if (data == NULL || magnetic_data == NULL || magnetic_data_size < 3) return -EINVAL; // Update the extrema from the current raw magnetic data for (i = 0; i < 3; i++) { if (magnetic_data[i] < data->magnetic_extrema[0][i] || data->magnetic_extrema[0][i] == 0) data->magnetic_extrema[0][i] = magnetic_data[i]; if (magnetic_data[i] > data->magnetic_extrema[1][i] || data->magnetic_extrema[1][i] == 0) data->magnetic_extrema[1][i] = magnetic_data[i]; } // Calculate HO (software offset) if (data->magnetic_data_count % 10 == 0) { for (i = 0; i < 3; i++) { // Calculate offset for minimum to be at -45uT ho[0] = (0.15f * (((data->asa[i] - 128) * 0.5f) / 128 + 1) * data->magnetic_extrema[0][i] + 45.0f) / 0.06f; // Calculate offset for maximum to be at +45uT ho[1] = (0.15f * (((data->asa[i] - 128) * 0.5f) / 128 + 1) * data->magnetic_extrema[1][i] - 45.0f) / 0.06f; // Average offset to make everyone (mostly) happy data->ho[i] = (int) (ho[0] + ho[1]) / 2.0f; } } return 0; } int akm8963_magnetic_axis(struct akm8963_data *data, int index, float *axis) { float value; int count; int i; if (data == NULL || axis == NULL || index < 0 || index >= 3) return -EINVAL; count = data->magnetic_data_count >= 4 ? 4 : data->magnetic_data_count; value = 0; // Average the last 4 (or less) raw magnetic values for (i = 0; i < count; i++) value += (float) data->magnetic_data[i][index]; value /= count; // Adjust sensitivity using ASA value value *= (((data->asa[index] - 128) * 0.5f) / 128 + 1); // Magnetic field value in uT from corrected value and HO offset *axis = 0.15f * value - 0.06f * data->ho[index]; return 0; } int akm8963_magnetic(struct akm8963_data *data) { int rc; if (data == NULL) return -EINVAL; rc = 0; rc |= akm8963_magnetic_axis(data, 0, &data->magnetic.x); rc |= akm8963_magnetic_axis(data, 1, &data->magnetic.y); rc |= akm8963_magnetic_axis(data, 2, &data->magnetic.z); return rc; } void *akm8963_thread(void *thread_data) { struct smdk4x12_sensors_handlers *handlers = NULL; struct akm8963_data *data = NULL; struct input_event event; struct timeval time; unsigned char i2c_data[8] = { 0 }; short magnetic_data[3] = { 0 }; int index; long int before, after; int diff; int device_fd; int uinput_fd; int rc; if (thread_data == NULL) return NULL; handlers = (struct smdk4x12_sensors_handlers *) thread_data; if (handlers->data == NULL) return NULL; data = (struct akm8963_data *) handlers->data; device_fd = data->device_fd; if (device_fd < 0) return NULL; uinput_fd = data->uinput_fd; if (uinput_fd < 0) return NULL; while (data->thread_continue) { pthread_mutex_lock(&data->mutex); if (!data->thread_continue) break; while (handlers->activated) { gettimeofday(&time, NULL); before = timestamp(&time); memset(&i2c_data, 0, sizeof(i2c_data)); rc = ioctl(device_fd, ECS_IOCTL_GET_MAGDATA, &i2c_data); if (rc < 0) { ALOGE("%s: Unable to get akm8963 data", __func__); goto next; } if (!(i2c_data[0] & 0x01)) { ALOGE("%s: akm8963 data is not ready", __func__); goto next; } magnetic_data[0] = (short) ((i2c_data[2] << 8) | (i2c_data[1] & 0xff)); magnetic_data[1] = (short) ((i2c_data[4] << 8) | (i2c_data[3] & 0xff)); magnetic_data[2] = (short) ((i2c_data[6] << 8) | (i2c_data[5] & 0xff)); index = data->magnetic_data_index; data->magnetic_data[index][0] = magnetic_data[0]; data->magnetic_data[index][1] = magnetic_data[1]; data->magnetic_data[index][2] = magnetic_data[2]; data->magnetic_data_index = (index + 1) % 4; data->magnetic_data_count++; rc = akm8963_ho_calibration(data, (short *) &magnetic_data, sizeof(magnetic_data)); if (rc < 0) { ALOGE("%s: Unable to calibrate akm8963 HO", __func__); goto next; } rc = akm8963_magnetic(data); if (rc < 0) { ALOGE("%s: Unable to get akm8963 magnetic", __func__); goto next; } input_event_set(&event, EV_REL, REL_X, (int) (data->magnetic.x * 1000)); write(uinput_fd, &event, sizeof(event)); input_event_set(&event, EV_REL, REL_Y, (int) (data->magnetic.y * 1000)); write(uinput_fd, &event, sizeof(event)); input_event_set(&event, EV_REL, REL_Z, (int) (data->magnetic.z * 1000)); write(uinput_fd, &event, sizeof(event)); input_event_set(&event, EV_REL, REL_MISC, (int) data->magnetic.status); write(uinput_fd, &event, sizeof(event)); input_event_set(&event, EV_SYN, 0, 0); write(uinput_fd, &event, sizeof(event)); next: gettimeofday(&time, NULL); after = timestamp(&time); diff = (int) (data->delay - (after - before)) / 1000; if (diff <= 0) continue; usleep(diff); } } return NULL; } int akm8963_init(struct smdk4x12_sensors_handlers *handlers, struct smdk4x12_sensors_device *device) { struct akm8963_data *data = NULL; pthread_attr_t thread_attr; int device_fd = -1; int uinput_fd = -1; int input_fd = -1; int rc; int i; ALOGD("%s(%p, %p)", __func__, handlers, device); if (handlers == NULL || device == NULL) return -EINVAL; data = (struct akm8963_data *) calloc(1, sizeof(struct akm8963_data)); device_fd = open("/dev/akm8963", O_RDONLY); if (device_fd < 0) { ALOGE("%s: Unable to open device", __func__); goto error; } rc = ioctl(device_fd, ECS_IOCTL_GET_FUSEROMDATA, &data->asa); if (rc < 0) { ALOGE("%s: Unable to get akm8963 FUSE ROM data", __func__); goto error; } ALOGD("AKM8963 ASA (Sensitivity Adjustment) values are: (%d, %d, %d)", data->asa[0], data->asa[1], data->asa[2]); uinput_fd = uinput_rel_create("magnetic_sensor"); if (uinput_fd < 0) { ALOGD("%s: Unable to create uinput", __func__); goto error; } input_fd = input_open("magnetic_sensor"); if (input_fd < 0) { ALOGE("%s: Unable to open magnetic input", __func__); goto error; } data->thread_continue = 1; pthread_mutex_init(&data->mutex, NULL); pthread_mutex_lock(&data->mutex); pthread_attr_init(&thread_attr); pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_DETACHED); rc = pthread_create(&data->thread, &thread_attr, akm8963_thread, (void *) handlers); if (rc < 0) { ALOGE("%s: Unable to create akm8963 thread", __func__); pthread_mutex_destroy(&data->mutex); goto error; } data->device_fd = device_fd; data->uinput_fd = uinput_fd; handlers->poll_fd = input_fd; handlers->data = (void *) data; return 0; error: if (data != NULL) free(data); if (uinput_fd >= 0) close(uinput_fd); if (input_fd >= 0) close(input_fd); if (device_fd >= 0) close(device_fd); handlers->poll_fd = -1; handlers->data = NULL; return -1; } int akm8963_deinit(struct smdk4x12_sensors_handlers *handlers) { struct akm8963_data *data = NULL; int rc; ALOGD("%s(%p)", __func__, handlers); if (handlers == NULL || handlers->data == NULL) return -EINVAL; data = (struct akm8963_data *) handlers->data; handlers->activated = 0; data->thread_continue = 0; pthread_mutex_unlock(&data->mutex); pthread_mutex_destroy(&data->mutex); if (data->uinput_fd >= 0) { uinput_destroy(data->uinput_fd); close(data->uinput_fd); } data->uinput_fd = -1; if (handlers->poll_fd >= 0) close(handlers->poll_fd); handlers->poll_fd = -1; if (data->device_fd >= 0) close(data->device_fd); data->device_fd = -1; free(handlers->data); handlers->data = NULL; return 0; } int akm8963_activate(struct smdk4x12_sensors_handlers *handlers) { struct akm8963_data *data; int rc; ALOGD("%s(%p)", __func__, handlers); if (handlers == NULL || handlers->data == NULL) return -EINVAL; data = (struct akm8963_data *) handlers->data; rc = akm8963_config_read(data); if (rc < 0) { ALOGE("%s: Unable to read akm8963 config", __func__); } rc = ssp_sensor_enable(GEOMAGNETIC_SENSOR); if (rc < 0) { ALOGE("%s: Unable to enable ssp sensor", __func__); return -1; } handlers->activated = 1; pthread_mutex_unlock(&data->mutex); return 0; } int akm8963_deactivate(struct smdk4x12_sensors_handlers *handlers) { struct akm8963_data *data; int empty; int rc; int i; ALOGD("%s(%p)", __func__, handlers); if (handlers == NULL || handlers->data == NULL) return -EINVAL; data = (struct akm8963_data *) handlers->data; empty = 1; for (i = 0; i < (ssize_t) (sizeof(data->magnetic_extrema) / (sizeof(short) * 2)); i++) { if (data->magnetic_extrema[0][i] != 0 || data->magnetic_extrema[1][i] != 0) { empty = 0; break; } } if (!empty) { rc = akm8963_config_write(data); if (rc < 0) ALOGE("%s: Unable to write akm8963 config", __func__); } rc = ssp_sensor_disable(GEOMAGNETIC_SENSOR); if (rc < 0) { ALOGE("%s: Unable to disable ssp sensor", __func__); return -1; } handlers->activated = 0; return 0; } int akm8963_set_delay(struct smdk4x12_sensors_handlers *handlers, int64_t delay) { struct akm8963_data *data; char path_delay[PATH_MAX] = "/sys/class/sensors/ssp_sensor/mag_poll_delay"; int rc; ALOGD("%s(%p, %" PRId64 ")", __func__, handlers, delay); if (handlers == NULL || handlers->data == NULL) return -EINVAL; data = (struct akm8963_data *) handlers->data; rc = sysfs_value_write(path_delay, (int) delay); if (rc < 0) { ALOGE("%s: Unable to write sysfs value", __func__); return -1; } data->delay = delay; return 0; } float akm8963_convert(int value) { return (float) value / 1000.0f; } int akm8963_get_data(struct smdk4x12_sensors_handlers *handlers, struct sensors_event_t *event) { struct akm8963_data *data; struct input_event input_event; int input_fd; int rc; // ALOGD("%s(%p, %p)", __func__, handlers, event); if (handlers == NULL || handlers->data == NULL || event == NULL) return -EINVAL; data = (struct akm8963_data *) handlers->data; input_fd = handlers->poll_fd; if (input_fd < 0) return -1; memset(event, 0, sizeof(struct sensors_event_t)); event->version = sizeof(struct sensors_event_t); event->sensor = handlers->handle; event->type = handlers->handle; do { rc = read(input_fd, &input_event, sizeof(input_event)); if (rc < (int) sizeof(input_event)) break; if (input_event.type == EV_REL) { switch (input_event.code) { case REL_X: event->magnetic.x = akm8963_convert(input_event.value); break; case REL_Y: event->magnetic.y = akm8963_convert(input_event.value); break; case REL_Z: event->magnetic.z = akm8963_convert(input_event.value); break; case REL_MISC: event->magnetic.status = input_event.value; break; default: continue; } } else if (input_event.type == EV_SYN) { if (input_event.code == SYN_REPORT) event->timestamp = input_timestamp(&input_event); } } while (input_event.type != EV_SYN); return 0; } struct smdk4x12_sensors_handlers akm8963 = { .name = "AKM8963", .handle = SENSOR_TYPE_MAGNETIC_FIELD, .init = akm8963_init, .deinit = akm8963_deinit, .activate = akm8963_activate, .deactivate = akm8963_deactivate, .set_delay = akm8963_set_delay, .get_data = akm8963_get_data, .activated = 0, .needed = 0, .poll_fd = -1, .data = NULL, };