/* * Copyright (C) 2013 Paul Kocialkowski * Copyright (C) 2012 Asahi Kasei Microdevices Corporation, Japan * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #define LOG_TAG "smdk4x12_sensors" #include #include "smdk4x12_sensors.h" #include "ak8975.h" #include "ak8975-reg.h" #include #include #define AKFS_CONFIG_PATH "/data/misc/akfs.txt" #define AKFS_PAT PAT3 struct akm8975_data { AK8975PRMS akfs_params; sensors_vec_t magnetic; int64_t delay; int device_fd; int uinput_fd; pthread_t thread; pthread_mutex_t mutex; int thread_continue; }; int akfs_get_magnetic_field(struct akm8975_data *akm8975_data, short *magnetic_data) { AK8975PRMS *params; int rc, aocret; float radius; if (akm8975_data == NULL || magnetic_data == NULL) return -EINVAL; params = &akm8975_data->akfs_params; // Decomposition // Sensitivity adjustment, i.e. multiply ASA, is done in this function. rc = AKFS_DecompAK8975(magnetic_data, 1, ¶ms->mi_asa, AKFS_HDATA_SIZE, params->mfv_hdata); if (rc == AKFS_ERROR) { ALOGE("Failed to decomp!"); return -1; } // Adjust coordination rc = AKFS_Rotate(params->m_hpat, ¶ms->mfv_hdata[0]); if (rc == AKFS_ERROR) { ALOGE("Failed to rotate!"); return -1; } // AOC for magnetometer // Offset estimation is done in this function aocret = AKFS_AOC(¶ms->m_aocv, params->mfv_hdata, ¶ms->mfv_ho); // Subtract offset // Then, a magnetic vector, the unit is uT, is stored in mfv_hvbuf. rc = AKFS_VbNorm(AKFS_HDATA_SIZE, params->mfv_hdata, 1, ¶ms->mfv_ho, ¶ms->mfv_hs, AK8975_HSENSE_TARGET, AKFS_HDATA_SIZE, params->mfv_hvbuf); if (rc == AKFS_ERROR) { ALOGE("Failed to normalize!"); return -1; } // Averaging rc = AKFS_VbAve(AKFS_HDATA_SIZE, params->mfv_hvbuf, CSPEC_HNAVE_V, ¶ms->mfv_hvec); if (rc == AKFS_ERROR) { ALOGE("Failed to average!"); return -1; } // Check the size of magnetic vector radius = sqrtf( (params->mfv_hvec.u.x * params->mfv_hvec.u.x) + (params->mfv_hvec.u.y * params->mfv_hvec.u.y) + (params->mfv_hvec.u.z * params->mfv_hvec.u.z)); // Sanity check result and set accuracy if ((radius > MAGNETIC_FIELD_EARTH_MAX + 10) || (radius < MAGNETIC_FIELD_EARTH_MIN - 10)) { params->mi_hstatus = SENSOR_STATUS_UNRELIABLE; } else if(params->mi_hstatus == SENSOR_STATUS_UNRELIABLE) { params->mi_hstatus = SENSOR_STATUS_ACCURACY_MEDIUM; } else if (aocret == AKFS_SUCCESS) { params->mi_hstatus = SENSOR_STATUS_ACCURACY_HIGH; } akm8975_data->magnetic.x = params->mfv_hvec.u.x; akm8975_data->magnetic.y = params->mfv_hvec.u.y; akm8975_data->magnetic.z = params->mfv_hvec.u.z; akm8975_data->magnetic.status = params->mi_hstatus; return 0; } int akfs_init(struct akm8975_data *akm8975_data, char *asa, AKFS_PATNO pat) { AK8975PRMS *params; if (akm8975_data == NULL || asa == NULL) return -EINVAL; params = &akm8975_data->akfs_params; memset(params, 0, sizeof(AK8975PRMS)); // Sensitivity params->mfv_hs.u.x = AK8975_HSENSE_DEFAULT; params->mfv_hs.u.y = AK8975_HSENSE_DEFAULT; params->mfv_hs.u.z = AK8975_HSENSE_DEFAULT; params->mfv_as.u.x = AK8975_ASENSE_DEFAULT; params->mfv_as.u.y = AK8975_ASENSE_DEFAULT; params->mfv_as.u.z = AK8975_ASENSE_DEFAULT; // Initialize variables that initial value is not 0. params->mi_hnaveV = CSPEC_HNAVE_V; params->mi_hnaveD = CSPEC_HNAVE_D; params->mi_anaveV = CSPEC_ANAVE_V; params->mi_anaveD = CSPEC_ANAVE_D; // Copy ASA values params->mi_asa.u.x = asa[0]; params->mi_asa.u.y = asa[1]; params->mi_asa.u.z = asa[2]; // Copy layout pattern params->m_hpat = pat; return 0; } void *akm8975_thread(void *thread_data) { struct smdk4x12_sensors_handlers *handlers = NULL; struct akm8975_data *data = NULL; struct input_event event; struct timeval time; char i2c_data[SENSOR_DATA_SIZE] = { 0 }; short magnetic_data[3]; short mode; int64_t before, after; int diff; int device_fd; int uinput_fd; int rc; if (thread_data == NULL) return NULL; handlers = (struct smdk4x12_sensors_handlers *) thread_data; if (handlers->data == NULL) return NULL; data = (struct akm8975_data *) handlers->data; device_fd = data->device_fd; if (device_fd < 0) return NULL; uinput_fd = data->uinput_fd; if (uinput_fd < 0) return NULL; while (data->thread_continue) { pthread_mutex_lock(&data->mutex); if (!data->thread_continue) break; while (handlers->activated) { gettimeofday(&time, NULL); before = timestamp(&time); mode = AK8975_MODE_SNG_MEASURE; rc = ioctl(device_fd, ECS_IOCTL_SET_MODE, &mode); if (rc < 0) { ALOGE("%s: Unable to set akm8975 mode", __func__); return NULL; } memset(&i2c_data, 0, sizeof(i2c_data)); rc = ioctl(device_fd, ECS_IOCTL_GETDATA, &i2c_data); if (rc < 0) { ALOGE("%s: Unable to get akm8975 data", __func__); return NULL; } if (!(i2c_data[0] & 0x01)) { ALOGE("%s: akm8975 data is not ready", __func__); continue; } if (i2c_data[7] & (1 << 2) || i2c_data[7] & (1 << 3)) { ALOGE("%s: akm8975 data read error or overflow", __func__); continue; } magnetic_data[0] = (short) (i2c_data[2] << 8) | (i2c_data[1]); magnetic_data[1] = (short) (i2c_data[4] << 8) | (i2c_data[3]); magnetic_data[2] = (short) (i2c_data[6] << 8) | (i2c_data[5]); rc = akfs_get_magnetic_field(data, (short *) &magnetic_data); if (rc < 0) { ALOGE("%s: Unable to get AKFS magnetic field", __func__); continue; } input_event_set(&event, EV_REL, REL_X, (int) (data->magnetic.x * 1000)); write(uinput_fd, &event, sizeof(event)); input_event_set(&event, EV_REL, REL_Y, (int) (data->magnetic.y * 1000)); write(uinput_fd, &event, sizeof(event)); input_event_set(&event, EV_REL, REL_Z, (int) (data->magnetic.z * 1000)); write(uinput_fd, &event, sizeof(event)); input_event_set(&event, EV_REL, REL_MISC, (int) data->magnetic.status); write(uinput_fd, &event, sizeof(event)); input_event_set(&event, EV_SYN, 0, 0); write(uinput_fd, &event, sizeof(event)); gettimeofday(&time, NULL); after = timestamp(&time); diff = (int) (data->delay - (after - before)) / 1000; if (diff <= 0) continue; usleep(diff); } } return NULL; } int akm8975_init(struct smdk4x12_sensors_handlers *handlers, struct smdk4x12_sensors_device *device) { struct akm8975_data *data = NULL; pthread_attr_t thread_attr; char i2c_data[RWBUF_SIZE] = { 0 }; short mode; int device_fd = -1; int uinput_fd = -1; int input_fd = -1; int rc; int i; ALOGD("%s(%p, %p)", __func__, handlers, device); if (handlers == NULL || device == NULL) return -EINVAL; data = (struct akm8975_data *) calloc(1, sizeof(struct akm8975_data)); device_fd = open("/dev/akm8975", O_RDONLY); if (device_fd < 0) { ALOGE("%s: Unable to open device", __func__); goto error; } mode = AK8975_MODE_POWER_DOWN; rc = ioctl(device_fd, ECS_IOCTL_SET_MODE, &mode); if (rc < 0) { ALOGE("%s: Unable to set akm8975 mode", __func__); goto error; } mode = AK8975_MODE_FUSE_ACCESS; rc = ioctl(device_fd, ECS_IOCTL_SET_MODE, &mode); if (rc < 0) { ALOGE("%s: Unable to set akm8975 mode", __func__); goto error; } i2c_data[0] = 3; i2c_data[1] = AK8975_FUSE_ASAX; rc = ioctl(device_fd, ECS_IOCTL_READ, &i2c_data); if (rc < 0) { ALOGE("%s: Unable to read akm8975 FUSE data", __func__); goto error; } ALOGD("AKM8975 ASA (Sensitivity Adjustment) values are: (%d, %d, %d)", i2c_data[1], i2c_data[2], i2c_data[3]); rc = akfs_init(data, &i2c_data[1], AKFS_PAT); if (rc < 0) { ALOGE("%s: Unable to init AKFS", __func__); goto error; } i2c_data[0] = 1; i2c_data[1] = AK8975_REG_WIA; rc = ioctl(device_fd, ECS_IOCTL_READ, &i2c_data); if (rc < 0) { ALOGE("%s: Unable to read akm8975 WIA data", __func__); goto error; } ALOGD("AKM8975 WIA (Device ID) value is: 0x%x", i2c_data[1]); mode = AK8975_MODE_POWER_DOWN; rc = ioctl(device_fd, ECS_IOCTL_SET_MODE, &mode); if (rc < 0) { ALOGE("%s: Unable to set akm8975 mode", __func__); goto error; } uinput_fd = uinput_rel_create("magnetic"); if (uinput_fd < 0) { ALOGD("%s: Unable to create uinput", __func__); goto error; } input_fd = input_open("magnetic"); if (input_fd < 0) { ALOGE("%s: Unable to open magnetic input", __func__); goto error; } data->thread_continue = 1; pthread_mutex_init(&data->mutex, NULL); pthread_mutex_lock(&data->mutex); pthread_attr_init(&thread_attr); pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_DETACHED); rc = pthread_create(&data->thread, &thread_attr, akm8975_thread, (void *) handlers); if (rc < 0) { ALOGE("%s: Unable to create akm8975 thread", __func__); pthread_mutex_destroy(&data->mutex); goto error; } data->device_fd = device_fd; data->uinput_fd = uinput_fd; handlers->poll_fd = input_fd; handlers->data = (void *) data; return 0; error: if (data != NULL) free(data); if (uinput_fd >= 0) close(uinput_fd); if (input_fd >= 0) close(input_fd); if (device_fd >= 0) close(device_fd); handlers->poll_fd = -1; handlers->data = NULL; return -1; } int akm8975_deinit(struct smdk4x12_sensors_handlers *handlers) { struct akm8975_data *data = NULL; short mode; int rc; ALOGD("%s(%p)", __func__, handlers); if (handlers == NULL || handlers->data == NULL) return -EINVAL; data = (struct akm8975_data *) handlers->data; handlers->activated = 0; data->thread_continue = 0; pthread_mutex_unlock(&data->mutex); pthread_mutex_destroy(&data->mutex); if (data->uinput_fd >= 0) { uinput_destroy(data->uinput_fd); close(data->uinput_fd); } data->uinput_fd = -1; if (handlers->poll_fd >= 0) close(handlers->poll_fd); handlers->poll_fd = -1; mode = AK8975_MODE_POWER_DOWN; rc = ioctl(data->device_fd, ECS_IOCTL_SET_MODE, &mode); if (rc < 0) ALOGE("%s: Unable to set akm8975 mode", __func__); if (data->device_fd >= 0) close(data->device_fd); data->device_fd = -1; free(handlers->data); handlers->data = NULL; return 0; } int akm8975_activate(struct smdk4x12_sensors_handlers *handlers) { struct akm8975_data *data; AK8975PRMS *akfs_params; int rc; ALOGD("%s(%p)", __func__, handlers); if (handlers == NULL || handlers->data == NULL) return -EINVAL; data = (struct akm8975_data *) handlers->data; akfs_params = &data->akfs_params; // Read settings from a file rc = AKFS_LoadParameters(akfs_params, AKFS_CONFIG_PATH); if (rc != AKM_SUCCESS) { ALOGE("%s: Unable to read AKFS HO parameters", __func__); akfs_params->mfv_ho.u.x = 0.0f; akfs_params->mfv_ho.u.y = 0.0f; akfs_params->mfv_ho.u.z = 0.0f; } else { ALOGD("AKM8975 HO (Offset Adjustment) parameters read are: (%f, %f, %f)", akfs_params->mfv_ho.u.x, akfs_params->mfv_ho.u.y, akfs_params->mfv_ho.u.z); } // Initialize buffer AKFS_InitBuffer(AKFS_HDATA_SIZE, akfs_params->mfv_hdata); AKFS_InitBuffer(AKFS_HDATA_SIZE, akfs_params->mfv_hvbuf); AKFS_InitBuffer(AKFS_ADATA_SIZE, akfs_params->mfv_adata); AKFS_InitBuffer(AKFS_ADATA_SIZE, akfs_params->mfv_avbuf); // Initialize for AOC AKFS_InitAOC(&akfs_params->m_aocv); // Initialize magnetic status akfs_params->mi_hstatus = SENSOR_STATUS_UNRELIABLE; handlers->activated = 1; pthread_mutex_unlock(&data->mutex); return 0; } int akm8975_deactivate(struct smdk4x12_sensors_handlers *handlers) { struct akm8975_data *data; AK8975PRMS *akfs_params; int device_fd; short mode; int empty; int rc; int i; ALOGD("%s(%p)", __func__, handlers); if (handlers == NULL || handlers->data == NULL) return -EINVAL; data = (struct akm8975_data *) handlers->data; akfs_params = &data->akfs_params; device_fd = data->device_fd; if (device_fd < 0) return -1; empty = 1; if ((akfs_params->mfv_ho.u.x != 0.0f) || (akfs_params->mfv_ho.u.y != 0.0f) || (akfs_params->mfv_ho.u.z != 0.0f)) { empty = 0; } if (!empty) { // Write settings to a file rc = AKFS_SaveParameters(akfs_params, AKFS_CONFIG_PATH); if (rc != AKM_SUCCESS) { ALOGE("%s: Unable to write AKFS HO parameters", __func__); } else { ALOGD("AKM8975 HO (Offset Adjustment) parameters written are: (%f, %f, %f)", akfs_params->mfv_ho.u.x, akfs_params->mfv_ho.u.y, akfs_params->mfv_ho.u.z); } } mode = AK8975_MODE_POWER_DOWN; rc = ioctl(device_fd, ECS_IOCTL_SET_MODE, &mode); if (rc < 0) ALOGE("%s: Unable to set akm8975 mode", __func__); handlers->activated = 0; return 0; } int akm8975_set_delay(struct smdk4x12_sensors_handlers *handlers, int64_t delay) { struct akm8975_data *data; ALOGD("%s(%p, %" PRId64 ")", __func__, handlers, delay); if (handlers == NULL || handlers->data == NULL) return -EINVAL; data = (struct akm8975_data *) handlers->data; data->delay = delay; return 0; } float akm8975_convert(int value) { return (float) value / 1000.0f; } int akm8975_get_data(struct smdk4x12_sensors_handlers *handlers, struct sensors_event_t *event) { struct akm8975_data *data; struct input_event input_event; int input_fd; int rc; // ALOGD("%s(%p, %p)", __func__, handlers, event); if (handlers == NULL || handlers->data == NULL || event == NULL) return -EINVAL; data = (struct akm8975_data *) handlers->data; input_fd = handlers->poll_fd; if (input_fd < 0) return -1; memset(event, 0, sizeof(struct sensors_event_t)); event->version = sizeof(struct sensors_event_t); event->sensor = handlers->handle; event->type = handlers->handle; do { rc = read(input_fd, &input_event, sizeof(input_event)); if (rc < (int) sizeof(input_event)) break; if (input_event.type == EV_REL) { switch (input_event.code) { case REL_X: event->magnetic.x = akm8975_convert(input_event.value); break; case REL_Y: event->magnetic.y = akm8975_convert(input_event.value); break; case REL_Z: event->magnetic.z = akm8975_convert(input_event.value); break; case REL_MISC: event->magnetic.status = input_event.value; break; default: continue; } } else if (input_event.type == EV_SYN) { if (input_event.code == SYN_REPORT) event->timestamp = input_timestamp(&input_event); } } while (input_event.type != EV_SYN); return 0; } struct smdk4x12_sensors_handlers akm8975 = { .name = "AKM8975", .handle = SENSOR_TYPE_MAGNETIC_FIELD, .init = akm8975_init, .deinit = akm8975_deinit, .activate = akm8975_activate, .deactivate = akm8975_deactivate, .set_delay = akm8975_set_delay, .get_data = akm8975_get_data, .activated = 0, .needed = 0, .poll_fd = -1, .data = NULL, };