summaryrefslogtreecommitdiffstats
path: root/sensors/akm8973.c
blob: 509c365e86862f01a70b5d2ed487251c401c28ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
/*
 * Copyright (C) 2013 Paul Kocialkowski <contact@paulk.fr>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <stdlib.h>
#include <unistd.h>
#include <stdint.h>
#include <fcntl.h>
#include <errno.h>

#include <hardware/sensors.h>
#include <hardware/hardware.h>

#define LOG_TAG "herring_sensors"
#include <utils/Log.h>

#include "herring_sensors.h"
#include "ak8973-reg.h"
#include "ak8973.h"

#define AKM8973_CONFIG_PATH			"/data/misc/akmd_set.txt"

struct akm8973_data {
	struct herring_sensors_handlers *orientation_sensor;

	sensors_vec_t magnetic;
	unsigned char magnetic_data[4][3];
	int magnetic_data_count;
	int magnetic_data_index;

	unsigned char magnetic_extrema[2][3];
	unsigned char gain_indexes[3];
	unsigned char hdac[3];
	int ho[3];

	long int delay;
	int device_fd;
	int uinput_fd;

	pthread_t thread;
	pthread_mutex_t mutex;
	int thread_continue;
};

// This AKM8973 implementation is based on intuitive understanding of how the
// AKM8973 data is translated to SI units.
//
// Different parameters are used to properly configure and interpret the data:
// * Hardware gain, which is stored in the chip's EEPROM and is a factory
//   setting that shouldn't be changed. We don't have to deal with this value at
//   all for our computation.
// * Software gain, that is a factory setting we use to determine the
//   coefficient to use at some point in the final equation.
// * Hardware DAC offset (HDAC) that we can tune in order to be able to see
//   variations of the raw values. This value is not a linear representation
//   of the offset! See page 22 of the AKM8973 datasheet for further details.
// * Software offset (HO) that we can tune in order to have the maximum final
//   value at ~45uT and the minimal final value at ~-45uT for each axis.
//
// The final equation used to determine usable values from the raw input data
// was found to be:
// out = ((in - 128 - HO / 16) * k / 16
//
// * out: Final value in uT units
// * in: Raw value as received from the sensor
// * HO: HO software offset
// * k: Coefficient that is determined from the software gain
//
// When no software calibration is used, we can translate HDAC to HO using the
// following formulas:
// if HDAC < 128: HO = HDAC * -1 * 16 * 16
// if HDAC >= 128: HO = (HDAC - 128) * 16 * 16

// Constant gain-specific coefficients used in the final formula
float akm8973_gain_coefficient[] = {
	16.33f,
	16.28f,
	16.24f,
	16.18f,
	16.14f,
	16.10f,
	16.04f,
	16.00f,
	15.96f,
	15.90f,
	15.86f,
	15.82f,
	15.76f,
	15.72f,
	15.69f,
	15.65f,
};

int akm8973_gain_coefficient_count = sizeof(akm8973_gain_coefficient) /
	sizeof(float);

int akm8973_hdac(struct akm8973_data *data)
{
	char i2c_data[RWBUF_SIZE] = { 0 };
	int device_fd;
	int rc;

	if (data == NULL)
		return -EINVAL;

	device_fd = data->device_fd;
	if (device_fd < 0)
		return -1;

	i2c_data[0] = 4;
	i2c_data[1] = AK8973_REG_HXDA;
	i2c_data[2] = data->hdac[0];
	i2c_data[3] = data->hdac[1];
	i2c_data[4] = data->hdac[2];

	rc = ioctl(device_fd, ECS_IOCTL_WRITE, &i2c_data);
	if (rc < 0) {
		ALOGE("%s: Unable to write akm8973 data", __func__);
		return -1;
	}

	return 0;
}

int akm8973_magnetic_extrema(struct akm8973_data *data, int index)
{
	int gain_index;

	if (data == NULL || index < 0 || index >= 3)
		return -EINVAL;

	gain_index = data->gain_indexes[index];
	if (gain_index < 0 || gain_index >= akm8973_gain_coefficient_count)
		return -1;

	// Calculate the extrema from HO (software offset)
	data->magnetic_extrema[0][index] = (unsigned char) ((int) ((16.0f * -45.0f) / akm8973_gain_coefficient[gain_index] + 128 + data->ho[index] / 16.0f + 10.0f) & 0xff);
	data->magnetic_extrema[1][index] = (unsigned char) ((int) ((16.0f * 45.0f) / akm8973_gain_coefficient[gain_index] + 128 + data->ho[index] / 16.0f - 10.0f) & 0xff);

	return 0;
}

int akm8973_config_read(struct akm8973_data *data)
{
	char buffer[256] = { 0 };
	int config_fd = -1;
	int offset = 0;
	int length;
	int count;
	int value;
	char *p;
	int rc;

	if (data == NULL)
		return -EINVAL;

	config_fd = open(AKM8973_CONFIG_PATH, O_RDONLY);
	if (config_fd < 0) {
		ALOGE("%s: Unable to open akm8973 config %d %s", __func__, errno, strerror(errno));
		goto error;
	}

	rc = 0;

	do {
		lseek(config_fd, offset, SEEK_SET);

		length = read(config_fd, buffer, sizeof(buffer));
		if (length <= 0)
			break;

		p = strchr((const char *) &buffer, '\n');
		if (p != NULL) {
			offset += (int) p - (int) buffer + 1;
			*p = '\0';
		} else if ((size_t) length < sizeof(buffer)) {
			buffer[length] = '\0';
		}

		count = sscanf((char const *) &buffer, "HSUC_HDAC_FORM0.x = %d", &value);
		if (count == 1) {
			data->hdac[0] = (unsigned char) (value & 0xff);
			rc |= 1;
		}

		count = sscanf((char const *) &buffer, "HSUC_HDAC_FORM0.y = %d", &value);
		if (count == 1) {
			data->hdac[1] = (unsigned char) (value & 0xff);
			rc |= 1;
		}

		count = sscanf((char const *) &buffer, "HSUC_HDAC_FORM0.z = %d", &value);
		if (count == 1) {
			data->hdac[2] = (unsigned char) (value & 0xff);
			rc |= 1;
		}

		count = sscanf((char const *) &buffer, "HSUC_HO_FORM0.x = %d", &value);
		if (count == 1) {
			data->ho[0] = value;
			rc |= akm8973_magnetic_extrema(data, 0);
		}

		count = sscanf((char const *) &buffer, "HSUC_HO_FORM0.y = %d", &value);
		if (count == 1) {
			data->ho[1] = value;
			rc |= akm8973_magnetic_extrema(data, 1);
		}

		count = sscanf((char const *) &buffer, "HSUC_HO_FORM0.z = %d", &value);
		if (count == 1) {
			data->ho[2] = value;
			rc |= akm8973_magnetic_extrema(data, 2);
		}
	} while (p != NULL && length > 0);

	goto complete;

error:
	rc = -1;

complete:
	if (config_fd >= 0)
		close(config_fd);

	return rc;
}

int akm8973_config_write(struct akm8973_data *data)
{
	char buffer[256] = { 0 };
	int config_fd = -1;
	int length;
	int value;
	int rc;

	if (data == NULL)
		return -EINVAL;

	config_fd = open(AKM8973_CONFIG_PATH, O_WRONLY | O_TRUNC | O_CREAT, 0664);
	if (config_fd < 0) {
		ALOGE("%s: Unable to open akm8973 config", __func__);
		goto error;
	}

	value = (int) data->hdac[0];
	length = snprintf((char *) &buffer, sizeof(buffer), "HSUC_HDAC_FORM0.x = %d\n", value);

	rc = write(config_fd, buffer, length);
	if (rc < length) {
		ALOGE("%s: Unable to write akm8973 config", __func__);
		goto error;
	}

	value = (int) data->hdac[1];
	length = snprintf((char *) &buffer, sizeof(buffer), "HSUC_HDAC_FORM0.y = %d\n", value);

	rc = write(config_fd, buffer, length);
	if (rc < length) {
		ALOGE("%s: Unable to write akm8973 config", __func__);
		goto error;
	}

	value = (int) data->hdac[2];
	length = snprintf((char *) &buffer, sizeof(buffer), "HSUC_HDAC_FORM0.z = %d\n", value);

	rc = write(config_fd, buffer, length);
	if (rc < length) {
		ALOGE("%s: Unable to write akm8973 config", __func__);
		goto error;
	}

	value = (int) data->ho[0];
	length = snprintf((char *) &buffer, sizeof(buffer), "HSUC_HO_FORM0.x = %d\n", value);

	rc = write(config_fd, buffer, length);
	if (rc < length) {
		ALOGE("%s: Unable to write akm8973 config", __func__);
		goto error;
	}

	value = (int) data->ho[1];
	length = snprintf((char *) &buffer, sizeof(buffer), "HSUC_HO_FORM0.y = %d\n", value);

	rc = write(config_fd, buffer, length);
	if (rc < length) {
		ALOGE("%s: Unable to write akm8973 config", __func__);
		goto error;
	}

	value = (int) data->ho[2];
	length = snprintf((char *) &buffer, sizeof(buffer), "HSUC_HO_FORM0.z = %d\n", value);

	rc = write(config_fd, buffer, length);
	if (rc < length) {
		ALOGE("%s: Unable to write akm8973 config", __func__);
		goto error;
	}

	rc = 0;
	goto complete;

error:
	rc = -1;

complete:
	if (config_fd >= 0)
		close(config_fd);

	return rc;
}

int akm8973_hdac_calibration(struct akm8973_data *data,
	unsigned char *magnetic_data, size_t magnetic_data_size)
{
	unsigned char value;
	int update;
	int rc;
	int i;

	if (data == NULL || magnetic_data == NULL || magnetic_data_size < 3)
		return -EINVAL;

	update = 0;

	for (i = 0; i < 3; i++) {
		// Transform non-linear HDAC to a linear value
		if (data->hdac[i] == 0)
			value = 0x80;
		else if (data->hdac[i] < 0x80)
			value = 0x80 - data->hdac[i];
		else
			value = data->hdac[i];

		// Adjust the (linear) HDAC offset if the value is out of range.
		// The correct range is [50;205] (in raw magnetic data).

		if (magnetic_data[i] < 50 ) {
			if (value > (0xff - 4))
				continue;

			if (magnetic_data[i] < 10)
				value += 4;
			else if (magnetic_data[i] < 20)
				value += 3;
			else if (magnetic_data[i] < 30)
				value += 2;
			else
				value += 1;

			update = 1;
		}

		if (magnetic_data[i] > 205) {
			if (value < (0x00 + 4))
				continue;

			if (magnetic_data[i] > 245)
				value -= 4;
			else if (magnetic_data[i] > 235)
				value -= 3;
			else if (magnetic_data[i] > 225)
				value -= 2;
			else
				value -= 1;

			update = 1;
		}

		if (update) {
			// When the HDAC (hardware offset) value is changed, the HO value and magnetic extrema become irrelevant.
			// We can calculate HO (software offset) from HDAC but it'll need to be finely tuned later on.

			data->magnetic_extrema[0][i] = 0;
			data->magnetic_extrema[1][i] = 0;

			// Transform linear value to non-linear HDAC
			if (value == 0x80) {
				data->hdac[i] = 0;
				data->ho[i] = 0;
			} else if (value < 0x80) {
				data->hdac[i] = 0x80 - value;
				data->ho[i] = data->hdac[i] * -1 * 16 * 16;
			} else {
				data->hdac[i] = value;
				data->ho[i] = (data->hdac[i] - 128) * 16 * 16;
			}
		}
	}

	if (update) {
		rc = akm8973_hdac(data);
		if (rc < 0) {
			ALOGE("%s: Unable to set akm8973 HDAC", __func__);
			return -1;
		}
	}

	return 0;
}

int akm8973_ho_calibration(struct akm8973_data *data,
	unsigned char *magnetic_data, size_t magnetic_data_size)
{
	float ho[2];
	int gain_index;
	int i;

	if (data == NULL || magnetic_data == NULL || magnetic_data_size < 3)
		return -EINVAL;

	// Update the extrema from the current raw magnetic data
	for (i = 0; i < 3; i++) {
		if (magnetic_data[i] < data->magnetic_extrema[0][i] || data->magnetic_extrema[0][i] == 0)
			data->magnetic_extrema[0][i] = magnetic_data[i];
		if (magnetic_data[i] > data->magnetic_extrema[1][i] || data->magnetic_extrema[1][i] == 0)
			data->magnetic_extrema[1][i] = magnetic_data[i];
	}

	// Calculate HO (software offset)
	if (data->magnetic_data_count % 10 == 0) {
		for (i = 0; i < 3; i++) {
			gain_index = data->gain_indexes[i];
			if (gain_index < 0 || gain_index >= akm8973_gain_coefficient_count)
				continue;

			// Calculate offset for minimum to be at -45uT
			ho[0] = ((float) (data->magnetic_extrema[0][i] - 0x80) + (16.0f * 45.0f) / akm8973_gain_coefficient[gain_index] ) * 16.0f;
			// Calculate offset for maximum to be at +45uT
			ho[1] = ((float) (data->magnetic_extrema[1][i] - 0x80) - (16.0f * 45.0f) / akm8973_gain_coefficient[gain_index] ) * 16.0f;
			// Average offset to make everyone (mostly) happy
			data->ho[i] = (int) (ho[0] + ho[1]) / 2.0f;
		}
	}

	return 0;
}

int akm8973_magnetic_axis(struct akm8973_data *data, int index, float *axis)
{
	float value;
	int count;
	int gain_index;
	int i;

	if (data == NULL || axis == NULL || index < 0 || index >= 3)
		return -EINVAL;

	count = data->magnetic_data_count >= 4 ? 4 : data->magnetic_data_count;
	value = 0;

	// Average the last 4 (or less) raw magnetic values
	for (i = 0; i < count; i++)
		value += (float) data->magnetic_data[i][index];
	value /= count;

	gain_index = data->gain_indexes[index];
	if (gain_index < 0 || gain_index >= akm8973_gain_coefficient_count)
		return -1;

	// Formula to get the magnetic field in uT from the raw magnetic value, HO and coefficient from gain
	*axis = ((value - 128 - ((float) data->ho[index] / 16.0f)) * akm8973_gain_coefficient[gain_index]) / 16.0f;

	return 0;
}

int akm8973_magnetic(struct akm8973_data *data)
{
	int rc;

	if (data == NULL)
		return -EINVAL;

	rc = 0;
	rc |= akm8973_magnetic_axis(data, 0, &data->magnetic.x);
	rc |= akm8973_magnetic_axis(data, 1, &data->magnetic.y);
	rc |= akm8973_magnetic_axis(data, 2, &data->magnetic.z);

	return rc;
}

void *akm8973_thread(void *thread_data)
{
	struct herring_sensors_handlers *handlers = NULL;
	struct akm8973_data *data = NULL;
	struct input_event event;
	struct timeval time;
	char i2c_data[SENSOR_DATA_SIZE] = { 0 };
	unsigned char magnetic_data[3] = { 0 };
	int index;
	int value;
	short mode;
	long int before, after;
	int diff;
	int device_fd;
	int uinput_fd;
	int rc;
	int i, j;

	if (thread_data == NULL)
		return NULL;

	handlers = (struct herring_sensors_handlers *) thread_data;
	if (handlers->data == NULL)
		return NULL;

	data = (struct akm8973_data *) handlers->data;

	device_fd = data->device_fd;
	if (device_fd < 0)
		return NULL;

	uinput_fd = data->uinput_fd;
	if (uinput_fd < 0)
		return NULL;

	while (data->thread_continue) {
		pthread_mutex_lock(&data->mutex);
		if (!data->thread_continue)
			break;

		while (handlers->activated) {
			gettimeofday(&time, NULL);
			before = timestamp(&time);

			mode = AK8973_MODE_MEASURE;
			rc = ioctl(device_fd, ECS_IOCTL_SET_MODE, &mode);
			if (rc < 0) {
				ALOGE("%s: Unable to set akm8973 mode", __func__);
				goto next;
			}

			memset(&i2c_data, 0, sizeof(i2c_data));
			rc = ioctl(device_fd, ECS_IOCTL_GETDATA, &i2c_data);
			if (rc < 0) {
				ALOGE("%s: Unable to get akm8973 data", __func__);
				goto next;
			}

			if (!(i2c_data[0] & 0x01)) {
				ALOGE("%s: akm8973 data is not ready", __func__);
				goto next;
			}

			magnetic_data[0] = (unsigned char) i2c_data[2];
			magnetic_data[1] = (unsigned char) i2c_data[3];
			magnetic_data[2] = (unsigned char) i2c_data[4];

			rc = akm8973_hdac_calibration(data, (unsigned char *) &magnetic_data, sizeof(magnetic_data));
			if (rc < 0) {
				ALOGE("%s: Unable to calibrate akm8973 HDAC", __func__);
				goto next;
			}

			index = data->magnetic_data_index;

			data->magnetic_data[index][0] = magnetic_data[0];
			data->magnetic_data[index][1] = magnetic_data[1];
			data->magnetic_data[index][2] = magnetic_data[2];

			data->magnetic_data_index = (index + 1) % 4;
			data->magnetic_data_count++;

			rc = akm8973_ho_calibration(data, (unsigned char *) &magnetic_data, sizeof(magnetic_data));
			if (rc < 0) {
				ALOGE("%s: Unable to calibrate akm8973 HO", __func__);
				goto next;
			}

			rc = akm8973_magnetic(data);
			if (rc < 0) {
				ALOGE("%s: Unable to get akm8973 magnetic", __func__);
				goto next;
			}

			input_event_set(&event, EV_REL, REL_X, (int) (data->magnetic.x * 1000));
			write(uinput_fd, &event, sizeof(event));
			input_event_set(&event, EV_REL, REL_Y, (int) (data->magnetic.y * 1000));
			write(uinput_fd, &event, sizeof(event));
			input_event_set(&event, EV_REL, REL_Z, (int) (data->magnetic.z * 1000));
			write(uinput_fd, &event, sizeof(event));
			input_event_set(&event, EV_SYN, 0, 0);
			write(uinput_fd, &event, sizeof(event));

next:
			gettimeofday(&time, NULL);
			after = timestamp(&time);

			diff = (int) (data->delay - (after - before)) / 1000;
			if (diff <= 0)
				continue;

			usleep(diff);
		}
	}
	return NULL;
}

int akm8973_init(struct herring_sensors_handlers *handlers,
	struct herring_sensors_device *device)
{
	struct akm8973_data *data = NULL;
	pthread_attr_t thread_attr;
	char i2c_data[RWBUF_SIZE] = { 0 };
	char mode;
	int device_fd = -1;
	int uinput_fd = -1;
	int input_fd = -1;
	int rc;
	int i;

	ALOGD("%s(%p, %p)", __func__, handlers, device);

	if (handlers == NULL || device == NULL)
		return -EINVAL;

	data = (struct akm8973_data *) calloc(1, sizeof(struct akm8973_data));

	for (i = 0; i < device->handlers_count; i++) {
		if (device->handlers[i] == NULL)
			continue;

		if (device->handlers[i]->handle == SENSOR_TYPE_ORIENTATION)
			data->orientation_sensor = device->handlers[i];
	}

	device_fd = open("/dev/akm8973", O_RDONLY);
	if (device_fd < 0) {
		ALOGE("%s: Unable to open device", __func__);
		goto error;
	}

	rc = ioctl(device_fd, ECS_IOCTL_RESET, NULL);
	if (rc < 0) {
		ALOGE("%s: Unable to reset akm8973", __func__);
		goto error;
	}

	mode = AK8973_MODE_E2P_READ;
	rc = ioctl(device_fd, ECS_IOCTL_SET_MODE, &mode);
	if (rc < 0) {
		ALOGE("%s: Unable to set akm8973 mode", __func__);
		goto error;
	}

	i2c_data[0] = 3;
	i2c_data[1] = AK8973_EEP_EHXGA;
	rc = ioctl(device_fd, ECS_IOCTL_READ, &i2c_data);
	if (rc < 0) {
		ALOGE("%s: Unable to read akm8973 EEPROM data", __func__);
		goto error;
	}

	data->gain_indexes[0] = (i2c_data[1] & 0xf0) >> 4;
	data->gain_indexes[1] = (i2c_data[2] & 0xf0) >> 4;
	data->gain_indexes[2] = (i2c_data[3] & 0xf0) >> 4;

	ALOGD("AKM8973 gain indexes are: (%d, %d, %d)", data->gain_indexes[0],
		data->gain_indexes[1], data->gain_indexes[2]);

	mode = AK8973_MODE_POWERDOWN;
	rc = ioctl(device_fd, ECS_IOCTL_SET_MODE, &mode);
	if (rc < 0) {
		ALOGE("%s: Unable to set akm8973 mode", __func__);
		goto error;
	}

	i2c_data[5] = i2c_data[1] & 0x0f;
	i2c_data[6] = i2c_data[2] & 0x0f;
	i2c_data[7] = i2c_data[3] & 0x0f;

	i2c_data[0] = 7;
	i2c_data[1] = AK8973_REG_HXDA;

	i2c_data[2] = 0;
	i2c_data[3] = 0;
	i2c_data[4] = 0;

	rc = ioctl(device_fd, ECS_IOCTL_WRITE, &i2c_data);
	if (rc < 0) {
		ALOGE("%s: Unable to write akm8973 data", __func__);
		goto error;
	}

	uinput_fd = uinput_rel_create("magnetic");
	if (uinput_fd < 0) {
		ALOGD("%s: Unable to create uinput", __func__);
		goto error;
	}

	input_fd = input_open("magnetic");
	if (input_fd < 0) {
		ALOGE("%s: Unable to open magnetic input", __func__);
		goto error;
	}

	data->thread_continue = 1;

	pthread_mutex_init(&data->mutex, NULL);
	pthread_mutex_lock(&data->mutex);

	pthread_attr_init(&thread_attr);
	pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_DETACHED);

	rc = pthread_create(&data->thread, &thread_attr, akm8973_thread, (void *) handlers);
	if (rc < 0) {
		ALOGE("%s: Unable to create akm8973 thread", __func__);
		pthread_mutex_destroy(&data->mutex);
		goto error;
	}

	data->device_fd = device_fd;
	data->uinput_fd = uinput_fd;
	handlers->poll_fd = input_fd;
	handlers->data = (void *) data;

	return 0;

error:
	if (data != NULL)
		free(data);

	if (uinput_fd >= 0)
		close(uinput_fd);

	if (input_fd >= 0)
		close(input_fd);

	if (device_fd >= 0)
		close(device_fd);

	handlers->poll_fd = -1;
	handlers->data = NULL;

	return -1;
}

int akm8973_deinit(struct herring_sensors_handlers *handlers)
{
	struct akm8973_data *data = NULL;
	char mode;
	int rc;

	ALOGD("%s(%p)", __func__, handlers);

	if (handlers == NULL || handlers->data == NULL)
		return -EINVAL;

	data = (struct akm8973_data *) handlers->data;

	handlers->activated = 0;
	data->thread_continue = 0;
	pthread_mutex_unlock(&data->mutex);

	pthread_mutex_destroy(&data->mutex);

	if (data->uinput_fd >= 0) {
		uinput_destroy(data->uinput_fd);
		close(data->uinput_fd);
	}
	data->uinput_fd = -1;

	if (handlers->poll_fd >= 0)
		close(handlers->poll_fd);
	handlers->poll_fd = -1;

	mode = AK8973_MODE_POWERDOWN;
	rc = ioctl(data->device_fd, ECS_IOCTL_SET_MODE, &mode);
	if (rc < 0)
		ALOGE("%s: Unable to set akm8973 mode", __func__);

	if (data->device_fd >= 0)
		close(data->device_fd);
	data->device_fd = -1;

	free(handlers->data);
	handlers->data = NULL;

	return 0;
}

int akm8973_activate(struct herring_sensors_handlers *handlers)
{
	struct akm8973_data *data;
	int rc;

	ALOGD("%s(%p)", __func__, handlers);

	if (handlers == NULL || handlers->data == NULL)
		return -EINVAL;

	data = (struct akm8973_data *) handlers->data;

	rc = akm8973_config_read(data);
	if (rc < 0) {
		ALOGE("%s: Unable to read akm8973 config", __func__);
	} else if (rc > 0) {
		rc = akm8973_hdac(data);
		if (rc < 0) {
			ALOGE("%s: Unable to set akm8973 HDAC", __func__);
			return -1;
		}
	}

	handlers->activated = 1;
	pthread_mutex_unlock(&data->mutex);

	return 0;
}

int akm8973_deactivate(struct herring_sensors_handlers *handlers)
{
	struct akm8973_data *data;
	int device_fd;
	char mode;
	int empty;
	int rc;
	int i;

	ALOGD("%s(%p)", __func__, handlers);

	if (handlers == NULL || handlers->data == NULL)
		return -EINVAL;

	data = (struct akm8973_data *) handlers->data;

	empty = 1;

	for (i = 0; i < (ssize_t) sizeof(data->magnetic_extrema) / 2; i++) {
		if (data->magnetic_extrema[0][i] != 0 || data->magnetic_extrema[1][i] != 0) {
			empty = 0;
			break;
		}
	}

	if (!empty) {
		rc = akm8973_config_write(data);
		if (rc < 0)
			ALOGE("%s: Unable to write akm8973 config", __func__);
	}

	device_fd = data->device_fd;
	if (device_fd < 0)
		return -1;

	mode = AK8973_MODE_POWERDOWN;
	rc = ioctl(data->device_fd, ECS_IOCTL_SET_MODE, &mode);
	if (rc < 0)
		ALOGE("%s: Unable to set akm8973 mode", __func__);

	handlers->activated = 0;

	return 0;
}

int akm8973_set_delay(struct herring_sensors_handlers *handlers, long int delay)
{
	struct akm8973_data *data;

	ALOGD("%s(%p, %ld)", __func__, handlers, delay);

	if (handlers == NULL || handlers->data == NULL)
		return -EINVAL;

	data = (struct akm8973_data *) handlers->data;

	data->delay = delay;

	return 0;
}

float akm8973_convert(int value)
{
	return (float) value / -1000.0f;
}

int akm8973_get_data(struct herring_sensors_handlers *handlers,
	struct sensors_event_t *event)
{
	struct akm8973_data *data;
	struct input_event input_event;
	int input_fd;
	int rc;

//	ALOGD("%s(%p, %p)", __func__, handlers, event);

	if (handlers == NULL || handlers->data == NULL || event == NULL)
		return -EINVAL;

	data = (struct akm8973_data *) handlers->data;

	input_fd = handlers->poll_fd;
	if (input_fd < 0)
		return -1;

	memset(event, 0, sizeof(struct sensors_event_t));
	event->version = sizeof(struct sensors_event_t);
	event->sensor = handlers->handle;
	event->type = handlers->handle;

	event->magnetic.status = SENSOR_STATUS_ACCURACY_MEDIUM;

	do {
		rc = read(input_fd, &input_event, sizeof(input_event));
		if (rc < (int) sizeof(input_event))
			break;

		if (input_event.type == EV_REL) {
			switch (input_event.code) {
				case REL_X:
					event->magnetic.y = akm8973_convert(input_event.value);
					break;
				case REL_Y:
					event->magnetic.x = akm8973_convert(input_event.value);
					break;
				case REL_Z:
					event->magnetic.z = akm8973_convert(input_event.value);
					break;
				default:
					continue;
			}
		} else if (input_event.type == EV_SYN) {
			if (input_event.code == SYN_REPORT)
				event->timestamp = input_timestamp(&input_event);
		}
	} while (input_event.type != EV_SYN);

	if (data->orientation_sensor != NULL)
		orientation_fill(data->orientation_sensor, NULL, &event->magnetic);

	return 0;
}

struct herring_sensors_handlers akm8973 = {
	.name = "AKM8973",
	.handle = SENSOR_TYPE_MAGNETIC_FIELD,
	.init = akm8973_init,
	.deinit = akm8973_deinit,
	.activate = akm8973_activate,
	.deactivate = akm8973_deactivate,
	.set_delay = akm8973_set_delay,
	.get_data = akm8973_get_data,
	.activated = 0,
	.needed = 0,
	.poll_fd = -1,
	.data = NULL,
};