/* * Copyright (C) 2013 Paul Kocialkowski * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #define LOG_TAG "herring_sensors" #include #include "herring_sensors.h" struct orientation_data { struct herring_sensors_handlers *acceleration_sensor; struct herring_sensors_handlers *magnetic_sensor; sensors_vec_t orientation; sensors_vec_t acceleration; sensors_vec_t magnetic; long int delay; int uinput_fd; pthread_t thread; pthread_mutex_t mutex; int thread_continue; }; static float rad2deg(float v) { return (v * 180.0f / 3.1415926535f); } static float vector_scalar(sensors_vec_t *v, sensors_vec_t *d) { return v->x * d->x + v->y * d->y + v->z * d->z; } static float vector_length(sensors_vec_t *v) { return sqrtf(vector_scalar(v, v)); } void orientation_calculate(sensors_vec_t *a, sensors_vec_t *m, sensors_vec_t *o) { float azimuth, pitch, roll; float la, sinp, cosp, sinr, cosr, x, y; if (a == NULL || m == NULL || o == NULL) return; la = vector_length(a); pitch = asinf(-(a->y) / la); roll = asinf((a->x) / la); sinp = sinf(pitch); cosp = cosf(pitch); sinr = sinf(roll); cosr = cosf(roll); y = -(m->x) * cosr + m->z * sinr; x = m->x * sinp * sinr + m->y * cosp + m->z * sinp * cosr; azimuth = atan2f(y, x); o->azimuth = rad2deg(azimuth); o->pitch = rad2deg(pitch); o->roll = rad2deg(roll); if (o->azimuth < 0) o->azimuth += 360.0f; } void *orientation_thread(void *thread_data) { struct herring_sensors_handlers *handlers = NULL; struct orientation_data *data = NULL; struct input_event event; struct timeval time; long int before, after; int diff; int uinput_fd; if (thread_data == NULL) return NULL; handlers = (struct herring_sensors_handlers *) thread_data; if (handlers->data == NULL) return NULL; data = (struct orientation_data *) handlers->data; uinput_fd = data->uinput_fd; if (uinput_fd < 0) return NULL; while (data->thread_continue) { pthread_mutex_lock(&data->mutex); if (!data->thread_continue) break; while (handlers->activated) { gettimeofday(&time, NULL); before = timestamp(&time); orientation_calculate(&data->acceleration, &data->magnetic, &data->orientation); input_event_set(&event, EV_REL, REL_X, (int) (data->orientation.azimuth * 1000)); write(uinput_fd, &event, sizeof(event)); input_event_set(&event, EV_REL, REL_Y, (int) (data->orientation.pitch * 1000)); write(uinput_fd, &event, sizeof(event)); input_event_set(&event, EV_REL, REL_Z, (int) (data->orientation.roll * 1000)); write(uinput_fd, &event, sizeof(event)); input_event_set(&event, EV_SYN, 0, 0); write(uinput_fd, &event, sizeof(event)); gettimeofday(&time, NULL); after = timestamp(&time); diff = (int) (data->delay - (after - before)) / 1000; if (diff <= 0) continue; usleep(diff); } } return NULL; } int orientation_fill(struct herring_sensors_handlers *handlers, sensors_vec_t *acceleration, sensors_vec_t *magnetic) { struct orientation_data *data; // ALOGD("%s(%p, %p, %p)", __func__, handlers, acceleration, magnetic); if (handlers == NULL || handlers->data == NULL) return -EINVAL; data = (struct orientation_data *) handlers->data; if (acceleration != NULL) { data->acceleration.x = acceleration->x; data->acceleration.y = acceleration->y; data->acceleration.z = acceleration->z; } if (magnetic != NULL) { data->magnetic.x = magnetic->x; data->magnetic.y = magnetic->y; data->magnetic.z = magnetic->z; } return 0; } int orientation_init(struct herring_sensors_handlers *handlers, struct herring_sensors_device *device) { struct orientation_data *data = NULL; pthread_attr_t thread_attr; int uinput_fd = -1; int input_fd = -1; int rc; int i; ALOGD("%s(%p, %p)", __func__, handlers, device); if (handlers == NULL || device == NULL) return -EINVAL; data = (struct orientation_data *) calloc(1, sizeof(struct orientation_data)); for (i = 0; i < device->handlers_count; i++) { if (device->handlers[i] == NULL) continue; if (device->handlers[i]->handle == SENSOR_TYPE_ACCELEROMETER) data->acceleration_sensor = device->handlers[i]; else if (device->handlers[i]->handle == SENSOR_TYPE_MAGNETIC_FIELD) data->magnetic_sensor = device->handlers[i]; } if (data->acceleration_sensor == NULL || data->magnetic_sensor == NULL) { ALOGE("%s: Missing sensors for orientation", __func__); goto error; } uinput_fd = uinput_rel_create("orientation"); if (uinput_fd < 0) { ALOGD("%s: Unable to create uinput", __func__); goto error; } input_fd = input_open("orientation"); if (input_fd < 0) { ALOGE("%s: Unable to open orientation input", __func__); goto error; } data->thread_continue = 1; pthread_mutex_init(&data->mutex, NULL); pthread_mutex_lock(&data->mutex); pthread_attr_init(&thread_attr); pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_DETACHED); rc = pthread_create(&data->thread, &thread_attr, orientation_thread, (void *) handlers); if (rc < 0) { ALOGE("%s: Unable to create orientation thread", __func__); pthread_mutex_destroy(&data->mutex); goto error; } data->uinput_fd = uinput_fd; handlers->poll_fd = input_fd; handlers->data = (void *) data; return 0; error: if (data != NULL) free(data); if (uinput_fd >= 0) close(uinput_fd); if (input_fd >= 0) close(input_fd); handlers->poll_fd = -1; handlers->data = NULL; return -1; } int orientation_deinit(struct herring_sensors_handlers *handlers) { struct orientation_data *data; ALOGD("%s(%p)", __func__, handlers); if (handlers == NULL || handlers->data == NULL) return -EINVAL; data = (struct orientation_data *) handlers->data; handlers->activated = 0; data->thread_continue = 0; pthread_mutex_unlock(&data->mutex); pthread_mutex_destroy(&data->mutex); if (data->uinput_fd >= 0) { uinput_destroy(data->uinput_fd); close(data->uinput_fd); } data->uinput_fd = -1; if (handlers->poll_fd >= 0) close(handlers->poll_fd); handlers->poll_fd = -1; free(handlers->data); handlers->data = NULL; return 0; } int orientation_activate(struct herring_sensors_handlers *handlers) { struct orientation_data *data; ALOGD("%s(%p)", __func__, handlers); if (handlers == NULL || handlers->data == NULL) return -EINVAL; data = (struct orientation_data *) handlers->data; if (data->acceleration_sensor == NULL || data->magnetic_sensor == NULL) return -1; data->acceleration_sensor->needed |= HERRING_SENSORS_NEEDED_ORIENTATION; if (data->acceleration_sensor->needed == HERRING_SENSORS_NEEDED_ORIENTATION) data->acceleration_sensor->activate(data->acceleration_sensor); data->magnetic_sensor->needed |= HERRING_SENSORS_NEEDED_ORIENTATION; if (data->magnetic_sensor->needed == HERRING_SENSORS_NEEDED_ORIENTATION) data->magnetic_sensor->activate(data->magnetic_sensor); handlers->activated = 1; pthread_mutex_unlock(&data->mutex); return 0; } int orientation_deactivate(struct herring_sensors_handlers *handlers) { struct orientation_data *data; ALOGD("%s(%p)", __func__, handlers); if (handlers == NULL || handlers->data == NULL) return -EINVAL; data = (struct orientation_data *) handlers->data; if (data->acceleration_sensor == NULL || data->magnetic_sensor == NULL) return -1; data->acceleration_sensor->needed &= ~(HERRING_SENSORS_NEEDED_ORIENTATION); if (data->acceleration_sensor->needed == 0) data->acceleration_sensor->deactivate(data->acceleration_sensor); data->magnetic_sensor->needed &= ~(HERRING_SENSORS_NEEDED_ORIENTATION); if (data->magnetic_sensor->needed == 0) data->magnetic_sensor->deactivate(data->magnetic_sensor); handlers->activated = 0; return 0; } int orientation_set_delay(struct herring_sensors_handlers *handlers, long int delay) { struct orientation_data *data; ALOGD("%s(%p)", __func__, handlers); if (handlers == NULL || handlers->data == NULL) return -EINVAL; data = (struct orientation_data *) handlers->data; if (data->acceleration_sensor == NULL || data->magnetic_sensor == NULL) return -1; if (data->acceleration_sensor->needed == HERRING_SENSORS_NEEDED_ORIENTATION) data->acceleration_sensor->set_delay(data->acceleration_sensor, delay); if (data->magnetic_sensor->needed == HERRING_SENSORS_NEEDED_ORIENTATION) data->magnetic_sensor->set_delay(data->magnetic_sensor, delay); data->delay = delay; return 0; } float orientation_convert(int value) { return (float) value / 1000.0f; } int orientation_get_data(struct herring_sensors_handlers *handlers, struct sensors_event_t *event) { struct input_event input_event; int input_fd = -1; int rc; // ALOGD("%s(%p, %p)", __func__, handlers, event); if (handlers == NULL || event == NULL) return -EINVAL; input_fd = handlers->poll_fd; if (input_fd < 0) return -EINVAL; memset(event, 0, sizeof(struct sensors_event_t)); event->version = sizeof(struct sensors_event_t); event->sensor = handlers->handle; event->type = handlers->handle; event->orientation.status = SENSOR_STATUS_ACCURACY_MEDIUM; do { rc = read(input_fd, &input_event, sizeof(input_event)); if (rc < (int) sizeof(input_event)) break; if (input_event.type == EV_REL) { switch (input_event.code) { case REL_X: event->orientation.azimuth = orientation_convert(input_event.value); break; case REL_Y: event->orientation.pitch = orientation_convert(input_event.value); break; case REL_Z: event->orientation.roll = orientation_convert(input_event.value); break; default: continue; } } else if (input_event.type == EV_SYN) { if (input_event.code == SYN_REPORT) event->timestamp = input_timestamp(&input_event); } } while (input_event.type != EV_SYN); return 0; } struct herring_sensors_handlers orientation = { .name = "Orientation", .handle = SENSOR_TYPE_ORIENTATION, .init = orientation_init, .deinit = orientation_deinit, .activate = orientation_activate, .deactivate = orientation_deactivate, .set_delay = orientation_set_delay, .get_data = orientation_get_data, .activated = 0, .needed = 0, .poll_fd = -1, .data = NULL, };