/* * Copyright (C) 2013 Paul Kocialkowski * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #define LOG_TAG "herring_sensors" #include #include "herring_sensors.h" #include "ak8973-reg.h" #include "ak8973.h" #define AKM8973_CONFIG_PATH "/data/misc/akmd_set.txt" struct akm8973_data { struct herring_sensors_handlers *orientation_sensor; sensors_vec_t magnetic; unsigned char magnetic_data[4][3]; int magnetic_data_count; int magnetic_data_index; unsigned char magnetic_extrema[2][3]; unsigned char gain_indexes[3]; unsigned char hdac[3]; int ho[3]; long int delay; int device_fd; int uinput_fd; pthread_t thread; pthread_mutex_t mutex; int thread_continue; }; // This AKM8973 implementation is based on intuitive understanding of how the // AKM8973 data is translated to SI units. // // Different parameters are used to properly configure and interpret the data: // * Hardware gain, which is stored in the chip's EEPROM and is a factory // setting that shouldn't be changed. We don't have to deal with this value at // all for our computation. // * Software gain, that is a factory setting we use to determine the // coefficient to use at some point in the final equation. // * Hardware DAC offset (HDAC) that we can tune in order to be able to see // variations of the raw values. This value is not a linear representation // of the offset! See page 22 of the AKM8973 datasheet for further details. // * Software offset (HO) that we can tune in order to have the maximum final // value at ~45uT and the minimal final value at ~-45uT for each axis. // // The final equation used to determine usable values from the raw input data // was found to be: // out = ((in - 128 - HO / 16) * k / 16 // // * out: Final value in uT units // * in: Raw value as received from the sensor // * HO: HO software offset // * k: Coefficient that is determined from the software gain // // When no software calibration is used, we can translate HDAC to HO using the // following formulas: // if HDAC < 128: HO = HDAC * -1 * 16 * 16 // if HDAC >= 128: HO = (HDAC - 128) * 16 * 16 // Constant gain-specific coefficients used in the final formula float akm8973_gain_coefficient[] = { 16.33f, 16.28f, 16.24f, 16.18f, 16.14f, 16.10f, 16.04f, 16.00f, 15.96f, 15.90f, 15.86f, 15.82f, 15.76f, 15.72f, 15.69f, 15.65f, }; int akm8973_gain_coefficient_count = sizeof(akm8973_gain_coefficient) / sizeof(float); int akm8973_hdac(struct akm8973_data *data) { char i2c_data[RWBUF_SIZE] = { 0 }; int device_fd; int rc; if (data == NULL) return -EINVAL; device_fd = data->device_fd; if (device_fd < 0) return -1; i2c_data[0] = 4; i2c_data[1] = AK8973_REG_HXDA; i2c_data[2] = data->hdac[0]; i2c_data[3] = data->hdac[1]; i2c_data[4] = data->hdac[2]; rc = ioctl(device_fd, ECS_IOCTL_WRITE, &i2c_data); if (rc < 0) { ALOGE("%s: Unable to write akm8973 data", __func__); return -1; } return 0; } int akm8973_magnetic_extrema(struct akm8973_data *data, int index) { int gain_index; if (data == NULL || index < 0 || index >= 3) return -EINVAL; gain_index = data->gain_indexes[index]; if (gain_index < 0 || gain_index >= akm8973_gain_coefficient_count) return -1; // Calculate the extrema from HO (software offset) data->magnetic_extrema[0][index] = (unsigned char) ((int) ((16.0f * -45.0f) / akm8973_gain_coefficient[gain_index] + 128 + data->ho[index] / 16.0f + 10.0f) & 0xff); data->magnetic_extrema[1][index] = (unsigned char) ((int) ((16.0f * 45.0f) / akm8973_gain_coefficient[gain_index] + 128 + data->ho[index] / 16.0f - 10.0f) & 0xff); return 0; } int akm8973_config_read(struct akm8973_data *data) { char buffer[256] = { 0 }; int config_fd = -1; int offset = 0; int length; int count; int value; char *p; int rc; if (data == NULL) return -EINVAL; config_fd = open(AKM8973_CONFIG_PATH, O_RDONLY); if (config_fd < 0) { ALOGE("%s: Unable to open akm8973 config %d %s", __func__, errno, strerror(errno)); goto error; } rc = 0; do { lseek(config_fd, offset, SEEK_SET); length = read(config_fd, buffer, sizeof(buffer)); if (length <= 0) break; p = strchr((const char *) &buffer, '\n'); if (p != NULL) { offset += (int) p - (int) buffer + 1; *p = '\0'; } else if ((size_t) length < sizeof(buffer)) { buffer[length] = '\0'; } count = sscanf((char const *) &buffer, "HSUC_HDAC_FORM0.x = %d", &value); if (count == 1) { data->hdac[0] = (unsigned char) (value & 0xff); rc |= 1; } count = sscanf((char const *) &buffer, "HSUC_HDAC_FORM0.y = %d", &value); if (count == 1) { data->hdac[1] = (unsigned char) (value & 0xff); rc |= 1; } count = sscanf((char const *) &buffer, "HSUC_HDAC_FORM0.z = %d", &value); if (count == 1) { data->hdac[2] = (unsigned char) (value & 0xff); rc |= 1; } count = sscanf((char const *) &buffer, "HSUC_HO_FORM0.x = %d", &value); if (count == 1) { data->ho[0] = value; rc |= akm8973_magnetic_extrema(data, 0); } count = sscanf((char const *) &buffer, "HSUC_HO_FORM0.y = %d", &value); if (count == 1) { data->ho[1] = value; rc |= akm8973_magnetic_extrema(data, 1); } count = sscanf((char const *) &buffer, "HSUC_HO_FORM0.z = %d", &value); if (count == 1) { data->ho[2] = value; rc |= akm8973_magnetic_extrema(data, 2); } } while (p != NULL && length > 0); goto complete; error: rc = -1; complete: if (config_fd >= 0) close(config_fd); return rc; } int akm8973_config_write(struct akm8973_data *data) { char buffer[256] = { 0 }; int config_fd = -1; int length; int value; int rc; if (data == NULL) return -EINVAL; config_fd = open(AKM8973_CONFIG_PATH, O_WRONLY | O_TRUNC | O_CREAT, 0664); if (config_fd < 0) { ALOGE("%s: Unable to open akm8973 config", __func__); goto error; } value = (int) data->hdac[0]; length = snprintf((char *) &buffer, sizeof(buffer), "HSUC_HDAC_FORM0.x = %d\n", value); rc = write(config_fd, buffer, length); if (rc < length) { ALOGE("%s: Unable to write akm8973 config", __func__); goto error; } value = (int) data->hdac[1]; length = snprintf((char *) &buffer, sizeof(buffer), "HSUC_HDAC_FORM0.y = %d\n", value); rc = write(config_fd, buffer, length); if (rc < length) { ALOGE("%s: Unable to write akm8973 config", __func__); goto error; } value = (int) data->hdac[2]; length = snprintf((char *) &buffer, sizeof(buffer), "HSUC_HDAC_FORM0.z = %d\n", value); rc = write(config_fd, buffer, length); if (rc < length) { ALOGE("%s: Unable to write akm8973 config", __func__); goto error; } value = (int) data->ho[0]; length = snprintf((char *) &buffer, sizeof(buffer), "HSUC_HO_FORM0.x = %d\n", value); rc = write(config_fd, buffer, length); if (rc < length) { ALOGE("%s: Unable to write akm8973 config", __func__); goto error; } value = (int) data->ho[1]; length = snprintf((char *) &buffer, sizeof(buffer), "HSUC_HO_FORM0.y = %d\n", value); rc = write(config_fd, buffer, length); if (rc < length) { ALOGE("%s: Unable to write akm8973 config", __func__); goto error; } value = (int) data->ho[2]; length = snprintf((char *) &buffer, sizeof(buffer), "HSUC_HO_FORM0.z = %d\n", value); rc = write(config_fd, buffer, length); if (rc < length) { ALOGE("%s: Unable to write akm8973 config", __func__); goto error; } rc = 0; goto complete; error: rc = -1; complete: if (config_fd >= 0) close(config_fd); return rc; } int akm8973_hdac_calibration(struct akm8973_data *data, unsigned char *magnetic_data, size_t magnetic_data_size) { unsigned char value; int update; int rc; int i; if (data == NULL || magnetic_data == NULL || magnetic_data_size < 3) return -EINVAL; update = 0; for (i = 0; i < 3; i++) { // Transform non-linear HDAC to a linear value if (data->hdac[i] == 0) value = 0x80; else if (data->hdac[i] < 0x80) value = 0x80 - data->hdac[i]; else value = data->hdac[i]; // Adjust the (linear) HDAC offset if the value is out of range. // The correct range is [50;205] (in raw magnetic data). if (magnetic_data[i] < 50 ) { if (value > (0xff - 4)) continue; if (magnetic_data[i] < 10) value += 4; else if (magnetic_data[i] < 20) value += 3; else if (magnetic_data[i] < 30) value += 2; else value += 1; update = 1; } if (magnetic_data[i] > 205) { if (value < (0x00 + 4)) continue; if (magnetic_data[i] > 245) value -= 4; else if (magnetic_data[i] > 235) value -= 3; else if (magnetic_data[i] > 225) value -= 2; else value -= 1; update = 1; } if (update) { // When the HDAC (hardware offset) value is changed, the HO value and magnetic extrema become irrelevant. // We can calculate HO (software offset) from HDAC but it'll need to be finely tuned later on. data->magnetic_extrema[0][i] = 0; data->magnetic_extrema[1][i] = 0; // Transform linear value to non-linear HDAC if (value == 0x80) { data->hdac[i] = 0; data->ho[i] = 0; } else if (value < 0x80) { data->hdac[i] = 0x80 - value; data->ho[i] = data->hdac[i] * -1 * 16 * 16; } else { data->hdac[i] = value; data->ho[i] = (data->hdac[i] - 128) * 16 * 16; } } } if (update) { rc = akm8973_hdac(data); if (rc < 0) { ALOGE("%s: Unable to set akm8973 HDAC", __func__); return -1; } } return 0; } int akm8973_ho_calibration(struct akm8973_data *data, unsigned char *magnetic_data, size_t magnetic_data_size) { float ho[2]; int gain_index; int i; if (data == NULL || magnetic_data == NULL || magnetic_data_size < 3) return -EINVAL; // Update the extrema from the current raw magnetic data for (i = 0; i < 3; i++) { if (magnetic_data[i] < data->magnetic_extrema[0][i] || data->magnetic_extrema[0][i] == 0) data->magnetic_extrema[0][i] = magnetic_data[i]; if (magnetic_data[i] > data->magnetic_extrema[1][i] || data->magnetic_extrema[1][i] == 0) data->magnetic_extrema[1][i] = magnetic_data[i]; } // Calculate HO (software offset) if (data->magnetic_data_count % 10 == 0) { for (i = 0; i < 3; i++) { gain_index = data->gain_indexes[i]; if (gain_index < 0 || gain_index >= akm8973_gain_coefficient_count) continue; // Calculate offset for minimum to be at -45uT ho[0] = ((float) (data->magnetic_extrema[0][i] - 0x80) + (16.0f * 45.0f) / akm8973_gain_coefficient[gain_index] ) * 16.0f; // Calculate offset for maximum to be at +45uT ho[1] = ((float) (data->magnetic_extrema[1][i] - 0x80) - (16.0f * 45.0f) / akm8973_gain_coefficient[gain_index] ) * 16.0f; // Average offset to make everyone (mostly) happy data->ho[i] = (int) (ho[0] + ho[1]) / 2.0f; } } return 0; } int akm8973_magnetic_axis(struct akm8973_data *data, int index, float *axis) { float value; int count; int gain_index; int i; if (data == NULL || axis == NULL || index < 0 || index >= 3) return -EINVAL; count = data->magnetic_data_count >= 4 ? 4 : data->magnetic_data_count; value = 0; // Average the last 4 (or less) raw magnetic values for (i = 0; i < count; i++) value += (float) data->magnetic_data[i][index]; value /= count; gain_index = data->gain_indexes[index]; if (gain_index < 0 || gain_index >= akm8973_gain_coefficient_count) return -1; // Formula to get the magnetic field in uT from the raw magnetic value, HO and coefficient from gain *axis = ((value - 128 - ((float) data->ho[index] / 16.0f)) * akm8973_gain_coefficient[gain_index]) / 16.0f; return 0; } int akm8973_magnetic(struct akm8973_data *data) { int rc; if (data == NULL) return -EINVAL; rc = 0; rc |= akm8973_magnetic_axis(data, 0, &data->magnetic.x); rc |= akm8973_magnetic_axis(data, 1, &data->magnetic.y); rc |= akm8973_magnetic_axis(data, 2, &data->magnetic.z); return rc; } void *akm8973_thread(void *thread_data) { struct herring_sensors_handlers *handlers = NULL; struct akm8973_data *data = NULL; struct input_event event; struct timeval time; char i2c_data[SENSOR_DATA_SIZE] = { 0 }; unsigned char magnetic_data[3] = { 0 }; int index; int value; short mode; long int before, after; int diff; int device_fd; int uinput_fd; int rc; int i, j; if (thread_data == NULL) return NULL; handlers = (struct herring_sensors_handlers *) thread_data; if (handlers->data == NULL) return NULL; data = (struct akm8973_data *) handlers->data; device_fd = data->device_fd; if (device_fd < 0) return NULL; uinput_fd = data->uinput_fd; if (uinput_fd < 0) return NULL; while (data->thread_continue) { pthread_mutex_lock(&data->mutex); if (!data->thread_continue) break; while (handlers->activated) { gettimeofday(&time, NULL); before = timestamp(&time); mode = AK8973_MODE_MEASURE; rc = ioctl(device_fd, ECS_IOCTL_SET_MODE, &mode); if (rc < 0) { ALOGE("%s: Unable to set akm8973 mode", __func__); goto next; } memset(&i2c_data, 0, sizeof(i2c_data)); rc = ioctl(device_fd, ECS_IOCTL_GETDATA, &i2c_data); if (rc < 0) { ALOGE("%s: Unable to get akm8973 data", __func__); goto next; } if (!(i2c_data[0] & 0x01)) { ALOGE("%s: akm8973 data is not ready", __func__); goto next; } magnetic_data[0] = (unsigned char) i2c_data[2]; magnetic_data[1] = (unsigned char) i2c_data[3]; magnetic_data[2] = (unsigned char) i2c_data[4]; rc = akm8973_hdac_calibration(data, (unsigned char *) &magnetic_data, sizeof(magnetic_data)); if (rc < 0) { ALOGE("%s: Unable to calibrate akm8973 HDAC", __func__); goto next; } index = data->magnetic_data_index; data->magnetic_data[index][0] = magnetic_data[0]; data->magnetic_data[index][1] = magnetic_data[1]; data->magnetic_data[index][2] = magnetic_data[2]; data->magnetic_data_index = (index + 1) % 4; data->magnetic_data_count++; rc = akm8973_ho_calibration(data, (unsigned char *) &magnetic_data, sizeof(magnetic_data)); if (rc < 0) { ALOGE("%s: Unable to calibrate akm8973 HO", __func__); goto next; } rc = akm8973_magnetic(data); if (rc < 0) { ALOGE("%s: Unable to get akm8973 magnetic", __func__); goto next; } input_event_set(&event, EV_REL, REL_X, (int) (data->magnetic.x * 1000)); write(uinput_fd, &event, sizeof(event)); input_event_set(&event, EV_REL, REL_Y, (int) (data->magnetic.y * 1000)); write(uinput_fd, &event, sizeof(event)); input_event_set(&event, EV_REL, REL_Z, (int) (data->magnetic.z * 1000)); write(uinput_fd, &event, sizeof(event)); input_event_set(&event, EV_SYN, 0, 0); write(uinput_fd, &event, sizeof(event)); next: gettimeofday(&time, NULL); after = timestamp(&time); diff = (int) (data->delay - (after - before)) / 1000; if (diff <= 0) continue; usleep(diff); } } return NULL; } int akm8973_init(struct herring_sensors_handlers *handlers, struct herring_sensors_device *device) { struct akm8973_data *data = NULL; pthread_attr_t thread_attr; char i2c_data[RWBUF_SIZE] = { 0 }; char mode; int device_fd = -1; int uinput_fd = -1; int input_fd = -1; int rc; int i; ALOGD("%s(%p, %p)", __func__, handlers, device); if (handlers == NULL || device == NULL) return -EINVAL; data = (struct akm8973_data *) calloc(1, sizeof(struct akm8973_data)); for (i = 0; i < device->handlers_count; i++) { if (device->handlers[i] == NULL) continue; if (device->handlers[i]->handle == SENSOR_TYPE_ORIENTATION) data->orientation_sensor = device->handlers[i]; } device_fd = open("/dev/akm8973", O_RDONLY); if (device_fd < 0) { ALOGE("%s: Unable to open device", __func__); goto error; } rc = ioctl(device_fd, ECS_IOCTL_RESET, NULL); if (rc < 0) { ALOGE("%s: Unable to reset akm8973", __func__); goto error; } mode = AK8973_MODE_E2P_READ; rc = ioctl(device_fd, ECS_IOCTL_SET_MODE, &mode); if (rc < 0) { ALOGE("%s: Unable to set akm8973 mode", __func__); goto error; } i2c_data[0] = 3; i2c_data[1] = AK8973_EEP_EHXGA; rc = ioctl(device_fd, ECS_IOCTL_READ, &i2c_data); if (rc < 0) { ALOGE("%s: Unable to read akm8973 EEPROM data", __func__); goto error; } data->gain_indexes[0] = (i2c_data[1] & 0xf0) >> 4; data->gain_indexes[1] = (i2c_data[2] & 0xf0) >> 4; data->gain_indexes[2] = (i2c_data[3] & 0xf0) >> 4; ALOGD("AKM8973 gain indexes are: (%d, %d, %d)", data->gain_indexes[0], data->gain_indexes[1], data->gain_indexes[2]); mode = AK8973_MODE_POWERDOWN; rc = ioctl(device_fd, ECS_IOCTL_SET_MODE, &mode); if (rc < 0) { ALOGE("%s: Unable to set akm8973 mode", __func__); goto error; } i2c_data[5] = i2c_data[1] & 0x0f; i2c_data[6] = i2c_data[2] & 0x0f; i2c_data[7] = i2c_data[3] & 0x0f; i2c_data[0] = 7; i2c_data[1] = AK8973_REG_HXDA; i2c_data[2] = 0; i2c_data[3] = 0; i2c_data[4] = 0; rc = ioctl(device_fd, ECS_IOCTL_WRITE, &i2c_data); if (rc < 0) { ALOGE("%s: Unable to write akm8973 data", __func__); goto error; } uinput_fd = uinput_rel_create("magnetic"); if (uinput_fd < 0) { ALOGD("%s: Unable to create uinput", __func__); goto error; } input_fd = input_open("magnetic"); if (input_fd < 0) { ALOGE("%s: Unable to open magnetic input", __func__); goto error; } data->thread_continue = 1; pthread_mutex_init(&data->mutex, NULL); pthread_mutex_lock(&data->mutex); pthread_attr_init(&thread_attr); pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_DETACHED); rc = pthread_create(&data->thread, &thread_attr, akm8973_thread, (void *) handlers); if (rc < 0) { ALOGE("%s: Unable to create akm8973 thread", __func__); pthread_mutex_destroy(&data->mutex); goto error; } data->device_fd = device_fd; data->uinput_fd = uinput_fd; handlers->poll_fd = input_fd; handlers->data = (void *) data; return 0; error: if (data != NULL) free(data); if (uinput_fd >= 0) close(uinput_fd); if (input_fd >= 0) close(input_fd); if (device_fd >= 0) close(device_fd); handlers->poll_fd = -1; handlers->data = NULL; return -1; } int akm8973_deinit(struct herring_sensors_handlers *handlers) { struct akm8973_data *data = NULL; char mode; int rc; ALOGD("%s(%p)", __func__, handlers); if (handlers == NULL || handlers->data == NULL) return -EINVAL; data = (struct akm8973_data *) handlers->data; handlers->activated = 0; data->thread_continue = 0; pthread_mutex_unlock(&data->mutex); pthread_mutex_destroy(&data->mutex); if (data->uinput_fd >= 0) { uinput_destroy(data->uinput_fd); close(data->uinput_fd); } data->uinput_fd = -1; if (handlers->poll_fd >= 0) close(handlers->poll_fd); handlers->poll_fd = -1; mode = AK8973_MODE_POWERDOWN; rc = ioctl(data->device_fd, ECS_IOCTL_SET_MODE, &mode); if (rc < 0) ALOGE("%s: Unable to set akm8973 mode", __func__); if (data->device_fd >= 0) close(data->device_fd); data->device_fd = -1; free(handlers->data); handlers->data = NULL; return 0; } int akm8973_activate(struct herring_sensors_handlers *handlers) { struct akm8973_data *data; int rc; ALOGD("%s(%p)", __func__, handlers); if (handlers == NULL || handlers->data == NULL) return -EINVAL; data = (struct akm8973_data *) handlers->data; rc = akm8973_config_read(data); if (rc < 0) { ALOGE("%s: Unable to read akm8973 config", __func__); } else if (rc > 0) { rc = akm8973_hdac(data); if (rc < 0) { ALOGE("%s: Unable to set akm8973 HDAC", __func__); return -1; } } handlers->activated = 1; pthread_mutex_unlock(&data->mutex); return 0; } int akm8973_deactivate(struct herring_sensors_handlers *handlers) { struct akm8973_data *data; int device_fd; char mode; int empty; int rc; int i; ALOGD("%s(%p)", __func__, handlers); if (handlers == NULL || handlers->data == NULL) return -EINVAL; data = (struct akm8973_data *) handlers->data; empty = 1; for (i = 0; i < (ssize_t) sizeof(data->magnetic_extrema) / 2; i++) { if (data->magnetic_extrema[0][i] != 0 || data->magnetic_extrema[1][i] != 0) { empty = 0; break; } } if (!empty) { rc = akm8973_config_write(data); if (rc < 0) ALOGE("%s: Unable to write akm8973 config", __func__); } device_fd = data->device_fd; if (device_fd < 0) return -1; mode = AK8973_MODE_POWERDOWN; rc = ioctl(data->device_fd, ECS_IOCTL_SET_MODE, &mode); if (rc < 0) ALOGE("%s: Unable to set akm8973 mode", __func__); handlers->activated = 0; return 0; } int akm8973_set_delay(struct herring_sensors_handlers *handlers, long int delay) { struct akm8973_data *data; ALOGD("%s(%p, %ld)", __func__, handlers, delay); if (handlers == NULL || handlers->data == NULL) return -EINVAL; data = (struct akm8973_data *) handlers->data; data->delay = delay; return 0; } float akm8973_convert(int value) { return (float) value / -1000.0f; } int akm8973_get_data(struct herring_sensors_handlers *handlers, struct sensors_event_t *event) { struct akm8973_data *data; struct input_event input_event; int input_fd; int rc; // ALOGD("%s(%p, %p)", __func__, handlers, event); if (handlers == NULL || handlers->data == NULL || event == NULL) return -EINVAL; data = (struct akm8973_data *) handlers->data; input_fd = handlers->poll_fd; if (input_fd < 0) return -1; memset(event, 0, sizeof(struct sensors_event_t)); event->version = sizeof(struct sensors_event_t); event->sensor = handlers->handle; event->type = handlers->handle; event->magnetic.status = SENSOR_STATUS_ACCURACY_MEDIUM; do { rc = read(input_fd, &input_event, sizeof(input_event)); if (rc < (int) sizeof(input_event)) break; if (input_event.type == EV_REL) { switch (input_event.code) { case REL_X: event->magnetic.y = akm8973_convert(input_event.value); break; case REL_Y: event->magnetic.x = akm8973_convert(input_event.value); break; case REL_Z: event->magnetic.z = akm8973_convert(input_event.value); break; default: continue; } } else if (input_event.type == EV_SYN) { if (input_event.code == SYN_REPORT) event->timestamp = input_timestamp(&input_event); } } while (input_event.type != EV_SYN); if (data->orientation_sensor != NULL) orientation_fill(data->orientation_sensor, NULL, &event->magnetic); return 0; } struct herring_sensors_handlers akm8973 = { .name = "AKM8973", .handle = SENSOR_TYPE_MAGNETIC_FIELD, .init = akm8973_init, .deinit = akm8973_deinit, .activate = akm8973_activate, .deactivate = akm8973_deactivate, .set_delay = akm8973_set_delay, .get_data = akm8973_get_data, .activated = 0, .needed = 0, .poll_fd = -1, .data = NULL, };