summaryrefslogtreecommitdiffstats
path: root/runtime/thread-inl.h
blob: 02a1e4d8a5bc00323e5d4e33db232bc9c8290e86 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef ART_RUNTIME_THREAD_INL_H_
#define ART_RUNTIME_THREAD_INL_H_

#include "thread.h"

#ifdef ART_TARGET_ANDROID
#include <bionic_tls.h>  // Access to our own TLS slot.
#endif

#include <pthread.h>

#include "base/casts.h"
#include "base/mutex-inl.h"
#include "gc/heap.h"
#include "jni_env_ext.h"
#include "obj_ptr.h"
#include "runtime.h"
#include "thread_pool.h"

namespace art {

// Quickly access the current thread from a JNIEnv.
static inline Thread* ThreadForEnv(JNIEnv* env) {
  JNIEnvExt* full_env(down_cast<JNIEnvExt*>(env));
  return full_env->self;
}

inline Thread* Thread::Current() {
  // We rely on Thread::Current returning null for a detached thread, so it's not obvious
  // that we can replace this with a direct %fs access on x86.
  if (!is_started_) {
    return nullptr;
  } else {
#ifdef ART_TARGET_ANDROID
    void* thread = __get_tls()[TLS_SLOT_ART_THREAD_SELF];
#else
    void* thread = pthread_getspecific(Thread::pthread_key_self_);
#endif
    return reinterpret_cast<Thread*>(thread);
  }
}

inline void Thread::AllowThreadSuspension() {
  DCHECK_EQ(Thread::Current(), this);
  if (UNLIKELY(TestAllFlags())) {
    CheckSuspend();
  }
  // Invalidate the current thread's object pointers (ObjPtr) to catch possible moving GC bugs due
  // to missing handles.
  PoisonObjectPointers();
}

inline void Thread::CheckSuspend() {
  DCHECK_EQ(Thread::Current(), this);
  for (;;) {
    if (ReadFlag(kCheckpointRequest)) {
      RunCheckpointFunction();
    } else if (ReadFlag(kSuspendRequest)) {
      FullSuspendCheck();
    } else if (ReadFlag(kEmptyCheckpointRequest)) {
      RunEmptyCheckpoint();
    } else {
      break;
    }
  }
}

inline void Thread::CheckEmptyCheckpointFromWeakRefAccess(BaseMutex* cond_var_mutex) {
  Thread* self = Thread::Current();
  DCHECK_EQ(self, this);
  for (;;) {
    if (ReadFlag(kEmptyCheckpointRequest)) {
      RunEmptyCheckpoint();
      // Check we hold only an expected mutex when accessing weak ref.
      if (kIsDebugBuild) {
        for (int i = kLockLevelCount - 1; i >= 0; --i) {
          BaseMutex* held_mutex = self->GetHeldMutex(static_cast<LockLevel>(i));
          if (held_mutex != nullptr &&
              held_mutex != Locks::mutator_lock_ &&
              held_mutex != cond_var_mutex) {
            CHECK(Locks::IsExpectedOnWeakRefAccess(held_mutex))
                << "Holding unexpected mutex " << held_mutex->GetName()
                << " when accessing weak ref";
          }
        }
      }
    } else {
      break;
    }
  }
}

inline void Thread::CheckEmptyCheckpointFromMutex() {
  DCHECK_EQ(Thread::Current(), this);
  for (;;) {
    if (ReadFlag(kEmptyCheckpointRequest)) {
      RunEmptyCheckpoint();
    } else {
      break;
    }
  }
}

inline ThreadState Thread::SetState(ThreadState new_state) {
  // Should only be used to change between suspended states.
  // Cannot use this code to change into or from Runnable as changing to Runnable should
  // fail if old_state_and_flags.suspend_request is true and changing from Runnable might
  // miss passing an active suspend barrier.
  DCHECK_NE(new_state, kRunnable);
  if (kIsDebugBuild && this != Thread::Current()) {
    std::string name;
    GetThreadName(name);
    LOG(FATAL) << "Thread \"" << name << "\"(" << this << " != Thread::Current()="
               << Thread::Current() << ") changing state to " << new_state;
  }
  union StateAndFlags old_state_and_flags;
  old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
  CHECK_NE(old_state_and_flags.as_struct.state, kRunnable);
  tls32_.state_and_flags.as_struct.state = new_state;
  return static_cast<ThreadState>(old_state_and_flags.as_struct.state);
}

inline bool Thread::IsThreadSuspensionAllowable() const {
  if (tls32_.no_thread_suspension != 0) {
    return false;
  }
  for (int i = kLockLevelCount - 1; i >= 0; --i) {
    if (i != kMutatorLock && GetHeldMutex(static_cast<LockLevel>(i)) != nullptr) {
      return false;
    }
  }
  return true;
}

inline void Thread::AssertThreadSuspensionIsAllowable(bool check_locks) const {
  if (kIsDebugBuild) {
    if (gAborting == 0) {
      CHECK_EQ(0u, tls32_.no_thread_suspension) << tlsPtr_.last_no_thread_suspension_cause;
    }
    if (check_locks) {
      bool bad_mutexes_held = false;
      for (int i = kLockLevelCount - 1; i >= 0; --i) {
        // We expect no locks except the mutator_lock_ or thread list suspend thread lock.
        if (i != kMutatorLock) {
          BaseMutex* held_mutex = GetHeldMutex(static_cast<LockLevel>(i));
          if (held_mutex != nullptr) {
            LOG(ERROR) << "holding \"" << held_mutex->GetName()
                      << "\" at point where thread suspension is expected";
            bad_mutexes_held = true;
          }
        }
      }
      if (gAborting == 0) {
        CHECK(!bad_mutexes_held);
      }
    }
  }
}

inline void Thread::TransitionToSuspendedAndRunCheckpoints(ThreadState new_state) {
  DCHECK_NE(new_state, kRunnable);
  DCHECK_EQ(GetState(), kRunnable);
  union StateAndFlags old_state_and_flags;
  union StateAndFlags new_state_and_flags;
  while (true) {
    old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
    if (UNLIKELY((old_state_and_flags.as_struct.flags & kCheckpointRequest) != 0)) {
      RunCheckpointFunction();
      continue;
    }
    if (UNLIKELY((old_state_and_flags.as_struct.flags & kEmptyCheckpointRequest) != 0)) {
      RunEmptyCheckpoint();
      continue;
    }
    // Change the state but keep the current flags (kCheckpointRequest is clear).
    DCHECK_EQ((old_state_and_flags.as_struct.flags & kCheckpointRequest), 0);
    DCHECK_EQ((old_state_and_flags.as_struct.flags & kEmptyCheckpointRequest), 0);
    new_state_and_flags.as_struct.flags = old_state_and_flags.as_struct.flags;
    new_state_and_flags.as_struct.state = new_state;

    // CAS the value with a memory ordering.
    bool done =
        tls32_.state_and_flags.as_atomic_int.CompareExchangeWeakRelease(old_state_and_flags.as_int,
                                                                        new_state_and_flags.as_int);
    if (LIKELY(done)) {
      break;
    }
  }
}

inline void Thread::PassActiveSuspendBarriers() {
  while (true) {
    uint16_t current_flags = tls32_.state_and_flags.as_struct.flags;
    if (LIKELY((current_flags &
                (kCheckpointRequest | kEmptyCheckpointRequest | kActiveSuspendBarrier)) == 0)) {
      break;
    } else if ((current_flags & kActiveSuspendBarrier) != 0) {
      PassActiveSuspendBarriers(this);
    } else {
      // Impossible
      LOG(FATAL) << "Fatal, thread transitioned into suspended without running the checkpoint";
    }
  }
}

inline void Thread::TransitionFromRunnableToSuspended(ThreadState new_state) {
  AssertThreadSuspensionIsAllowable();
  PoisonObjectPointersIfDebug();
  DCHECK_EQ(this, Thread::Current());
  // Change to non-runnable state, thereby appearing suspended to the system.
  TransitionToSuspendedAndRunCheckpoints(new_state);
  // Mark the release of the share of the mutator_lock_.
  Locks::mutator_lock_->TransitionFromRunnableToSuspended(this);
  // Once suspended - check the active suspend barrier flag
  PassActiveSuspendBarriers();
}

inline ThreadState Thread::TransitionFromSuspendedToRunnable() {
  union StateAndFlags old_state_and_flags;
  old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
  int16_t old_state = old_state_and_flags.as_struct.state;
  DCHECK_NE(static_cast<ThreadState>(old_state), kRunnable);
  do {
    Locks::mutator_lock_->AssertNotHeld(this);  // Otherwise we starve GC..
    old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
    DCHECK_EQ(old_state_and_flags.as_struct.state, old_state);
    if (LIKELY(old_state_and_flags.as_struct.flags == 0)) {
      // Optimize for the return from native code case - this is the fast path.
      // Atomically change from suspended to runnable if no suspend request pending.
      union StateAndFlags new_state_and_flags;
      new_state_and_flags.as_int = old_state_and_flags.as_int;
      new_state_and_flags.as_struct.state = kRunnable;
      // CAS the value with a memory barrier.
      if (LIKELY(tls32_.state_and_flags.as_atomic_int.CompareExchangeWeakAcquire(
                                                 old_state_and_flags.as_int,
                                                 new_state_and_flags.as_int))) {
        // Mark the acquisition of a share of the mutator_lock_.
        Locks::mutator_lock_->TransitionFromSuspendedToRunnable(this);
        break;
      }
    } else if ((old_state_and_flags.as_struct.flags & kActiveSuspendBarrier) != 0) {
      PassActiveSuspendBarriers(this);
    } else if ((old_state_and_flags.as_struct.flags &
                (kCheckpointRequest | kEmptyCheckpointRequest)) != 0) {
      // Impossible
      LOG(FATAL) << "Transitioning to runnable with checkpoint flag, "
                 << " flags=" << old_state_and_flags.as_struct.flags
                 << " state=" << old_state_and_flags.as_struct.state;
    } else if ((old_state_and_flags.as_struct.flags & kSuspendRequest) != 0) {
      // Wait while our suspend count is non-zero.

      // We pass null to the MutexLock as we may be in a situation where the
      // runtime is shutting down. Guarding ourselves from that situation
      // requires to take the shutdown lock, which is undesirable here.
      Thread* thread_to_pass = nullptr;
      if (kIsDebugBuild && !IsDaemon()) {
        // We know we can make our debug locking checks on non-daemon threads,
        // so re-enable them on debug builds.
        thread_to_pass = this;
      }
      MutexLock mu(thread_to_pass, *Locks::thread_suspend_count_lock_);
      ScopedTransitioningToRunnable scoped_transitioning_to_runnable(this);
      old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
      DCHECK_EQ(old_state_and_flags.as_struct.state, old_state);
      while ((old_state_and_flags.as_struct.flags & kSuspendRequest) != 0) {
        // Re-check when Thread::resume_cond_ is notified.
        Thread::resume_cond_->Wait(thread_to_pass);
        old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
        DCHECK_EQ(old_state_and_flags.as_struct.state, old_state);
      }
      DCHECK_EQ(GetSuspendCount(), 0);
    }
  } while (true);
  // Run the flip function, if set.
  Closure* flip_func = GetFlipFunction();
  if (flip_func != nullptr) {
    flip_func->Run(this);
  }
  return static_cast<ThreadState>(old_state);
}

inline void Thread::VerifyStack() {
  if (kVerifyStack) {
    if (Runtime::Current()->GetHeap()->IsObjectValidationEnabled()) {
      VerifyStackImpl();
    }
  }
}

inline size_t Thread::TlabSize() const {
  return tlsPtr_.thread_local_end - tlsPtr_.thread_local_pos;
}

inline mirror::Object* Thread::AllocTlab(size_t bytes) {
  DCHECK_GE(TlabSize(), bytes);
  ++tlsPtr_.thread_local_objects;
  mirror::Object* ret = reinterpret_cast<mirror::Object*>(tlsPtr_.thread_local_pos);
  tlsPtr_.thread_local_pos += bytes;
  return ret;
}

inline bool Thread::PushOnThreadLocalAllocationStack(mirror::Object* obj) {
  DCHECK_LE(tlsPtr_.thread_local_alloc_stack_top, tlsPtr_.thread_local_alloc_stack_end);
  if (tlsPtr_.thread_local_alloc_stack_top < tlsPtr_.thread_local_alloc_stack_end) {
    // There's room.
    DCHECK_LE(reinterpret_cast<uint8_t*>(tlsPtr_.thread_local_alloc_stack_top) +
              sizeof(StackReference<mirror::Object>),
              reinterpret_cast<uint8_t*>(tlsPtr_.thread_local_alloc_stack_end));
    DCHECK(tlsPtr_.thread_local_alloc_stack_top->AsMirrorPtr() == nullptr);
    tlsPtr_.thread_local_alloc_stack_top->Assign(obj);
    ++tlsPtr_.thread_local_alloc_stack_top;
    return true;
  }
  return false;
}

inline void Thread::SetThreadLocalAllocationStack(StackReference<mirror::Object>* start,
                                                  StackReference<mirror::Object>* end) {
  DCHECK(Thread::Current() == this) << "Should be called by self";
  DCHECK(start != nullptr);
  DCHECK(end != nullptr);
  DCHECK_ALIGNED(start, sizeof(StackReference<mirror::Object>));
  DCHECK_ALIGNED(end, sizeof(StackReference<mirror::Object>));
  DCHECK_LT(start, end);
  tlsPtr_.thread_local_alloc_stack_end = end;
  tlsPtr_.thread_local_alloc_stack_top = start;
}

inline void Thread::RevokeThreadLocalAllocationStack() {
  if (kIsDebugBuild) {
    // Note: self is not necessarily equal to this thread since thread may be suspended.
    Thread* self = Thread::Current();
    DCHECK(this == self || IsSuspended() || GetState() == kWaitingPerformingGc)
        << GetState() << " thread " << this << " self " << self;
  }
  tlsPtr_.thread_local_alloc_stack_end = nullptr;
  tlsPtr_.thread_local_alloc_stack_top = nullptr;
}

inline void Thread::PoisonObjectPointersIfDebug() {
  if (kObjPtrPoisoning) {
    Thread::Current()->PoisonObjectPointers();
  }
}

inline bool Thread::ModifySuspendCount(Thread* self,
                                       int delta,
                                       AtomicInteger* suspend_barrier,
                                       bool for_debugger) {
  if (delta > 0 && ((kUseReadBarrier && this != self) || suspend_barrier != nullptr)) {
    // When delta > 0 (requesting a suspend), ModifySuspendCountInternal() may fail either if
    // active_suspend_barriers is full or we are in the middle of a thread flip. Retry in a loop.
    while (true) {
      if (LIKELY(ModifySuspendCountInternal(self, delta, suspend_barrier, for_debugger))) {
        return true;
      } else {
        // Failure means the list of active_suspend_barriers is full or we are in the middle of a
        // thread flip, we should release the thread_suspend_count_lock_ (to avoid deadlock) and
        // wait till the target thread has executed or Thread::PassActiveSuspendBarriers() or the
        // flip function. Note that we could not simply wait for the thread to change to a suspended
        // state, because it might need to run checkpoint function before the state change or
        // resumes from the resume_cond_, which also needs thread_suspend_count_lock_.
        //
        // The list of active_suspend_barriers is very unlikely to be full since more than
        // kMaxSuspendBarriers threads need to execute SuspendAllInternal() simultaneously, and
        // target thread stays in kRunnable in the mean time.
        Locks::thread_suspend_count_lock_->ExclusiveUnlock(self);
        NanoSleep(100000);
        Locks::thread_suspend_count_lock_->ExclusiveLock(self);
      }
    }
  } else {
    return ModifySuspendCountInternal(self, delta, suspend_barrier, for_debugger);
  }
}

}  // namespace art

#endif  // ART_RUNTIME_THREAD_INL_H_