summaryrefslogtreecommitdiffstats
path: root/runtime/monitor.cc
blob: 3771877c9de14ce557490e726b6afcd11b743104 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
/*
 * Copyright (C) 2008 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "monitor.h"

#include <vector>

#include "art_method-inl.h"
#include "base/mutex.h"
#include "base/stl_util.h"
#include "base/systrace.h"
#include "base/time_utils.h"
#include "class_linker.h"
#include "dex_file-inl.h"
#include "dex_instruction-inl.h"
#include "lock_word-inl.h"
#include "mirror/class-inl.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-inl.h"
#include "scoped_thread_state_change.h"
#include "thread.h"
#include "thread_list.h"
#include "verifier/method_verifier.h"
#include "well_known_classes.h"

namespace art {

static constexpr uint64_t kLongWaitMs = 100;

/*
 * Every Object has a monitor associated with it, but not every Object is actually locked.  Even
 * the ones that are locked do not need a full-fledged monitor until a) there is actual contention
 * or b) wait() is called on the Object.
 *
 * For Android, we have implemented a scheme similar to the one described in Bacon et al.'s
 * "Thin locks: featherweight synchronization for Java" (ACM 1998).  Things are even easier for us,
 * though, because we have a full 32 bits to work with.
 *
 * The two states of an Object's lock are referred to as "thin" and "fat".  A lock may transition
 * from the "thin" state to the "fat" state and this transition is referred to as inflation. Once
 * a lock has been inflated it remains in the "fat" state indefinitely.
 *
 * The lock value itself is stored in mirror::Object::monitor_ and the representation is described
 * in the LockWord value type.
 *
 * Monitors provide:
 *  - mutually exclusive access to resources
 *  - a way for multiple threads to wait for notification
 *
 * In effect, they fill the role of both mutexes and condition variables.
 *
 * Only one thread can own the monitor at any time.  There may be several threads waiting on it
 * (the wait call unlocks it).  One or more waiting threads may be getting interrupted or notified
 * at any given time.
 */

uint32_t Monitor::lock_profiling_threshold_ = 0;

void Monitor::Init(uint32_t lock_profiling_threshold) {
  lock_profiling_threshold_ = lock_profiling_threshold;
}

Monitor::Monitor(Thread* self, Thread* owner, mirror::Object* obj, int32_t hash_code)
    : monitor_lock_("a monitor lock", kMonitorLock),
      monitor_contenders_("monitor contenders", monitor_lock_),
      num_waiters_(0),
      owner_(owner),
      lock_count_(0),
      obj_(GcRoot<mirror::Object>(obj)),
      wait_set_(nullptr),
      hash_code_(hash_code),
      locking_method_(nullptr),
      locking_dex_pc_(0),
      monitor_id_(MonitorPool::ComputeMonitorId(this, self)) {
#ifdef __LP64__
  DCHECK(false) << "Should not be reached in 64b";
  next_free_ = nullptr;
#endif
  // We should only inflate a lock if the owner is ourselves or suspended. This avoids a race
  // with the owner unlocking the thin-lock.
  CHECK(owner == nullptr || owner == self || owner->IsSuspended());
  // The identity hash code is set for the life time of the monitor.
}

Monitor::Monitor(Thread* self, Thread* owner, mirror::Object* obj, int32_t hash_code,
                 MonitorId id)
    : monitor_lock_("a monitor lock", kMonitorLock),
      monitor_contenders_("monitor contenders", monitor_lock_),
      num_waiters_(0),
      owner_(owner),
      lock_count_(0),
      obj_(GcRoot<mirror::Object>(obj)),
      wait_set_(nullptr),
      hash_code_(hash_code),
      locking_method_(nullptr),
      locking_dex_pc_(0),
      monitor_id_(id) {
#ifdef __LP64__
  next_free_ = nullptr;
#endif
  // We should only inflate a lock if the owner is ourselves or suspended. This avoids a race
  // with the owner unlocking the thin-lock.
  CHECK(owner == nullptr || owner == self || owner->IsSuspended());
  // The identity hash code is set for the life time of the monitor.
}

int32_t Monitor::GetHashCode() {
  while (!HasHashCode()) {
    if (hash_code_.CompareExchangeWeakRelaxed(0, mirror::Object::GenerateIdentityHashCode())) {
      break;
    }
  }
  DCHECK(HasHashCode());
  return hash_code_.LoadRelaxed();
}

bool Monitor::Install(Thread* self) {
  MutexLock mu(self, monitor_lock_);  // Uncontended mutex acquisition as monitor isn't yet public.
  CHECK(owner_ == nullptr || owner_ == self || owner_->IsSuspended());
  // Propagate the lock state.
  LockWord lw(GetObject()->GetLockWord(false));
  switch (lw.GetState()) {
    case LockWord::kThinLocked: {
      CHECK_EQ(owner_->GetThreadId(), lw.ThinLockOwner());
      lock_count_ = lw.ThinLockCount();
      break;
    }
    case LockWord::kHashCode: {
      CHECK_EQ(hash_code_.LoadRelaxed(), static_cast<int32_t>(lw.GetHashCode()));
      break;
    }
    case LockWord::kFatLocked: {
      // The owner_ is suspended but another thread beat us to install a monitor.
      return false;
    }
    case LockWord::kUnlocked: {
      LOG(FATAL) << "Inflating unlocked lock word";
      break;
    }
    default: {
      LOG(FATAL) << "Invalid monitor state " << lw.GetState();
      return false;
    }
  }
  LockWord fat(this, lw.ReadBarrierState());
  // Publish the updated lock word, which may race with other threads.
  bool success = GetObject()->CasLockWordWeakSequentiallyConsistent(lw, fat);
  // Lock profiling.
  if (success && owner_ != nullptr && lock_profiling_threshold_ != 0) {
    // Do not abort on dex pc errors. This can easily happen when we want to dump a stack trace on
    // abort.
    locking_method_ = owner_->GetCurrentMethod(&locking_dex_pc_, false);
  }
  return success;
}

Monitor::~Monitor() {
  // Deflated monitors have a null object.
}

void Monitor::AppendToWaitSet(Thread* thread) {
  DCHECK(owner_ == Thread::Current());
  DCHECK(thread != nullptr);
  DCHECK(thread->GetWaitNext() == nullptr) << thread->GetWaitNext();
  if (wait_set_ == nullptr) {
    wait_set_ = thread;
    return;
  }

  // push_back.
  Thread* t = wait_set_;
  while (t->GetWaitNext() != nullptr) {
    t = t->GetWaitNext();
  }
  t->SetWaitNext(thread);
}

void Monitor::RemoveFromWaitSet(Thread *thread) {
  DCHECK(owner_ == Thread::Current());
  DCHECK(thread != nullptr);
  if (wait_set_ == nullptr) {
    return;
  }
  if (wait_set_ == thread) {
    wait_set_ = thread->GetWaitNext();
    thread->SetWaitNext(nullptr);
    return;
  }

  Thread* t = wait_set_;
  while (t->GetWaitNext() != nullptr) {
    if (t->GetWaitNext() == thread) {
      t->SetWaitNext(thread->GetWaitNext());
      thread->SetWaitNext(nullptr);
      return;
    }
    t = t->GetWaitNext();
  }
}

void Monitor::SetObject(mirror::Object* object) {
  obj_ = GcRoot<mirror::Object>(object);
}

// Note: Adapted from CurrentMethodVisitor in thread.cc. We must not resolve here.

struct NthCallerWithDexPcVisitor FINAL : public StackVisitor {
  explicit NthCallerWithDexPcVisitor(Thread* thread, size_t frame)
      SHARED_REQUIRES(Locks::mutator_lock_)
      : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFramesNoResolve),
        method_(nullptr),
        dex_pc_(0),
        current_frame_number_(0),
        wanted_frame_number_(frame) {}
  bool VisitFrame() OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
    ArtMethod* m = GetMethod();
    if (m == nullptr || m->IsRuntimeMethod()) {
      // Runtime method, upcall, or resolution issue. Skip.
      return true;
    }

    // Is this the requested frame?
    if (current_frame_number_ == wanted_frame_number_) {
      method_ = m;
      dex_pc_ = GetDexPc(false /* abort_on_error*/);
      return false;
    }

    // Look for more.
    current_frame_number_++;
    return true;
  }

  ArtMethod* method_;
  uint32_t dex_pc_;

 private:
  size_t current_frame_number_;
  const size_t wanted_frame_number_;
};

// This function is inlined and just helps to not have the VLOG and ATRACE check at all the
// potential tracing points.
void Monitor::AtraceMonitorLock(Thread* self, mirror::Object* obj, bool is_wait) {
  if (UNLIKELY(VLOG_IS_ON(systrace_lock_logging) && ATRACE_ENABLED())) {
    AtraceMonitorLockImpl(self, obj, is_wait);
  }
}

void Monitor::AtraceMonitorLockImpl(Thread* self, mirror::Object* obj, bool is_wait) {
  // Wait() requires a deeper call stack to be useful. Otherwise you'll see "Waiting at
  // Object.java". Assume that we'll wait a nontrivial amount, so it's OK to do a longer
  // stack walk than if !is_wait.
  NthCallerWithDexPcVisitor visitor(self, is_wait ? 1U : 0U);
  visitor.WalkStack(false);
  const char* prefix = is_wait ? "Waiting on " : "Locking ";

  const char* filename;
  int32_t line_number;
  TranslateLocation(visitor.method_, visitor.dex_pc_, &filename, &line_number);

  // It would be nice to have a stable "ID" for the object here. However, the only stable thing
  // would be the identity hashcode. But we cannot use IdentityHashcode here: For one, there are
  // times when it is unsafe to make that call (see stack dumping for an explanation). More
  // importantly, we would have to give up on thin-locking when adding systrace locks, as the
  // identity hashcode is stored in the lockword normally (so can't be used with thin-locks).
  //
  // Because of thin-locks we also cannot use the monitor id (as there is no monitor). Monitor ids
  // also do not have to be stable, as the monitor may be deflated.
  std::string tmp = StringPrintf("%s %d at %s:%d",
      prefix,
      (obj == nullptr ? -1 : static_cast<int32_t>(reinterpret_cast<uintptr_t>(obj))),
      (filename != nullptr ? filename : "null"),
      line_number);
  ATRACE_BEGIN(tmp.c_str());
}

void Monitor::AtraceMonitorUnlock() {
  if (UNLIKELY(VLOG_IS_ON(systrace_lock_logging))) {
    ATRACE_END();
  }
}

std::string Monitor::PrettyContentionInfo(const std::string& owner_name,
                                          pid_t owner_tid,
                                          ArtMethod* owners_method,
                                          uint32_t owners_dex_pc,
                                          size_t num_waiters) {
  const char* owners_filename;
  int32_t owners_line_number;
  if (owners_method != nullptr) {
    TranslateLocation(owners_method, owners_dex_pc, &owners_filename, &owners_line_number);
  }
  std::ostringstream oss;
  oss << "monitor contention with owner " << owner_name << " (" << owner_tid << ")";
  if (owners_method != nullptr) {
    oss << " at " << PrettyMethod(owners_method);
    oss << "(" << owners_filename << ":" << owners_line_number << ")";
  }
  oss << " waiters=" << num_waiters;
  return oss.str();
}

bool Monitor::TryLockLocked(Thread* self) {
  if (owner_ == nullptr) {  // Unowned.
    owner_ = self;
    CHECK_EQ(lock_count_, 0);
    // When debugging, save the current monitor holder for future
    // acquisition failures to use in sampled logging.
    if (lock_profiling_threshold_ != 0) {
      locking_method_ = self->GetCurrentMethod(&locking_dex_pc_);
    }
  } else if (owner_ == self) {  // Recursive.
    lock_count_++;
  } else {
    return false;
  }
  AtraceMonitorLock(self, GetObject(), false /* is_wait */);
  return true;
}

bool Monitor::TryLock(Thread* self) {
  MutexLock mu(self, monitor_lock_);
  return TryLockLocked(self);
}

void Monitor::Lock(Thread* self) {
  MutexLock mu(self, monitor_lock_);
  while (true) {
    if (TryLockLocked(self)) {
      return;
    }
    // Contended.
    const bool log_contention = (lock_profiling_threshold_ != 0);
    uint64_t wait_start_ms = log_contention ? MilliTime() : 0;
    ArtMethod* owners_method = locking_method_;
    uint32_t owners_dex_pc = locking_dex_pc_;
    // Do this before releasing the lock so that we don't get deflated.
    size_t num_waiters = num_waiters_;
    ++num_waiters_;
    monitor_lock_.Unlock(self);  // Let go of locks in order.
    self->SetMonitorEnterObject(GetObject());
    {
      uint32_t original_owner_thread_id = 0u;
      ScopedThreadStateChange tsc(self, kBlocked);  // Change to blocked and give up mutator_lock_.
      {
        // Reacquire monitor_lock_ without mutator_lock_ for Wait.
        MutexLock mu2(self, monitor_lock_);
        if (owner_ != nullptr) {  // Did the owner_ give the lock up?
          original_owner_thread_id = owner_->GetThreadId();
          if (ATRACE_ENABLED()) {
            std::ostringstream oss;
            std::string name;
            owner_->GetThreadName(name);
            oss << PrettyContentionInfo(name,
                                        owner_->GetTid(),
                                        owners_method,
                                        owners_dex_pc,
                                        num_waiters);
            // Add info for contending thread.
            uint32_t pc;
            ArtMethod* m = self->GetCurrentMethod(&pc);
            const char* filename;
            int32_t line_number;
            TranslateLocation(m, pc, &filename, &line_number);
            oss << " blocking from "
                << PrettyMethod(m) << "(" << (filename != nullptr ? filename : "null") << ":"
                << line_number << ")";
            ATRACE_BEGIN(oss.str().c_str());
          }
          monitor_contenders_.Wait(self);  // Still contended so wait.
        }
      }
      if (original_owner_thread_id != 0u) {
        // Woken from contention.
        if (log_contention) {
          uint32_t original_owner_tid = 0;
          std::string original_owner_name;
          {
            MutexLock mu2(Thread::Current(), *Locks::thread_list_lock_);
            // Re-find the owner in case the thread got killed.
            Thread* original_owner = Runtime::Current()->GetThreadList()->FindThreadByThreadId(
                original_owner_thread_id);
            // Do not do any work that requires the mutator lock.
            if (original_owner != nullptr) {
              original_owner_tid = original_owner->GetTid();
              original_owner->GetThreadName(original_owner_name);
            }
          }

          if (original_owner_tid != 0u) {
            uint64_t wait_ms = MilliTime() - wait_start_ms;
            uint32_t sample_percent;
            if (wait_ms >= lock_profiling_threshold_) {
              sample_percent = 100;
            } else {
              sample_percent = 100 * wait_ms / lock_profiling_threshold_;
            }
            if (sample_percent != 0 && (static_cast<uint32_t>(rand() % 100) < sample_percent)) {
              if (wait_ms > kLongWaitMs && owners_method != nullptr) {
                uint32_t pc;
                ArtMethod* m = self->GetCurrentMethod(&pc);
                // TODO: We should maybe check that original_owner is still a live thread.
                LOG(WARNING) << "Long "
                    << PrettyContentionInfo(original_owner_name,
                                            original_owner_tid,
                                            owners_method,
                                            owners_dex_pc,
                                            num_waiters)
                    << " in " << PrettyMethod(m) << " for " << PrettyDuration(MsToNs(wait_ms));
              }
              const char* owners_filename;
              int32_t owners_line_number;
              TranslateLocation(owners_method,
                                owners_dex_pc,
                                &owners_filename,
                                &owners_line_number);
              LogContentionEvent(self,
                                 wait_ms,
                                 sample_percent,
                                 owners_filename,
                                 owners_line_number);
            }
          }
        }
        ATRACE_END();
      }
    }
    self->SetMonitorEnterObject(nullptr);
    monitor_lock_.Lock(self);  // Reacquire locks in order.
    --num_waiters_;
  }
}

static void ThrowIllegalMonitorStateExceptionF(const char* fmt, ...)
                                              __attribute__((format(printf, 1, 2)));

static void ThrowIllegalMonitorStateExceptionF(const char* fmt, ...)
    SHARED_REQUIRES(Locks::mutator_lock_) {
  va_list args;
  va_start(args, fmt);
  Thread* self = Thread::Current();
  self->ThrowNewExceptionV("Ljava/lang/IllegalMonitorStateException;", fmt, args);
  if (!Runtime::Current()->IsStarted() || VLOG_IS_ON(monitor)) {
    std::ostringstream ss;
    self->Dump(ss);
    LOG(Runtime::Current()->IsStarted() ? INFO : ERROR)
        << self->GetException()->Dump() << "\n" << ss.str();
  }
  va_end(args);
}

static std::string ThreadToString(Thread* thread) {
  if (thread == nullptr) {
    return "nullptr";
  }
  std::ostringstream oss;
  // TODO: alternatively, we could just return the thread's name.
  oss << *thread;
  return oss.str();
}

void Monitor::FailedUnlock(mirror::Object* o,
                           uint32_t expected_owner_thread_id,
                           uint32_t found_owner_thread_id,
                           Monitor* monitor) {
  // Acquire thread list lock so threads won't disappear from under us.
  std::string current_owner_string;
  std::string expected_owner_string;
  std::string found_owner_string;
  uint32_t current_owner_thread_id = 0u;
  {
    MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
    ThreadList* const thread_list = Runtime::Current()->GetThreadList();
    Thread* expected_owner = thread_list->FindThreadByThreadId(expected_owner_thread_id);
    Thread* found_owner = thread_list->FindThreadByThreadId(found_owner_thread_id);

    // Re-read owner now that we hold lock.
    Thread* current_owner = (monitor != nullptr) ? monitor->GetOwner() : nullptr;
    if (current_owner != nullptr) {
      current_owner_thread_id = current_owner->GetThreadId();
    }
    // Get short descriptions of the threads involved.
    current_owner_string = ThreadToString(current_owner);
    expected_owner_string = expected_owner != nullptr ? ThreadToString(expected_owner) : "unnamed";
    found_owner_string = found_owner != nullptr ? ThreadToString(found_owner) : "unnamed";
  }

  if (current_owner_thread_id == 0u) {
    if (found_owner_thread_id == 0u) {
      ThrowIllegalMonitorStateExceptionF("unlock of unowned monitor on object of type '%s'"
                                         " on thread '%s'",
                                         PrettyTypeOf(o).c_str(),
                                         expected_owner_string.c_str());
    } else {
      // Race: the original read found an owner but now there is none
      ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'"
                                         " (where now the monitor appears unowned) on thread '%s'",
                                         found_owner_string.c_str(),
                                         PrettyTypeOf(o).c_str(),
                                         expected_owner_string.c_str());
    }
  } else {
    if (found_owner_thread_id == 0u) {
      // Race: originally there was no owner, there is now
      ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'"
                                         " (originally believed to be unowned) on thread '%s'",
                                         current_owner_string.c_str(),
                                         PrettyTypeOf(o).c_str(),
                                         expected_owner_string.c_str());
    } else {
      if (found_owner_thread_id != current_owner_thread_id) {
        // Race: originally found and current owner have changed
        ThrowIllegalMonitorStateExceptionF("unlock of monitor originally owned by '%s' (now"
                                           " owned by '%s') on object of type '%s' on thread '%s'",
                                           found_owner_string.c_str(),
                                           current_owner_string.c_str(),
                                           PrettyTypeOf(o).c_str(),
                                           expected_owner_string.c_str());
      } else {
        ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'"
                                           " on thread '%s",
                                           current_owner_string.c_str(),
                                           PrettyTypeOf(o).c_str(),
                                           expected_owner_string.c_str());
      }
    }
  }
}

bool Monitor::Unlock(Thread* self) {
  DCHECK(self != nullptr);
  uint32_t owner_thread_id = 0u;
  {
    MutexLock mu(self, monitor_lock_);
    Thread* owner = owner_;
    if (owner != nullptr) {
      owner_thread_id = owner->GetThreadId();
    }
    if (owner == self) {
      // We own the monitor, so nobody else can be in here.
      AtraceMonitorUnlock();
      if (lock_count_ == 0) {
        owner_ = nullptr;
        locking_method_ = nullptr;
        locking_dex_pc_ = 0;
        // Wake a contender.
        monitor_contenders_.Signal(self);
      } else {
        --lock_count_;
      }
      return true;
    }
  }
  // We don't own this, so we're not allowed to unlock it.
  // The JNI spec says that we should throw IllegalMonitorStateException in this case.
  FailedUnlock(GetObject(), self->GetThreadId(), owner_thread_id, this);
  return false;
}

void Monitor::Wait(Thread* self, int64_t ms, int32_t ns,
                   bool interruptShouldThrow, ThreadState why) {
  DCHECK(self != nullptr);
  DCHECK(why == kTimedWaiting || why == kWaiting || why == kSleeping);

  monitor_lock_.Lock(self);

  // Make sure that we hold the lock.
  if (owner_ != self) {
    monitor_lock_.Unlock(self);
    ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()");
    return;
  }

  // We need to turn a zero-length timed wait into a regular wait because
  // Object.wait(0, 0) is defined as Object.wait(0), which is defined as Object.wait().
  if (why == kTimedWaiting && (ms == 0 && ns == 0)) {
    why = kWaiting;
  }

  // Enforce the timeout range.
  if (ms < 0 || ns < 0 || ns > 999999) {
    monitor_lock_.Unlock(self);
    self->ThrowNewExceptionF("Ljava/lang/IllegalArgumentException;",
                             "timeout arguments out of range: ms=%" PRId64 " ns=%d", ms, ns);
    return;
  }

  /*
   * Add ourselves to the set of threads waiting on this monitor, and
   * release our hold.  We need to let it go even if we're a few levels
   * deep in a recursive lock, and we need to restore that later.
   *
   * We append to the wait set ahead of clearing the count and owner
   * fields so the subroutine can check that the calling thread owns
   * the monitor.  Aside from that, the order of member updates is
   * not order sensitive as we hold the pthread mutex.
   */
  AppendToWaitSet(self);
  ++num_waiters_;
  int prev_lock_count = lock_count_;
  lock_count_ = 0;
  owner_ = nullptr;
  ArtMethod* saved_method = locking_method_;
  locking_method_ = nullptr;
  uintptr_t saved_dex_pc = locking_dex_pc_;
  locking_dex_pc_ = 0;

  AtraceMonitorUnlock();  // For the implict Unlock() just above. This will only end the deepest
                          // nesting, but that is enough for the visualization, and corresponds to
                          // the single Lock() we do afterwards.
  AtraceMonitorLock(self, GetObject(), true /* is_wait */);

  bool was_interrupted = false;
  {
    // Update thread state. If the GC wakes up, it'll ignore us, knowing
    // that we won't touch any references in this state, and we'll check
    // our suspend mode before we transition out.
    ScopedThreadSuspension sts(self, why);

    // Pseudo-atomically wait on self's wait_cond_ and release the monitor lock.
    MutexLock mu(self, *self->GetWaitMutex());

    // Set wait_monitor_ to the monitor object we will be waiting on. When wait_monitor_ is
    // non-null a notifying or interrupting thread must signal the thread's wait_cond_ to wake it
    // up.
    DCHECK(self->GetWaitMonitor() == nullptr);
    self->SetWaitMonitor(this);

    // Release the monitor lock.
    monitor_contenders_.Signal(self);
    monitor_lock_.Unlock(self);

    // Handle the case where the thread was interrupted before we called wait().
    if (self->IsInterruptedLocked()) {
      was_interrupted = true;
    } else {
      // Wait for a notification or a timeout to occur.
      if (why == kWaiting) {
        self->GetWaitConditionVariable()->Wait(self);
      } else {
        DCHECK(why == kTimedWaiting || why == kSleeping) << why;
        self->GetWaitConditionVariable()->TimedWait(self, ms, ns);
      }
      was_interrupted = self->IsInterruptedLocked();
    }
  }

  {
    // We reset the thread's wait_monitor_ field after transitioning back to runnable so
    // that a thread in a waiting/sleeping state has a non-null wait_monitor_ for debugging
    // and diagnostic purposes. (If you reset this earlier, stack dumps will claim that threads
    // are waiting on "null".)
    MutexLock mu(self, *self->GetWaitMutex());
    DCHECK(self->GetWaitMonitor() != nullptr);
    self->SetWaitMonitor(nullptr);
  }

  // Allocate the interrupted exception not holding the monitor lock since it may cause a GC.
  // If the GC requires acquiring the monitor for enqueuing cleared references, this would
  // cause a deadlock if the monitor is held.
  if (was_interrupted && interruptShouldThrow) {
    /*
     * We were interrupted while waiting, or somebody interrupted an
     * un-interruptible thread earlier and we're bailing out immediately.
     *
     * The doc sayeth: "The interrupted status of the current thread is
     * cleared when this exception is thrown."
     */
    {
      MutexLock mu(self, *self->GetWaitMutex());
      self->SetInterruptedLocked(false);
    }
    self->ThrowNewException("Ljava/lang/InterruptedException;", nullptr);
  }

  AtraceMonitorUnlock();  // End Wait().

  // Re-acquire the monitor and lock.
  Lock(self);
  monitor_lock_.Lock(self);
  self->GetWaitMutex()->AssertNotHeld(self);

  /*
   * We remove our thread from wait set after restoring the count
   * and owner fields so the subroutine can check that the calling
   * thread owns the monitor. Aside from that, the order of member
   * updates is not order sensitive as we hold the pthread mutex.
   */
  owner_ = self;
  lock_count_ = prev_lock_count;
  locking_method_ = saved_method;
  locking_dex_pc_ = saved_dex_pc;
  --num_waiters_;
  RemoveFromWaitSet(self);

  monitor_lock_.Unlock(self);
}

void Monitor::Notify(Thread* self) {
  DCHECK(self != nullptr);
  MutexLock mu(self, monitor_lock_);
  // Make sure that we hold the lock.
  if (owner_ != self) {
    ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()");
    return;
  }
  // Signal the first waiting thread in the wait set.
  while (wait_set_ != nullptr) {
    Thread* thread = wait_set_;
    wait_set_ = thread->GetWaitNext();
    thread->SetWaitNext(nullptr);

    // Check to see if the thread is still waiting.
    MutexLock wait_mu(self, *thread->GetWaitMutex());
    if (thread->GetWaitMonitor() != nullptr) {
      thread->GetWaitConditionVariable()->Signal(self);
      return;
    }
  }
}

void Monitor::NotifyAll(Thread* self) {
  DCHECK(self != nullptr);
  MutexLock mu(self, monitor_lock_);
  // Make sure that we hold the lock.
  if (owner_ != self) {
    ThrowIllegalMonitorStateExceptionF("object not locked by thread before notifyAll()");
    return;
  }
  // Signal all threads in the wait set.
  while (wait_set_ != nullptr) {
    Thread* thread = wait_set_;
    wait_set_ = thread->GetWaitNext();
    thread->SetWaitNext(nullptr);
    thread->Notify();
  }
}

bool Monitor::Deflate(Thread* self, mirror::Object* obj) {
  DCHECK(obj != nullptr);
  // Don't need volatile since we only deflate with mutators suspended.
  LockWord lw(obj->GetLockWord(false));
  // If the lock isn't an inflated monitor, then we don't need to deflate anything.
  if (lw.GetState() == LockWord::kFatLocked) {
    Monitor* monitor = lw.FatLockMonitor();
    DCHECK(monitor != nullptr);
    MutexLock mu(self, monitor->monitor_lock_);
    // Can't deflate if we have anybody waiting on the CV.
    if (monitor->num_waiters_ > 0) {
      return false;
    }
    Thread* owner = monitor->owner_;
    if (owner != nullptr) {
      // Can't deflate if we are locked and have a hash code.
      if (monitor->HasHashCode()) {
        return false;
      }
      // Can't deflate if our lock count is too high.
      if (monitor->lock_count_ > LockWord::kThinLockMaxCount) {
        return false;
      }
      // Deflate to a thin lock.
      LockWord new_lw = LockWord::FromThinLockId(owner->GetThreadId(), monitor->lock_count_,
                                                 lw.ReadBarrierState());
      // Assume no concurrent read barrier state changes as mutators are suspended.
      obj->SetLockWord(new_lw, false);
      VLOG(monitor) << "Deflated " << obj << " to thin lock " << owner->GetTid() << " / "
          << monitor->lock_count_;
    } else if (monitor->HasHashCode()) {
      LockWord new_lw = LockWord::FromHashCode(monitor->GetHashCode(), lw.ReadBarrierState());
      // Assume no concurrent read barrier state changes as mutators are suspended.
      obj->SetLockWord(new_lw, false);
      VLOG(monitor) << "Deflated " << obj << " to hash monitor " << monitor->GetHashCode();
    } else {
      // No lock and no hash, just put an empty lock word inside the object.
      LockWord new_lw = LockWord::FromDefault(lw.ReadBarrierState());
      // Assume no concurrent read barrier state changes as mutators are suspended.
      obj->SetLockWord(new_lw, false);
      VLOG(monitor) << "Deflated" << obj << " to empty lock word";
    }
    // The monitor is deflated, mark the object as null so that we know to delete it during the
    // next GC.
    monitor->obj_ = GcRoot<mirror::Object>(nullptr);
  }
  return true;
}

void Monitor::Inflate(Thread* self, Thread* owner, mirror::Object* obj, int32_t hash_code) {
  DCHECK(self != nullptr);
  DCHECK(obj != nullptr);
  // Allocate and acquire a new monitor.
  Monitor* m = MonitorPool::CreateMonitor(self, owner, obj, hash_code);
  DCHECK(m != nullptr);
  if (m->Install(self)) {
    if (owner != nullptr) {
      VLOG(monitor) << "monitor: thread" << owner->GetThreadId()
          << " created monitor " << m << " for object " << obj;
    } else {
      VLOG(monitor) << "monitor: Inflate with hashcode " << hash_code
          << " created monitor " << m << " for object " << obj;
    }
    Runtime::Current()->GetMonitorList()->Add(m);
    CHECK_EQ(obj->GetLockWord(true).GetState(), LockWord::kFatLocked);
  } else {
    MonitorPool::ReleaseMonitor(self, m);
  }
}

void Monitor::InflateThinLocked(Thread* self, Handle<mirror::Object> obj, LockWord lock_word,
                                uint32_t hash_code) {
  DCHECK_EQ(lock_word.GetState(), LockWord::kThinLocked);
  uint32_t owner_thread_id = lock_word.ThinLockOwner();
  if (owner_thread_id == self->GetThreadId()) {
    // We own the monitor, we can easily inflate it.
    Inflate(self, self, obj.Get(), hash_code);
  } else {
    ThreadList* thread_list = Runtime::Current()->GetThreadList();
    // Suspend the owner, inflate. First change to blocked and give up mutator_lock_.
    self->SetMonitorEnterObject(obj.Get());
    bool timed_out;
    Thread* owner;
    {
      ScopedThreadSuspension sts(self, kBlocked);
      owner = thread_list->SuspendThreadByThreadId(owner_thread_id, false, &timed_out);
    }
    if (owner != nullptr) {
      // We succeeded in suspending the thread, check the lock's status didn't change.
      lock_word = obj->GetLockWord(true);
      if (lock_word.GetState() == LockWord::kThinLocked &&
          lock_word.ThinLockOwner() == owner_thread_id) {
        // Go ahead and inflate the lock.
        Inflate(self, owner, obj.Get(), hash_code);
      }
      thread_list->Resume(owner, false);
    }
    self->SetMonitorEnterObject(nullptr);
  }
}

// Fool annotalysis into thinking that the lock on obj is acquired.
static mirror::Object* FakeLock(mirror::Object* obj)
    EXCLUSIVE_LOCK_FUNCTION(obj) NO_THREAD_SAFETY_ANALYSIS {
  return obj;
}

// Fool annotalysis into thinking that the lock on obj is release.
static mirror::Object* FakeUnlock(mirror::Object* obj)
    UNLOCK_FUNCTION(obj) NO_THREAD_SAFETY_ANALYSIS {
  return obj;
}

mirror::Object* Monitor::MonitorEnter(Thread* self, mirror::Object* obj, bool trylock) {
  DCHECK(self != nullptr);
  DCHECK(obj != nullptr);
  self->AssertThreadSuspensionIsAllowable();
  obj = FakeLock(obj);
  uint32_t thread_id = self->GetThreadId();
  size_t contention_count = 0;
  StackHandleScope<1> hs(self);
  Handle<mirror::Object> h_obj(hs.NewHandle(obj));
  while (true) {
    LockWord lock_word = h_obj->GetLockWord(true);
    switch (lock_word.GetState()) {
      case LockWord::kUnlocked: {
        LockWord thin_locked(LockWord::FromThinLockId(thread_id, 0, lock_word.ReadBarrierState()));
        if (h_obj->CasLockWordWeakSequentiallyConsistent(lock_word, thin_locked)) {
          AtraceMonitorLock(self, h_obj.Get(), false /* is_wait */);
          // CasLockWord enforces more than the acquire ordering we need here.
          return h_obj.Get();  // Success!
        }
        continue;  // Go again.
      }
      case LockWord::kThinLocked: {
        uint32_t owner_thread_id = lock_word.ThinLockOwner();
        if (owner_thread_id == thread_id) {
          // We own the lock, increase the recursion count.
          uint32_t new_count = lock_word.ThinLockCount() + 1;
          if (LIKELY(new_count <= LockWord::kThinLockMaxCount)) {
            LockWord thin_locked(LockWord::FromThinLockId(thread_id, new_count,
                                                          lock_word.ReadBarrierState()));
            if (!kUseReadBarrier) {
              h_obj->SetLockWord(thin_locked, true);
              AtraceMonitorLock(self, h_obj.Get(), false /* is_wait */);
              return h_obj.Get();  // Success!
            } else {
              // Use CAS to preserve the read barrier state.
              if (h_obj->CasLockWordWeakSequentiallyConsistent(lock_word, thin_locked)) {
                AtraceMonitorLock(self, h_obj.Get(), false /* is_wait */);
                return h_obj.Get();  // Success!
              }
            }
            continue;  // Go again.
          } else {
            // We'd overflow the recursion count, so inflate the monitor.
            InflateThinLocked(self, h_obj, lock_word, 0);
          }
        } else {
          if (trylock) {
            return nullptr;
          }
          // Contention.
          contention_count++;
          Runtime* runtime = Runtime::Current();
          if (contention_count <= runtime->GetMaxSpinsBeforeThinkLockInflation()) {
            // TODO: Consider switching the thread state to kBlocked when we are yielding.
            // Use sched_yield instead of NanoSleep since NanoSleep can wait much longer than the
            // parameter you pass in. This can cause thread suspension to take excessively long
            // and make long pauses. See b/16307460.
            sched_yield();
          } else {
            contention_count = 0;
            InflateThinLocked(self, h_obj, lock_word, 0);
          }
        }
        continue;  // Start from the beginning.
      }
      case LockWord::kFatLocked: {
        Monitor* mon = lock_word.FatLockMonitor();
        if (trylock) {
          return mon->TryLock(self) ? h_obj.Get() : nullptr;
        } else {
          mon->Lock(self);
          return h_obj.Get();  // Success!
        }
      }
      case LockWord::kHashCode:
        // Inflate with the existing hashcode.
        Inflate(self, nullptr, h_obj.Get(), lock_word.GetHashCode());
        continue;  // Start from the beginning.
      default: {
        LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
        UNREACHABLE();
      }
    }
  }
}

bool Monitor::MonitorExit(Thread* self, mirror::Object* obj) {
  DCHECK(self != nullptr);
  DCHECK(obj != nullptr);
  self->AssertThreadSuspensionIsAllowable();
  obj = FakeUnlock(obj);
  StackHandleScope<1> hs(self);
  Handle<mirror::Object> h_obj(hs.NewHandle(obj));
  while (true) {
    LockWord lock_word = obj->GetLockWord(true);
    switch (lock_word.GetState()) {
      case LockWord::kHashCode:
        // Fall-through.
      case LockWord::kUnlocked:
        FailedUnlock(h_obj.Get(), self->GetThreadId(), 0u, nullptr);
        return false;  // Failure.
      case LockWord::kThinLocked: {
        uint32_t thread_id = self->GetThreadId();
        uint32_t owner_thread_id = lock_word.ThinLockOwner();
        if (owner_thread_id != thread_id) {
          FailedUnlock(h_obj.Get(), thread_id, owner_thread_id, nullptr);
          return false;  // Failure.
        } else {
          // We own the lock, decrease the recursion count.
          LockWord new_lw = LockWord::Default();
          if (lock_word.ThinLockCount() != 0) {
            uint32_t new_count = lock_word.ThinLockCount() - 1;
            new_lw = LockWord::FromThinLockId(thread_id, new_count, lock_word.ReadBarrierState());
          } else {
            new_lw = LockWord::FromDefault(lock_word.ReadBarrierState());
          }
          if (!kUseReadBarrier) {
            DCHECK_EQ(new_lw.ReadBarrierState(), 0U);
            h_obj->SetLockWord(new_lw, true);
            AtraceMonitorUnlock();
            // Success!
            return true;
          } else {
            // Use CAS to preserve the read barrier state.
            if (h_obj->CasLockWordWeakSequentiallyConsistent(lock_word, new_lw)) {
              AtraceMonitorUnlock();
              // Success!
              return true;
            }
          }
          continue;  // Go again.
        }
      }
      case LockWord::kFatLocked: {
        Monitor* mon = lock_word.FatLockMonitor();
        return mon->Unlock(self);
      }
      default: {
        LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
        return false;
      }
    }
  }
}

void Monitor::Wait(Thread* self, mirror::Object *obj, int64_t ms, int32_t ns,
                   bool interruptShouldThrow, ThreadState why) {
  DCHECK(self != nullptr);
  DCHECK(obj != nullptr);
  LockWord lock_word = obj->GetLockWord(true);
  while (lock_word.GetState() != LockWord::kFatLocked) {
    switch (lock_word.GetState()) {
      case LockWord::kHashCode:
        // Fall-through.
      case LockWord::kUnlocked:
        ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()");
        return;  // Failure.
      case LockWord::kThinLocked: {
        uint32_t thread_id = self->GetThreadId();
        uint32_t owner_thread_id = lock_word.ThinLockOwner();
        if (owner_thread_id != thread_id) {
          ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()");
          return;  // Failure.
        } else {
          // We own the lock, inflate to enqueue ourself on the Monitor. May fail spuriously so
          // re-load.
          Inflate(self, self, obj, 0);
          lock_word = obj->GetLockWord(true);
        }
        break;
      }
      case LockWord::kFatLocked:  // Unreachable given the loop condition above. Fall-through.
      default: {
        LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
        return;
      }
    }
  }
  Monitor* mon = lock_word.FatLockMonitor();
  mon->Wait(self, ms, ns, interruptShouldThrow, why);
}

void Monitor::DoNotify(Thread* self, mirror::Object* obj, bool notify_all) {
  DCHECK(self != nullptr);
  DCHECK(obj != nullptr);
  LockWord lock_word = obj->GetLockWord(true);
  switch (lock_word.GetState()) {
    case LockWord::kHashCode:
      // Fall-through.
    case LockWord::kUnlocked:
      ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()");
      return;  // Failure.
    case LockWord::kThinLocked: {
      uint32_t thread_id = self->GetThreadId();
      uint32_t owner_thread_id = lock_word.ThinLockOwner();
      if (owner_thread_id != thread_id) {
        ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()");
        return;  // Failure.
      } else {
        // We own the lock but there's no Monitor and therefore no waiters.
        return;  // Success.
      }
    }
    case LockWord::kFatLocked: {
      Monitor* mon = lock_word.FatLockMonitor();
      if (notify_all) {
        mon->NotifyAll(self);
      } else {
        mon->Notify(self);
      }
      return;  // Success.
    }
    default: {
      LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
      return;
    }
  }
}

uint32_t Monitor::GetLockOwnerThreadId(mirror::Object* obj) {
  DCHECK(obj != nullptr);
  LockWord lock_word = obj->GetLockWord(true);
  switch (lock_word.GetState()) {
    case LockWord::kHashCode:
      // Fall-through.
    case LockWord::kUnlocked:
      return ThreadList::kInvalidThreadId;
    case LockWord::kThinLocked:
      return lock_word.ThinLockOwner();
    case LockWord::kFatLocked: {
      Monitor* mon = lock_word.FatLockMonitor();
      return mon->GetOwnerThreadId();
    }
    default: {
      LOG(FATAL) << "Unreachable";
      UNREACHABLE();
    }
  }
}

void Monitor::DescribeWait(std::ostream& os, const Thread* thread) {
  // Determine the wait message and object we're waiting or blocked upon.
  mirror::Object* pretty_object = nullptr;
  const char* wait_message = nullptr;
  uint32_t lock_owner = ThreadList::kInvalidThreadId;
  ThreadState state = thread->GetState();
  if (state == kWaiting || state == kTimedWaiting || state == kSleeping) {
    wait_message = (state == kSleeping) ? "  - sleeping on " : "  - waiting on ";
    Thread* self = Thread::Current();
    MutexLock mu(self, *thread->GetWaitMutex());
    Monitor* monitor = thread->GetWaitMonitor();
    if (monitor != nullptr) {
      pretty_object = monitor->GetObject();
    }
  } else if (state == kBlocked) {
    wait_message = "  - waiting to lock ";
    pretty_object = thread->GetMonitorEnterObject();
    if (pretty_object != nullptr) {
      lock_owner = pretty_object->GetLockOwnerThreadId();
    }
  }

  if (wait_message != nullptr) {
    if (pretty_object == nullptr) {
      os << wait_message << "an unknown object";
    } else {
      if ((pretty_object->GetLockWord(true).GetState() == LockWord::kThinLocked) &&
          Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
        // Getting the identity hashcode here would result in lock inflation and suspension of the
        // current thread, which isn't safe if this is the only runnable thread.
        os << wait_message << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)",
                                           reinterpret_cast<intptr_t>(pretty_object),
                                           PrettyTypeOf(pretty_object).c_str());
      } else {
        // - waiting on <0x6008c468> (a java.lang.Class<java.lang.ref.ReferenceQueue>)
        // Call PrettyTypeOf before IdentityHashCode since IdentityHashCode can cause thread
        // suspension and move pretty_object.
        const std::string pretty_type(PrettyTypeOf(pretty_object));
        os << wait_message << StringPrintf("<0x%08x> (a %s)", pretty_object->IdentityHashCode(),
                                           pretty_type.c_str());
      }
    }
    // - waiting to lock <0x613f83d8> (a java.lang.Object) held by thread 5
    if (lock_owner != ThreadList::kInvalidThreadId) {
      os << " held by thread " << lock_owner;
    }
    os << "\n";
  }
}

mirror::Object* Monitor::GetContendedMonitor(Thread* thread) {
  // This is used to implement JDWP's ThreadReference.CurrentContendedMonitor, and has a bizarre
  // definition of contended that includes a monitor a thread is trying to enter...
  mirror::Object* result = thread->GetMonitorEnterObject();
  if (result == nullptr) {
    // ...but also a monitor that the thread is waiting on.
    MutexLock mu(Thread::Current(), *thread->GetWaitMutex());
    Monitor* monitor = thread->GetWaitMonitor();
    if (monitor != nullptr) {
      result = monitor->GetObject();
    }
  }
  return result;
}

void Monitor::VisitLocks(StackVisitor* stack_visitor, void (*callback)(mirror::Object*, void*),
                         void* callback_context, bool abort_on_failure) {
  ArtMethod* m = stack_visitor->GetMethod();
  CHECK(m != nullptr);

  // Native methods are an easy special case.
  // TODO: use the JNI implementation's table of explicit MonitorEnter calls and dump those too.
  if (m->IsNative()) {
    if (m->IsSynchronized()) {
      mirror::Object* jni_this =
          stack_visitor->GetCurrentHandleScope(sizeof(void*))->GetReference(0);
      callback(jni_this, callback_context);
    }
    return;
  }

  // Proxy methods should not be synchronized.
  if (m->IsProxyMethod()) {
    CHECK(!m->IsSynchronized());
    return;
  }

  // Is there any reason to believe there's any synchronization in this method?
  const DexFile::CodeItem* code_item = m->GetCodeItem();
  CHECK(code_item != nullptr) << PrettyMethod(m);
  if (code_item->tries_size_ == 0) {
    return;  // No "tries" implies no synchronization, so no held locks to report.
  }

  // Get the dex pc. If abort_on_failure is false, GetDexPc will not abort in the case it cannot
  // find the dex pc, and instead return kDexNoIndex. Then bail out, as it indicates we have an
  // inconsistent stack anyways.
  uint32_t dex_pc = stack_visitor->GetDexPc(abort_on_failure);
  if (!abort_on_failure && dex_pc == DexFile::kDexNoIndex) {
    LOG(ERROR) << "Could not find dex_pc for " << PrettyMethod(m);
    return;
  }

  // Ask the verifier for the dex pcs of all the monitor-enter instructions corresponding to
  // the locks held in this stack frame.
  std::vector<uint32_t> monitor_enter_dex_pcs;
  verifier::MethodVerifier::FindLocksAtDexPc(m, dex_pc, &monitor_enter_dex_pcs);
  for (uint32_t monitor_dex_pc : monitor_enter_dex_pcs) {
    // The verifier works in terms of the dex pcs of the monitor-enter instructions.
    // We want the registers used by those instructions (so we can read the values out of them).
    const Instruction* monitor_enter_instruction =
        Instruction::At(&code_item->insns_[monitor_dex_pc]);

    // Quick sanity check.
    CHECK_EQ(monitor_enter_instruction->Opcode(), Instruction::MONITOR_ENTER)
      << "expected monitor-enter @" << monitor_dex_pc << "; was "
      << reinterpret_cast<const void*>(monitor_enter_instruction);

    uint16_t monitor_register = monitor_enter_instruction->VRegA();
    uint32_t value;
    bool success = stack_visitor->GetVReg(m, monitor_register, kReferenceVReg, &value);
    CHECK(success) << "Failed to read v" << monitor_register << " of kind "
                   << kReferenceVReg << " in method " << PrettyMethod(m);
    mirror::Object* o = reinterpret_cast<mirror::Object*>(value);
    callback(o, callback_context);
  }
}

bool Monitor::IsValidLockWord(LockWord lock_word) {
  switch (lock_word.GetState()) {
    case LockWord::kUnlocked:
      // Nothing to check.
      return true;
    case LockWord::kThinLocked:
      // Basic sanity check of owner.
      return lock_word.ThinLockOwner() != ThreadList::kInvalidThreadId;
    case LockWord::kFatLocked: {
      // Check the  monitor appears in the monitor list.
      Monitor* mon = lock_word.FatLockMonitor();
      MonitorList* list = Runtime::Current()->GetMonitorList();
      MutexLock mu(Thread::Current(), list->monitor_list_lock_);
      for (Monitor* list_mon : list->list_) {
        if (mon == list_mon) {
          return true;  // Found our monitor.
        }
      }
      return false;  // Fail - unowned monitor in an object.
    }
    case LockWord::kHashCode:
      return true;
    default:
      LOG(FATAL) << "Unreachable";
      UNREACHABLE();
  }
}

bool Monitor::IsLocked() SHARED_REQUIRES(Locks::mutator_lock_) {
  MutexLock mu(Thread::Current(), monitor_lock_);
  return owner_ != nullptr;
}

void Monitor::TranslateLocation(ArtMethod* method,
                                uint32_t dex_pc,
                                const char** source_file,
                                int32_t* line_number) {
  // If method is null, location is unknown
  if (method == nullptr) {
    *source_file = "";
    *line_number = 0;
    return;
  }
  *source_file = method->GetDeclaringClassSourceFile();
  if (*source_file == nullptr) {
    *source_file = "";
  }
  *line_number = method->GetLineNumFromDexPC(dex_pc);
}

uint32_t Monitor::GetOwnerThreadId() {
  MutexLock mu(Thread::Current(), monitor_lock_);
  Thread* owner = owner_;
  if (owner != nullptr) {
    return owner->GetThreadId();
  } else {
    return ThreadList::kInvalidThreadId;
  }
}

MonitorList::MonitorList()
    : allow_new_monitors_(true), monitor_list_lock_("MonitorList lock", kMonitorListLock),
      monitor_add_condition_("MonitorList disallow condition", monitor_list_lock_) {
}

MonitorList::~MonitorList() {
  Thread* self = Thread::Current();
  MutexLock mu(self, monitor_list_lock_);
  // Release all monitors to the pool.
  // TODO: Is it an invariant that *all* open monitors are in the list? Then we could
  // clear faster in the pool.
  MonitorPool::ReleaseMonitors(self, &list_);
}

void MonitorList::DisallowNewMonitors() {
  CHECK(!kUseReadBarrier);
  MutexLock mu(Thread::Current(), monitor_list_lock_);
  allow_new_monitors_ = false;
}

void MonitorList::AllowNewMonitors() {
  CHECK(!kUseReadBarrier);
  Thread* self = Thread::Current();
  MutexLock mu(self, monitor_list_lock_);
  allow_new_monitors_ = true;
  monitor_add_condition_.Broadcast(self);
}

void MonitorList::BroadcastForNewMonitors() {
  CHECK(kUseReadBarrier);
  Thread* self = Thread::Current();
  MutexLock mu(self, monitor_list_lock_);
  monitor_add_condition_.Broadcast(self);
}

void MonitorList::Add(Monitor* m) {
  Thread* self = Thread::Current();
  MutexLock mu(self, monitor_list_lock_);
  while (UNLIKELY((!kUseReadBarrier && !allow_new_monitors_) ||
                  (kUseReadBarrier && !self->GetWeakRefAccessEnabled()))) {
    monitor_add_condition_.WaitHoldingLocks(self);
  }
  list_.push_front(m);
}

void MonitorList::SweepMonitorList(IsMarkedVisitor* visitor) {
  Thread* self = Thread::Current();
  MutexLock mu(self, monitor_list_lock_);
  for (auto it = list_.begin(); it != list_.end(); ) {
    Monitor* m = *it;
    // Disable the read barrier in GetObject() as this is called by GC.
    mirror::Object* obj = m->GetObject<kWithoutReadBarrier>();
    // The object of a monitor can be null if we have deflated it.
    mirror::Object* new_obj = obj != nullptr ? visitor->IsMarked(obj) : nullptr;
    if (new_obj == nullptr) {
      VLOG(monitor) << "freeing monitor " << m << " belonging to unmarked object "
                    << obj;
      MonitorPool::ReleaseMonitor(self, m);
      it = list_.erase(it);
    } else {
      m->SetObject(new_obj);
      ++it;
    }
  }
}

class MonitorDeflateVisitor : public IsMarkedVisitor {
 public:
  MonitorDeflateVisitor() : self_(Thread::Current()), deflate_count_(0) {}

  virtual mirror::Object* IsMarked(mirror::Object* object) OVERRIDE
      SHARED_REQUIRES(Locks::mutator_lock_) {
    if (Monitor::Deflate(self_, object)) {
      DCHECK_NE(object->GetLockWord(true).GetState(), LockWord::kFatLocked);
      ++deflate_count_;
      // If we deflated, return null so that the monitor gets removed from the array.
      return nullptr;
    }
    return object;  // Monitor was not deflated.
  }

  Thread* const self_;
  size_t deflate_count_;
};

size_t MonitorList::DeflateMonitors() {
  MonitorDeflateVisitor visitor;
  Locks::mutator_lock_->AssertExclusiveHeld(visitor.self_);
  SweepMonitorList(&visitor);
  return visitor.deflate_count_;
}

MonitorInfo::MonitorInfo(mirror::Object* obj) : owner_(nullptr), entry_count_(0) {
  DCHECK(obj != nullptr);
  LockWord lock_word = obj->GetLockWord(true);
  switch (lock_word.GetState()) {
    case LockWord::kUnlocked:
      // Fall-through.
    case LockWord::kForwardingAddress:
      // Fall-through.
    case LockWord::kHashCode:
      break;
    case LockWord::kThinLocked:
      owner_ = Runtime::Current()->GetThreadList()->FindThreadByThreadId(lock_word.ThinLockOwner());
      entry_count_ = 1 + lock_word.ThinLockCount();
      // Thin locks have no waiters.
      break;
    case LockWord::kFatLocked: {
      Monitor* mon = lock_word.FatLockMonitor();
      owner_ = mon->owner_;
      entry_count_ = 1 + mon->lock_count_;
      for (Thread* waiter = mon->wait_set_; waiter != nullptr; waiter = waiter->GetWaitNext()) {
        waiters_.push_back(waiter);
      }
      break;
    }
  }
}

}  // namespace art