summaryrefslogtreecommitdiffstats
path: root/compiler/optimizing/optimizing_compiler.cc
blob: 6f303263d1f97786f823fbbedd89c4cb6a9b1550 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
/*
 * Copyright (C) 2014 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "optimizing_compiler.h"

#include <fstream>
#include <stdint.h>

#ifdef ART_ENABLE_CODEGEN_arm64
#include "dex_cache_array_fixups_arm.h"
#endif

#ifdef ART_ENABLE_CODEGEN_arm64
#include "instruction_simplifier_arm64.h"
#endif

#ifdef ART_ENABLE_CODEGEN_x86
#include "pc_relative_fixups_x86.h"
#endif

#include "art_method-inl.h"
#include "base/arena_allocator.h"
#include "base/arena_containers.h"
#include "base/dumpable.h"
#include "base/macros.h"
#include "base/timing_logger.h"
#include "boolean_simplifier.h"
#include "bounds_check_elimination.h"
#include "builder.h"
#include "code_generator.h"
#include "compiled_method.h"
#include "compiler.h"
#include "constant_folding.h"
#include "dead_code_elimination.h"
#include "dex/quick/dex_file_to_method_inliner_map.h"
#include "dex/verified_method.h"
#include "dex/verification_results.h"
#include "driver/compiler_driver.h"
#include "driver/compiler_driver-inl.h"
#include "driver/compiler_options.h"
#include "driver/dex_compilation_unit.h"
#include "elf_writer_quick.h"
#include "graph_checker.h"
#include "graph_visualizer.h"
#include "gvn.h"
#include "induction_var_analysis.h"
#include "inliner.h"
#include "instruction_simplifier.h"
#include "intrinsics.h"
#include "jit/jit_code_cache.h"
#include "licm.h"
#include "jni/quick/jni_compiler.h"
#include "load_store_elimination.h"
#include "nodes.h"
#include "prepare_for_register_allocation.h"
#include "reference_type_propagation.h"
#include "register_allocator.h"
#include "sharpening.h"
#include "side_effects_analysis.h"
#include "ssa_builder.h"
#include "ssa_phi_elimination.h"
#include "ssa_liveness_analysis.h"
#include "utils/assembler.h"
#include "verifier/method_verifier.h"

namespace art {

/**
 * Used by the code generator, to allocate the code in a vector.
 */
class CodeVectorAllocator FINAL : public CodeAllocator {
 public:
  explicit CodeVectorAllocator(ArenaAllocator* arena)
      : memory_(arena->Adapter(kArenaAllocCodeBuffer)),
        size_(0) {}

  virtual uint8_t* Allocate(size_t size) {
    size_ = size;
    memory_.resize(size);
    return &memory_[0];
  }

  size_t GetSize() const { return size_; }
  const ArenaVector<uint8_t>& GetMemory() const { return memory_; }

 private:
  ArenaVector<uint8_t> memory_;
  size_t size_;

  DISALLOW_COPY_AND_ASSIGN(CodeVectorAllocator);
};

/**
 * Filter to apply to the visualizer. Methods whose name contain that filter will
 * be dumped.
 */
static constexpr const char kStringFilter[] = "";

class PassScope;

class PassObserver : public ValueObject {
 public:
  PassObserver(HGraph* graph,
               CodeGenerator* codegen,
               std::ostream* visualizer_output,
               CompilerDriver* compiler_driver)
      : graph_(graph),
        cached_method_name_(),
        timing_logger_enabled_(compiler_driver->GetDumpPasses()),
        timing_logger_(timing_logger_enabled_ ? GetMethodName() : "", true, true),
        disasm_info_(graph->GetArena()),
        visualizer_enabled_(!compiler_driver->GetDumpCfgFileName().empty()),
        visualizer_(visualizer_output, graph, *codegen),
        graph_in_bad_state_(false) {
    if (timing_logger_enabled_ || visualizer_enabled_) {
      if (!IsVerboseMethod(compiler_driver, GetMethodName())) {
        timing_logger_enabled_ = visualizer_enabled_ = false;
      }
      if (visualizer_enabled_) {
        visualizer_.PrintHeader(GetMethodName());
        codegen->SetDisassemblyInformation(&disasm_info_);
      }
    }
  }

  ~PassObserver() {
    if (timing_logger_enabled_) {
      LOG(INFO) << "TIMINGS " << GetMethodName();
      LOG(INFO) << Dumpable<TimingLogger>(timing_logger_);
    }
  }

  void DumpDisassembly() const {
    if (visualizer_enabled_) {
      visualizer_.DumpGraphWithDisassembly();
    }
  }

  void SetGraphInBadState() { graph_in_bad_state_ = true; }

  const char* GetMethodName() {
    // PrettyMethod() is expensive, so we delay calling it until we actually have to.
    if (cached_method_name_.empty()) {
      cached_method_name_ = PrettyMethod(graph_->GetMethodIdx(), graph_->GetDexFile());
    }
    return cached_method_name_.c_str();
  }

 private:
  void StartPass(const char* pass_name) {
    // Dump graph first, then start timer.
    if (visualizer_enabled_) {
      visualizer_.DumpGraph(pass_name, /* is_after_pass */ false, graph_in_bad_state_);
    }
    if (timing_logger_enabled_) {
      timing_logger_.StartTiming(pass_name);
    }
  }

  void EndPass(const char* pass_name) {
    // Pause timer first, then dump graph.
    if (timing_logger_enabled_) {
      timing_logger_.EndTiming();
    }
    if (visualizer_enabled_) {
      visualizer_.DumpGraph(pass_name, /* is_after_pass */ true, graph_in_bad_state_);
    }

    // Validate the HGraph if running in debug mode.
    if (kIsDebugBuild) {
      if (!graph_in_bad_state_) {
        if (graph_->IsInSsaForm()) {
          SSAChecker checker(graph_);
          checker.Run();
          if (!checker.IsValid()) {
            LOG(FATAL) << "Error after " << pass_name << ": " << Dumpable<SSAChecker>(checker);
          }
        } else {
          GraphChecker checker(graph_);
          checker.Run();
          if (!checker.IsValid()) {
            LOG(FATAL) << "Error after " << pass_name << ": " << Dumpable<GraphChecker>(checker);
          }
        }
      }
    }
  }

  static bool IsVerboseMethod(CompilerDriver* compiler_driver, const char* method_name) {
    // Test an exact match to --verbose-methods. If verbose-methods is set, this overrides an
    // empty kStringFilter matching all methods.
    if (compiler_driver->GetCompilerOptions().HasVerboseMethods()) {
      return compiler_driver->GetCompilerOptions().IsVerboseMethod(method_name);
    }

    // Test the kStringFilter sub-string. constexpr helper variable to silence unreachable-code
    // warning when the string is empty.
    constexpr bool kStringFilterEmpty = arraysize(kStringFilter) <= 1;
    if (kStringFilterEmpty || strstr(method_name, kStringFilter) != nullptr) {
      return true;
    }

    return false;
  }

  HGraph* const graph_;

  std::string cached_method_name_;

  bool timing_logger_enabled_;
  TimingLogger timing_logger_;

  DisassemblyInformation disasm_info_;

  bool visualizer_enabled_;
  HGraphVisualizer visualizer_;

  // Flag to be set by the compiler if the pass failed and the graph is not
  // expected to validate.
  bool graph_in_bad_state_;

  friend PassScope;

  DISALLOW_COPY_AND_ASSIGN(PassObserver);
};

class PassScope : public ValueObject {
 public:
  PassScope(const char *pass_name, PassObserver* pass_observer)
      : pass_name_(pass_name),
        pass_observer_(pass_observer) {
    pass_observer_->StartPass(pass_name_);
  }

  ~PassScope() {
    pass_observer_->EndPass(pass_name_);
  }

 private:
  const char* const pass_name_;
  PassObserver* const pass_observer_;
};

class OptimizingCompiler FINAL : public Compiler {
 public:
  explicit OptimizingCompiler(CompilerDriver* driver);
  ~OptimizingCompiler();

  bool CanCompileMethod(uint32_t method_idx, const DexFile& dex_file, CompilationUnit* cu) const
      OVERRIDE;

  CompiledMethod* Compile(const DexFile::CodeItem* code_item,
                          uint32_t access_flags,
                          InvokeType invoke_type,
                          uint16_t class_def_idx,
                          uint32_t method_idx,
                          jobject class_loader,
                          const DexFile& dex_file,
                          Handle<mirror::DexCache> dex_cache) const OVERRIDE;

  CompiledMethod* JniCompile(uint32_t access_flags,
                             uint32_t method_idx,
                             const DexFile& dex_file) const OVERRIDE {
    return ArtQuickJniCompileMethod(GetCompilerDriver(), access_flags, method_idx, dex_file);
  }

  uintptr_t GetEntryPointOf(ArtMethod* method) const OVERRIDE
      SHARED_REQUIRES(Locks::mutator_lock_) {
    return reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCodePtrSize(
        InstructionSetPointerSize(GetCompilerDriver()->GetInstructionSet())));
  }

  void InitCompilationUnit(CompilationUnit& cu) const OVERRIDE;

  void Init() OVERRIDE;

  void UnInit() const OVERRIDE;

  void MaybeRecordStat(MethodCompilationStat compilation_stat) const {
    if (compilation_stats_.get() != nullptr) {
      compilation_stats_->RecordStat(compilation_stat);
    }
  }

  bool JitCompile(Thread* self, jit::JitCodeCache* code_cache, ArtMethod* method)
      OVERRIDE
      SHARED_REQUIRES(Locks::mutator_lock_);

 private:
  // Whether we should run any optimization or register allocation. If false, will
  // just run the code generation after the graph was built.
  const bool run_optimizations_;

  // Create a 'CompiledMethod' for an optimized graph.
  CompiledMethod* EmitOptimized(ArenaAllocator* arena,
                                CodeVectorAllocator* code_allocator,
                                CodeGenerator* codegen,
                                CompilerDriver* driver) const;

  // Create a 'CompiledMethod' for a non-optimized graph.
  CompiledMethod* EmitBaseline(ArenaAllocator* arena,
                               CodeVectorAllocator* code_allocator,
                               CodeGenerator* codegen,
                               CompilerDriver* driver) const;

  // Try compiling a method and return the code generator used for
  // compiling it.
  // This method:
  // 1) Builds the graph. Returns null if it failed to build it.
  // 2) If `run_optimizations_` is set:
  //    2.1) Transform the graph to SSA. Returns null if it failed.
  //    2.2) Run optimizations on the graph, including register allocator.
  // 3) Generate code with the `code_allocator` provided.
  CodeGenerator* TryCompile(ArenaAllocator* arena,
                            CodeVectorAllocator* code_allocator,
                            const DexFile::CodeItem* code_item,
                            uint32_t access_flags,
                            InvokeType invoke_type,
                            uint16_t class_def_idx,
                            uint32_t method_idx,
                            jobject class_loader,
                            const DexFile& dex_file,
                            Handle<mirror::DexCache> dex_cache) const;

  std::unique_ptr<OptimizingCompilerStats> compilation_stats_;

  std::unique_ptr<std::ostream> visualizer_output_;

  DISALLOW_COPY_AND_ASSIGN(OptimizingCompiler);
};

static const int kMaximumCompilationTimeBeforeWarning = 100; /* ms */

OptimizingCompiler::OptimizingCompiler(CompilerDriver* driver)
    : Compiler(driver, kMaximumCompilationTimeBeforeWarning),
      run_optimizations_(
          driver->GetCompilerOptions().GetCompilerFilter() != CompilerOptions::kTime) {}

void OptimizingCompiler::Init() {
  // Enable C1visualizer output. Must be done in Init() because the compiler
  // driver is not fully initialized when passed to the compiler's constructor.
  CompilerDriver* driver = GetCompilerDriver();
  const std::string cfg_file_name = driver->GetDumpCfgFileName();
  if (!cfg_file_name.empty()) {
    CHECK_EQ(driver->GetThreadCount(), 1U)
      << "Graph visualizer requires the compiler to run single-threaded. "
      << "Invoke the compiler with '-j1'.";
    std::ios_base::openmode cfg_file_mode =
        driver->GetDumpCfgAppend() ? std::ofstream::app : std::ofstream::out;
    visualizer_output_.reset(new std::ofstream(cfg_file_name, cfg_file_mode));
  }
  if (driver->GetDumpStats()) {
    compilation_stats_.reset(new OptimizingCompilerStats());
  }
}

void OptimizingCompiler::UnInit() const {
}

OptimizingCompiler::~OptimizingCompiler() {
  if (compilation_stats_.get() != nullptr) {
    compilation_stats_->Log();
  }
}

void OptimizingCompiler::InitCompilationUnit(CompilationUnit& cu ATTRIBUTE_UNUSED) const {
}

bool OptimizingCompiler::CanCompileMethod(uint32_t method_idx ATTRIBUTE_UNUSED,
                                          const DexFile& dex_file ATTRIBUTE_UNUSED,
                                          CompilationUnit* cu ATTRIBUTE_UNUSED) const {
  return true;
}

static bool IsInstructionSetSupported(InstructionSet instruction_set) {
  return (instruction_set == kArm && !kArm32QuickCodeUseSoftFloat)
      || instruction_set == kArm64
      || (instruction_set == kThumb2 && !kArm32QuickCodeUseSoftFloat)
      || instruction_set == kMips
      || instruction_set == kMips64
      || instruction_set == kX86
      || instruction_set == kX86_64;
}

// Read barrier are supported on ARM, ARM64, x86 and x86-64 at the moment.
// TODO: Add support for other architectures and remove this function
static bool InstructionSetSupportsReadBarrier(InstructionSet instruction_set) {
  return instruction_set == kArm64
      || instruction_set == kThumb2
      || instruction_set == kX86
      || instruction_set == kX86_64;
}

static void RunOptimizations(HOptimization* optimizations[],
                             size_t length,
                             PassObserver* pass_observer) {
  for (size_t i = 0; i < length; ++i) {
    PassScope scope(optimizations[i]->GetPassName(), pass_observer);
    optimizations[i]->Run();
  }
}

static void MaybeRunInliner(HGraph* graph,
                            CodeGenerator* codegen,
                            CompilerDriver* driver,
                            OptimizingCompilerStats* stats,
                            const DexCompilationUnit& dex_compilation_unit,
                            PassObserver* pass_observer,
                            StackHandleScopeCollection* handles) {
  const CompilerOptions& compiler_options = driver->GetCompilerOptions();
  bool should_inline = (compiler_options.GetInlineDepthLimit() > 0)
      && (compiler_options.GetInlineMaxCodeUnits() > 0);
  if (!should_inline) {
    return;
  }
  HInliner* inliner = new (graph->GetArena()) HInliner(
    graph, codegen, dex_compilation_unit, dex_compilation_unit, driver, handles, stats);
  HOptimization* optimizations[] = { inliner };

  RunOptimizations(optimizations, arraysize(optimizations), pass_observer);
}

static void RunArchOptimizations(InstructionSet instruction_set,
                                 HGraph* graph,
                                 OptimizingCompilerStats* stats,
                                 PassObserver* pass_observer) {
  ArenaAllocator* arena = graph->GetArena();
  switch (instruction_set) {
#ifdef ART_ENABLE_CODEGEN_arm
    case kThumb2:
    case kArm: {
      arm::DexCacheArrayFixups* fixups = new (arena) arm::DexCacheArrayFixups(graph, stats);
      HOptimization* arm_optimizations[] = {
        fixups
      };
      RunOptimizations(arm_optimizations, arraysize(arm_optimizations), pass_observer);
      break;
    }
#endif
#ifdef ART_ENABLE_CODEGEN_arm64
    case kArm64: {
      arm64::InstructionSimplifierArm64* simplifier =
          new (arena) arm64::InstructionSimplifierArm64(graph, stats);
      SideEffectsAnalysis* side_effects = new (arena) SideEffectsAnalysis(graph);
      GVNOptimization* gvn = new (arena) GVNOptimization(graph, *side_effects, "GVN_after_arch");
      HOptimization* arm64_optimizations[] = {
        simplifier,
        side_effects,
        gvn
      };
      RunOptimizations(arm64_optimizations, arraysize(arm64_optimizations), pass_observer);
      break;
    }
#endif
#ifdef ART_ENABLE_CODEGEN_x86
    case kX86: {
      x86::PcRelativeFixups* pc_relative_fixups = new (arena) x86::PcRelativeFixups(graph, stats);
      HOptimization* x86_optimizations[] = {
          pc_relative_fixups
      };
      RunOptimizations(x86_optimizations, arraysize(x86_optimizations), pass_observer);
      break;
    }
#endif
    default:
      break;
  }
}

NO_INLINE  // Avoid increasing caller's frame size by large stack-allocated objects.
static void AllocateRegisters(HGraph* graph,
                              CodeGenerator* codegen,
                              PassObserver* pass_observer) {
  PrepareForRegisterAllocation(graph).Run();
  SsaLivenessAnalysis liveness(graph, codegen);
  {
    PassScope scope(SsaLivenessAnalysis::kLivenessPassName, pass_observer);
    liveness.Analyze();
  }
  {
    PassScope scope(RegisterAllocator::kRegisterAllocatorPassName, pass_observer);
    RegisterAllocator(graph->GetArena(), codegen, liveness).AllocateRegisters();
  }
}

static void RunOptimizations(HGraph* graph,
                             CodeGenerator* codegen,
                             CompilerDriver* driver,
                             OptimizingCompilerStats* stats,
                             const DexCompilationUnit& dex_compilation_unit,
                             PassObserver* pass_observer) {
  ScopedObjectAccess soa(Thread::Current());
  StackHandleScopeCollection handles(soa.Self());
  ScopedThreadSuspension sts(soa.Self(), kNative);

  ArenaAllocator* arena = graph->GetArena();
  HDeadCodeElimination* dce1 = new (arena) HDeadCodeElimination(
      graph, stats, HDeadCodeElimination::kInitialDeadCodeEliminationPassName);
  HDeadCodeElimination* dce2 = new (arena) HDeadCodeElimination(
      graph, stats, HDeadCodeElimination::kFinalDeadCodeEliminationPassName);
  HConstantFolding* fold1 = new (arena) HConstantFolding(graph);
  InstructionSimplifier* simplify1 = new (arena) InstructionSimplifier(graph, stats);
  HBooleanSimplifier* boolean_simplify = new (arena) HBooleanSimplifier(graph);
  HConstantFolding* fold2 = new (arena) HConstantFolding(graph, "constant_folding_after_inlining");
  HConstantFolding* fold3 = new (arena) HConstantFolding(graph, "constant_folding_after_bce");
  SideEffectsAnalysis* side_effects = new (arena) SideEffectsAnalysis(graph);
  GVNOptimization* gvn = new (arena) GVNOptimization(graph, *side_effects);
  LICM* licm = new (arena) LICM(graph, *side_effects);
  LoadStoreElimination* lse = new (arena) LoadStoreElimination(graph, *side_effects);
  HInductionVarAnalysis* induction = new (arena) HInductionVarAnalysis(graph);
  BoundsCheckElimination* bce = new (arena) BoundsCheckElimination(graph, *side_effects, induction);
  ReferenceTypePropagation* type_propagation =
      new (arena) ReferenceTypePropagation(graph, &handles);
  HSharpening* sharpening = new (arena) HSharpening(graph, codegen, dex_compilation_unit, driver);
  InstructionSimplifier* simplify2 = new (arena) InstructionSimplifier(
      graph, stats, "instruction_simplifier_after_types");
  InstructionSimplifier* simplify3 = new (arena) InstructionSimplifier(
      graph, stats, "instruction_simplifier_after_bce");
  InstructionSimplifier* simplify4 = new (arena) InstructionSimplifier(
      graph, stats, "instruction_simplifier_before_codegen");

  IntrinsicsRecognizer* intrinsics = new (arena) IntrinsicsRecognizer(graph, driver);

  HOptimization* optimizations1[] = {
    intrinsics,
    fold1,
    simplify1,
    type_propagation,
    sharpening,
    dce1,
    simplify2
  };

  RunOptimizations(optimizations1, arraysize(optimizations1), pass_observer);

  MaybeRunInliner(graph, codegen, driver, stats, dex_compilation_unit, pass_observer, &handles);

  // TODO: Update passes incompatible with try/catch so we have the same
  //       pipeline for all methods.
  if (graph->HasTryCatch()) {
    HOptimization* optimizations2[] = {
      boolean_simplify,
      side_effects,
      gvn,
      dce2,
      // The codegen has a few assumptions that only the instruction simplifier
      // can satisfy. For example, the code generator does not expect to see a
      // HTypeConversion from a type to the same type.
      simplify4,
    };

    RunOptimizations(optimizations2, arraysize(optimizations2), pass_observer);
  } else {
    HOptimization* optimizations2[] = {
      // BooleanSimplifier depends on the InstructionSimplifier removing
      // redundant suspend checks to recognize empty blocks.
      boolean_simplify,
      fold2,  // TODO: if we don't inline we can also skip fold2.
      side_effects,
      gvn,
      licm,
      induction,
      bce,
      fold3,  // evaluates code generated by dynamic bce
      simplify3,
      lse,
      dce2,
      // The codegen has a few assumptions that only the instruction simplifier
      // can satisfy. For example, the code generator does not expect to see a
      // HTypeConversion from a type to the same type.
      simplify4,
    };

    RunOptimizations(optimizations2, arraysize(optimizations2), pass_observer);
  }

  RunArchOptimizations(driver->GetInstructionSet(), graph, stats, pass_observer);
  AllocateRegisters(graph, codegen, pass_observer);
}

// The stack map we generate must be 4-byte aligned on ARM. Since existing
// maps are generated alongside these stack maps, we must also align them.
static ArrayRef<const uint8_t> AlignVectorSize(ArenaVector<uint8_t>& vector) {
  size_t size = vector.size();
  size_t aligned_size = RoundUp(size, 4);
  for (; size < aligned_size; ++size) {
    vector.push_back(0);
  }
  return ArrayRef<const uint8_t>(vector);
}

static ArenaVector<LinkerPatch> EmitAndSortLinkerPatches(CodeGenerator* codegen) {
  ArenaVector<LinkerPatch> linker_patches(codegen->GetGraph()->GetArena()->Adapter());
  codegen->EmitLinkerPatches(&linker_patches);

  // Sort patches by literal offset. Required for .oat_patches encoding.
  std::sort(linker_patches.begin(), linker_patches.end(),
            [](const LinkerPatch& lhs, const LinkerPatch& rhs) {
    return lhs.LiteralOffset() < rhs.LiteralOffset();
  });

  return linker_patches;
}

CompiledMethod* OptimizingCompiler::EmitOptimized(ArenaAllocator* arena,
                                                  CodeVectorAllocator* code_allocator,
                                                  CodeGenerator* codegen,
                                                  CompilerDriver* compiler_driver) const {
  ArenaVector<LinkerPatch> linker_patches = EmitAndSortLinkerPatches(codegen);
  ArenaVector<uint8_t> stack_map(arena->Adapter(kArenaAllocStackMaps));
  stack_map.resize(codegen->ComputeStackMapsSize());
  codegen->BuildStackMaps(MemoryRegion(stack_map.data(), stack_map.size()));

  MaybeRecordStat(MethodCompilationStat::kCompiledOptimized);

  CompiledMethod* compiled_method = CompiledMethod::SwapAllocCompiledMethod(
      compiler_driver,
      codegen->GetInstructionSet(),
      ArrayRef<const uint8_t>(code_allocator->GetMemory()),
      // Follow Quick's behavior and set the frame size to zero if it is
      // considered "empty" (see the definition of
      // art::CodeGenerator::HasEmptyFrame).
      codegen->HasEmptyFrame() ? 0 : codegen->GetFrameSize(),
      codegen->GetCoreSpillMask(),
      codegen->GetFpuSpillMask(),
      ArrayRef<const SrcMapElem>(codegen->GetSrcMappingTable()),
      ArrayRef<const uint8_t>(),  // mapping_table.
      ArrayRef<const uint8_t>(stack_map),
      ArrayRef<const uint8_t>(),  // native_gc_map.
      ArrayRef<const uint8_t>(*codegen->GetAssembler()->cfi().data()),
      ArrayRef<const LinkerPatch>(linker_patches));

  return compiled_method;
}

CompiledMethod* OptimizingCompiler::EmitBaseline(
    ArenaAllocator* arena,
    CodeVectorAllocator* code_allocator,
    CodeGenerator* codegen,
    CompilerDriver* compiler_driver) const {
  ArenaVector<LinkerPatch> linker_patches = EmitAndSortLinkerPatches(codegen);

  ArenaVector<uint8_t> mapping_table(arena->Adapter(kArenaAllocBaselineMaps));
  codegen->BuildMappingTable(&mapping_table);
  ArenaVector<uint8_t> vmap_table(arena->Adapter(kArenaAllocBaselineMaps));
  codegen->BuildVMapTable(&vmap_table);
  ArenaVector<uint8_t> gc_map(arena->Adapter(kArenaAllocBaselineMaps));
  codegen->BuildNativeGCMap(&gc_map, *compiler_driver);

  MaybeRecordStat(MethodCompilationStat::kCompiledBaseline);
  CompiledMethod* compiled_method = CompiledMethod::SwapAllocCompiledMethod(
      compiler_driver,
      codegen->GetInstructionSet(),
      ArrayRef<const uint8_t>(code_allocator->GetMemory()),
      // Follow Quick's behavior and set the frame size to zero if it is
      // considered "empty" (see the definition of
      // art::CodeGenerator::HasEmptyFrame).
      codegen->HasEmptyFrame() ? 0 : codegen->GetFrameSize(),
      codegen->GetCoreSpillMask(),
      codegen->GetFpuSpillMask(),
      ArrayRef<const SrcMapElem>(codegen->GetSrcMappingTable()),
      AlignVectorSize(mapping_table),
      AlignVectorSize(vmap_table),
      AlignVectorSize(gc_map),
      ArrayRef<const uint8_t>(*codegen->GetAssembler()->cfi().data()),
      ArrayRef<const LinkerPatch>(linker_patches));
  return compiled_method;
}

CodeGenerator* OptimizingCompiler::TryCompile(ArenaAllocator* arena,
                                              CodeVectorAllocator* code_allocator,
                                              const DexFile::CodeItem* code_item,
                                              uint32_t access_flags,
                                              InvokeType invoke_type,
                                              uint16_t class_def_idx,
                                              uint32_t method_idx,
                                              jobject class_loader,
                                              const DexFile& dex_file,
                                              Handle<mirror::DexCache> dex_cache) const {
  MaybeRecordStat(MethodCompilationStat::kAttemptCompilation);
  CompilerDriver* compiler_driver = GetCompilerDriver();
  InstructionSet instruction_set = compiler_driver->GetInstructionSet();

  // Always use the Thumb-2 assembler: some runtime functionality
  // (like implicit stack overflow checks) assume Thumb-2.
  if (instruction_set == kArm) {
    instruction_set = kThumb2;
  }

  // Do not attempt to compile on architectures we do not support.
  if (!IsInstructionSetSupported(instruction_set)) {
    MaybeRecordStat(MethodCompilationStat::kNotCompiledUnsupportedIsa);
    return nullptr;
  }

  // When read barriers are enabled, do not attempt to compile for
  // instruction sets that have no read barrier support.
  if (kEmitCompilerReadBarrier && !InstructionSetSupportsReadBarrier(instruction_set)) {
    return nullptr;
  }

  if (Compiler::IsPathologicalCase(*code_item, method_idx, dex_file)) {
    MaybeRecordStat(MethodCompilationStat::kNotCompiledPathological);
    return nullptr;
  }

  // Implementation of the space filter: do not compile a code item whose size in
  // code units is bigger than 128.
  static constexpr size_t kSpaceFilterOptimizingThreshold = 128;
  const CompilerOptions& compiler_options = compiler_driver->GetCompilerOptions();
  if ((compiler_options.GetCompilerFilter() == CompilerOptions::kSpace)
      && (code_item->insns_size_in_code_units_ > kSpaceFilterOptimizingThreshold)) {
    MaybeRecordStat(MethodCompilationStat::kNotCompiledSpaceFilter);
    return nullptr;
  }

  DexCompilationUnit dex_compilation_unit(
    nullptr, class_loader, Runtime::Current()->GetClassLinker(), dex_file, code_item,
    class_def_idx, method_idx, access_flags,
    compiler_driver->GetVerifiedMethod(&dex_file, method_idx), dex_cache);

  bool requires_barrier = dex_compilation_unit.IsConstructor()
      && compiler_driver->RequiresConstructorBarrier(Thread::Current(),
                                                     dex_compilation_unit.GetDexFile(),
                                                     dex_compilation_unit.GetClassDefIndex());
  HGraph* graph = new (arena) HGraph(
      arena, dex_file, method_idx, requires_barrier, compiler_driver->GetInstructionSet(),
      kInvalidInvokeType, compiler_driver->GetCompilerOptions().GetDebuggable());

  std::unique_ptr<CodeGenerator> codegen(
      CodeGenerator::Create(graph,
                            instruction_set,
                            *compiler_driver->GetInstructionSetFeatures(),
                            compiler_driver->GetCompilerOptions()));
  if (codegen.get() == nullptr) {
    MaybeRecordStat(MethodCompilationStat::kNotCompiledNoCodegen);
    return nullptr;
  }
  codegen->GetAssembler()->cfi().SetEnabled(
      compiler_driver->GetCompilerOptions().GetGenerateDebugInfo());

  PassObserver pass_observer(graph,
                             codegen.get(),
                             visualizer_output_.get(),
                             compiler_driver);

  const uint8_t* interpreter_metadata = nullptr;
  {
    ScopedObjectAccess soa(Thread::Current());
    StackHandleScope<1> hs(soa.Self());
    Handle<mirror::ClassLoader> loader(hs.NewHandle(
        soa.Decode<mirror::ClassLoader*>(class_loader)));
    ArtMethod* art_method = compiler_driver->ResolveMethod(
        soa, dex_cache, loader, &dex_compilation_unit, method_idx, invoke_type);
    // We may not get a method, for example if its class is erroneous.
    // TODO: Clean this up, the compiler driver should just pass the ArtMethod to compile.
    if (art_method != nullptr) {
      interpreter_metadata = art_method->GetQuickenedInfo();
    }
  }
  HGraphBuilder builder(graph,
                        &dex_compilation_unit,
                        &dex_compilation_unit,
                        &dex_file,
                        compiler_driver,
                        compilation_stats_.get(),
                        interpreter_metadata,
                        dex_cache);

  VLOG(compiler) << "Building " << pass_observer.GetMethodName();

  {
    PassScope scope(HGraphBuilder::kBuilderPassName, &pass_observer);
    if (!builder.BuildGraph(*code_item)) {
      pass_observer.SetGraphInBadState();
      return nullptr;
    }
  }

  VLOG(compiler) << "Optimizing " << pass_observer.GetMethodName();
  if (run_optimizations_) {
    {
      PassScope scope(SsaBuilder::kSsaBuilderPassName, &pass_observer);
      if (!graph->TryBuildingSsa()) {
        // We could not transform the graph to SSA, bailout.
        LOG(INFO) << "Skipping compilation of " << pass_observer.GetMethodName()
            << ": it contains a non natural loop";
        MaybeRecordStat(MethodCompilationStat::kNotCompiledCannotBuildSSA);
        pass_observer.SetGraphInBadState();
        return nullptr;
      }
    }

    RunOptimizations(graph,
                     codegen.get(),
                     compiler_driver,
                     compilation_stats_.get(),
                     dex_compilation_unit,
                     &pass_observer);
    codegen->CompileOptimized(code_allocator);
  } else {
    codegen->CompileBaseline(code_allocator);
  }
  pass_observer.DumpDisassembly();

  if (kArenaAllocatorCountAllocations) {
    if (arena->BytesAllocated() > 4 * MB) {
      MemStats mem_stats(arena->GetMemStats());
      LOG(INFO) << PrettyMethod(method_idx, dex_file) << " " << Dumpable<MemStats>(mem_stats);
    }
  }

  return codegen.release();
}

static bool CanHandleVerificationFailure(const VerifiedMethod* verified_method) {
  // For access errors the compiler will use the unresolved helpers (e.g. HInvokeUnresolved).
  uint32_t unresolved_mask = verifier::VerifyError::VERIFY_ERROR_NO_CLASS
      | verifier::VerifyError::VERIFY_ERROR_ACCESS_CLASS
      | verifier::VerifyError::VERIFY_ERROR_ACCESS_FIELD
      | verifier::VerifyError::VERIFY_ERROR_ACCESS_METHOD;
  return (verified_method->GetEncounteredVerificationFailures() & (~unresolved_mask)) == 0;
}

CompiledMethod* OptimizingCompiler::Compile(const DexFile::CodeItem* code_item,
                                            uint32_t access_flags,
                                            InvokeType invoke_type,
                                            uint16_t class_def_idx,
                                            uint32_t method_idx,
                                            jobject jclass_loader,
                                            const DexFile& dex_file,
                                            Handle<mirror::DexCache> dex_cache) const {
  CompilerDriver* compiler_driver = GetCompilerDriver();
  CompiledMethod* method = nullptr;
  DCHECK(Runtime::Current()->IsAotCompiler());
  const VerifiedMethod* verified_method = compiler_driver->GetVerifiedMethod(&dex_file, method_idx);
  DCHECK(!verified_method->HasRuntimeThrow());
  if (compiler_driver->IsMethodVerifiedWithoutFailures(method_idx, class_def_idx, dex_file)
      || CanHandleVerificationFailure(verified_method)) {
    ArenaAllocator arena(Runtime::Current()->GetArenaPool());
    CodeVectorAllocator code_allocator(&arena);
    std::unique_ptr<CodeGenerator> codegen(
        TryCompile(&arena,
                   &code_allocator,
                   code_item,
                   access_flags,
                   invoke_type,
                   class_def_idx,
                   method_idx,
                   jclass_loader,
                   dex_file,
                   dex_cache));
    if (codegen.get() != nullptr) {
      if (run_optimizations_) {
        method = EmitOptimized(&arena, &code_allocator, codegen.get(), compiler_driver);
      } else {
        method = EmitBaseline(&arena, &code_allocator, codegen.get(), compiler_driver);
      }
    }
  } else {
    if (compiler_driver->GetCompilerOptions().VerifyAtRuntime()) {
      MaybeRecordStat(MethodCompilationStat::kNotCompiledVerifyAtRuntime);
    } else {
      MaybeRecordStat(MethodCompilationStat::kNotCompiledClassNotVerified);
    }
  }

  if (kIsDebugBuild &&
      IsCompilingWithCoreImage() &&
      IsInstructionSetSupported(compiler_driver->GetInstructionSet()) &&
      (!kEmitCompilerReadBarrier ||
       InstructionSetSupportsReadBarrier(compiler_driver->GetInstructionSet()))) {
    // For testing purposes, we put a special marker on method names
    // that should be compiled with this compiler (when the the
    // instruction set is supported -- and has support for read
    // barriers, if they are enabled). This makes sure we're not
    // regressing.
    std::string method_name = PrettyMethod(method_idx, dex_file);
    bool shouldCompile = method_name.find("$opt$") != std::string::npos;
    DCHECK((method != nullptr) || !shouldCompile) << "Didn't compile " << method_name;
  }

  return method;
}

Compiler* CreateOptimizingCompiler(CompilerDriver* driver) {
  return new OptimizingCompiler(driver);
}

bool IsCompilingWithCoreImage() {
  const std::string& image = Runtime::Current()->GetImageLocation();
  return EndsWith(image, "core.art") || EndsWith(image, "core-optimizing.art");
}

bool OptimizingCompiler::JitCompile(Thread* self,
                                    jit::JitCodeCache* code_cache,
                                    ArtMethod* method) {
  StackHandleScope<2> hs(self);
  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
      method->GetDeclaringClass()->GetClassLoader()));
  Handle<mirror::DexCache> dex_cache(hs.NewHandle(method->GetDexCache()));

  jobject jclass_loader = class_loader.ToJObject();
  const DexFile* dex_file = method->GetDexFile();
  const uint16_t class_def_idx = method->GetClassDefIndex();
  const DexFile::CodeItem* code_item = dex_file->GetCodeItem(method->GetCodeItemOffset());
  const uint32_t method_idx = method->GetDexMethodIndex();
  const uint32_t access_flags = method->GetAccessFlags();
  const InvokeType invoke_type = method->GetInvokeType();

  ArenaAllocator arena(Runtime::Current()->GetArenaPool());
  CodeVectorAllocator code_allocator(&arena);
  std::unique_ptr<CodeGenerator> codegen;
  {
    // Go to native so that we don't block GC during compilation.
    ScopedThreadSuspension sts(self, kNative);

    DCHECK(run_optimizations_);
    codegen.reset(
        TryCompile(&arena,
                   &code_allocator,
                   code_item,
                   access_flags,
                   invoke_type,
                   class_def_idx,
                   method_idx,
                   jclass_loader,
                   *dex_file,
                   dex_cache));
    if (codegen.get() == nullptr) {
      return false;
    }
  }

  size_t stack_map_size = codegen->ComputeStackMapsSize();
  uint8_t* stack_map_data = code_cache->ReserveData(self, stack_map_size);
  if (stack_map_data == nullptr) {
    return false;
  }
  codegen->BuildStackMaps(MemoryRegion(stack_map_data, stack_map_size));
  const void* code = code_cache->CommitCode(
      self,
      method,
      nullptr,
      stack_map_data,
      nullptr,
      codegen->HasEmptyFrame() ? 0 : codegen->GetFrameSize(),
      codegen->GetCoreSpillMask(),
      codegen->GetFpuSpillMask(),
      code_allocator.GetMemory().data(),
      code_allocator.GetSize());

  if (code == nullptr) {
    code_cache->ClearData(self, stack_map_data);
    return false;
  }

  return true;
}

}  // namespace art