summaryrefslogtreecommitdiffstats
path: root/compiler/debug/elf_debug_line_writer.h
blob: 943e03a765ba18d79bf547846c85197c4f7db6ee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
/*
 * Copyright (C) 2016 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef ART_COMPILER_DEBUG_ELF_DEBUG_LINE_WRITER_H_
#define ART_COMPILER_DEBUG_ELF_DEBUG_LINE_WRITER_H_

#include <unordered_set>
#include <vector>

#include "debug/dwarf/debug_line_opcode_writer.h"
#include "debug/dwarf/headers.h"
#include "debug/elf_compilation_unit.h"
#include "debug/src_map_elem.h"
#include "dex_file-inl.h"
#include "linker/elf_builder.h"
#include "oat_file.h"
#include "stack_map.h"

namespace art {
namespace debug {

typedef std::vector<DexFile::PositionInfo> PositionInfos;

static bool PositionInfoCallback(void* ctx, const DexFile::PositionInfo& entry) {
  static_cast<PositionInfos*>(ctx)->push_back(entry);
  return false;
}

template<typename ElfTypes>
class ElfDebugLineWriter {
  using Elf_Addr = typename ElfTypes::Addr;

 public:
  explicit ElfDebugLineWriter(linker::ElfBuilder<ElfTypes>* builder) : builder_(builder) {
  }

  void Start() {
    builder_->GetDebugLine()->Start();
  }

  // Write line table for given set of methods.
  // Returns the number of bytes written.
  size_t WriteCompilationUnit(ElfCompilationUnit& compilation_unit) {
    const InstructionSet isa = builder_->GetIsa();
    const bool is64bit = Is64BitInstructionSet(isa);
    const Elf_Addr base_address = compilation_unit.is_code_address_text_relative
        ? builder_->GetText()->GetAddress()
        : 0;

    compilation_unit.debug_line_offset = builder_->GetDebugLine()->GetSize();

    std::vector<dwarf::FileEntry> files;
    std::unordered_map<std::string, size_t> files_map;
    std::vector<std::string> directories;
    std::unordered_map<std::string, size_t> directories_map;
    int code_factor_bits_ = 0;
    int dwarf_isa = -1;
    switch (isa) {
      case InstructionSet::kArm:  // arm actually means thumb2.
      case InstructionSet::kThumb2:
        code_factor_bits_ = 1;  // 16-bit instuctions
        dwarf_isa = 1;  // DW_ISA_ARM_thumb.
        break;
      case InstructionSet::kArm64:
      case InstructionSet::kMips:
      case InstructionSet::kMips64:
        code_factor_bits_ = 2;  // 32-bit instructions
        break;
      case InstructionSet::kNone:
      case InstructionSet::kX86:
      case InstructionSet::kX86_64:
        break;
    }
    std::unordered_set<uint64_t> seen_addresses(compilation_unit.methods.size());
    dwarf::DebugLineOpCodeWriter<> opcodes(is64bit, code_factor_bits_);
    for (const MethodDebugInfo* mi : compilation_unit.methods) {
      // Ignore function if we have already generated line table for the same address.
      // It would confuse the debugger and the DWARF specification forbids it.
      // We allow the line table for method to be replicated in different compilation unit.
      // This ensures that each compilation unit contains line table for all its methods.
      if (!seen_addresses.insert(mi->code_address).second) {
        continue;
      }

      uint32_t prologue_end = std::numeric_limits<uint32_t>::max();
      std::vector<SrcMapElem> pc2dex_map;
      if (mi->code_info != nullptr) {
        // Use stack maps to create mapping table from pc to dex.
        const CodeInfo code_info(mi->code_info);
        const CodeInfoEncoding encoding = code_info.ExtractEncoding();
        pc2dex_map.reserve(code_info.GetNumberOfStackMaps(encoding));
        for (uint32_t s = 0; s < code_info.GetNumberOfStackMaps(encoding); s++) {
          StackMap stack_map = code_info.GetStackMapAt(s, encoding);
          DCHECK(stack_map.IsValid());
          const uint32_t pc = stack_map.GetNativePcOffset(encoding.stack_map.encoding, isa);
          const int32_t dex = stack_map.GetDexPc(encoding.stack_map.encoding);
          pc2dex_map.push_back({pc, dex});
          if (stack_map.HasDexRegisterMap(encoding.stack_map.encoding)) {
            // Guess that the first map with local variables is the end of prologue.
            prologue_end = std::min(prologue_end, pc);
          }
        }
        std::sort(pc2dex_map.begin(), pc2dex_map.end());
      }

      if (pc2dex_map.empty()) {
        continue;
      }

      // Compensate for compiler's off-by-one-instruction error.
      //
      // The compiler generates stackmap with PC *after* the branch instruction
      // (because this is the PC which is easier to obtain when unwinding).
      //
      // However, the debugger is more clever and it will ask us for line-number
      // mapping at the location of the branch instruction (since the following
      // instruction could belong to other line, this is the correct thing to do).
      //
      // So we really want to just decrement the PC by one instruction so that the
      // branch instruction is covered as well. However, we do not know the size
      // of the previous instruction, and we can not subtract just a fixed amount
      // (the debugger would trust us that the PC is valid; it might try to set
      // breakpoint there at some point, and setting breakpoint in mid-instruction
      // would make the process crash in spectacular way).
      //
      // Therefore, we say that the PC which the compiler gave us for the stackmap
      // is the end of its associated address range, and we use the PC from the
      // previous stack map as the start of the range. This ensures that the PC is
      // valid and that the branch instruction is covered.
      //
      // This ensures we have correct line number mapping at call sites (which is
      // important for backtraces), but there is nothing we can do for non-call
      // sites (so stepping through optimized code in debugger is not possible).
      //
      // We do not adjust the stackmaps if the code was compiled as debuggable.
      // In that case, the stackmaps should accurately cover all instructions.
      if (!mi->is_native_debuggable) {
        for (size_t i = pc2dex_map.size() - 1; i > 0; --i) {
          pc2dex_map[i].from_ = pc2dex_map[i - 1].from_;
        }
        pc2dex_map[0].from_ = 0;
      }

      Elf_Addr method_address = base_address + mi->code_address;

      PositionInfos dex2line_map;
      DCHECK(mi->dex_file != nullptr);
      const DexFile* dex = mi->dex_file;
      uint32_t debug_info_offset = OatFile::GetDebugInfoOffset(*dex, mi->code_item);
      if (!dex->DecodeDebugPositionInfo(
              mi->code_item, debug_info_offset, PositionInfoCallback, &dex2line_map)) {
        continue;
      }

      if (dex2line_map.empty()) {
        continue;
      }

      opcodes.SetAddress(method_address);
      if (dwarf_isa != -1) {
        opcodes.SetISA(dwarf_isa);
      }

      // Get and deduplicate directory and filename.
      int file_index = 0;  // 0 - primary source file of the compilation.
      auto& dex_class_def = dex->GetClassDef(mi->class_def_index);
      const char* source_file = dex->GetSourceFile(dex_class_def);
      if (source_file != nullptr) {
        std::string file_name(source_file);
        size_t file_name_slash = file_name.find_last_of('/');
        std::string class_name(dex->GetClassDescriptor(dex_class_def));
        size_t class_name_slash = class_name.find_last_of('/');
        std::string full_path(file_name);

        // Guess directory from package name.
        int directory_index = 0;  // 0 - current directory of the compilation.
        if (file_name_slash == std::string::npos &&  // Just filename.
            class_name.front() == 'L' &&  // Type descriptor for a class.
            class_name_slash != std::string::npos) {  // Has package name.
          std::string package_name = class_name.substr(1, class_name_slash - 1);
          auto it = directories_map.find(package_name);
          if (it == directories_map.end()) {
            directory_index = 1 + directories.size();
            directories_map.emplace(package_name, directory_index);
            directories.push_back(package_name);
          } else {
            directory_index = it->second;
          }
          full_path = package_name + "/" + file_name;
        }

        // Add file entry.
        auto it2 = files_map.find(full_path);
        if (it2 == files_map.end()) {
          file_index = 1 + files.size();
          files_map.emplace(full_path, file_index);
          files.push_back(dwarf::FileEntry {
            file_name,
            directory_index,
            0,  // Modification time - NA.
            0,  // File size - NA.
          });
        } else {
          file_index = it2->second;
        }
      }
      opcodes.SetFile(file_index);

      // Generate mapping opcodes from PC to Java lines.
      if (file_index != 0) {
        // If the method was not compiled as native-debuggable, we still generate all available
        // lines, but we try to prevent the debugger from stepping and setting breakpoints since
        // the information is too inaccurate for that (breakpoints would be set after the calls).
        const bool default_is_stmt = mi->is_native_debuggable;
        bool first = true;
        for (SrcMapElem pc2dex : pc2dex_map) {
          uint32_t pc = pc2dex.from_;
          int dex_pc = pc2dex.to_;
          // Find mapping with address with is greater than our dex pc; then go back one step.
          auto dex2line = std::upper_bound(
              dex2line_map.begin(),
              dex2line_map.end(),
              dex_pc,
              [](uint32_t address, const DexFile::PositionInfo& entry) {
                  return address < entry.address_;
              });
          // Look for first valid mapping after the prologue.
          if (dex2line != dex2line_map.begin() && pc >= prologue_end) {
            int line = (--dex2line)->line_;
            if (first) {
              first = false;
              if (pc > 0) {
                // Assume that any preceding code is prologue.
                int first_line = dex2line_map.front().line_;
                // Prologue is not a sensible place for a breakpoint.
                opcodes.SetIsStmt(false);
                opcodes.AddRow(method_address, first_line);
                opcodes.SetPrologueEnd();
              }
              opcodes.SetIsStmt(default_is_stmt);
              opcodes.AddRow(method_address + pc, line);
            } else if (line != opcodes.CurrentLine()) {
              opcodes.SetIsStmt(default_is_stmt);
              opcodes.AddRow(method_address + pc, line);
            }
          }
        }
      } else {
        // line 0 - instruction cannot be attributed to any source line.
        opcodes.AddRow(method_address, 0);
      }

      opcodes.AdvancePC(method_address + mi->code_size);
      opcodes.EndSequence();
    }
    std::vector<uint8_t> buffer;
    buffer.reserve(opcodes.data()->size() + KB);
    size_t offset = builder_->GetDebugLine()->GetSize();
    WriteDebugLineTable(directories, files, opcodes, offset, &buffer, &debug_line_patches_);
    builder_->GetDebugLine()->WriteFully(buffer.data(), buffer.size());
    return buffer.size();
  }

  void End(bool write_oat_patches) {
    builder_->GetDebugLine()->End();
    if (write_oat_patches) {
      builder_->WritePatches(".debug_line.oat_patches",
                             ArrayRef<const uintptr_t>(debug_line_patches_));
    }
  }

 private:
  linker::ElfBuilder<ElfTypes>* builder_;
  std::vector<uintptr_t> debug_line_patches_;
};

}  // namespace debug
}  // namespace art

#endif  // ART_COMPILER_DEBUG_ELF_DEBUG_LINE_WRITER_H_