/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "thread_list.h" #define ATRACE_TAG ATRACE_TAG_DALVIK #include #include #include #include #include #include #include "base/mutex.h" #include "base/mutex-inl.h" #include "base/timing_logger.h" #include "debugger.h" #include "jni_internal.h" #include "lock_word.h" #include "monitor.h" #include "scoped_thread_state_change.h" #include "thread.h" #include "utils.h" #include "well_known_classes.h" namespace art { static constexpr uint64_t kLongThreadSuspendThreshold = MsToNs(5); ThreadList::ThreadList() : suspend_all_count_(0), debug_suspend_all_count_(0), thread_exit_cond_("thread exit condition variable", *Locks::thread_list_lock_) { CHECK(Monitor::IsValidLockWord(LockWord::FromThinLockId(kMaxThreadId, 1))); } ThreadList::~ThreadList() { // Detach the current thread if necessary. If we failed to start, there might not be any threads. // We need to detach the current thread here in case there's another thread waiting to join with // us. if (Contains(Thread::Current())) { Runtime::Current()->DetachCurrentThread(); } WaitForOtherNonDaemonThreadsToExit(); // TODO: there's an unaddressed race here where a thread may attach during shutdown, see // Thread::Init. SuspendAllDaemonThreads(); } bool ThreadList::Contains(Thread* thread) { return find(list_.begin(), list_.end(), thread) != list_.end(); } bool ThreadList::Contains(pid_t tid) { for (const auto& thread : list_) { if (thread->GetTid() == tid) { return true; } } return false; } pid_t ThreadList::GetLockOwner() { return Locks::thread_list_lock_->GetExclusiveOwnerTid(); } void ThreadList::DumpNativeStacks(std::ostream& os) { MutexLock mu(Thread::Current(), *Locks::thread_list_lock_); for (const auto& thread : list_) { os << "DUMPING THREAD " << thread->GetTid() << "\n"; DumpNativeStack(os, thread->GetTid(), "\t"); os << "\n"; } } void ThreadList::DumpForSigQuit(std::ostream& os) { { MutexLock mu(Thread::Current(), *Locks::thread_list_lock_); DumpLocked(os); } DumpUnattachedThreads(os); } static void DumpUnattachedThread(std::ostream& os, pid_t tid) NO_THREAD_SAFETY_ANALYSIS { // TODO: No thread safety analysis as DumpState with a NULL thread won't access fields, should // refactor DumpState to avoid skipping analysis. Thread::DumpState(os, NULL, tid); DumpKernelStack(os, tid, " kernel: ", false); // TODO: Reenable this when the native code in system_server can handle it. // Currently "adb shell kill -3 `pid system_server`" will cause it to exit. if (false) { DumpNativeStack(os, tid, " native: "); } os << "\n"; } void ThreadList::DumpUnattachedThreads(std::ostream& os) { DIR* d = opendir("/proc/self/task"); if (!d) { return; } Thread* self = Thread::Current(); dirent* e; while ((e = readdir(d)) != NULL) { char* end; pid_t tid = strtol(e->d_name, &end, 10); if (!*end) { bool contains; { MutexLock mu(self, *Locks::thread_list_lock_); contains = Contains(tid); } if (!contains) { DumpUnattachedThread(os, tid); } } } closedir(d); } void ThreadList::DumpLocked(std::ostream& os) { os << "DALVIK THREADS (" << list_.size() << "):\n"; for (const auto& thread : list_) { thread->Dump(os); os << "\n"; } } void ThreadList::AssertThreadsAreSuspended(Thread* self, Thread* ignore1, Thread* ignore2) { MutexLock mu(self, *Locks::thread_list_lock_); MutexLock mu2(self, *Locks::thread_suspend_count_lock_); for (const auto& thread : list_) { if (thread != ignore1 && thread != ignore2) { CHECK(thread->IsSuspended()) << "\nUnsuspended thread: <<" << *thread << "\n" << "self: <<" << *Thread::Current(); } } } #if HAVE_TIMED_RWLOCK // Attempt to rectify locks so that we dump thread list with required locks before exiting. static void UnsafeLogFatalForThreadSuspendAllTimeout() NO_THREAD_SAFETY_ANALYSIS __attribute__((noreturn)); static void UnsafeLogFatalForThreadSuspendAllTimeout() { Runtime* runtime = Runtime::Current(); std::ostringstream ss; ss << "Thread suspend timeout\n"; runtime->GetThreadList()->DumpLocked(ss); LOG(FATAL) << ss.str(); exit(0); } #endif // Unlike suspending all threads where we can wait to acquire the mutator_lock_, suspending an // individual thread requires polling. delay_us is the requested sleep and total_delay_us // accumulates the total time spent sleeping for timeouts. The first sleep is just a yield, // subsequently sleeps increase delay_us from 1ms to 500ms by doubling. static void ThreadSuspendSleep(Thread* self, useconds_t* delay_us, useconds_t* total_delay_us) { useconds_t new_delay_us = (*delay_us) * 2; CHECK_GE(new_delay_us, *delay_us); if (new_delay_us < 500000) { // Don't allow sleeping to be more than 0.5s. *delay_us = new_delay_us; } if (*delay_us == 0) { sched_yield(); // Default to 1 milliseconds (note that this gets multiplied by 2 before the first sleep). *delay_us = 500; } else { usleep(*delay_us); *total_delay_us += *delay_us; } } size_t ThreadList::RunCheckpoint(Closure* checkpoint_function) { Thread* self = Thread::Current(); Locks::mutator_lock_->AssertNotExclusiveHeld(self); Locks::thread_list_lock_->AssertNotHeld(self); Locks::thread_suspend_count_lock_->AssertNotHeld(self); if (kDebugLocking) { CHECK_NE(self->GetState(), kRunnable); } std::vector suspended_count_modified_threads; size_t count = 0; { // Call a checkpoint function for each thread, threads which are suspend get their checkpoint // manually called. MutexLock mu(self, *Locks::thread_list_lock_); MutexLock mu2(self, *Locks::thread_suspend_count_lock_); for (const auto& thread : list_) { if (thread != self) { while (true) { if (thread->RequestCheckpoint(checkpoint_function)) { // This thread will run its checkpoint some time in the near future. count++; break; } else { // We are probably suspended, try to make sure that we stay suspended. // The thread switched back to runnable. if (thread->GetState() == kRunnable) { // Spurious fail, try again. continue; } thread->ModifySuspendCount(self, +1, false); suspended_count_modified_threads.push_back(thread); break; } } } } } // Run the checkpoint on ourself while we wait for threads to suspend. checkpoint_function->Run(self); // Run the checkpoint on the suspended threads. for (const auto& thread : suspended_count_modified_threads) { if (!thread->IsSuspended()) { // Wait until the thread is suspended. useconds_t total_delay_us = 0; do { useconds_t delay_us = 100; ThreadSuspendSleep(self, &delay_us, &total_delay_us); } while (!thread->IsSuspended()); // Shouldn't need to wait for longer than 1000 microseconds. constexpr useconds_t kLongWaitThresholdUS = 1000; if (UNLIKELY(total_delay_us > kLongWaitThresholdUS)) { LOG(WARNING) << "Waited " << total_delay_us << " us for thread suspend!"; } } // We know for sure that the thread is suspended at this point. checkpoint_function->Run(thread); { MutexLock mu2(self, *Locks::thread_suspend_count_lock_); thread->ModifySuspendCount(self, -1, false); } } { // Imitate ResumeAll, threads may be waiting on Thread::resume_cond_ since we raised their // suspend count. Now the suspend_count_ is lowered so we must do the broadcast. MutexLock mu2(self, *Locks::thread_suspend_count_lock_); Thread::resume_cond_->Broadcast(self); } // Add one for self. return count + suspended_count_modified_threads.size() + 1; } // Request that a checkpoint function be run on all active (non-suspended) // threads. Returns the number of successful requests. size_t ThreadList::RunCheckpointOnRunnableThreads(Closure* checkpoint_function) { Thread* self = Thread::Current(); if (kIsDebugBuild) { Locks::mutator_lock_->AssertNotExclusiveHeld(self); Locks::thread_list_lock_->AssertNotHeld(self); Locks::thread_suspend_count_lock_->AssertNotHeld(self); CHECK_NE(self->GetState(), kRunnable); } size_t count = 0; { // Call a checkpoint function for each non-suspended thread. MutexLock mu(self, *Locks::thread_list_lock_); MutexLock mu2(self, *Locks::thread_suspend_count_lock_); for (const auto& thread : list_) { if (thread != self) { if (thread->RequestCheckpoint(checkpoint_function)) { // This thread will run its checkpoint some time in the near future. count++; } } } } // Return the number of threads that will run the checkpoint function. return count; } void ThreadList::SuspendAll() { Thread* self = Thread::Current(); if (self != nullptr) { VLOG(threads) << *self << " SuspendAll starting..."; } else { VLOG(threads) << "Thread[null] SuspendAll starting..."; } ATRACE_BEGIN("Suspending mutator threads"); uint64_t start_time = NanoTime(); Locks::mutator_lock_->AssertNotHeld(self); Locks::thread_list_lock_->AssertNotHeld(self); Locks::thread_suspend_count_lock_->AssertNotHeld(self); if (kDebugLocking && self != nullptr) { CHECK_NE(self->GetState(), kRunnable); } { MutexLock mu(self, *Locks::thread_list_lock_); MutexLock mu2(self, *Locks::thread_suspend_count_lock_); // Update global suspend all state for attaching threads. ++suspend_all_count_; // Increment everybody's suspend count (except our own). for (const auto& thread : list_) { if (thread == self) { continue; } VLOG(threads) << "requesting thread suspend: " << *thread; thread->ModifySuspendCount(self, +1, false); } } // Block on the mutator lock until all Runnable threads release their share of access. #if HAVE_TIMED_RWLOCK // Timeout if we wait more than 30 seconds. if (!Locks::mutator_lock_->ExclusiveLockWithTimeout(self, 30 * 1000, 0)) { UnsafeLogFatalForThreadSuspendAllTimeout(); } #else Locks::mutator_lock_->ExclusiveLock(self); #endif uint64_t end_time = NanoTime(); if (end_time - start_time > kLongThreadSuspendThreshold) { LOG(WARNING) << "Suspending all threads took: " << PrettyDuration(end_time - start_time); } if (kDebugLocking) { // Debug check that all threads are suspended. AssertThreadsAreSuspended(self, self); } ATRACE_END(); ATRACE_BEGIN("Mutator threads suspended"); if (self != nullptr) { VLOG(threads) << *self << " SuspendAll complete"; } else { VLOG(threads) << "Thread[null] SuspendAll complete"; } } void ThreadList::ResumeAll() { Thread* self = Thread::Current(); if (self != nullptr) { VLOG(threads) << *self << " ResumeAll starting"; } else { VLOG(threads) << "Thread[null] ResumeAll starting"; } ATRACE_END(); ATRACE_BEGIN("Resuming mutator threads"); if (kDebugLocking) { // Debug check that all threads are suspended. AssertThreadsAreSuspended(self, self); } Locks::mutator_lock_->ExclusiveUnlock(self); { MutexLock mu(self, *Locks::thread_list_lock_); MutexLock mu2(self, *Locks::thread_suspend_count_lock_); // Update global suspend all state for attaching threads. --suspend_all_count_; // Decrement the suspend counts for all threads. for (const auto& thread : list_) { if (thread == self) { continue; } thread->ModifySuspendCount(self, -1, false); } // Broadcast a notification to all suspended threads, some or all of // which may choose to wake up. No need to wait for them. if (self != nullptr) { VLOG(threads) << *self << " ResumeAll waking others"; } else { VLOG(threads) << "Thread[null] ResumeAll waking others"; } Thread::resume_cond_->Broadcast(self); } ATRACE_END(); if (self != nullptr) { VLOG(threads) << *self << " ResumeAll complete"; } else { VLOG(threads) << "Thread[null] ResumeAll complete"; } } void ThreadList::Resume(Thread* thread, bool for_debugger) { Thread* self = Thread::Current(); DCHECK_NE(thread, self); VLOG(threads) << "Resume(" << *thread << ") starting..." << (for_debugger ? " (debugger)" : ""); { // To check Contains. MutexLock mu(self, *Locks::thread_list_lock_); // To check IsSuspended. MutexLock mu2(self, *Locks::thread_suspend_count_lock_); DCHECK(thread->IsSuspended()); if (!Contains(thread)) { return; } thread->ModifySuspendCount(self, -1, for_debugger); } { VLOG(threads) << "Resume(" << *thread << ") waking others"; MutexLock mu(self, *Locks::thread_suspend_count_lock_); Thread::resume_cond_->Broadcast(self); } VLOG(threads) << "Resume(" << *thread << ") complete"; } static void ThreadSuspendByPeerWarning(Thread* self, int level, const char* message, jobject peer) { JNIEnvExt* env = self->GetJniEnv(); ScopedLocalRef scoped_name_string(env, (jstring)env->GetObjectField(peer, WellKnownClasses::java_lang_Thread_name)); ScopedUtfChars scoped_name_chars(env, scoped_name_string.get()); if (scoped_name_chars.c_str() == NULL) { LOG(level) << message << ": " << peer; env->ExceptionClear(); } else { LOG(level) << message << ": " << peer << ":" << scoped_name_chars.c_str(); } } Thread* ThreadList::SuspendThreadByPeer(jobject peer, bool request_suspension, bool debug_suspension, bool* timed_out) { static const useconds_t kTimeoutUs = 30 * 1000000; // 30s. useconds_t total_delay_us = 0; useconds_t delay_us = 0; bool did_suspend_request = false; *timed_out = false; Thread* self = Thread::Current(); while (true) { Thread* thread; { // Note: this will transition to runnable and potentially suspend. We ensure only one thread // is requesting another suspend, to avoid deadlock, by requiring this function be called // holding Locks::thread_list_suspend_thread_lock_. Its important this thread suspend rather // than request thread suspension, to avoid potential cycles in threads requesting each other // suspend. ScopedObjectAccess soa(self); MutexLock mu(self, *Locks::thread_list_lock_); thread = Thread::FromManagedThread(soa, peer); if (thread == NULL) { ThreadSuspendByPeerWarning(self, WARNING, "No such thread for suspend", peer); return NULL; } { MutexLock mu(self, *Locks::thread_suspend_count_lock_); if (request_suspension) { thread->ModifySuspendCount(self, +1, debug_suspension); request_suspension = false; did_suspend_request = true; } else { // If the caller isn't requesting suspension, a suspension should have already occurred. CHECK_GT(thread->GetSuspendCount(), 0); } // IsSuspended on the current thread will fail as the current thread is changed into // Runnable above. As the suspend count is now raised if this is the current thread // it will self suspend on transition to Runnable, making it hard to work with. It's simpler // to just explicitly handle the current thread in the callers to this code. CHECK_NE(thread, self) << "Attempt to suspend the current thread for the debugger"; // If thread is suspended (perhaps it was already not Runnable but didn't have a suspend // count, or else we've waited and it has self suspended) or is the current thread, we're // done. if (thread->IsSuspended()) { return thread; } if (total_delay_us >= kTimeoutUs) { ThreadSuspendByPeerWarning(self, FATAL, "Thread suspension timed out", peer); if (did_suspend_request) { thread->ModifySuspendCount(soa.Self(), -1, debug_suspension); } *timed_out = true; return NULL; } } // Release locks and come out of runnable state. } ThreadSuspendSleep(self, &delay_us, &total_delay_us); } } static void ThreadSuspendByThreadIdWarning(int level, const char* message, uint32_t thread_id) { LOG(level) << StringPrintf("%s: %d", message, thread_id); } Thread* ThreadList::SuspendThreadByThreadId(uint32_t thread_id, bool debug_suspension, bool* timed_out) { static const useconds_t kTimeoutUs = 30 * 1000000; // 30s. useconds_t total_delay_us = 0; useconds_t delay_us = 0; *timed_out = false; Thread* suspended_thread = nullptr; Thread* self = Thread::Current(); CHECK_NE(thread_id, kInvalidThreadId); while (true) { { // Note: this will transition to runnable and potentially suspend. We ensure only one thread // is requesting another suspend, to avoid deadlock, by requiring this function be called // holding Locks::thread_list_suspend_thread_lock_. Its important this thread suspend rather // than request thread suspension, to avoid potential cycles in threads requesting each other // suspend. ScopedObjectAccess soa(self); MutexLock mu(self, *Locks::thread_list_lock_); Thread* thread = nullptr; for (const auto& it : list_) { if (it->GetThreadId() == thread_id) { thread = it; break; } } if (thread == nullptr) { CHECK(suspended_thread == nullptr) << "Suspended thread " << suspended_thread << " no longer in thread list"; // There's a race in inflating a lock and the owner giving up ownership and then dying. ThreadSuspendByThreadIdWarning(WARNING, "No such thread id for suspend", thread_id); return NULL; } { MutexLock mu(self, *Locks::thread_suspend_count_lock_); if (suspended_thread == nullptr) { thread->ModifySuspendCount(self, +1, debug_suspension); suspended_thread = thread; } else { CHECK_EQ(suspended_thread, thread); // If the caller isn't requesting suspension, a suspension should have already occurred. CHECK_GT(thread->GetSuspendCount(), 0); } // IsSuspended on the current thread will fail as the current thread is changed into // Runnable above. As the suspend count is now raised if this is the current thread // it will self suspend on transition to Runnable, making it hard to work with. It's simpler // to just explicitly handle the current thread in the callers to this code. CHECK_NE(thread, self) << "Attempt to suspend the current thread for the debugger"; // If thread is suspended (perhaps it was already not Runnable but didn't have a suspend // count, or else we've waited and it has self suspended) or is the current thread, we're // done. if (thread->IsSuspended()) { return thread; } if (total_delay_us >= kTimeoutUs) { ThreadSuspendByThreadIdWarning(WARNING, "Thread suspension timed out", thread_id); if (suspended_thread != nullptr) { thread->ModifySuspendCount(soa.Self(), -1, debug_suspension); } *timed_out = true; return NULL; } } // Release locks and come out of runnable state. } ThreadSuspendSleep(self, &delay_us, &total_delay_us); } } Thread* ThreadList::FindThreadByThreadId(uint32_t thin_lock_id) { Thread* self = Thread::Current(); MutexLock mu(self, *Locks::thread_list_lock_); for (const auto& thread : list_) { if (thread->GetThreadId() == thin_lock_id) { CHECK(thread == self || thread->IsSuspended()); return thread; } } return NULL; } void ThreadList::SuspendAllForDebugger() { Thread* self = Thread::Current(); Thread* debug_thread = Dbg::GetDebugThread(); VLOG(threads) << *self << " SuspendAllForDebugger starting..."; { MutexLock mu(self, *Locks::thread_list_lock_); { MutexLock mu(self, *Locks::thread_suspend_count_lock_); // Update global suspend all state for attaching threads. ++suspend_all_count_; ++debug_suspend_all_count_; // Increment everybody's suspend count (except our own). for (const auto& thread : list_) { if (thread == self || thread == debug_thread) { continue; } VLOG(threads) << "requesting thread suspend: " << *thread; thread->ModifySuspendCount(self, +1, true); } } } // Block on the mutator lock until all Runnable threads release their share of access then // immediately unlock again. #if HAVE_TIMED_RWLOCK // Timeout if we wait more than 30 seconds. if (!Locks::mutator_lock_->ExclusiveLockWithTimeout(self, 30 * 1000, 0)) { UnsafeLogFatalForThreadSuspendAllTimeout(); } else { Locks::mutator_lock_->ExclusiveUnlock(self); } #else Locks::mutator_lock_->ExclusiveLock(self); Locks::mutator_lock_->ExclusiveUnlock(self); #endif AssertThreadsAreSuspended(self, self, debug_thread); VLOG(threads) << *self << " SuspendAll complete"; } void ThreadList::SuspendSelfForDebugger() { Thread* self = Thread::Current(); // The debugger thread must not suspend itself due to debugger activity! Thread* debug_thread = Dbg::GetDebugThread(); CHECK(debug_thread != NULL); CHECK(self != debug_thread); CHECK_NE(self->GetState(), kRunnable); Locks::mutator_lock_->AssertNotHeld(self); { // Collisions with other suspends aren't really interesting. We want // to ensure that we're the only one fiddling with the suspend count // though. MutexLock mu(self, *Locks::thread_suspend_count_lock_); self->ModifySuspendCount(self, +1, true); CHECK_GT(self->GetSuspendCount(), 0); } VLOG(threads) << *self << " self-suspending (debugger)"; // Tell JDWP we've completed invocation and are ready to suspend. DebugInvokeReq* pReq = self->GetInvokeReq(); DCHECK(pReq != NULL); if (pReq->invoke_needed) { // Clear this before signaling. pReq->Clear(); VLOG(jdwp) << "invoke complete, signaling"; MutexLock mu(self, pReq->lock); pReq->cond.Signal(self); } // Tell JDWP that we've completed suspension. The JDWP thread can't // tell us to resume before we're fully asleep because we hold the // suspend count lock. Dbg::ClearWaitForEventThread(); { MutexLock mu(self, *Locks::thread_suspend_count_lock_); while (self->GetSuspendCount() != 0) { Thread::resume_cond_->Wait(self); if (self->GetSuspendCount() != 0) { // The condition was signaled but we're still suspended. This // can happen if the debugger lets go while a SIGQUIT thread // dump event is pending (assuming SignalCatcher was resumed for // just long enough to try to grab the thread-suspend lock). LOG(WARNING) << *self << " still suspended after undo " << "(suspend count=" << self->GetSuspendCount() << ")"; } } CHECK_EQ(self->GetSuspendCount(), 0); } VLOG(threads) << *self << " self-reviving (debugger)"; } void ThreadList::UndoDebuggerSuspensions() { Thread* self = Thread::Current(); VLOG(threads) << *self << " UndoDebuggerSuspensions starting"; { MutexLock mu(self, *Locks::thread_list_lock_); MutexLock mu2(self, *Locks::thread_suspend_count_lock_); // Update global suspend all state for attaching threads. suspend_all_count_ -= debug_suspend_all_count_; debug_suspend_all_count_ = 0; // Update running threads. for (const auto& thread : list_) { if (thread == self || thread->GetDebugSuspendCount() == 0) { continue; } thread->ModifySuspendCount(self, -thread->GetDebugSuspendCount(), true); } } { MutexLock mu(self, *Locks::thread_suspend_count_lock_); Thread::resume_cond_->Broadcast(self); } VLOG(threads) << "UndoDebuggerSuspensions(" << *self << ") complete"; } void ThreadList::WaitForOtherNonDaemonThreadsToExit() { Thread* self = Thread::Current(); Locks::mutator_lock_->AssertNotHeld(self); bool all_threads_are_daemons; do { { // No more threads can be born after we start to shutdown. MutexLock mu(self, *Locks::runtime_shutdown_lock_); CHECK(Runtime::Current()->IsShuttingDownLocked()); CHECK_EQ(Runtime::Current()->NumberOfThreadsBeingBorn(), 0U); } all_threads_are_daemons = true; MutexLock mu(self, *Locks::thread_list_lock_); for (const auto& thread : list_) { if (thread != self && !thread->IsDaemon()) { all_threads_are_daemons = false; break; } } if (!all_threads_are_daemons) { // Wait for another thread to exit before re-checking. thread_exit_cond_.Wait(self); } } while (!all_threads_are_daemons); } void ThreadList::SuspendAllDaemonThreads() { Thread* self = Thread::Current(); MutexLock mu(self, *Locks::thread_list_lock_); { // Tell all the daemons it's time to suspend. MutexLock mu2(self, *Locks::thread_suspend_count_lock_); for (const auto& thread : list_) { // This is only run after all non-daemon threads have exited, so the remainder should all be // daemons. CHECK(thread->IsDaemon()) << *thread; if (thread != self) { thread->ModifySuspendCount(self, +1, false); } } } // Give the threads a chance to suspend, complaining if they're slow. bool have_complained = false; for (int i = 0; i < 10; ++i) { usleep(200 * 1000); bool all_suspended = true; for (const auto& thread : list_) { if (thread != self && thread->GetState() == kRunnable) { if (!have_complained) { LOG(WARNING) << "daemon thread not yet suspended: " << *thread; have_complained = true; } all_suspended = false; } } if (all_suspended) { return; } } LOG(ERROR) << "suspend all daemons failed"; } void ThreadList::Register(Thread* self) { DCHECK_EQ(self, Thread::Current()); if (VLOG_IS_ON(threads)) { std::ostringstream oss; self->ShortDump(oss); // We don't hold the mutator_lock_ yet and so cannot call Dump. LOG(INFO) << "ThreadList::Register() " << *self << "\n" << oss.str(); } // Atomically add self to the thread list and make its thread_suspend_count_ reflect ongoing // SuspendAll requests. MutexLock mu(self, *Locks::thread_list_lock_); MutexLock mu2(self, *Locks::thread_suspend_count_lock_); CHECK_GE(suspend_all_count_, debug_suspend_all_count_); // Modify suspend count in increments of 1 to maintain invariants in ModifySuspendCount. While // this isn't particularly efficient the suspend counts are most commonly 0 or 1. for (int delta = debug_suspend_all_count_; delta > 0; delta--) { self->ModifySuspendCount(self, +1, true); } for (int delta = suspend_all_count_ - debug_suspend_all_count_; delta > 0; delta--) { self->ModifySuspendCount(self, +1, false); } CHECK(!Contains(self)); list_.push_back(self); } void ThreadList::Unregister(Thread* self) { DCHECK_EQ(self, Thread::Current()); CHECK_NE(self->GetState(), kRunnable); Locks::mutator_lock_->AssertNotHeld(self); VLOG(threads) << "ThreadList::Unregister() " << *self; // Any time-consuming destruction, plus anything that can call back into managed code or // suspend and so on, must happen at this point, and not in ~Thread. self->Destroy(); uint32_t thin_lock_id = self->GetThreadId(); while (self != nullptr) { // Remove and delete the Thread* while holding the thread_list_lock_ and // thread_suspend_count_lock_ so that the unregistering thread cannot be suspended. // Note: deliberately not using MutexLock that could hold a stale self pointer. Locks::thread_list_lock_->ExclusiveLock(self); CHECK(Contains(self)); Locks::thread_suspend_count_lock_->ExclusiveLock(self); bool removed = false; if (!self->IsSuspended()) { list_.remove(self); removed = true; } Locks::thread_suspend_count_lock_->ExclusiveUnlock(self); Locks::thread_list_lock_->ExclusiveUnlock(self); if (removed) { delete self; self = nullptr; } } // Release the thread ID after the thread is finished and deleted to avoid cases where we can // temporarily have multiple threads with the same thread id. When this occurs, it causes // problems in FindThreadByThreadId / SuspendThreadByThreadId. ReleaseThreadId(nullptr, thin_lock_id); // Clear the TLS data, so that the underlying native thread is recognizably detached. // (It may wish to reattach later.) CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, NULL), "detach self"); // Signal that a thread just detached. MutexLock mu(NULL, *Locks::thread_list_lock_); thread_exit_cond_.Signal(NULL); } void ThreadList::ForEach(void (*callback)(Thread*, void*), void* context) { for (const auto& thread : list_) { callback(thread, context); } } void ThreadList::VisitRoots(RootCallback* callback, void* arg) const { MutexLock mu(Thread::Current(), *Locks::thread_list_lock_); for (const auto& thread : list_) { thread->VisitRoots(callback, arg); } } class VerifyRootWrapperArg { public: VerifyRootWrapperArg(VerifyRootCallback* callback, void* arg) : callback_(callback), arg_(arg) { } VerifyRootCallback* const callback_; void* const arg_; }; static void VerifyRootWrapperCallback(mirror::Object** root, void* arg, uint32_t /*thread_id*/, RootType root_type) { VerifyRootWrapperArg* wrapperArg = reinterpret_cast(arg); wrapperArg->callback_(*root, wrapperArg->arg_, 0, NULL, root_type); } void ThreadList::VerifyRoots(VerifyRootCallback* callback, void* arg) const { VerifyRootWrapperArg wrapper(callback, arg); MutexLock mu(Thread::Current(), *Locks::thread_list_lock_); for (const auto& thread : list_) { thread->VisitRoots(VerifyRootWrapperCallback, &wrapper); } } uint32_t ThreadList::AllocThreadId(Thread* self) { MutexLock mu(self, *Locks::allocated_thread_ids_lock_); for (size_t i = 0; i < allocated_ids_.size(); ++i) { if (!allocated_ids_[i]) { allocated_ids_.set(i); return i + 1; // Zero is reserved to mean "invalid". } } LOG(FATAL) << "Out of internal thread ids"; return 0; } void ThreadList::ReleaseThreadId(Thread* self, uint32_t id) { MutexLock mu(self, *Locks::allocated_thread_ids_lock_); --id; // Zero is reserved to mean "invalid". DCHECK(allocated_ids_[id]) << id; allocated_ids_.reset(id); } } // namespace art